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Dairy cows with type II ketosis display hepatic fat accumulation and hyperinsulinemia, but the
underlying mechanism is not completely clear. This study aimed to clarify the regulation of lipid
metabolism by insulin in cow hepatocytes. In vitro, cow hepatocytes were treated with 0, 1, 10,
or 100 nM insulin in the presence or absence of AICAR (an AMP-activated protein kinase alpha
(AMPKα) activator). The results showed that insulin decreased AMPKα phosphorylation. This inacti-
vation of AMPKα increased the gene and protein expression levels of carbohydrate responsive
element-binding protein (ChREBP) and sterol regulatory element-binding protein-1c (SREBP-1c),
which downregulated the expression of lipogenic genes, thereby decreasing lipid biosynthesis.
Furthermore, AMPKα inactivation decreased the gene and protein expression levels of peroxisome
proliferator-activated receptor-α (PPARα), which upregulated the expression of lipid oxidation
genes, thereby increasing lipid oxidation. In addition, insulin decreased the very low density lipo-
protein (VLDL) assembly. Consequently, triglyceride content was significantly increased in insulin
treated hepatocytes. Activation of AMPKα induced by AICAR could reverse the effect of insulin
on PPARα, SREBP-1c, and ChREBP, thereby decreasing triglyceride content. These results indicate
that insulin inhibits the AMPKα signaling pathway to increase lipid synthesis and decrease lipid
oxidation and VLDL assembly in cow hepatocytes, thereby inducing TG accumulation. This
mechanism could partly explain the causal relationship between hepatic fat accumulation and
hyperinsulinemia in dairy cows with type II ketosis.
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Ketosis is a major metabolic disorder of dairy cows in early
lactation (Li et al. 2016a; Xu et al. 2016). In dairy cows,
ketosis occurs primarily in the first 3 weeks following
calving, at which time up to 15%−60% of all dairy cows
exhibit hyperketonemia (White, 2015; Xu et al. 2015).
Ketosis is divided into type I and type II in dairy cows. The
most common form of ketosis is type I ketosis, exhibiting
hypoglycemia and hyperketonemia (Gordon, 2013).
However, type II ketosis in dairy cows is common during
early lactation (Gordon, 2013), and is characterized by
hyperketonemia, hyperinsulinemia, hyperglycemia and sig-
nificant hepatic fat accumulation (Holtenius & Holtenius,
1996; Gordon, 2013). Insulin is a major endocrine regulator
of hepatic lipid homeostasis (Chirieac et al. 2000; Saltiel &
Kahn, 2001) whose concentration is markedly increased
in type II ketotic cows (Hippen et al. 1999).

Human clinical studies showed that AMP-activated
protein kinase alpha (AMPKα) plays a key role in regulating
hepatic lipid metabolism in response to endocrine signals,
and may be an important therapeutic target for metabolic
syndrome that is a cluster of metabolic disorders, including
insulin resistance, obesity, and type 2 diabetes (Li et al.
2013; Deng et al. 2015). AMPKα modulates hepatic lipid
metabolism by regulating several lipid metabolism-related
transcription factors such as peroxisome proliferator-
activated receptor α (PPARα), sterol regulatory element-
binding protein 1c (SREBP-1c), and carbohydrate
responsive element-binding protein (ChREBP), all of
which govern the expression of lipid metabolic enzymes
(Chen et al. 2013).

Cows with type II ketosis displayed high blood levels of
insulin and massive hepatic lipid accumulation (Gordon,
2013). Accordingly, we hypothesized that hepatic fat accu-
mulation might be associated with hyperinsulinemia in type
II ketosis, mediated via the AMPKα signaling pathway.*For correspondence; e-mail: xbli@jlu.edu.cn
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Material and methods

Reagents

Insulin and HEPES were obtained from Sigma-Aldrich (Saint
Louis, MO, USA). Fetal bovine serum (FBS), collagenase IV,
HepatoZYME medium and RPMI-1640 medium were
obtained from Gibco (Grand Island, NY, USA).
Dexamethasone acetate, vitamin C, ascorbic acid, and
other chemicals were purchased from Baoman
Biotechnology (Shanghai, China). AICAR (an AMPKa activa-
tor) was purchased from Santa Cruz Biotechnology, Inc.
(Santa Cruz, CA, USA). Antibodies against SREBP-1c,
ChREBP, PPARα, and β-Actin were purchased from Santa
Cruz Biotechnology (Santa Cruz, CA, USA). Antibodies
against phospho-insulin receptor β, insulin receptor,
AMPKα, p-AMPKα, ACC, p-ACC and histone were provided
by Cell Signaling Technology (Danvers, MA, USA).

Isolation and primary culture of dairy cow hepatocytes

All of the animals used in this study were treated according to
the International Guiding Principles for Biomedical Research
Involving Animals. Hepatocytes were isolated from the liver
of new born dairy calves as described previously (Song
et al. 2016; Du et al. 2017). Hepatocytes were isolated
after collagenase perfusion of the caudate process and
seeded into 6-well plates. After 4 h, the cells were incubated
in basal culture medium with 10% FBS. Hepatocytes were
cultured in an incubator which can keep a humidified atmos-
phere at 37 °C and 5% CO2. Cultures were re-fed every 24 h.

Insulin treatment

Insulin was dissolved in distilled water and the final con-
centration was adjusted to 10 µM. The hepatocytes were
incubated with 100 nM insulin for 0, 0·5, 1, 3, 6, and 12 h,
respectively. For the dose-response experiments, the cells
were incubated for 1 hwith different concentrations of insulin
(0, 1, 10, or 100 nM) and AICAR (1 mM) (Ducommun et al.
2014) with three replications in each treatment. The insulin
treatment concentrations in this study were chosen on the
basis of the blood concentration of insulin in cows as previ-
ously described (Trenkle, 1972).

AMPKα enzyme activity determination

The methods of Li et al. 2013 were used. The hepatocytes
were washed twice with ice-cold PBS and kept in lysis
buffer for 30 min. The lysate was harvested by centrifuging
at 12 000 g (4 °C) for 5 min. The enzyme activity of
AMPKα in supernatant was determined by biochemical kit
(Shanghai Bluegene Biotech Co., Ltd.).

Quantitative real-time polymerase chain reaction (qRT-PCR)

Total RNA was isolated from hepatocytes by Trizol
(TaKaRa Biotechnology (Dalian) Co., Ltd., Dalian, China)

according to the manufacturer’s instructions. First strand
cDNA was obtained by using 5 µg of total RNA using
PrimeScript Reverse Transcriptase in a two-step method
(TaKaRa Biotechnology Co., Ltd., Tokyo, Japan). The
primers were designed by Primer Expression software (PE
Applied Biosystems Inc., Foster City, CA, USA) and pre-
sented in online Supplementary File Table S1. The mRNA
expression levels were determined by qRT-PCR using
SYBR Kit in the 7500 Real-Time PCR System (Applied
Biosystems, USA).

Western blot

The hepatocytes were treated for the indicated time, then
the media were aspirated and the cells were washed twice
with ice-cold PBS. The intracellular proteins were extracted
using extraction kit (Sangon Biotech Co., Ltd., Shanghai,
China). The samples were heated with SDS protein buffer
at 95° for 5 min, and centrifuged, the supernatant was elec-
trophoresed on SDS-PAGE gel (10%), after running the gel
was transferred to polyvinylidene fluoride membranes
(PVDF). The blots were blocked for 4 h at room temperature
in 3–5% bovine serum albumin (BSA), and then incubated
overnight at 4° with primary antibodies against PPARα
(1 : 500, antigoat), SREBP-1c (1 : 500, antirabbit), ChREBP
(1 : 500, antirabbit),β-actin (1 : 500, antigoat), phospho-
insulin receptor β (1 : 1000, antigoat), insulin receptor (1 :
1000, antirabbit), AMPKα (1 : 1000, antirabbit), p-AMPKα
(1 : 1000, antirabbit), ACC (1 : 1000, antirabbit), p-ACC
(1 : 1000, antirabbit) and histone (1 : 1000, antirabbit). After
incubation for 45 min with horseradish peroxidase-
conjugated secondary antibodies antirabbit (1 : 5000), anti-
mouse (1 : 5000) and antigoat (1 : 5000) at room temperature,
washing four times in TBST. The blots were visualized using
enhanced chemiluminescence and imaged by alpha ultra-
sensitive Fluorchem chemiluminescence imaging system
(Protein Simple, USA).

TG content determination

Hepatocytes were harvested by cell scraper and washed
twice with ice-cold PBS. After centrifugation at 800 g for
5 min at 4°, the cells were lysed by the SL-1000D ultrasonic
cell disruption apparatus (Shunliu Instrument Company,
Nanjing, China). Then, the lysate was centrifuged at
12 000 g for 5 min. The supernatant was stored at −80° for
determining the TG content using automatic biochemical
analyzer (Dirui Medical Equipment Co., Ltd., Changchun,
China).

Abbreviations

ACC: Acetyl Co-A carboxylase, FA: Fatty acid synthetase,
SCD-1: Stearoyl Co-A desaturase 1, ApoB: Apolipoprotein
B, MTP: Microsomal triglyceride transfer protein, ApoE:
Apolipoprotein E, ACO: Acyl Co-A oxidase, CPT1:
Carnitine Palmitoyltransferase 1.
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Statistical analysis

Data are expressed as the mean ± standard deviation (SD)
and analyzed using SPSS (Statistical Package for the Social
Sciences) 16·0 software (SPSS Incorporated, Chicago, IL,
USA). Differences among groups were compared with
one-way ANOVA. Compared to control group, a P value
below 0·05 was considered significant.

Results

Insulin decreases AMPKα phosphorylation in dairy cow
hepatocytes

To determine the AMPKα signaling pathways induced by
insulin in cow hepatocytes, the AMPKα phosphorylation
levels and insulin receptor were detected. We observed
that 100 nM insulin could significantly decrease AMPKα
and its downstream molecule ACC phosphorylation at 1 h
(Fig. 1). Therefore, the following studies were carried out
based on 1 h of insulin treatment.

As shown in Fig. 2a, d, the AMPKα phosphorylation level
was significantly lower in 100 nM insulin-treated group than
in the control group. AICAR is an activator of AMPKα.
AICAR treatment could markedly increase the phosphoryl-
ation of AMPKα and partially reverse the inhibitory effect
of insulin on AMPKα in cow hepatocytes (Fig. 2b, e).
Furthermore, insulin treatment could increase the protein
levels of insulin receptor (Fig. 2c). These results suggest
that insulin increases insulin receptor level and decreases
the AMPKα phosphorylation level in cow hepatocytes.

Effect of insulin on PPARα, SREBP-1c and ChREBP in
dairy cow hepatocytes

To evaluate whether insulin regulates lipid metabolism
through the AMPKα signaling pathway, we examined the
expression of PPARα, SREBP-1c, and ChREBP. The expres-
sion levels of PPARα protein and mRNA decreased in an
insulin dose-dependent manner (Fig. 3a, c), while AICAR
could partially reverse the inhibition of PPARα by insulin

(Fig. 3b, c). Conversely, the expression levels of SREBP-
1c and ChREBP were upregulated by insulin, but down-
regulated in AICAR and AICAR + insulin treatment groups
(Fig. 3a, b, d, e). Taken together, these results indicate that
insulin decreases the expression of PPARα and increases
the expression of SREBP-1c and ChREBP in cow hepatocytes.

The effect of insulin on the expression of PPARα, SREBP-
1c, and ChREBP target genes in cow hepatocytes

To further verify the role of insulin in hepatic lipid metabol-
ism, we examined the downstream targets of PPARα,
SREBP-1c, and ChREBP. ACC, FAS, and SCD-1 are target
genes of SREBP-1c and ChREBP. The ACC, FAS and SCD-
1 mRNA levels were significantly higher in 100 nM insulin-
treated group than that in control group (Table 1).
Conversely, the ACC and SCD-1 mRNA levels were signifi-
cantly decreased when hepatocytes were treated with
AMPK activator AICAR (Table 1).

ACO1 and CPT1 are PPARα target genes, and are the rate-
limiting enzymes in fatty acid β-oxidation. As shown in
Table 1, the mRNA expression levels of ACO and CPT1
were decreased in an insulin dose-dependent manner and
were significantly lower in 10 and 100 nM insulin-treated
groups than in control group, while AICAR treatment
could reverse this inhibition.

Intrahepatic TG disappearance occurs mainly through either
hydrolysis or secretion via VLDL in cows. Therefore, we have
measured the expression of molecules that are involved in
VLDL assembly. As shown in Table 1, the mRNA expression
levels of APOB, MTP, and APOE were significantly decreased
in 100 nM insulin-treated group, while AICAR treatment mark-
edly reversed the inhibitory effect of insulin.

TG content

As shown in Table 1, compared with control group, the
content of TG was increased by insulin in a dose-dependent
manner and was markedly higher in the 100 nM insulin-
treated group, while significantly lower in both AICAR and
AICAR + insulin-treated groups.

Fig. 1. Effects of insulin on AMPKα phosphorylation, activity and ACC phosphorylation. Hepatocytes were treated with 100 nM insulin for 0,
0·5, 1, 3, 6, and 12 h, respectively. Each treatment was replicated 3 times. (a) Western blotting results of p-AMPK, AMPK, p-ACC and ACC.
(b) AMPKα enzyme activity. Actin was used as loading control. The data are presented as the mean ± SD. *P < 0·05, **P < 0·01 vs. the control
group.
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Fig. 3. The effect of insulin on the mRNA and protein expression levels of PPARα, SREBP-1c and ChREBP in cows hepatocytes. Hepatocytes
were treated as described in Fig. 2. Each treatment was replicated 3 times. (a) and (b) The protein expression levels of PPARα, SREBP-1c and
ChREBP. Histone was conducted as a protein loading control. (c) The mRNA expression level of PPARα; (d) The mRNA expression level
of SREBP-1c; (e) The mRNA expression level of ChREBP. The data are presented as mean ± SD. *P < 0·05, **P < 0·01 vs. control group.
#P < 0·05, ##P < 0·01 vs. 100 nM insulin-treatment group.

Fig. 2. Insulin suppressed the phosphorylation level of AMPKα in cow hepatocytes. Hepatocytes were treated with 0, 1, 10, or 100 nM
insulin in the presence or absence of 1 mM AICAR, respectively. Each treatment was replicated 3 times. (a) The Western blot results of
insulin receptor, p-insulin receptor, AMPKα, and p-AMPKα. (b) The Western blot results of AMPKα and phosphorylated AMPKα. β-Actin
was used as control. (c) The protein level of insulin receptor. (d) and (e) The phosphorylation level of AMPKα. The data are presented as
mean ± SD. *P < 0·05, **P < 0·01 vs. control group. #P < 0·05, ##P < 0·01 vs. 100 nM insulin-treatment group.
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Discussion

Dairy cows with type II ketosis display hyperglycemia,
hyperinsulinemia and hyperlipidemia as well as hepatic
TG accumulation (Li et al. 2016b), and insulin plays a
crucial role in the hepatic lipid metabolism (Chirieac et al.
2000; Saltiel & Kahn, 2001). Therefore, we hypothesized
that hepatic TG accumulation is associated with hyperinsu-
linemia. The data reported here support this hypothesis,
since they indicate that high levels of insulin increase the
intracellular TG content through inhibiting the AMPKα-
PPARα/SREBP-1c/ChREBP pathway in cow hepatocytes.
This might at least in part explain the hepatic TG accumula-
tion that occurs in dairy cows with type II ketosis.

Ketotic cows display hepatic lipid metabolism disorder,
which might be associated with high level of insulin. In
our present study, the phosphorylation level of insulin
receptor was significantly increased but the phosphorylation
level of AMPKα was markedly decreased in insulin-treated
cow hepatocytes. These results demonstrate that insulin
suppresses AMPKα activity in cow hepatocytes. AMPK is
an energy sensor that modulates hepatic lipid metabolism,
acting as a key ‘master switch’ by regulating target transcrip-
tion factors involved in lipid metabolism, including PPARα,
SREBP-1c and ChREBP. PPARα dominates lipid oxidation
gene expression, such as CPT1 and ACO, involved in fatty
acid β-oxidation in hepatocytes (Kim, et al. 2013). CPT1
plays a key role in lipid oxidation by transferring long-
chain acyl-CoAs into the mitochondria for β-oxidation (Li
et al. 2013). ACO is the rate-limiting enzyme in the progress
of peroxisomal β-oxidation to very long straight-chain fatty
acids (Tugwood, et al. 1992). In the present study, our
results indicate that insulin could significantly decrease
PPARα expression through inactivation of AMPKα, and
then decrease the mRNA levels of ACO and CPT1,
thereby decreasing lipid oxidation in cow hepatocytes.
Our data demonstrate that insulin inhibited hepatic lipid

oxidation through AMPKα-PPARα pathway. This supports
a previous study showing that fatty acid oxidation of
normal or obese rats injected with AMPKα activator-
AICAR was significantly increased (Merrill et al. 1997).
SREBP-1c and ChREBP govern lipogenesis through the tran-
scriptional regulation of lipogenic genes, including ACC1,
FAS, and SCD-1 (Li et al. 2015). The synthesis of malonyl-
CoA is the first committed step of fatty acid synthesis, and
the enzyme that catalyzes this reaction, ACC1, is the
major regulatory site in fatty acids synthesis (Li et al.
2013). FAS catalyzes fatty acid elongation step. FAS is a
determinant of the maximal capacity of the liver to synthe-
size fatty acids by de novo lipogenesis (Postic et al. 2007).
SCD-1 is a rate-limiting enzyme in monounsaturated fatty
acids synthesis and catalyzes the synthesis of monounsatu-
rated fatty acids (Li et al. 2013). In this study, our data
showed that insulin treatment of cow hepatocytes markedly
increased the expression of SREBP-1c and ChREBP, and
then upregulated the expression of target genes ACC, FAS
and SCD-1. Furthermore, AMPKα activator AICAR reversed
these effects on lipid synthesis. This is in agreement with
previous evidence in other species (mice, human) showing
that DNA-binding activity and mRNA of SREBP-1c and
ChREBP is significantly increased by insulin treatment
(Poupeau & Postic, 2011).

The secretion of VLDL is the main way to export TG from
liver to blood. However, dairy cows synthesize hepatic
VLDL very slowly but synthesize TG at rates that are com-
parable to those in most species (Pullen et al. 1990).
APOB100, ApoE, and MTP are the main structural and regu-
latory proteins for the synthesis and assembly of VLDL
(Mason, 1998; Greenow et al. 2005). We therefore mea-
sured the effect of insulin on the expression of APOB100,
ApoE, and MTP, and found that high levels of insulin were
inhibitory. Downregulation of APOB100, ApoE, and MTP
further decreased VLDL assembly and further induce intra-
cellular TG accumulation.

Table 1. The effect of insulin on the mRNA expression levels of ACC, FAS, SCD-1, ApoB, MTP, ApoE, ACO, CPT1 and TG content in cow
hepatocytes

Target genes

Insulin (nM)

AICAR (1 mM) AICAR (1 mM) + 100 nM insulin0 1 10 100
Target genes

ACC 1·00 ± 0·03 1·23 ± 0·16 1·44 ± 0·05** 1·70 ± 0·22** 0·42 ± 0·06** 0·76 ± 0·10##

FAS 1·00 ± 0·07 1·42 ± 0·44 2·20 ± 0·33** 5·38 ± 0·69** 0·89 ± 0·15 0·93 ± 0·05##

SCD-1 1·00 ± 0·10 1·17 ± 0·15 1·08 ± 0·09 1·64 ± 0·26** 0·50 ± 0·04** 1·51 ± 0·06
ApoB 1·00 ± 0·04 0·96 ± 0·05 0·91 ± 0·16 0·72 ± 0·10** 1·47 ± 0·08** 0·87 ± 0·11
MTP 1·00 ± 0·09 0·92 ± 0·09 0·78 ± 0·17 0·57 ± 0·08** 2·48 ± 0·29** 1·66 ± 0·27##

ApoE 1·00 ± 0·09 0·83 ± 0·17 0·70 ± 0·16* 0·64 ± 0·12** 1·79 ± 0·20** 1·56 ± 0·18##

ACO 1·00 ± 0·11 0·92 ± 0·11 0·80 ± 0·15* 0·61 ± 0·15** 1·70 ± 0·15** 1·19 ± 0·17##

CPT1 1·00 ± 0·08 0·88 ± 0·07 0·74 ± 0·16* 0·68 ± 0·11** 1·75 ± 0·12** 1·27 ± 0·18##

TG content
TG (mM) 1·18 ± 0·12 1·33 ± 0·13 1·42 ± 0·19 1·69 ± 0·31* 0·62 ± 0·08** 0·86 ± 0·17##

ACC, Acetyl Co-A carboxylase; FA, Fatty acid synthetase; SCD-1, Stearoyl Co-A desaturase 1; ApoB, Apolipoprotein B; MTP, Microsomal triglyceride transfer
protein; ApoE, Apolipoprotein E; ACO, Acyl Co-A oxidase; CPT1, Carnitine Palmitoyltransferase 1.
The data are presented as mean ± SD. *P < 0·05, **P < 0·01 vs. control group. #P < 0·05, ##P < 0·01 vs. 100 nM insulin-treatment group.
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Conclusions

These results indicate that high levels of insulin suppress the
AMPKα pathway in cow hepatocytes. AMPKα inactivation
decreases the expression of PPARα, thereby downregulating
the expression of lipid oxidation genes. Furthermore,
AMPKα inactivation increases the expression of SREBP-1c
and ChREBP, thereby upregulating the expression of
lipogenic genes. In addition, high levels of insulin inhibit
intracellular VLDL assembly through AMPKα pathway.
Consequently, insulin increases lipid synthesis and
decreases lipid oxidation and VLDL assembly in cow hepa-
tocytes, which induces TG accumulation. The current study
presents a possible explanation regarding the pathological
mechanism of hepatic fat accumulation induced by hyper-
insulinemia in dairy cows with type II ketosis.

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S002202991800016X
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