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Abstract

Recent research indicates that knowledge about social networks can be leveraged to increase

efficiency of interventions (Valente, 2012). However, in many settings, there exists considerable

uncertainty regarding the structure of the network. This can render the estimation of potential

effects of network-based interventions difficult, as providing appropriate guidance to select

interventions often requires a representation of the whole network. In order to make use of

the network property estimates to simulate the effect of interventions, it may be beneficial to

sample networks from an estimated posterior predictive distribution, which can be specified

using a wide range of models. Sampling networks from a posterior predictive distribution

of network properties ensures that the uncertainty about network property parameters is

adequately captured. The tendency for relationships among network properties to exhibit

sharp thresholds has important implications for understanding global network topology

in the presence of uncertainty; therefore, it is essential to account for uncertainty. We

provide detail needed to sample networks for the specific network properties of degree

distribution, mixing frequency, and clustering. Our methods to generate networks are demon-

strated using simulated data and data from the National Longitudinal Study of Adolescent

Health.
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1 Introduction

We develop a method to sample networks given a specification of the probability

distribution—of particular interest is a posterior predictive distribution—on network

statistics as researchers are often interested in utilizing observed network data to

investigate the impact of an intervention on populations with networks similar to

those for which the data are available. The probability distribution can be specified

either by a posterior predictive model, design-based inference, Null model (e.g.

the Erdős-Rényi model), or Bayesian inference for an exponential random graph

model (ERGM) (Caimo & Friel, 2011; Koskinen et al., 2013). Methods to generate
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networks are widely available, and include those to generate networks based on one

specific network property, such as the Erdős-Rényi model (Erdős & Rényi, 1960)

and the Barabási-Albert model (Barabasi & Albert, 1999), as well as those that

are based on a wide range of network properties, such as the simulation methods

(Handcock et al., 2012) from an ERGM (Frank & Strauss, 1986). However, none

of these network generation efforts incorporate uncertainty due to sampling and

collection error. In the Erdős-Rényi model, the number of edges follows a binomial

distribution with parameters .5n(n − 1) and p, where n is the number of nodes and

p is the probability of an edge. ERGMs fix the probability distribution of network

properties by maximizing the entropy (Newman, 2010). This paper connects the two

research areas, modeling posterior predictive distributions and generating networks,

by presenting a novel method for sampling networks from a user-defined posterior

predictive distribution, thereby ensuring that the networks are consistent with not

only point estimates but also their associated uncertainty. The properties we consider

are density, degree distributions, mixing patterns, and clustering, but these methods

could be generalized to include many others.

Erdős & Rényi (1960) demonstrated the importance of characterizing the un-

certainty in estimates of network properties by analytically relating the size of the

largest component of an Erdős-Rényi graph to its expected mean degree. This

work revealed the existence of sharp thresholds in relationships among network

properties. Subsequent research has shown threshold behavior in the relationship

between mean degree and categorization of networks as connected, Hamiltonian, or

planar, along with relationships between mean degree and size of the largest clique

and the network diameter under the Erdős-Rényi random graph model (Friedgut

& Kalai, 1996). Watts & Strogatz (1998), in their landmark paper, demonstrated

the rapid emergence of the small world property via changes in the mixing patterns

between near and distant nodes. The tendency for network properties to exhibit

sharp threshold effects—causing their joint distributions to be peaked (Newman,

2010)—demonstrate that slight errors in estimation of a network property can have

a major impact on beliefs about the overall structure of the network. Therefore,

it is essential for researchers to utilize knowledge about the variability of network

property estimates.

Our approach allows for specification of the error distributions of the estimated

network property or properties of interest and not just the estimate of the mean

by the specification of a posterior predictive distribution. For a simple illustration,

assume we collected sample data from an unknown network of interest, G, of size

n. Let p̂ represent the point estimate for network edge density—the sole network

property under consideration in this example. Regardless of whether the Erdős-Rényi

model or the ERGM is used to generate a collection of networks, the probability

distribution of network edge density for the collection of networks is approximately

normal with mean p̂ and variance p̂(1 − p̂)/
(
n
2

)
. However, the uncertainty in the

estimated edge density depends on the number of units sampled and other sample

design considerations. Furthermore, the error distribution may be non-normal. Our

proposed method allows users to specify the posterior predictive distribution for

edge density. Characterizing and incorporating uncertainty is particularly important

when point estimates of network properties are near threshold values. The focus

of the paper is on methods for generating a collection of networks given the
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specification of the probability distribution of network properties. The specification

can be established either by a posterior predictive model, design-based inference, or

a Null model, e.g. the Erdős-Rényi model.

To demonstrate our methods, we consider two settings with different types of

observed network data but a common goal: the generation of collections of networks

that represent new populations but retain the essential network properties inferred

from the observed data. In the first setting, the observed data arise from a population-

based sample of nodes. Such data have been analyzed to investigate the impact of

concurrency on HIV propagation in the United States (Morris et al., 2009) and

changes in the core-dependence network (including measures of social isolation) in

the United States over a 20-year period (McPherson et al., 2006). Section 5 presents

a simulation study that emulated the first setting by randomly sampling nodes from

a network, and generating networks based on information from the samples. In the

second setting, the observed data are a collection of whole networks. In this setting,

the posterior predictive distribution incorporates the variation in network properties

across the observed networks. Settings in which analysis of multiple networks is of

interest include cluster randomized trials of interventions designed to prevent HIV

infection (Wang et al., in press; Boily et al., 2012) or smoking initiation (Valente

et al., 2003). They also include observational studies, such as those investigating

impact of friendship network structure on adolescent development (McNeely et al.,

2002). Section 6 analyzes data from The National Longitudinal Study of Adolescent

Health (Add Health) on multiple friendship networks in order to simulate such

networks in a hypothetical collection of schools that reflect the diversity of those

actually studied.

Beyond the relative ease of collecting relevant data for their estimation, the

network properties of degree distribution, mixing patterns, and clustering provide

necessary and often sufficient information to reconstruct networks in many settings

(Mahadevan et al., 2006). Additionally, these properties have great influence on

processes operating on networks. For example, the importance of mixing patterns,

including age, social position, geographic location, and race, has been studied in

many settings, in particular sexual disease transmission (Morris et al., 2007). Degree

mixing has also been important in many settings, including investigation of disease

transmission models (Newman, 2002), the Internet (Doyle et al., 2005; Vázquez

et al., 2002), and biological interactions (Maslov & Sneppen, 2002). Newman (2002)

concluded that degree assortative networks disseminate disease more easily and are

more robust to removal of their highest degree nodes compared to disassortative

networks. Clustering is relevant in a wide range of network types including social,

information, technological, and biological (Newman, 2010). Hence our focus is on

degree distribution, mixing patterns and clustering; the discussion section addresses

extension to additional network properties. An R package called CCMnet1 contains

many of the methods presented in this paper.

The proposed methods permit generation of collections of networks, which

facilitates simulation of processes on many probable realizations of a population

that are consistent with estimates of network properties, and thereby permits

1 R package CCMnet is available on CRAN: http://cran.r-project.org/.
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characterization of the reliability of the conclusion. For example, a large collection

of friendship networks that are based on observed networks available in the

Add Health dataset can be useful to model and evaluate smoking prevention

programs since an individual’s propensity to smoke is influenced by his/her peers

(Christakis & Fowler, 2008). Examples of research utilizing network collections

include investigation of disease control strategies for Mycoplasma pneumoniae

in hospitals (Bansal et al., 2006), influenza vaccination programs within an urban

population (Meyers et al., 2003), and management of tuberculosis progression within

an HIV infected population (Mills et al., 2011). Collections of networks have also

been used to study factors that account for differences in prevalence of sexually

transmitted diseases among groups (Morris et al., 2009) and the benefit of test and

treat strategies to control HIV in Sub-Saharan communities (Palombi et al., 2012).

However, none of the examples incorporate the full uncertainty in network property

estimates; the models used to generate the networks are based only on mean values

for network properties.

The next section provides a general description of the proposed method for

generating network collections. Section 3 provides additional detail for categories

of network collections that are of general interest. Section 4 describes how the

proposed network generation method can be used to sample networks from a

posterior predictive distribution. Sections 5 and 6 provide examples of sampling

networks from a posterior predictive distribution for simulated data and data from

The National Longitudinal Study of Adolescent Health, respectively; Section 7

discusses the proposed methods and suggests future research directions.

2 Network collection properties

To describe the method for generating network collections requires defining termi-

nology and notation. Let vector D(g) denote the degree distribution of a graph g,

where the ith entry of D(g), Di(g), is the proportion of nodes with degree i. Let d(g)

represent the degree sequence of network g, where the ith entry, di(g), is the degree

of node i. Let MM (g) be a matrix representing the mixing pattern of graph g. The

entry MMk,l(g) is the proportion of edges from a node with covariate pattern k to

a node with covariate pattern l. Let vector m(g) represent the covariate pattern for

each node in g, where mi(g) is the covariate pattern for node i. Let M (g) be the vector

of proportions for the different covariate patterns. We use the notation DMM (g)

to represent degree mixing matrices, where entry DMMi,j(g) is the proportion of

edges from a node of degree i to a node of degree j. Finally, let CC (g) denote the

clustering coefficient of g as described in Newman (2010).

The network collection is a subset of networks from the space, G , of graphs with

n nodes. To generate such a collection, we begin by partitioning G into congruence

classes, such that each network in the congruence class has the same values for

network properties of interest. Let Cg represent the congruence class containing

network g; and let the number of networks in Cg be denoted as |Cg|, also referred

to as the volume factor in Shalizi & Rinaldo (2013). For example if interest lies in

degree distribution and degree mixing patterns, networks g and h will reside in the

same congruence class if and only if D(g) = D(h) and DMM (g) = DMM (h). The

congruence classes represent the finest partition of the space G that is based on
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estimable quantities from observed data and is of scientific interest. In this paper,

the congruence classes will be constructed by partitioning G by density, degree

distribution, mixing patterns and clustering coefficient. To generate a collection,

each network in G will be assigned a probability, PG (g), of being selected into the

collection. PG (g) is based solely on the congruence class of the network g.

By partitioning G into congruence classes and defining a probability mass function

for the probability of sampling a network from a congruence class, we can control

the probability of sampling a network with particular values of network properties.

As some congruence classes have vastly more networks than do others, this approach

guards against over- or under-representing networks with particular properties due to

the size of the congruence class, thereby ensuring the consistency of the collection of

networks with the collected data. Defining the probability of sampling networks from

a congruence class allows for generation of networks that reflect both the estimated

mean and uncertainty associated with the estimate—the only information available

to the investigator—without requiring consideration of the complex topology of the

underlying space of graphs of size n.

A Markov chain Monte Carlo (MCMC) procedure is the basis for generating a

collection of networks, {g1, . . . , gt} that satisfy the probability distribution assigned

to the congruence classes. Ideally, to generate our collection, {g1, . . . , gt}, we would

sample, with replacement, t congruence classes {C1, . . . , Ct}, based on the probability

distribution on the classes. For each congruence class, Ci where i ∈ {1, . . . , t},
we would draw a network, gi, such that gi ∈ Ci. Since this procedure presents

computational difficulties, we implement a Markov chain using the Metropolis-

Hastings algorithm to generate the networks. For a review on MCMC methods see

Robert & Casella (2004). In order to implement the Metropolis-Hastings algorithm,

four aspects have to be specified: target function, proposal function, acceptance

probability, and initial starting element. Many authors have described construction

of an initial starting element (Blitzstein & Diaconis, 2010), so we discuss only the

first three aspects below.

2.1 Target function

The target function is the desired stationary distribution for the Markov chain. In

our setting, the network g has a probability mass equal to the probability of the

congruence class Cg divided by the number of networks in Cg, |Cg|, thereby ensuring

that each network in Cg has the exact same probability:

PG (g) ∝
(

1

|Cg|
)
PC (Cg). (1)

Due to the constraints imposed on particular network properties, not all values

of particular network properties correspond to valid networks. For example, no

network can have odd values for
∑

i Di × i × n, which represents two times of the

number of edges in the graph. Section 3 outlines criteria to ensure that a congruence

class contains at least one valid network.
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2.2 Proposal function

The algorithm generates the next network, gt+1, in the chain by nominating a

proposal network, gpt+1, based only on the previous network gt. A common method

to generate a proposal network is by toggling the existence of an edge. Edge toggling

requires selecting two nodes at random and either removing the edge if one exists

or adding one if it does not. The algorithm produces an irreducible Markov chain

among all graphs with a fixed size; the chain also has equal forward and backward

probabilities.

2.3 Acceptance probability

Once a proposal network, gpt+1, is generated, the Metropolis-Hastings algorithm will

either accept, gt+1 = gpt+1, or reject, gt+1 = gt, the proposal. The Metropolis-Hastings

acceptance probability is the following:

P (Accept gpt+1|gt) = min

(
1,

PG (gpt+1)

PG (gt)

)
= min

(
1,

|Cgt |
|Cgpt+1

| × PC (Cgpt+1
)

PC(Cgt )

)
. (2)

Let t(g, Ch) equal the number of elements in Ch that differ from g through toggling

one edge. Let T (Cg, Ch) =
∑

g∈Cg
t(g, Ch) represent the total number of possible edge

toggles for graphs in Cg to graphs in Ch. Due to symmetry induced by edge toggling,

T (Cg, Ch) = T (Ch, Cg). Thus,

P (Accept gpt+1|gt) = min

⎛
⎝1,

(
T (Cgt ,Cgpt+1

)

|Cgpt+1
|

)
(

T (Cgpt+1
,Cgt )

|Cgt |
) × PC (Cgpt+1

)

PC (Cgt )

⎞
⎠ . (3)

By defining f(Cg, Ch) as the average number of elements in Ch that are valid

proposals from an element g ∈ Cg , we get the following:

P (Accept gpt+1|gt) = min

(
1,

f(Cgpt+1
, Cgt )

f(Cgt , Cgpt+1
)

× PC(Cgpt+1
)

PC (Cgt )

)
. (4)

3 Network collection generation

This section demonstrates our framework by considering several common scenarios.

Once the network space and network proposal method have been selected, only the

functions PC (Cg) and f(Cg, Ch) need to be specified. In all scenarios, the network

space consists of all networks with a fixed number of nodes; edge toggling is used to

propose networks. As the probability mass function, PC , on congruence classes is set

by the investigator, in this section we only derive f(Cg, Ch). Sections 5 and 6 provide

examples of various probability mass functions associated with different sampling

strategies. Denote g, h ∈ G as the current and proposal network, respectively. Let

Cg and Ch denote the congruence classes for g and h. Let the edge, (i, j), between

node i and node j be the connection that is toggled to move from g to h and back.

Without loss of generality, let (i, j) ∈ h but (i, j) /∈ g.
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3.1 Topological properties

Topological properties of a social network provide valuable insight into the operation

of processes within a community. This section discusses generation of networks based

on density, degree distribution, degree assortativity, and clustering. Though density

is an influential network property (Bollobás, 2001), it is usually collected with other

network properties, e.g. degree distribution, but it provides a useful example to

illustrate the mechanics of the proposed method.

3.1.1 Density

For density, a congruence class is the set of networks with the same number of edges,

as all graphs in G have the same number of nodes. Let |Eg| denote the number of

edges in graph g. Networks g1 and g2 are in the same congruence class if and only

if |Eg1
| = |Eg2

|. Since (i, j) ∈ h but (i, j) /∈ g, |Eh| = |Eg| +1. To calculate f(Ch, Cg) we

need to know the average number of elements in Cg that are valid proposals from

any element h ∈ Ch. Since removing any edge in h will produce a graph in Cg there

are exactly |Eh| valid proposals in Cg from graph h, and this is true regardless of

the choice of h ∈ Ch. Thus,

f(Ch, Cg) = |Eh|. (5)

To calculate f(Cg, Ch), we need to know the average number of elements in Ch

that are valid proposals from any element g ∈ Cg . Adding a new edge in g that did

not previously exist will produce a graph in Ch; hence, there are exactly
(
n
2

) − |Eg|
valid proposals in Ch from graph g. Again, is it true for any g ∈ Cg . Thus,

f(Cg, Ch) =

(
n

2

)
− |Eg|. (6)

The investigator can stipulate the proportion of networks in the collection with

a particular number of edges by specifying the values of P (Cg). One choice of

specification is to generate a network collection following Erdős-Rényi random

graph model with parameters (n, p); this can be achieved by setting PC(Cg) =

p|Eg |(1 − p)(
n
2)−|Eg |(.5n(n−1)

|Eg |
)
. Another specification, which is a major goal of this paper,

is to define P (Cg) in such a way to generate networks based on the uncertainty due

to sampling.

3.1.2 Degree distribution

For degree distribution, congruence classes are sets of networks with identical

numbers of nodes and degree distribution. Thus, networks g1 and g2 are in the same

congruence class if and only if Dk(g1) = Dk(g2)∀k. As g only differs from h through a

toggling of the edge (i, j), Dk(g) = Dk(h) for all k except possibly k = di(g), dj(g), di(h)

and dj(h). Since the only difference between the graph g and h is edge (i, j) ∈ h but

(i, j) /∈ g, di(h) = di(g) + 1 and dj(h) = dj(g) + 1. The expressions relating D(g) and
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D(h) are given below for those entries that may differ:

Dk(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ddi(g)
(g) − (1 + I{di(g) = dj(g)} − I{di(g) = dj(g) + 1})/n if k = di(g)

Ddj (g)
(g) − (1 + I{di(g) = dj(g)} − I{dj(g) = di(g) + 1})/n if k = dj(g)

Ddi(h)
(g) + (1 + I{di(g) = dj(g)} − I{di(g) = dj(g) − 1})/n if k = di(h)

Ddj (h)
(g) + (1 + I{di(g) = dj(g)} − I{dj(g) = di(g) − 1})/n if k = dj(h).

(7)

The number of edge toggles from a graph h ∈ Ch to any graph in Cg is equal

to the proportion of edges in h that have endpoint degrees of di(h) and dj(h), i.e.

DMMdi(h),dj (h)
, multiplied by the number of edges in h, |Eh|. Thus, f(Ch, Cg) is equal

to the average of DMMdi(h),dj (h)
× |Eh| over all graphs h ∈ Ch. Let E(DMM |Ch)

denote the expected degree mixing matrix over graph that are in Ch. Since h′ ∈ Ch

if and only if D(h′) = D(h), E(DMM |Ch) = E(DMM |D(h)). Thus,

f(Ch, Cg) = E(DMMdi(h),dj (h)
|D(h)) × |Eh|. (8)

Following arguments from Newman (2002), based on the probability that a node’s

neighbor will have degree k is proportional to kDk and not Dk ,

E(DMMx,y|D) ≈ xDx × yDy

.5(
∑

k kDk)
2

×
(

1

2

)I{x=y}
. (9)

The number of edge toggles from a graph g ∈ Cg to any graph in Ch is equal to

the number of possible non-loop edges with endpoint degrees di(g) and dj(g) minus

the number of edges that will generate a multi-edge. The expected number of edge

toggles that generate a multi-edge is E(DMMdi(g),dj (g)
|D(g)) × |Eg|, denote this value

as α1; therefore, an expression for f(Cg, Ch) is the following,

f(Cg, Ch) =

⎧⎨
⎩
n2Ddi(g)

(g)Ddj (g)
(g) − α1 if di(g) �= dj(g)(nDd

i
(g)(g)

2

) − α1 else.
(10)

To decrease convergence time in the MCMC procedure, one can use the algorithm

described in Blitzstein & Diaconis (2010) to initialize the starting network with the

estimated mean degree distribution. Based on results from Hakimi (1962) and Havel

(1955), an algorithm to validate that a degree sequence has a realization can be

found in Blitzstein & Diaconis (2010).

3.1.3 Degree mixing and degree distribution

We consider a partition of G such that networks g1 and g2 are in the same congruence

class if and only if Dx(g1) = Dx(g2) ∀ x and DMMx,y(g1) = DMMx,y(g2) ∀ x, y. An

identical partition is defined when networks g1 and g2 are in the same congruence

class if and only if DMM (g1)|Eg1
| = DMM (g2)|Eg2

|. Thus, the probability mass

function can be defined using the degree mixing matrix and number of edges.

Toggling the edge (i, j) in a graph h ∈ Ch, not only changes the entry associated

with index (di(h), dj(h)) in DMM (h), but also changes the set of entries associated

with indices {(di(h), dk(h))}k∈{in} and {(dl(h), dj(h))}l∈{jm} where {in}din=1 and {jm}djm=1

denote the set of neighbors of i and j, respectively. Therefore, to move from a graph

h ∈ Ch to any graph in Cg via edge toggling, an edge (i, j) with the proper degrees for
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i and j as well as the proper degrees for the neighbors of i and j needs to be toggled.

Let di and dj denote the proper degrees for i and j to move from a graph h ∈ Ch to

any graph in Cg . Additionally, let {din} and {djm} denote the proper degrees of the

neighbors of i and j, respectively. f(Ch, Cg) is the average over all graphs in Ch of

the number of edges with endpoint degrees of di and dj , and neighbors with degrees

{din} and {djm}. The expression for f(Ch, Cg) in the degree mixing case is similar to

the expression for degree distribution, as shown in Equation (8), except for an extra

term for the probability that an edge with degrees di(h) and dj(h) has neighbors

with the proper degrees. f(Ch, Cg) is equal to DMMdi(h),dj (h)
× |Eh| multiplied by the

probability that an edge with endpoint degrees equal to di and dj has neighbors with

degrees equal to {din} and {djm}; let β1
(i,j)(h) denote this probability. Therefore,

f(Ch, Cg) = DMMdi(h),dj (h)
(h) × |Eh| × β1

(i,j)(h). (11)

When removing any edge, (i, j), from h with endpoint degrees of di(h) and dj(h),

it is known that one of the di(h) neighbors of i has degree dj(h) and one of the

dj(h) neighbors of j has degree di(h). However, when adding any edge, (i, j), with

particular endpoint degrees to g none of the degrees of the neighbors of i or j are

known. Therefore, the probability that an edge with endpoint degrees equal to di
and dj has neighbors with degrees equal to {din} and {djm} has a slightly different

expression for the two transitions, Ch to Cg and Cg to Ch. Let β0
(i,j)(g) denote the

probability that an edge with degrees di(g) and dj(g) has neighbors with the proper

degrees when transitioning from Cg to Ch. The expression for f(Cg, Ch), which is

similar to the Equation (10) for degree distribution, is the following,

f(Cg, Ch) =

⎧⎪⎨
⎪⎩

[
n2Ddi(g)

(g)Ddj (g)
(g) − α2

]
× β0

(i,j)(g) if di(g) �= dj(g)[(nDd
i
(g)(g)

2

) − α2

]
× β0

(i,j)(g) else
(12)

where α2 = DMMdi(g),dj (g)
(g) × |Eg|.

βs
(i,j)(z) is equal to the average over all graphs in Cz of the number of ways to

select edges adjacent to i and j with endpoint degrees of {(din , di)} and {(djm , dj)}
divided by the total number of possible ways to select edges adjacent to i and j.

Let the entries of DMM
′
(z) × |Ez | contain the total number of half edges, i.e. stubs;

the entry DMM
′
k,l(z) × |Ez | is the number of stubs from a node of degree k that

attaches to a node of degree l. Therefore, DMM
′
k,l(z) = DMMk,l(z) if k �= l and

DMM
′
k,l(z) = 2∗DMMk,l(z) if k = l. The number of ways to select m half edges each

with an endpoint degree of k and attaches to a node of degree l is
(
DMM

′
k,l×|Ez |
m

)
. The

number of ways to select edges adjacent to i and j with proper endpoint degrees is

approximately the product of the number of ways to select the necessary number of

stubs over each distinct endpoint degree. The product only needs to be indexed over

degrees that exist in {di(z), dj(z)}, since the edges connect to i or j and the degrees

of i and j are known. The denominator of βs
(i,j)(z) is equal to the number of ways

to choose valid stubs for the neighbors of i and j from the total number of valid

stubs that attach to nodes with degrees equal to di or dj . When transitioning from

h to g it is known that i and j are neighbors, thus only di − 1 and dj − 1 neighbor

degrees need to be specified for i and j, respectively. The formula for βs
(i,j)(z) is the
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following,

βs
(i,j)(z) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Πk(
DMM

′
d
i
(z),k

(z)×|Ez |−I{d
j
(z)=k}·s

nk
i

−I{d
j
(z)=k}·s )

(
∑

k DMM
′
d
i
(z),k

(z)×|Ez |−I{d
j
(z)=k}·s

d
i
(z)−s

)
×

Πk(
DMM

′
k,d

j
(z)

(z)×|Ez |−I{d
i
(z)=k}·s

nk
j

−I{d
i
(z)=k}·s

)

(
∑

k DMM
′
k,d

j
(z)

(z)×|Ez |−I{d
i
(z)=k}·s

d
j
(z)−s

)
if di(z) �= dj(z)

Πk(
DMM

′
d
i
(z),k

(z)×|Ez |−I{d
j
(z)=k}·s

nk
i
+nk

j
−2I{d

j
(z)=k}·s )

(
∑

k DMM
′
d
i
(z),k

(z)×|Ez |−I{d
j
(z)=k}·s

d
i
(z)+d

j
(z)−2s

)
else,

(13)

where nki and nkj denote the number of elements in {din} and {djm} equal to k.

As with the degree distribution, not all degree mixing matrices have a valid

realization. Appendix A (available as supplementary material) provides a method

to characterize valid degree mixing matrices; an alternative proof of the validity of

this characterization is given by Amanatidis et al. (2008). Using the construction

procedure in the appendix to set the initial network with the estimated degree

distribution and degree mixing will tend to decrease time to convergence in the

MCMC procedure.

3.1.4 Degree distribution, degree mixing, and clustering

We consider a partition of G such that networks g1 and g2 are in the same congruence

class if and only if Dx(g1) = Dx(g2) ∀ x, DMMx,y(g1) = DMMx,y(g2) ∀ x, y, and

CC (g1) = CC (g2). An identical partition is defined when networks g1 and g2 are

in the same congruence class if and only if DMM (g1)|Eg1
| = DMM (g2)|Eg2

| and

T (g1) = T (g2), where T (g) is the number of 3-cycles in g. Let f∗(C∗
g , C

∗
h ) represent

the average number of elements in C∗
h that are valid proposals from g when the

congruence classes are defined by only the degree distribution and the degree mixing

matrix; we calculated f∗(C∗
g , C

∗
h ) in the previous section. Since Ch is a subset of C∗

h ,

we only need to calculate the proportion of the elements in C∗
h that are consistent

with T (h). Therefore,

f(Cg, Ch) = padd
di(g),dj (g)

× f∗(C∗
g , C

∗
h ) (14)

where padd
di(g),dj (g)

is equal to the probability that nodes i and j of degrees di(g) and

dj(g) have exactly k = |T (g) − T (h)| common neighbors in g given (i, j) /∈ g. Let pa
be the probability that a pair of edges from arbitrary nodes i and j, an edge from i
and edge from j, share a common node given i and j are not connected. Therefore,

pa =
Number of open 2-stars

Number of pairs of edges from two unconnected nodes
(15)

=

∑
l∈V

(
dl (g)

2

) − 3T (g)∑
r<s rs(n

2 × Dr(g) × Ds(g) − DMMr,s(g)|Eg|) +
∑

r r
2(

(
nDr(g)

2

) − DMMr,r(g)|Eg|) .
(16)

padd
di(g),dj (g)

can be approximated by assuming each pair of edges, an edge from i and

edge from j, has an independent probability, pa, of having a common node. So,

padd
di(g),dj (g)

is approximately equal to the product of three quantities: the number of

ways to select k pairs of edges, the probability k pairs of edges each have a common
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node, and the probability that the remaining possible pairs of edges do not have a

common node:

padd
di(g),dj (g)

≈
(

1

k!

k−1∏
l=0

[(di(g) − l)(dj(g) − l)]

)
× pka × (1 − pa)

(di(g)−k)(dj (g)−k). (17)

Similarly,

f(Ch, Cg) = premove
di(h),dj (h)

× f∗(C∗
h , C

∗
g ) (18)

where,

premove
di(h),dj (h)

≈
(

1

k!

k−1∏
l=0

[(di(h) − 1 − l)(dj(h) − 1 − l)]

)
×pkb × (1 − pb)

(di(h)−1−k)(dj (h)−1−k),

(19)

and pb is the probability that a pair of edges, an edge from i and edge from
j excluding the edge between i and j, share a common node given i and j are
connected. Therefore,

pb =
Number of closed 2-stars

Number of pairs of edges from two connected nodes, excluding the connecting edge

(20)

=
3T (h)∑

r�s(r − 1)(s − 1)DMMr,s(h) × |Eh| . (21)

3.2 Nodal covariates

The methods developed for topological network properties can be extended to

include mixing patterns based on nodal covariates. Let p be the number of distinct

nodal covariate patterns of interest in the population. The covariate patterns can

represent single or multiple nodal characteristics. We describe a common scenario in

which we observe not only mixing patterns between covariate patterns but also the

degree distributions, {D1, . . . , Dp}, for each covariate pattern. From the perspective of

both underlying theory and computation, nothing prevents each node from having

a distinct covariate pattern; consequently, covariates may be either continuous or

discrete. In order to incorporate covariate information, knowledge of the proportion

of individuals with covariate pattern k, Mk , is required for each k ∈ {1, . . . , p}.

3.2.1 Nodal covariate mixing and degree distribution

For nodal covariate mixing and degree distribution, the congruence classes contain

networks with identical numbers of nodes, degree distributions, and nodal covariate

mixing matrices. Thus, networks g1 and g2 are in the same congruence class if and

only if Dk
x(g1) = Dk

x(g2)∀x, k and MMk,l(g1) = MMk,l(g2)∀k, l.
Expected degree mixing matrices, E(DMMk,l), are constructed for each entry of

the covariate mixing matrix. The matrix entry DMMk,l
x,y(g) represents the proportion

of edges between nodes of types mi and mj where one endpoint node has covariate

pattern k and degree x, while the other endpoint node has covariate pattern l and

degree y. Using the setup from the previous section, we let the edge set of g and h
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be identical except that (i, j) /∈ g and (i, j) ∈ h, and let nodes i and j have covariate

patterns mi and mj , respectively. The number of edge toggles from a graph h ∈ Ch

to any graph in Cg is equal to the number of edges in h where one endpoint has

degree di(h) and type mi and the other endpoint has degree dj(h) and type mj .

The proportion of edges where both endpoints are specified as types k and l (or

number of stubs from nodes of type k if k = l) compared to number of stubs from

nodes of type k is
MMk,l (1+I{k=l})
MMk,k+

∑
z MMk,z

. Using similar arguments as above we can calculate

the expected degree mixing matrix where only edges between types k and l are

considered:

E
(
DMMk,l

x,y|Dk,l , Dl,k
) ≈ xDk,l

x × yDl,k
y

(1 − .5I{k = l})( ∑
z zD

k,l
z

)2
×

(
1

2

)I{k=l}I{x=y}
(22)

where,

Dk,l = Mk × Dk × MMk,l(1 + I{k = l})
MMk,k +

∑
z MMk,z

. (23)

Thus,

f(Ch, Cg) = E
(
DMM

mi,mj

di(h),dj (h)
(h)|Dmi,mj (h), Dmj ,mi (h)

) × ∣∣Ek,l
h

∣∣, (24)

and

f(Cg, Ch)

=

⎧⎨
⎩
n2 × Mmi

× Dmi

di(g)
(g) × Mmj

× D
mj

dj (g)
(g) − α3 if di(g) �= dj(g) and mi �= mj(nMmi

D
d
mi
i

(g)
(g)

2

) − α3 else,

(25)

where |Ek,l
h | = (1 − .5I{k = l}) ∑

z zD
k,l
z (E), the expected number of edges between

the node types, and α3 = E(DMM
mi,mj

di(g),dj (g)
(g)|Dmi,mj (g), Dmj ,mi(g)) × |Ek,l

g |.
For each covariate degree distribution, one entry in the mixing matrix is fixed.

Therefore, given degree distribution estimates for each of the covariate patterns, the

probability mass function can only be specified for the degree distributions and the

entries above the diagonal in the mixing matrix.

3.2.2 Nodal covariate mixing, degree mixing, and degree distribution

In a similar fashion as above the proposed method can be extended to include degree

mixing. Once again, we substitute the true degree mixing matrices for the expected

degree mixing matrices and adjust for all edges associated with nodes i and j.

4 Generating networks based on a posterior predictive distribution

To evaluate processes operating on a network, it is often beneficial to generate

networks representing a new population that are deemed “realistic”, i.e. the values

for essential network properties are consistent with observed data. Therefore, it

would be useful to sample networks from a posterior predictive distribution that

ensures that the generated networks reflect the uncertainty in network properties

associated with the observed network data. In this paper, the posterior predictive

distribution on the space of networks is referred to as the posterior predictive
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network distribution (PPND), which is denoted as P (G̃|Y ), where Y is the observed

network data.

Sections 2 and 3 provide methods to generate networks in settings where the

investigator knows the desired distribution for specific networks properties; such

settings include generating a collection of networks based on a Null model or on

design-based inference. As described in Section 3.1.1, a network collection drawn

from the Erdős-Rényi random graph model, a commonly used Null model, with

parameters (n, p) can be done by setting PC (Cg) = p|Eg |(1 − p)(
n
2)−|Eg |(.5n(n−1)

|Eg |
)

in

Equation (1). The probability distribution on the congruence classes, PC , can

be also be based on estimates from designed-based inference. For example, the

Horvitz-Thompson estimator, a common tool in design-based inference, can be used

to calculate the probability distribution for the network statistics. Frank (2005)

and Kolaczyk (2009) provide a good overview of work on design-based inference.

In this section, we demonstrate how to utilize the network generation method

described in Section 2 to sample from a PPND based on specific essential network

properties. The essential network properties, which define the congruence classes on

the network space, are referred to as the sufficient network statistics for the model.

By marginalizing over values of the sufficient network statistics, denote these values

as Θ, the PPND, P (G̃|Y ), can be written as the following,

P (G̃|Y ) =

∫
Θ

P (G̃|Θ)P (Θ|Y )dΘ. (26)

Let η(G) be the values of the sufficient statistics for a network G. Using the probability

distribution defined in Equation (1), the first term in the integral evaluates to the

following:

P (G̃|Θ) =

{
1

|CG̃| if η(G̃) = Θ

0 else.
(27)

Substituting Equation (27) into Equation (26), the PPND simplifies to the following:

P (G̃|Y ) =
1

|CG̃|P (η(G̃)|Y ), (28)

where P (η(G̃)|Y ) represents the posterior predictive distribution on the space of

values for the sufficient network statistics, which is referred to as the posterior

predictive sufficient network statistics distribution (PPSNSD). In this paper, network

density, degree distribution, mixing by degree and covariates, and clustering are of

particular importance as sufficient network statistics.

Equation (28) indicates that simply by setting PC (CG) in Equation (1) equal to the

PPSNSD, P (η(G̃)|Y ), it is possible to sample networks from the PPND using the

method outlined in Section 2. The network generation method places no additional

restrictions on the PPSNSD, beyond those required to use the MCMC procedure.

The nearly complete flexibility in specification of the form of the PPSNSD enables

the investigator to specify the most appropriate PPSNSD for the data available.

The specification of the PPSNSD can arise from a parametric model (see examples

below) or a non-parametric model.

The following sections introduce two settings with different types of observed

network data, though the goal is the same in both settings: sample networks

representing a new population of individuals that retains the essential properties
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Table 1. Sampled degrees.

Degree 0 1 2 3 4 5 6 7 8

Number of samples 7 10 19 27 20 8 6 2 1

of the observed data. In the first setting, the observed data arises from a sample

of individuals from a specific population. In the second, the observed data are a

collection of whole networks. In the second setting, the PPSNSD is based on the

variation in network properties across the observed networks.

5 Simulation studies

In research on disease propagation, interest lies in generating random networks

representing the population of interest that retain characteristics of “realistic”

contact networks that can be used in epidemic simulations (Meyers et al., 2005).

Investigation of the HIV epidemic in heterosexual populations has been based on

generation of networks where sufficient network statistics include only information

on the degree distribution and mixing patterns (Morris et al., 2009), as higher order

network properties are difficult to collect. This section described networks that are

generated using only degree distribution; the sampled network data and model are

kept simple to better illustrate the methods described in Sections 2-4. In the next

section, an additional network property, mixing patterns, is considered; that section

also makes use of an actual data set as well as a more complex model.

5.1 Simulated data

In what follows, interest lies in generating random networks consistent with data

representing nodal degree values collected from k nodes. Current procedures permit

generation of networks that have approximately the desired point estimate of the

degree distribution (Britton et al., 2006); the proposed methods allows the generation

of networks that reflects uncertainty, as specified by the PPSNSD, in the degree

distribution estimate. The data, Y , containing the k nodal degree values is represented

as a vector where Yi denotes the number of nodes in the sample with degree i. Thus,∑
i Yi = k. This type of data is commonly collected in studies of the spread of

communicable diseases. In disease modeling the nodal degrees represent the number

of contacts; in the case of sexually transmitted infections, this may be number of

sexual partners. The distribution of contacts has historically played an important

role in epidemic network models.

The simulated dataset is a sample of 100 nodes from a network generated

under the Erdős-Rényi random graph model with parameters (n = 1000, p = .003).

Table 1 shows the values of Y from the 100 nodes sampled. Appendix B (available

as supplementary material) contains four additional simulated datasets consisting of

100 nodal degrees; the datasets were generated using methods from the R library

degreenet (Handcock, 2003). For each of the four datasets an identical procedure to

generate networks, outlined below, was followed.
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5.2 Bayesian model

Our goal is to generate networks for a new population that are consistent with

the sampled data with regards to the degree distribution. Therefore, a model for

the PPSNSD is necessary to describe the degree distribution of the whole network.

The MCMC procedure to generate the networks used the method outlined in

Section 3.1.2.

Using Equation (28) as our PPND, only the PPSNSD, where the sufficient

network statistics is the degree distribution, must be specified. As stated in Section 4,

nearly any PPSNSD deemed to be appropriate can be used. In this example, it is

assumed that the system has a constraint on the maximum degree equal to eight—

the maximum degree in the simulated sampled data Y . Therefore, a multinomial

likelihood for the degree distribution may be well suited for the data. A maximum

degree constraint may be appropriate in social networks due to possible limitations

on the number of stable social relationships an individual can maintain, though this

number is much larger than eight (Dunbar, 1993). As many real world networks

may exhibit a power-law distribution, a likelihood based on such a distribution may

be proper in certain settings.

As the model for the PPSNSD is at the discretion of the investigator, the following

likelihood and prior are proposed for modeling the PPSNSD:

Likelihood : Y ∼ Multinomial(N,Θ) (29)

Prior : Θ ∼ Dirichlet(α0). (30)

(31)

Therefore,

Ỹ |Y , α0 ∼ Dirichlet-multinomial(α′) (32)

where α′ = α0 + Y . By substituting the probability distribution defined by Equation

(32) into Equation (28), the PPND evaluates to the following,

P (G̃|Y , α0) ∝ 1

|CG̃|
N!∏8

i=0(Ỹi!)

Γ(A)

Γ(N + A)

8∏
i=0

Γ(Yi + α′
i)

Γ(α′
i)

, (33)

where A =
∑

α′
i. The PPND is proportional, and not equal, to the right hand side

because not all realizations of Ỹ from Equation (32) are valid degree distributions.

Since the methods in Section 2 are based on a Metropolis-Hasting algorithm,

knowing the PPND up to proportionality is sufficient. For the results presented in

the following section the prior distribution parameter α0 is set to {1, 1, 1, 1, 1, 1, 1, 1, 1}.

5.3 Results

Figure 1 depicts the marginal distribution for each value of the degree distribution

from 0-8 for three joint distributions: the target distribution as specified in Equation

(32), the simulated distribution using methods proposed in this paper, and the joint

distribution from the exponential random graph model. The solid black lines in

Figure 1 represent the marginal distribution for the target PPSNSD, as specified in

Equation (32).

Using our proposed methods, the simulated joint distribution was constructed

by generating networks with the PPND and PPSNSD defined in Equations (33)
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Fig. 1. The black lines represent the target PPSNSD. The solid red lines represent the

simulated PPSNSD using the proposed methods; the red dashed lines represent the simulated

degree distribution for the ERGM. (color online)

and (32), respectively. 100,100,000 networks (100,000 removed for burn-in) were

generated and every 1,000th network is used for analysis; the R package CCMnet

used to generate these networks relies heavily on the code in the R package ergm

(Handcock et al., 2012). The marginal plots in Figure 1 is calculated by computing

the degree distribution for each of the 100,000 simulated networks. The solid red

lines represent the simulated PPSNSD. The solid red line in the first plot of Figure 1

represents the proportion of nodes in all 100,000 simulated networks with degree

0. The remaining plots 2-9 of Figure 1, represent the density of the proportion of

nodes in all 100,000 simulated networks with degrees 1-8, respectively.

The joint distribution for the ERGM was based on a model with a parameter

for each degree between 0 and 8. The coefficients for the 9 ERGM parameters

were fit using the mean values from the Dirichlet-multinomial distribution in

Equation (32) restricted to valid degree distributions. The marginal distribution

of the degree distribution for the ERGM is depicted in Figure 1 as dashed red lines.

The distribution is based on generating 100,100,000 networks (100,000 removed for

burn-in) and using every 1,000th network for analysis. The ERGM was fit and

simulated using the R package ergm (Handcock et al., 2012).

Figure 1 demonstrates the closeness of simulated PPSNSD using the proposed

methods to the target PPSNSD, defined in Equation (32) across all of the degrees

between 0 and 8. Although the method described in this paper matches the targeted

distribution closely, care still needs to be used when interpreting the collection of

networks that are generated using this method. The PPND applies to the congruence

classes, and not all vectors Ỹ are valid degree distributions, i.e. there exists at least

one valid network, G, such that η(G) = Ỹ . Even with this caveat, Figure 1 provides

clear evidence of attainment of our goal: the close match between the simulated

PPND and the PPND defined in Equation (33).

The mean marginal values of the degree distribution simulated from the ERGM

match the mean values of the target PPSNSD closely, but the distributions are

quite different—the joint distribution associated with the ERGM is the distribution

which maximizes the entropy. Although the purpose of the ERGM, typically to
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provide inference on the generative network process, and the methods proposed

in this paper, sampling of networks, are different, it may be useful to compare

the results of simulated networks from an ERGM to networks generated from the

proposed method. The simulated networks drawn from the ERGM are based on

an ERGM where the parameter estimates are derived from a maximum likelihood

framework, and therefore only the mean values of the sufficient network statistics

are necessary to fit the ERGM. Since the number of samples used to estimate the

mean values are never considered when estimating or simulating from the ERGM,

the simulated networks from the ERGM do not take into account the uncertainty

in these mean estimates; therefore, the simulated networks may not accurately

reflect the true underlying of uncertainty. The simple random sample design in this

example easily yields unbiased estimates of the sufficient network statistics for the

whole network. If additional complexity exists in the sampling designs, advanced

methods, such as methods proposed in Handcock & Gile (2010) or Pattison et al.

(2013), may be necessary to properly estimate ERGM parameters. Recently there has

been development of methods to estimate parameters of an ERGM using Bayesian

inference (Caimo & Friel, 2011); this approach allows for uncertainty about model

parameters. Koskinen et al. (2013) extended the Bayesian inference methods to

apply to partially observed network data. Our method could complement these

advances; by specifying the PPSNSD based on the posterior distribution of ERGM

parameters, networks can be generated consistent with the Bayesian estimates of

ERGM parameters.

6 Data analysis

This section focuses on sampling realizations of networks on a new population using

data collected on multiple networks. In this setting, the uncertainty in sufficient

network statistics arises from the variation in network properties across the multiple

networks that have been observed. Methods for this setting may be very useful in

predicting the effect of an intervention on a new community after data has been

collected on such effects in similar communities.

6.1 Add health data

To demonstrate how the network generation methods can be used to sample realiza-

tions from the PPND in the setting wherein multiple networks have been observed,

we make use of data from the National Longitudinal Study of Adolescent Health

(Add Health). Add Health is a longitudinal study of a nationally representative

sample of adolescents in grades 7-12 in the United States during the 1994-95 school

year (Harris & Udry, 2012).

The data arose from a two-stage cluster design: the first stage developed a

stratified, random sample of all high schools in the United States, and the second

sampled a set of students from each school. The student’s friendship networks were

developed from a questionnaire in which students were asked to name at most five

male and five female friends. To ensure results can be reproduced by all interested
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researchers, we use only the freely available public data despite some limitations.2

The free Add Health dataset contains information from only a subset of students

and schools available in the full dataset and the only available mixing pattern is the

proportion of mixing between genders. In the analysis presented below, we ignore

the fact that the data for each school is a subsample, and assume that the dataset

represents the complete information for the school; the previous section considered

subsampled networks. Therefore, the analytical tools are appropriate for researchers

with the full Add Health dataset, but the results are reproducible by everyone.

The free Add Health dataset provides the number of total friendships stated by

each individual and the proportion of those friendships that are between males and

females. The directed edges in the Health network data were converted to undirected

edges by assuming the existence of a friendship if either student named the other

as a friend. The data for each school s ∈ {1, . . . , J} used in the analysis include the

degree distribution (number of friendships) for each gender, Dmale(s) and Dfemale(s),

and the proportion of mixing between genders, MM (s).

The Add Health data permits investigation of the proposed methods in the setting

where it is of interest to generate a ‘typical‘ student friendship network based on

the degree distribution for each gender and the proportion of mixing between

the genders. As the degree distributions and the proportions of mixing between

genders from the observed schools vary, there is no single degree distribution

that characterizes a ‘typical‘ school. However, some degree distributions are more

plausible than others; for example, a school with no friendships, D = (1, 0, 0, . . . , 0),

would be highly unusual. Therefore, probabilities are assigned to possible degree

distributions for males and females and the proportion of mixing between genders

based on the observed schools.

To develop a probability distribution on student friendship networks the Bayesian

framework described in Section 4 was used. The data from each of school consists

of a vector containing the proportion of males with number of friends ranging from

0-32, the proportion of females with number of friends ranging from 0-32, and the

proportion of friendships between males and females.

6.2 Bayesian model

This section develops a model for the posterior predictive distribution,

P (G̃|{G1, . . . , GJ}), where J is the total number of observed schools. In this example

it is of interest to model the degree distribution for male and females, along with the

proportion of friendships between males and females. Let Y = {Y1, . . . , YJ}, where

Yi is the sufficient network statistics for school i, be the observed sufficient network

statistics.

By using Equation (28), the PPND can be expressed as the following,

P (G̃|G1, . . . , GJ) =
1

|CG̃|P (Ỹ |G1, . . . , GJ). (34)

2 The authors would be glad to provide instructions and code to download and format the data to
replicate results.
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To evaluate the PPSNSD only the values of the sufficient network statistics are

necessary. Therefore, the PPND can be rewritten as the following:

P (G̃|{G1, . . . , GJ}) =
1

|CG̃|P (Ỹ |Y1, . . . , YJ), (35)

where P (Ỹ |Y1, . . . , YJ) is the PPSNSD for the sufficient network statistics that include

the degree distributions for males and females and the proportion of relationship

between genders. For the data analysis in this paper, two multivariate normal

likelihoods are used to model the proportions of numbers of friendships that take

on values between 0 and 32 (maximum number of friendships observed in any

school) for males and for females; a normal likelihood is also used to model the

proportion of relationships between males and females. Therefore, the model needs

to fit the joint distribution for 67 parameters (33 male degrees, 33 female degrees,

and 1 mixing parameter between the genders). The likelihood for our Bayesian

model is the following:

Likelihood : Y ∼ MVN(μ,Σ), (36)

where

μ =

⎡
⎣ μM

μF
μMF

⎤
⎦ and Σ =

⎡
⎣ΣM 0 0

0 ΣF 0

0 0 σ2
MF

⎤
⎦ .

Let (μM,ΣM) and (μF ,ΣF ) denote the mean and covariance matrix for the degree

distributions corresponding to males and females, respectively, while (μMF, σ
2
MF )

denotes the mean and variance for the proportion of relationships between males

and females. The priors for our Bayesian model are the following:

Prior : (μM,ΣM) ∼ NIW (μ0, λ0,Σ0, ν0)

(μF,ΣF ) ∼ NIW (μ0, λ0,Σ0, ν0)(
μMF, σ

2
MF

) ∼ NIG(μ1, λ1, α1, β1),

where NIW and NIG denote the normal-inverse-Wishart and normal-inverse-

gamma distribution. Therefore the PPSNSD for the above model is the following,

Ỹ |Y , μ0, λ0,Σ0, ν0, μ1, λ1, α1, β1 ∼
⎛
⎝tν ′−pM+1(μ

′
M,Σ′

M)

tν ′−pF+1(μ
′
F ,Σ

′
F )

tν ′ (μ′, σ′)

⎞
⎠ , (37)

where the expressions for the parameters of the two multivariate Student t distri-

butions and the univariate Student t distribution can be found in Murphy (2007).

By substituting the probability distribution defined by Equation (37) into Equation

(35) the PPND can be written as the following,

P (G̃|{G1, . . . , GJ}) ∝ 1

|CG̃|P (Ỹ |Y , μ0, λ0,Σ0, ν0, μ1, λ1, α1, β1). (38)

Since Equation (38) is defined for networks g ∈ G , it is sufficient to define

the PPSNSD only on network statistics associated with valid congruence class.

However, for many network statistics it is not computationally feasible to identify

all valid congruence classes, as is the case in this example; therefore, it is often

easier to define a probability distribution for Ỹ , e.g. the PPSNSD, that has support
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Fig. 2. The red and blue bars represent the target PPSNSD and the simulated PPSNSD

for males, respectively. The open circle on each bar denotes the mean value of the marginal

distribution. (color online)

Fig. 3. The red and blue bars represent the target PPSNSD and the simulated PPSNSD for

females, respectively. The open circle on each bar denotes the mean value of the marginal

distribution. (color online)

over a larger domain; the PPSNSD defined in Equation (37) has support over

R67. The proposed methods induce a probability distribution for Ỹ associated

with valid congruence classes that maintains the probability ratios, i.e. the values

of P (Ỹ0|Y , μ0, λ0,Σ0, ν0, μ1, λ1, α1, β1)/P (Ỹ1|Y , μ0, λ0,Σ0, ν0, μ1, λ1, α1, β1) for valid net-

work statistics Y0 and Y1, defined by the PPSNSD. Though the induced probability

distribution on valid congruence classes provides a convenient approach to assigning

a probability distribution by maintaining the relative ratios, caution is necessary as

it is possible for the probability distribution restricted to valid congruence classes to

have different characteristics compared to the PPSNSD.

6.3 Results

We illustrate our method by sampling networks consisting of 500 females and 500

males based on Equation (38). Figures 2 and 3 depict the 95% prediction intervals

(PIs) for the marginal distribution for each value of the degree distribution from

0-32 for males and females, respectively. The red and blue bars in Figure 2 represent
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Fig. 4. The marginal distribution regarding proportion of friendships between the genders

for the target PPSNSD and the simulated networks. (color online)

the target PPSNSD and the simulated PPSNSD for males, respectively. The open

circle on each bar denotes the mean value of the marginal distribution. Figure 3

shows similar information as Figure 2 but for females. Figure 4 depicts the marginal

distribution regarding proportion of friendships between the genders for the target

PPSNSD and the simulated networks.

The 95% PIs for the simulated networks are calculated by generating 500,500,000

networks (500,000 removed for burn-in) and then sampling every 1,000th network

to use for analysis; the R package CCMnet used to generate these networks relies

heavily on the code in the R package ergm (Handcock et al., 2012). The degree

distribution for each of the 500,000 simulated networks is computed to calculate

the 95% PIs. The target PPSNSD represented by Equation (38) is Equation (37)

conditioned on Ỹ having a valid network realization. Because it is challenging to

verify which Ỹ are valid, we approximate the target PPSNSD by looking at only

the Ỹ for which all values are greater than −.005, as Ỹ must be positive, and the

sum of Ỹ to be between .995 and 1.005.

In Figures 2 and 3, the mean values for the target PPSNSD and the simulated

PPSNSD are very close as are the 95% PIs. Figure 4 demonstrates that the entire

marginal PPSNSD with regards to mixing between genders for the target distribution

and for simulated networks are very close. These results show that the methods

proposed in this paper can be used to model a complex PPND with a large number

of sufficient network statistics.

The PPSNSD represented by Equation (38) and depicted in Figures 2 and 3

shows wide prediction intervals in the marginal distributions for many degrees

for both males and females. The width of the intervals provides evidence of

large heterogeneity in the friendship networks across schools; methods for network
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sampling must capture the heterogeneity in friendships networks to make possible

realistic simulations of school-based interventions, such as smoking prevention

programs. The PPSNSD can be made more flexible, for example by incorporating

the between-gender degree distribution correlation; but with 67 parameters already

in the model applied to only 132 schools, some simplifying assumptions are necessary

in this example. Incorporating a between-gender correlation structure might result in

greater correlation in width of prediction intervals between genders, we do not think

it likely that doing so would result in much more narrow intervals. To generate

networks that characterize only a subset of schools to simulate interventions geared

to such schools, specifying the PPSNSD by a regression model that controls for

school-wide covariates may narrow the prediction intervals. Regardless of whether

interest lies in generating networks representing specific types of schools or all of

those in the sample, the methods presented in this paper can accommodate different

levels of heterogeneity across networks.

7 Discussion

This paper presents novel methods to incorporate uncertainty in values of sufficient

network statistics in the generation of networks. The network properties of density,

degree distribution, mixing patterns and clustering are used to illustrate the approach.

These network properties have been shown to have great influence on processes

operating on diverse areas such as Internet connectivity, biological interactions, and

spread of sexually transmitted infections (STIs).

The proposed methods allow generation of collections of networks based on a user-

defined posterior predictive sufficient network statistic distribution. The examples in

Sections 5 and 6 used reasonably flexible models for the PPSNSD. However, the

nature of social networks are complex; and it may be useful to take additional

network properties into account, such as degree assortativity and interactions

between the male and female degree distributions. The examples modeled the

uncertainty that arises from sampling; but the methods can also be used to

incorporate uncertainty that results from errors in self-reported data, information

about which may be developed from inconsistencies in these data. The proposed

methods are well suited for modeling and analyzing data involving two large cluster

randomized controlled trials (CRCTs) supported by the US President’s Emergency

Plan for AIDS Relief to study the impact of combination prevention packages on

HIV incidence (Wang et al., in press; Boily et al., 2012). Both CRCTs plan to

collect information on network properties that includes degree distribution (number

of sexual partners) and demographics mixing patterns. The goal of the studies

includes not only measurement of the efficacy of the intervention, but also provision

of information that informs the development of realistic models used to predict

the potential benefits of the interventions in communities elsewhere in Sub-Saharan

Africa. One way to construct such models is through simulation of epidemic processes

on collections of contact networks. As it is unfeasible to collect detailed data from

new communities where the interventions may be deployed, it will be useful to

generate network collections that reflect plausible ranges of network properties for

such communities. This collection must not only capture the variation in network

property values across the observed study communities, but also permit investigation
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of the sensitivity of model-based predictions to assumptions regarding these new

communities. These assumptions must reflect uncertainty in network properties that

arises both in the characterization of networks that have been studied, and in

the degree to which networks in new communities may differ from the observed

networks. For example, the prior distribution of network properties may be made

more diffuse to reflect uncertainty about the comparability of networks that have

been studied and those that have not.

The ability to accommodate uncertainty in estimated network properties in the

generation of collections of networks allows investigators to assess the level of

precision in these estimates that is needed for reliable evaluation of the relative

merits of different policy options. Hence, these approaches can be useful in designing

randomized trials of community-level control strategies in settings where infections

or behaviors diffuse over social or sexual networks.

Further research is needed to expand this framework to include additional network

properties. Though the methods allow for great flexibility in specifying the PPSNSD,

there are limitations on the types of sufficient network statistics that can be

accommodated. For each sufficient network statistic one must be able to derive

an expression for the ratio f(Cgpt+1
, Cgt )/f(Cgt , Cgpt+1

) in Equation (4). There may

exist a general formulation of the ratio for all or some sufficient network statistics,

however none is currently known. In Section 3, we derive expressions for common

sufficient network statistics, including the ones most applicable to disease modeling.

Further research is necessary to investigate the impact of the degree of accuracy of

approximations for network properties on performance of our methods, in a variety

of settings such as those with small network sizes.

A promising area of further research is to use this framework in generating

dynamic networks. In many complex systems the variation of network properties

over time may be difficult measure, and therefore, need flexible models to handle

uncertainty.
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