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Volterra operators between Hardy spaces
of vector-valued Dirichlet series
Jiale Chen

Abstract. Let 2 ≤ p < ∞ and X be a complex infinite-dimensional Banach space. It is proved that if
X is p-uniformly PL-convex, then there is no nontrivial bounded Volterra operator from the weak
Hardy space H weak

p (X) to the Hardy space H +
p (X) of vector-valued Dirichlet series. To obtain this,

a Littlewood–Paley inequality for Dirichlet series is established.

1 Introduction

Throughout the paper, X will always be a complex Banach space. Let D(X) be the
space of Dirichlet series ∑n≥1 xn n−s with {xn}n≥1 ⊂ X that converge at some point
s0 ∈ C, and let P(X) be the space of X-valued Dirichlet polynomials ∑N

n=1 xn n−s . In
the case X = C, we will write D instead of D(C). Recently, the study of functional-
analytic aspects of the theory of (vector-valued) Dirichlet series has attracted great
attention; see [5, 7–10, 13, 15–17] and the references therein. In this note, we are going
to investigate the properties of Volterra operators between some Hardy spaces of
vector-valued Dirichlet series.

To clarify the definition of Hardy spaces of vector-valued Dirichlet series, we
need the following notions (see for instance [14, 15]). We denote by T

∞ the infinite-
dimensional complex polytorus carrying a normalized Haar measure m∞ that coin-
cides with the product of the normalized Lebesgue measure m on the unit circle
T ⊂ C. Given 1 ≤ p < ∞, let Lp(T∞, X) be the space of p-Bochner integrable func-
tions F ∶ T∞ → X with respect to the Haar measure m∞. For any multi-index ν =
(ν1 , . . . , νn , 0, . . . ) ∈ Z(∞) (the set of eventually null sequences of integers) the νth
Fourier coefficient F̂(ν) of F ∈ L1(T∞, X) is given by

F̂(ν) ∶= ∫
T∞

F(z)z−νdm∞(z).

For 1 ≤ p < ∞, the Hardy space Hp(T∞, X) is defined as the closed subspace of
Lp(T∞, X) consisting of those functions F with F̂(ν) = 0 for all ν ∈ Z(∞)/N(∞)0 ,
where N(∞)0 denotes the set of ν’s in Z

(∞) with ν j ∈ N0 ∶= N ∪ {0} for all j.
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2 J. Chen

Let p = {p j} j≥1 be the increasing sequence of prime numbers. Given ν ∈ Z(∞),
we write pν ∶= p

ν1
1 p

ν2
2 ⋯. By the fundamental theorem of arithmetic, for any n ∈ N

there exists a unique multi-index ν(n) ∈ N(∞)0 such that n = pν(n). Recall that every
F ∈ L1(T∞, X) is uniquely determined by its Fourier coefficients {F̂(ν)}ν∈Z(∞) . Con-
sequently, for every F ∈ H1(T∞, X) we may define its Bohr transform B(F) as the
following X-valued Dirichlet series:

B(F)(s) ∶=
∞

∑
n=1

F̂(ν(n))n−s .

Then the Hardy space Hp(X) of X-valued Dirichlet series is defined as the image of
Hp(T∞, X) under the Bohr transform B, endowed with the norm

∥ f ∥Hp(X) ∶= ∥B−1( f )∥H p(T∞ ,X) , f ∈ Hp(X).

As before, for the case X = C, the corresponding spaces are denoted by Hp(T∞) and
Hp , respectively. This scale of Hardy spaces of Dirichlet series was introduced in
[2, 20] for scalar-valued Dirichlet series, and in [7] for Dirichlet series with values
in a Banach space. We refer to [14, 28] for more information.

We will also consider some larger Hardy spaces of vector-valued Dirichlet
series. Given u ∈ C and f ∈D(X), let fu denote the translation of f by u, i.e.,
fu(⋅) ∶= f (⋅ + u). For 1 ≤ p < ∞, the Hardy space H +

p (X), introduced in [15], consists
of f ∈D(X) such that fσ ∈ Hp(X) for any σ > 0 and

∥ f ∥H +
p (X) ∶= sup

σ>0
∥ fσ∥Hp(X) < ∞.

It was shown in [15, Theorems 2.1 and 5.4] that Hp(X) is isometrically embedded
into H +

p (X), and Hp(X) = H +
p (X) if and only if X has the analytic Radon–

Nikodým property. For 1 ≤ p < ∞, let H weak
p (X) be the weak version of Hardy space

of Dirichlet series in D(X). More precisely, the space H weak
p (X) consists of Dirichlet

series f ∈D(X) such that x∗ ○ f ∈ Hp for every x∗ ∈ X∗ and

∥ f ∥H weak
p (X) ∶= sup

x∗∈BX∗

∥x∗ ○ f ∥Hp < ∞,

where BX∗ is the closed unit ball of X∗. As far as we know, the space H weak
p (X)

has not been documented in the literature yet. It is clear that H +
p (X) ⊂ H weak

p (X).
Moreover, by considering Dirichlet series supported on a single prime number
and applying [22, Example 15], one can conclude that H +

p (X) ⊊ H weak
p (X) and

∥ ⋅ ∥H weak
p (X) is not equivalent to ∥ ⋅ ∥H +

p (X) on H +
p (X) if X is infinite-dimensional

(see also [19, 23]).
Given g ∈D, the Volterra operator Tg is defined for f ∈D(X) by

Tg f (s) ∶= −∫
+∞

s
f (u)g′(u)du,

where Rs is large enough. This operator was first introduced by Pommerenke [27] in
the setting of analytic functions on the unit disk D of C. The Dirichlet series analogue
was defined by Brevig, Perfekt, and Seip [6]. In their work, they gave some necessary
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Volterra operators between Hardy spaces 3

and sufficient conditions for the boundedness of Tg acting on the Hardy spaces Hp .
Motivated by this, and in view of the fact that H +

p (X) and H weak
p (X) are essentially

different spaces for any infinite-dimensional Banach space X, we here investigate the
Volterra operators Tg that are bounded from H weak

p (X) to H +
p (X). This problem

was initially considered by Laitila, Tylli, and Wang [24] for composition operators in
the setting of Hardy and Bergman spaces of vector-valued analytic functions on D.
Later on, Chen and Wang [11] characterized the Volterra operators that are bounded
from weak to strong Hardy (and Bergman) spaces of vector-valued analytic functions
on D.

To state our main result, we need the notion of uniform PL-convexity of a complex
Banach space (see [12]). For 1 ≤ p < ∞, the modulus of PL-convexity δX

p (ε) (ε > 0) of
the space X is defined by

δX
p (ε) ∶= inf {(∫

T

∥x + ξy∥pdm(ξ))
1/p

− 1 ∶ x , y ∈ X , ∥x∥X = 1, ∥y∥X = ε} .

The space X is said to be uniformly PL-convex if δX
1 (ε) > 0 for all ε > 0, and for 2 ≤ p <

∞, X is said to be p-uniformly PL-convex if there exists C > 0 such that δX
p (ε) ≥ Cεp

for all ε > 0. It is well-known (see [12, p. 117] or [4, p. 750]) that X is p-uniformly
PL-convex if and only if there exists C > 0 such that

∫
T

∥x + ξy∥p
X dm(ξ) ≥ ∥x∥p

X + C∥y∥p
X , ∀x , y ∈ X .

For 1 ≤ p < ∞, let Hp(D, X) be the Hardy space consisting of X-valued analytic
functions f on the unit disk D such that

∥ f ∥H p(D,X) ∶= sup
0<r<1

(∫
T

∥ f (rξ)∥p
X dm(ξ))

1/p
< ∞.

The corresponding weak version Hweak
p (D, X) can be defined as before. It was shown

in [11, Remark 3.7] that for 2 ≤ p < ∞ and any infinite-dimensional p-uniformly
PL-convex space X, the boundedness of Volterra operators from Hweak

p (D, X) to
Hp(D, X) is related to the membership of Schatten p-class of Volterra operators on the
Hardy space H2(D). Here and in the sequel, Hp(D) denotes the classical Hardy space
overD. On the other hand, Brevig, Perfekt, and Seip [6, Theorem 7.2] proved that there
is no nontrivial Volterra operator Tg in the Schatten class Sp(H2) for all 0 < p < ∞.
Based on the aforementioned results, we may conjecture that for 2 ≤ p < ∞ and any
infinite-dimensional p-uniformly PL-convex space X, there is no nontrivial bounded
Volterra operator Tg from H weak

p (X) to H +
p (X). Our main result establishes that

this is the case.

Theorem 1.1 Let 2 ≤ p < ∞, g ∈D, and let X be infinite-dimensional and p-uniformly
PL-convex. If Tg ∶ H weak

p (X) → H +
p (X) is bounded, then g is constant.

In order to prove the above theorem, we need to estimate the norm of f ∈ H +
p (X)

from below via its derivative f ′. A classical result of this style is the Littlewood–Paley
inequality (see [26] or [21, Theorem 4.4.4]), which indicates that if 2 ≤ p < ∞, then
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4 J. Chen

there exists C > 0 such that for any f ∈ Hp(D),

∥ f ∥H p(D) ≥ (∣ f (0)∣p + C ∫
D

∣ f ′(ξ)∣p(1 − ∣ξ∣2)p−1dA(ξ))
1/p

,

where dA is the Lebesgue measure on C normalized so that A(D) = 1. Vector-valued
versions of Littlewood–Paley theory have been considered by several authors for
various reasons. In particular, Blasco and Pavlović [4] proved that for 2 ≤ p < ∞, the
Banach space X is p-uniformly PL-convex if and only if there exists C > 0 such that
for every f ∈ Hp(D, X),

∥ f ∥H p(D,X) ≥ (∥ f (0)∥p
X + C ∫

D

∥ f ′(ξ)∥p
X(1 − ∣ξ∣2)p−1dA(ξ))

1/p
.(1.1)

Based on this inequality, we can establish the following Littlewood–Paley inequality
for vector-valued Dirichlet series, which plays an essential role in the proof of
Theorem 1.1.

Theorem 1.2 Let 2 ≤ p < ∞ and X be a p-uniformly PL-convex space. Then there exists
C > 0 such that for any f ∈ H +

p (X),

∥ f (+∞)∥X + (∫
+∞

0
∥ f ′σ∥

p
Hp(X)σ

p−1dσ)
1/p

≤ C∥ f ∥H +
p (X) .

For any α > −1 and 1 ≤ p < ∞, we define the McCarthy–Dirichlet space D
p
α (X) of

X-valued Dirichlet series as the completion of P(X) with respect to the norm

∥P∥D
p
α (X) ∶= ∥P(+∞)∥X + (∫

+∞

0
∥P′σ∥

p
Hp(X)σ

α dσ)
1/p

, P ∈ P(X).

Then Theorem 1.2 can be restated as follows: if 2 ≤ p < ∞ and X is a p-uniformly PL-
convex Banach space, then we have the bounded inclusion

H +
p (X) ⊂ D

p
p−1(X).

This can be compared with the inclusion between classical Hardy and Dirichlet spaces
over the unit disk.

Remark 1.3 Since every Hilbert space is 2-uniformly PL-convex (and consequently,
p-uniformly PL-convex for all 2 ≤ p < ∞), Theorem 1.2 is valid for every Hilbert space
X. In particular, it is valid for the scalar case.

Theorems 1.1 and 1.2 are proven in Section 2. We also give two generalizations of
Theorem 1.2 in the end of Section 2. Finally, in Section 3, some remarks regarding the
Littlewood–Paley inequalities for the case 1 < p ≤ 2 are given.

Throughout the paper, the letter C always denotes a positive constant whose value
is not essential and may change from one occurrence to the next. We also write A ≲ B
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or B ≳ A if A ≤ CB for some inessential constant C > 0. For a Dirichlet series f (s) =
∑∞n=1 xn n−s , we always use f (+∞) to denote x1.

2 Proofs of Theorems 1.1 and 1.2

In this section, we are going to prove Theorems 1.1 and 1.2. Before proceeding, we
introduce some auxiliary results.

We first explain more about the definition of the Hardy spaces Hp(X). Due to
the definition, a Dirichlet series f (s) = ∑∞n=1 xn n−s belongs to Hp(X) if and only
if there exists F ∈ Hp(T∞, X) such that F̂(ν(n)) = xn for every n ∈ N. In this case,
one has ∥ f ∥Hp(X) = ∥F∥H p(T∞ ,X). In particular, for any Dirichlet polynomial P(s) =
∑N

n=1 xn n−s , B−1(P)(z) = ∑N
n=1 xnzν(n), and

∥P∥Hp(X) =
⎛
⎝∫T∞

∥
N
∑
n=1

xnzν(n)∥
p

X
dm∞(z)

⎞
⎠

1/p

.(2.1)

It is clear that for 1 ≤ p < ∞ the Bohr transform B is an isometric isomorphism from
Hp(T∞, X) onto Hp(X). There are two elementary consequences of this fact.
(i) The coefficients of a Dirichlet series f ∈ Hp(X) are bounded by ∥ f ∥Hp(X). Con-

sequently, if we use cn( f ) to denote the nth Dirichlet coefficient of f ∈D(X),
then the convergence f j → f in Hp(X) implies the convergence cn( f j) →
cn( f ) in X for every n ∈ N.

(ii) The set P(X) of Dirichlet polynomials is dense in Hp(X) for 1 ≤ p < ∞ (see
[14, Proposition 24.6]).

The following lemma concerns the horizontal translation of Dirichlet series in
Hardy spaces, which can be found in [15, Proposition 2.3].

Lemma 2.1 Suppose 1 ≤ p < ∞ and f ∈ Hp(X). Then for any σ > 0, fσ ∈ Hp(X).
Moreover, the function σ ↦ ∥ fσ∥Hp(X) is decreasing on [0,∞).

For any P(s) = ∑N
n=1 xn n−s in P(X) and w ∈ T∞, write

Pw(s) ∶=
N
∑
n=1

xnwν(n)n−s .

Recall that ν(n) ∈ N(∞)0 is the multi-index such that n = pν(n). The following lemma
is an immediate consequence of the rotation invariance of the measure m∞ and (2.1).
Nevertheless, we include a proof here for the convenience of the reader.

Lemma 2.2 Let 1 ≤ p < ∞ and P ∈ P(X). Then for any s = σ + it ∈ C,

∫
T∞

∥Pw(s)∥p
X dm∞(w) = ∥Pσ∥p

Hp(X) .
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Proof By the rotation invariance of the measure m∞,

∫
T∞

∥Pw(s)∥p
X dm∞(w) = ∫

T∞
∥

N
∑
n=1

xn n−σ−i twν(n)∥
p

X
dm∞(w)

= ∫
T∞

∥
N
∑
n=1

xn n−σ zν(n)∥
p

X
dm∞(z)

= ∥Pσ∥p
Hp(X) ,

where the last equality is due to (2.1). ∎

Given N ∈ N, let SN be the partial sum operator defined by

SN (
∞

∑
n=1

xn n−s) ∶=
N
∑
n=1

xn n−s .

The estimates of the operators SN are crucial for the modern theory of Dirichlet series.
It was proved in [15, Theorem 3.2] that there exists C > 0 such that for every N ∈ N
and every 1 ≤ p < ∞,

∥SN∥H +
p (X)→H +

p (X) ≤ C log N .(2.2)

Based on the above estimate, we can establish the following proposition on derivatives
of Dirichlet series in Hardy spaces.

Proposition 2.3 Let 1 ≤ p < ∞. Then for any σ > 0 and f ∈ H +
p (X), f ′σ ∈ Hp(X).

Proof Fix σ > 0, and suppose that f (s) = ∑∞n=1 xn n−s belongs to H +
p (X). Then for

any 2 ≤ N < M, Abel’s summation formula yields that
M
∑

n=N
xn n−(s+

σ
2 ) log n =

M−1
∑

n=N
(

n
∑
k=1

xk k−s)(n−
σ
2 log n − (n + 1)− σ

2 log(n + 1))

+ (
M
∑
k=1

xk k−s)M−
σ
2 log M − (

N−1
∑
k=1

xk k−s)N−
σ
2 log N .

Taking norms and using (2.2), we obtain that

∥
M
∑

n=N
xn n−(s+

σ
2 ) log n∥

H +
p (X)

≲
M−1
∑

n=N
log n ∣n− σ

2 log n − (n + 1)− σ
2 log(n + 1)∣ + M−

σ
2 log2 M + N−

σ
2 log2 N

≲
M−1
∑

n=N
n−

σ
2 −1 log2 n + M−

σ
2 log2 M + N−

σ
2 log2 N → 0

as N , M →∞. Therefore, there exists g ∈ H +
p (X) such that

N
∑
n=2

xn n−(⋅+
σ
2 ) log n → g(⋅)
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in H +
p (X) as N →∞. Consequently,

N
∑
n=2

xn n−(⋅+σ) log n → gσ/2(⋅)

in Hp(X) as N →∞. Comparing the Dirichlet coefficients and using the conse-
quence (i) at the beginning of this section, we finally conclude that f ′σ = −gσ/2 ∈
Hp(X). ∎

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2 For η > 0, let ϕη ∶ D→ C0 be the Cayley transform defined
by

ϕη(ξ) = η 1 + ξ
1 − ξ

, ξ ∈ D,

where C0 ∶= {s ∈ C ∶Rs > 0}. Then for any P ∈ P(X) and w ∈ T∞, noting that
Pw ○ ϕη ∈ Hp(D, X) since it is bounded on D, we may apply (1.1) to the function
Pw ○ ϕη to obtain that

∥Pw(η)∥p
X + C ∫

D

∥(Pw ○ ϕη)′(ξ)∥p
X(1 − ∣ξ∣2)p−1dA(ξ) ≤ ∥Pw ○ ϕη∥p

H p(D,X) .

Using the change of variables s = σ + it = ϕη(ξ), we get

∫
D

∥(Pw ○ ϕη)′(ξ)∥p
X(1 − ∣ξ∣2)p−1dA(ξ)

= ∫
D

∥P′w(ϕη(ξ))∥p
X ∣ϕ
′
η(ξ)∣p(1 − ∣ξ∣2)p−1dA(ξ)

= ∫
C0
∥P′w(s)∥p

X ∣ϕ
′
η(ϕ−1

η (s))∣p−2(1 − ∣ϕ−1
η (s)∣2)p−1dA(s)

= ∫
C0
∥P′w(s)∥p

X

⎛
⎜
⎝

2η
∣1 − s−η

s+η ∣ 2

⎞
⎟
⎠

p−2

(1 − ∣ s − η
s + η

∣ 2)
p−1

dA(s)

= 2p ∫
+∞

0
∫
R

∥P′w(σ + it)∥p
X

σ p−1η
(σ + η)2 + t2 dtdσ .

Therefore, we have establish that

∥Pw(η)∥p
X + C ∫

+∞

0
∫

R

∥P′w(σ + it)∥p
X

σ p−1η
(σ + η)2 + t2 dtdσ ≤ ∥Pw ○ ϕη∥p

H p(D,X) .(2.3)

Integrating on both sides with respect to w on T
∞, the left hand side of (2.3) gives,

using both Fubini’s theorem and Lemma 2.2,

∫
T∞

(∥Pw(η)∥p
X + C ∫

+∞

0
∫
R

∥P′w(σ + it)∥p
X

σ p−1η
(σ + η)2 + t2 dtdσ) dm∞(w)

= ∥Pη∥p
Hp(X) + C ∫

+∞

0
∫
R

∥P′σ∥
p
Hp(X)

σ p−1η
(σ + η)2 + t2 dtdσ

= ∥Pη∥p
Hp(X) + C ∫

+∞

0
∥P′σ∥

p
Hp(X)

σ p−1η
σ + η

dσ ,(2.4)
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where in the last identity we have used that σ+η
π((σ+η)2+t2)

dt is a probability measure on
R. Regarding the right hand side of (2.3), recalling the definition of Hp(D, X), apply-
ing first Fatou’s lemma, then Fubini’s theorem, and finally Lemma 2.2, we find that

∫
T∞

∥Pw ○ ϕη∥p
H p(D,X)dm∞(w) = ∫

T∞
lim
r→1− ∫T

∥Pw(ϕη(rζ))∥p
X dm(ζ)dm∞(w)

≤ lim inf
r→1− ∫

T∞
∫
T

∥Pw(ϕη(rζ))∥p
X dm(ζ)dm∞(w)

= lim inf
r→1− ∫

T
∫
T∞

∥Pw(ϕη(rζ))∥p
X dm∞(w)dm(ζ)

= lim inf
r→1− ∫

T

∥P( ⋅ +R(ϕη(rζ)))∥
p

Hp(X)
dm(ζ).

Now, thanks to Lemma 2.1, we conclude that

∫
T∞
∥Pw ○ ϕη∥p

H p(D,X)dm∞(w) ≤ lim inf
r→1− ∫T

∥P( ⋅ +R(ϕη(rζ)))∥
p

Hp(X)
dm(ζ) ≤ ∥P∥p

Hp(X) .

Putting this estimate together with (2.4) gives

∥Pη∥p
Hp(X) + C ∫

+∞

0
∥P′σ∥

p
Hp(X)

σ p−1η
σ + η

dσ ≤ ∥P∥p
Hp(X) .

Letting η → +∞ and using Lebesgue’s dominated convergence theorem, we obtain
that

∥P(+∞)∥p
X + C ∫

+∞

0
∥P′σ∥

p
Hp(X)σ

p−1dσ ≤ ∥P∥p
Hp(X) .(2.5)

Recall that the McCarthy–Dirichlet space D
p
p−1(X) is the completion of P(X) with

respect to the norm

∥Q∥D
p
p−1(X) ∶= ∥Q(+∞)∥X + (∫

+∞

0
∥Q′σ∥

p
Hp(X)σ

p−1dσ)
1/p

, Q ∈ P(X).

Since Dirichlet polynomials are dense in Hp(X), it follows from (2.5) that the identity
operator extends to a bounded operator from Hp(X) into D

p
p−1(X). Consequently,

there exists C > 0 such that for any g ∈ Hp(X),

∥g(+∞)∥p
X + ∫

+∞

0
∥g′σ∥

p
Hp(X)σ

p−1dσ ≤ C∥g∥p
Hp(X) .(2.6)

Suppose now that f ∈ H +
p (X). Then for any δ > 0, fδ ∈ Hp(X) and by Proposition

2.3, f ′δ ∈ Hp(X). Applying (2.6) to the Dirichlet series fδ yields that

∥ f (+∞)∥p
X + ∫

+∞

0
∥ f ′δ+σ∥

p
Hp(X)σ

p−1dσ ≤ C∥ fδ∥p
Hp(X) ≤ C∥ f ∥p

H +
p (X) .

In view of Lemma 2.1, we may let δ → 0 and use Lebesgue’s monotone convergence
theorem to conclude that

∥ f (+∞)∥p
X + ∫

+∞

0
∥ f ′σ∥

p
Hp(X)σ

p−1dσ ≤ C∥ f ∥p
H +

p (X) ,

which finishes the proof. ∎
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To establish Theorem 1.1, we need some more auxiliary results. The following
Dvoretzky theorem can be found in [18, Chapter 19].

Theorem 2.4 For any N ∈ N and ε > 0 there is c(N , ε) ∈ N so that for any Banach
space X of dimension at least c(N , ε), there is a linear embedding EN ∶ l N

2 → X so that

(1 + ε)−1(
N
∑
n=1

∣an ∣2)
1/2

≤ ∥
N
∑
n=1

an EN vn∥
X
≤ (

N
∑
n=1

∣an ∣2)
1/2

(2.7)

for any a1 , . . . , aN ∈ C. Here (v1 , . . . , vN) is some fixed orthonormal basis of l N
2 .

Recall that a sequence {λn}n≥1 of complex numbers is completely multiplicative
if λmn = λm λn for all m, n ∈ N. For 1 ≤ p, q < ∞, a sequence {λn}n≥1 is said to be a
multiplier from Hp to Hq if ∑∞n=1 λn an n−s ∈ Hq for each f (s) = ∑∞n=1 an n−s in Hp .
Note that by the closed graph theorem, if {λn}n≥1 is a multiplier from Hp to Hq , then
there exists C > 0 such that for any f (s) = ∑∞n=1 an n−s in Hp ,

∥
∞

∑
n=1

λn an n−s∥
Hq

≤ C ∥
∞

∑
n=1

an n−s∥
Hp

.

The following lemma is due to Bayart [3], which can be proved by using Weissler’s
hypercontractive inequality of the Poisson kernels [29] and Minkowski’s inequality;
see [2, Theorem 9].

Lemma 2.5 Let 1 ≤ p ≤ q < ∞ and {λn}n≥1 be a completely multiplicative sequence
of positive numbers such that λp j ≤

√
p/q for each j ≥ 1. Then {λn}n≥1 is a multiplier

from Hp to Hq . Moreover, the operator induced by {λn}n≥1 is a contraction from Hp
into Hq .

We also need the following lemma.

Lemma 2.6 Let 1 ≤ p < ∞. Suppose that f (s) = ∑N
n=1 xn n−s belongs to P(X), and

g(s) = ∑∞n=1 bn n−s belongs to Hp. Then f g ∈ Hp(X) andB−1( f g) =B−1( f )B−1(g).

Proof Write F =B−1( f ) and G =B−1(g). Then it is clear that FG ∈ Hp(T∞, X).
Moreover,

F(z) =
N
∑
n=1

xnzν(n) , z ∈ T∞,

and for any n ∈ N, Ĝ(ν(n)) = bn . We now calculate the νth Fourier coefficient of FG
for ν ∈ N(∞)0 . Bearing in mind that G ∈ Hp(T∞), we have

F̂G(ν) = ∫
T∞
(FG)(z)z−νdm∞(z)

= ∫
T∞

F(z)G(z)z−νdm∞(z)
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=
N
∑
n=1

xn ∫
T∞

G(z)z−(ν−ν(n))dm∞(z)

= ∑
n∣pν

1≤n≤N

xnĜ(ν − ν(n)).

On the other hand, it is easy to see that the lth Dirichlet coefficient c l( f g) of f g is
given by

c l( f g) = ∑
n∣l

1≤n≤N

xnb l/n .

Therefore, noting that Ĝ(ν(n)) = bn , we obtain that F̂G(ν(l)) = c l( f g) for any l ∈ N,
which implies that B(FG) = f g and f g ∈ Hp(X). ∎

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1 Suppose that Tg ∶ H weak
p (X) → H +

p (X) is bounded. Then
it is easy to see that g ∈ Hp since Tg1 = g − g(+∞). Consequently, by Proposition 2.3,
g′σ ∈ Hp for any σ > 0. We will complete the proof by showing ∥g′1/2∥Hp = 0.

Let N ∈ N and ε > 0. According to Theorem 2.4, we may fix a linear embedding
EN ∶ l N

2 → X such that (2.7) holds. Put x(N)
n = EN vn for n = 1, 2, . . . , N , and let λn =

(2p−1)
Ω(n)

2 for n ≥ 1, where Ω(n) is the number of prime factors of n, counted with
multiplicity. Then {λn}n≥1 is completely multiplicative and λp j =

√
2/p for each j ≥ 1.

Define the X-valued Dirichlet polynomial fN by

fN(s) =
N
∑
n=1

λn x(N)
n n−s = EN (

N
∑
n=1

λnvn n−s) .

Then by Lemma 2.5,

∥ fN∥H weak
p (X) = sup

x∗∈BX∗

∥x∗ ○ fN∥Hp

= sup
x∗∈BX∗

∥
N
∑
n=1

λn x∗ (x(N)
n ) n−s∥

Hp

≤ sup
x∗∈BX∗

∥
N
∑
n=1

x∗ (x(N)
n ) n−s∥

H2

= sup
x∗∈BX∗

(
N
∑
n=1

∣(E∗N x∗) (vn)∣ 2)
1/2

= sup
x∗∈BX∗

∥E∗N x∗∥l N
2

≤ 1,

where we have used the facts that (v1 , . . . , vN) is an orthonormal basis of l N
2 and

∥EN∥l N
2 →X ≤ 1 due to (2.7). Hence it follows from Theorem 1.2 and Lemma 2.6 that
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∥Tg∥p ≥ ∥Tg fN∥p
H +

p (X)

≳ ∫
+∞

0
∥( fN)σ g′σ∥

p
Hp(X)σ

p−1dσ

= ∫
+∞

0
∥B−1(( fN)σ g′σ)∥

p

H p(T∞ ,X)
σ p−1dσ

= ∫
+∞

0
∥B−1(( fN)σ)B−1(g′σ)∥

p

H p(T∞ ,X)
σ p−1dσ

= ∫
+∞

0
σ p−1 ∫

T∞
∥B−1(( fN)σ)(z)∥

p

X
∣B−1(g′σ)(z)∣pdm∞(z)dσ .

Note that for any z ∈ T∞, it follows from (2.7) that

∥B−1(( fN)σ)(z)∥
X
= ∥

N
∑
n=1

λn n−σ zν(n)EN vn∥
X

≳ (
N
∑
n=1
(2p−1)Ω(n)n−2σ)

1/2

≳
⎛
⎝ ∑

1≤ j≤π(N)
p
−2σ
j

⎞
⎠

1/2

,

where π(N) denotes the number of primes less than or equal to N. Therefore, we may
apply Lemma 2.1 to obtain that

∥Tg∥p ≳ ∫
+∞

0

⎛
⎜
⎝
⎛
⎝ ∑

1≤ j≤π(N)
p
−2σ
j

⎞
⎠

p/2

σ p−1 ∫
T∞

∣B−1(g′σ)(z)∣pdm∞(z)
⎞
⎟
⎠

dσ

≥ ∫
1/2

0
∥g′σ∥

p
Hp

⎛
⎝ ∑

1≤ j≤π(N)
p
−2σ
j

⎞
⎠

p/2

σ p−1dσ

≳ ∥g′1/2∥
p
Hp

⎛
⎝ ∑

1≤ j≤π(N)
p
−1
j
⎞
⎠

p/2

.

Since N ∈ N is arbitrary and ∑∞j=1 p
−1
j = ∞, we conclude that ∥g′1/2∥Hp = 0, which

finishes the proof. ∎

We end this section with two generalizations of Theorem 1.2. The following
corollary concerns f ∈ H +

q (X) with p-uniformly PL-convex space X, where p ≥
max{2, q}.

Corollary 2.7 Let 2 ≤ p < ∞, 1 ≤ q ≤ p, and let X be a p-uniformly PL-convex space.
Then there exists C > 0 such that for any f ∈ H +

q (X),

∥ f (+∞)∥X + (∫
+∞

0
∥ f ′σ∥

p
Hq(X)σ

p−1dσ)
1/p

≤ C∥ f ∥H +
q (X) .
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Proof Let P(s) = ∑N
n=1 xn n−s belong to P(X). Define

h(u, s) ∶= Pu(s) =
N
∑
n=1

xn n−s n−u , u ∈ C0 .

Applying first [15, Theorem 2.1] and then (2.1) twice, we obtain that

∥h∥p
H +

p (Hq(X)) = ∥h∥p
Hp(Hq(X))

= ∫
T∞

∥
N
∑
n=1
(xn n−s)zν(n)∥

p

Hq(X)
dm∞(z)

= ∫
T∞

⎛
⎝∫T∞

∥
N
∑
n=1

xnzν(n)wν(n)∥
q

X
dm∞(w)

⎞
⎠

p/q

dm∞(z),

which, by the rotation invariance of m∞, yields

∥h∥p
H +

p (Hq(X)) = ∫
T∞

⎛
⎝∫T∞

∥
N
∑
n=1

xnzν(n)wν(n)∥
q

X
dm∞(w)

⎞
⎠

p/q

dm∞(z)

=
⎛
⎝∫T∞

∥
N
∑
n=1

xnwν(n)∥
q

X
dm∞(w)

⎞
⎠

p/q

.

Then, using (2.1) again, we establish that

∥h∥p
H +

p (Hq(X)) = ∥P∥p
Hq(X) .

It follows from [12, Theorem 4.1] that Lq(T∞, X) is p-uniformly PL-convex, which
implies that Hq(X) is p-uniformly PL-convex. Therefore, we may apply Theorem 1.2
to obtain that

∥h(+∞)∥Hq(X) + (∫
+∞

0
∥h′σ∥

p
Hp(Hq(X))σ

p−1dσ)
1/p

≤ C∥h∥H +
p (Hq(X)) = C∥P∥Hq(X) .

It is clear that ∥h(+∞)∥Hq(X) = ∥P(+∞)∥X . Moreover, using again both (2.1) and
the rotation invariance as above gives that ∥h′σ∥

p
Hp(Hq(X)) = ∥P′σ∥

p
Hq(X) for any σ > 0.

Consequently,

∥P(+∞)∥X + (∫
+∞

0
∥P′σ∥

p
Hq(X)σ

p−1dσ)
1/p

≤ C∥P∥Hq(X) .

Arguing as in the proof of Theorem 1.2, we can establish the desired result. ∎

The following theorem concerns f ∈ H +
q (X) with p-uniformly PL-convex space

X, where 2 ≤ p ≤ q.
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Theorem 2.8 Let 2 ≤ p ≤ q < ∞, and let X be p-uniformly PL-convex. Then there
exists C > 0 such that for any f ∈ H +

q (X),

∥ f (+∞)∥X + (∫
+∞

0
∫
T∞

∥B−1( f ′σ)(z)∥p
X ∥B

−1( fσ)(z)∥q−p
X dm∞(z)σ p−1dσ)

1/q

≤ C∥ f ∥H +
q (X) .

Proof If f ∈ H +
q (X), then, for any σ > 0, by Proposition 2.3, f ′σ ∈ Hq(X). Also,

by definition, fσ ∈ Hq(X) for all σ > 0. Hence both B−1( fσ) and B−1( f ′σ) are well-
defined.

Using [4, Theorem 2.6] instead of (1.1), and arguing as in the proof of Theorem 1.2,
we obtain that for any g ∈ Hq(X),

∥g(+∞)∥q
X + ∫

+∞

0
σ p−1 ∫

T∞
∥B−1(g′σ)∥

p
X ∥B

−1(gσ)∥
q−p
X dm∞dσ

≤ C∥g∥q
Hq(X) .(2.8)

Suppose now f ∈ H +
q (X). Then for any δ > 0, applying (2.8) to fδ yields that

∥ f (+∞)∥q
X + ∫

+∞

0
σ p−1 ∫

T∞
∥B−1( f ′σ+δ)∥

p
X ∥B

−1( fσ+δ)∥
q−p
X dm∞dσ

≤ C∥ f ∥q
H +

q (X) .

Equivalently,

∥ f (+∞)∥q
X + ∫

+∞

0
1δ(σ)(σ − δ)p−1 ∫

T∞
∥B−1( f ′σ)∥

p
X ∥B

−1( fσ)∥
q−p
X dm∞dσ

≤ C∥ f ∥q
H +

q (X) ,

where1δ is the characteristic function of [δ,+∞). Since the above inequality holds for
any δ > 0, letting δ → 0 and using Fatou’s lemma, we conclude the desired result. ∎

Remark 2.9 As mentioned in Remark 1.3, every Hilbert space is p-uniformly PL-
convex for all 2 ≤ p < ∞, so Corollary 2.7 and Theorem 2.8 are both valid for every
Hilbert space X. In particular, they are both valid for the case X = C.

3 Concluding remarks

In the case 1 ≤ p ≤ 2, the following Littlewood–Paley inequality for scalar-valued
analytic functions on the unit disk D is well-known (see [26] or [21, Theorem 4.4.4]):

∥ f ∥H p(D) ≤ ∣ f (0)∣ + C (∫
D

∣ f ′(ξ)∣p(1 − ∣ξ∣2)p−1dA(ξ))
1/p

.(3.1)

This inequality should be understood as follows: if the integral at the right-hand side
is finite, then f ∈ Hp(D) and the norm of f is less than or equal to the quantity at the
right-hand side. However, if the integral is infinite, then nothing can be said about f.
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Based on (3.1), we can use the same method as in the proof of Theorem 1.2 to establish
the following Littlewood–Paley inequality for scalar-valued Dirichlet series.

Theorem 3.1 Let 1 ≤ p ≤ 2 and f ∈D. If for any σ > 0, f ′σ ∈ Hp, and

∫
+∞

0
∥ f ′σ∥

p
Hp

σ p−1dσ < ∞,

then f ∈ Hp. Moreover, there exists some constant C > 0, independent of f, such that

∥ f ∥Hp ≤ ∣ f (+∞)∣ + C (∫
+∞

0
∥ f ′σ∥

p
Hp

σ p−1dσ)
1/p

.

In other words, if 1 ≤ p ≤ 2, then D
p
p−1 ⊂ Hp, and the inclusion is bounded.

In order to establish the vector-valued version of the above theorem, one need to
find the vector-valued version of (3.1). For harmonic functions on D with values in a
real, p-uniformly smooth Banach space, this was done in [1]. Therefore, it is reasonable
to guess that, for analytic functions on D with values in a complex Banach space, the
inequality of the form (3.1) is related to some complex smoothness. However, to the
best of our knowledge, we cannot find any references devoted to the notion of complex
smoothness of Banach spaces. Here we are going to make some elementary attempts
on this direction. Motivated by the modulus of smoothness of a real Banach space
(see [25, Definition 1.e.1]), we define the modulus of PL-smoothness ρX

1 (τ) (τ > 0) of
a complex Banach space X as follows:

ρX
1 (τ) ∶= sup{∫

T

∥x + ξy∥X dm(ξ) − 1 ∶ x , y ∈ X , ∥x∥X = 1, ∥y∥X = τ} .

The Banach space X is said to be uniformly PL-smooth if limτ→0 ρX
1 (τ)/τ = 0, and

for 1 < p ≤ 2, X is said to be p-uniformly PL-smooth if there exists C > 0 such that
ρX

1 (τ) ≤ Cτ p for τ > 0. For any 1 < p ≤ 2, it is not difficult to see that if there exists
C > 0 such that for any X-valued analytic function f on D,

∥ f ∥H p(D,X) ≤ (∥ f (0)∥p
X + C ∫

D

∥ f ′(ξ)∥p
X(1 − ∣ξ∣2)p−1dA(ξ))

1/p
,

then X is p-uniformly PL-smooth. In order to establish the reverse implication, one
need to consider the dual relation between uniform PL-smoothness and uniform PL-
convexity (see [25, Proposition 1.e.2] for the dual relation in real Banach spaces). This
is of independent interest and is worthy to be investigated further.
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comments and suggestions which improved the final version of presentation.
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