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In this paper, we mainly study the moderate deviation principle of sample quantiles and
order statistics for stationary m-dependent random variables. The results obtained in
this paper extend the corresponding ones for an independent and identically distributed
sequence to a stationary m-dependent sequence.
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1. INTRODUCTION

A quantile has no restrictions on moment conditions, which enables it to be widely used
in various problems in finance, for instance, quantile-hedging, optimal portfolio allocation,
risk management, and so forth. In practice, the large sample theory, which can give the
asymptotic properties of sample estimator, is a significant approach to analyze statistical
problems.

To present our main results, firstly let us recall the concept of m-dependence. A sequence
{X,,n > 1} of random variables is called m-dependent if for a given fixed m, {X;,i € A}
and {X;,j € B} are independent whenever p(A, B) > m for A, B C N, where

p(A,B) =inf{li —j|:i € A,j € B}.

If we take m = 0, then m-dependence is equivalent to independence, so the concept of m-
dependence is an extension of independence. There are some results based on m-dependent
sequence, one can refer to Hoeffding and Robbins [8], Sen [17], Schonfeld [16], Romano and
Wolf [15] for instance.

The random sequence {X,,,n > 1} is called stationary, if for any positive integers t; <
to < --- <t and all positive integer k, (X, , Xt,, ..., X¢,) has the same distribution with
(Xtyhs Xtoths oo Xtyno)-

In this paper, suppose that we have a stationary m-dependent sample of size n from
a distribution function F(z) with a continuous probability density function f(z). For 0 <
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p < 1, the p-quantile of F' is defined as
& = inf{z : F(z) > p}.

As is known, there are two important estimators to estimate the p-quantile, one of which is
the sample p-quantile, which is denoted as

np = inf{z: Fy(z) >p}, 0<p<l,

where Fy,(z) = E I(X; <),z € R is the empirical distribution function. The other esti-

mator of the p- quantlle is order statistics. Let X (1) < X (o) <--- < X(,,) denote the order
statistics of the sample {X7, Xo,..., X, } of observations on F( ).

There are many results for the deviation between the sample quantiles and the quantile.
Bahadur [4] introduced a representation for the sample quantiles based on independent and
identically distributed (i.i.d.) random variables. Subsequently the result, called Bahadur
representation, was extended to numerous dependent sequences, for instance, Ling [10] and
Xing and Yang [20] studied the Bahadur representation for sample quantiles under neg-
atively associated (NA) sequence; Wendler [25] established the Bahadur representation
for U-quantiles of strongly mixing random variables and functionals of absolutely reg-
ular sequences; Li et al. [9] further investigated the Bahadur representation for sample
quantiles under negatively orthant dependent (NOD) sequence; Yang et al. [28] obtained
the Bahadur representation for sample quantiles under widely orthant dependent (WOD)
sequence, which is weaker than NOD sequence, and thus weaker than NA sequence. For
weakly dependent sequences, one can refer to Babu and Gingh [3], Sen [18], Wang, Hu,
and Yang [23], Xing et al. [21], and so on. There are also some results on Berry-Esséen
bounds of sample quantiles, we refer the readers to Yang et al. [26,27], Liu et al. [11]
among others. Meanwhile, some results were established for order statistics, one can refer
to David [6], Park [13,14], Childs et al. [5], Adler [1,2], Wang, Zhuang, and Hu [24] for the
details.

Recently, Xu and Miao [22] established the following asymptotic properties of the
moderate deviation between the sample quantiles énp and the quantile &,.

THEOREM 1.1: Let {X1,Xs,..., X} be independent and identically distributed random
variables with a continuous distribution F(x), and let &, be a p-quantile of F' for 0 < p < 1.
Corresponding to the sample {X1, Xo,..., Xy}, the sample p-quantile which is denoted by
énp is defined as the p-quantile of the empirical distribution function F,(x). Assume that
F(x) has a continuous density function f(x) in the neighborhood of &, and f(§,) > 0. In
addition, let {b,} be a positive sequence satisfying

by,
b, > o0 and — — 0, as n — oo.

vn

Then for any r > 0,

/o _ I’
hm ﬁlogp (bn|§np ~4l 2 7‘) - _m-

Miao et al. [12] obtained the asymptotic properties of the moderate deviation between
order statistics and the quantile &,.
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THEOREM 1.2: Let X(1), X(2),..., X(n) denote the order statistics of {X1,Xa,..., X}
which is a sequence of independent and identically distributed random variables with a con-
tinuous distribution F(z), and let &, be a p-quantile of F' for 0 < p < 1. Assume that F(z)
has a continuous density function f(x) in the neighborhood of &, and f(&,) > 0. In addition,
let {b,} be a positive sequence satisfying

b, — oo and —0, as n— .

S

Then for any r > 0,

.1 Vn f2(&p)r?
1 —log P | —| X (1) — > = - >
el b2 8 ( b, Xy =&l 2 T> 2p(1 —p)’

where k = np + o(by/n).

The aim of this paper is to further study the asymptotic properties of the moderate devi-
ation of sample quantiles and order statistics under the sequence of m-dependent random
variables. The results obtained in this paper extend the corresponding ones of Theorems
1.1 and 1.2 for i.i.d. setting to stationary m-dependent setting. We should point out that
the methods used in the paper are different from those in Theorems 1.1 and 1.2.

The layout of our work is as follows. Main results are presented in Section 2. The proofs
of the main results are provided in Section 3. Throughout the paper, let logz = In max(x, ¢),
|| denotes the integer part of  and I(A) represents the indicator function of the set A.

2. MAIN RESULTS

First, we present the result of moderate deviation principle between the sample quantiles
&np and the quantile &p,.

THEOREM 2.1: Let {X;,Xo,..., X,,} be stationary m-dependent random variables with a
continuous distribution F(x). Let énp and &, be the sample p-quantile and the p-quantile,
respectively. Assume that F(x) has a continuous density function f(z) in the neighborhood
of & and f(&,) > 0. In addition, let {b,} be a positive sequence satisfying

bn,
b, — oo and %—N), as m — oo.
Then for any r > 0,

i g tog P (Y26, - ) 2 1) =~ S

n—oo b2 by 26% 7

where 6* = En? +2 > Emnig1 > 0 withn; = I(X; > &) — EI(X; > &,).
i=1

The result of moderate deviation principle between order statistics and the quantile &,
is given as follows.

THEOREM 2.2: Let X(1), X(2),..., X(n) denote the order statistics of {X1,Xa,..., X}
which is a sequence of stationary m-dependent random variables with a continuous dis-
tribution F(z), and let &, be a p-quantile of F for 0 <p < 1. Assume that F(z) has a
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continuous density function f(zx) in the neighborhood of &, and f(&,) > 0. In addition, let
{bn} be a positive sequence satisfying

bn
b, — oo and ﬁ—>0, as n — oo.
Then for any r > 0,
m vn f2(&)r?
m @bgp <bn|X(k) =&l 2 7“) ==

where k = np + o(b,\/n), and 6* is defined in Theorem 2.1.

Remark 1: As is known, m-dependence is equivalent to independence if we take m = 0.
Thus, we have 6* = En? = p(1 — p) if m = 0, which is obtained in Theorems 1.1 and 1.2.
Hence, the results of Theorems 2.1 and 2.2 extend the corresponding ones of Theorems 1.1
and 1.2 for i.i.d. case to stationary m-dependent case, respectively. We should point out
that the methods used in the proofs of Theorems 2.1 and 2.2 are somewhat different from
those in Theorems 1.1 and 1.2. The proofs of Theorems 2.1 and 2.2 are more difficult than
the corresponding ones of Theorems 1.1 and 1.2.

3. PROOFS OF MAIN RESULTS

To prove the main results of the paper, we need the following two lemmas. The first one is
a basic property for distribution function, which can be found in Serfling [19], for instance.

LEMMA 3.1: Let F(x) be a right-continuous distribution function. The inverse function
F=1(t), 0 <t <1, is non-decreasing and left-continuous, and satisfies

and
Then we have
F(z) >t if and only if = > F~(t).

The following lemma is also essential to prove our main results, whose proof is placed
in Section 4.

LEMMA 3.2: Let {X,,n > 1} be a sequence of stationary m-dependent random variables
with a continuous distribution F(x), and {c,,n > 1} be a sequence of positive numbers such
that ¢,, — 0 as n — oo. Denote

O, =Y (I(X; > a+cy) — EIX; > a+cy)),
=1
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@n:i(I(Xi <a—c¢,) —EIX; <a-cp))

and

where a € R is a constant. Then
@2 2
hm no— ﬁl, hm no— ﬁg,
n—oo n n— oo
where 3y = E¢3 +2> " E¢1¢ip1 and Po = EO7 +23 7" E610;1. Moreover, ¢; = —0;
a.s. for each i > 1, and thus, 31 = s = 3* > 0.

PROOF OF THEOREM 2.1: It can be easily obtained for any r > 0 that

R b, b,
P({flfnpspzr> (gnpzsﬁf)w(gnpssp \/;) (3.1)

It follows from Lemma 3.1 that

S (i(reee ) (o)

n(l = >nE1<Xl>@W))

\f
=P (Z Yy > bnﬁm) , (3.2)
i=1
where
by by
Ym-:I<XZ->§p+\/£> EI(X >5p+¢%)
and
P n(l —p) — nEI(Xl > &+ (bnr/\/ﬁ))
1= b/t .

It follows from Taylor’s theorem that
bnr b1 byr
EI(X; > P|X;> =1-F —
(r2e+i7)=r(xz6+ ) (&%)
T b,
=1- ( (&) + F (fp)n+0<\/ﬁ >

=1l-p- f(fp)T (b,;)
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Thus, we have that

(1 —p) —n(l —p)+ f(&)rbuy/n + o(bp/n)
g1 =
bpy/n
Denote k = [n/(m + a,)], where {a,,n > 1} is a sequence of positive integers such that

ap, — oo and apb,/v/n — 0. Hence, we can see that a,, > m + 1 for all n large enough.
Denote for each j =0,1,...,k — 1 that

= [(&)r +o(1).

m

Sj = Z Yn,(a7L+m)j+iv and T} = Z Yn,(ar,t+m)j+an+i~

i=1 i=1

Then

n

n k—1 k—1
ZYM:ZSJ‘JFZTJ‘JF Z Yo £ 51+ 55 + s
i=1 Jj=0 J=0

i=(m+ay)k+1

Now we give the Cramér function of the random variable Y 7 | Y,,. Let {d,,n > 1} be a
sequence of positive constants such that d,, — oo and d,, = o(a,,). Then for any A € R, we
obtain by Holder’s inequality that for all n large enough,

- d, b, d,,
m]ogEeXp{\/Z; }'— 2d, ng@Xp{»ﬁwml—inzl}

b2d logEexp{ }
b2d logEexp{ }
= Il+12+13. (3.3)

It follows from |Y,;| <1 that |So|<a, and thus |Ab,d,So/[vn(d,—2)]| <
Aanbndy, /[v/n(d, —2)] — 0. Hence, for any 9 € (0, 1),

250 g , 2
EGXP{ I\, dy, )SO} (\F(d 2) ) <0 Aanbpdy, E( Abnd, 2) SO)

\/ﬁ(dn -2 3! N \/ﬁ(dn - 2) \/ﬁ(dn -
Moo d,, 2
-0z ()

Note that S; are independent for j =0,1,...,k —1, we have by Taylor’s theorem and
Lemma 3.2 that

lim I; = lim ulogEexp{Mn)So}

n—oo n—oo  bidp Vn(dn —2
- (dn —2)k (1+ o(1))A2b2d? )
= lim ~—5——log{l + ——F—"—5— [ anEY 1 +2 ) EYn1 Yo i1
n—oo b%dn 2n(dn — 2)2 an " szl nltn i+
. (dn —2)k (14 0(1))\?b2d%
= : Z%dn) : 2n(£ln))_ 2)g * | anBYi + 22 —)EYmYn it
=1
225
T2 (3.4)
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Similarly, T; are also independent for j = 0,1,..., k — 1; thus, it follows from the stationarity
and d,, = o(a,) that

lim I, = lim F logEeXp{)\bndn TO}

n—o0 n—00 de \/ﬁ
- k (14 o(1))A\%b2d? 5
= lim 2 log{l + o mEY; +2Z — i+ 1)EY,1 Yy,
(14 0(1))\2kd,
= lim # (mEY21 42 Z i) EY,LlYm> —0. (3.5)

Since |Yy,;| < 1, we can easily obtain that

Abydy,
liririsotép I3 < lirrlrisotip v, log F exp { n (m+ an)}
= limsu ! 10 ex Abndn (m+ ay)
n)A
= lirrlnﬁsolip (mb:\;ﬁ) = 0. (3.6)
Combining (3.3)—(3.6), we can see that
n )\26*

hrlzn—iip 0 log F exp { Z } . (3.7)

On the other hand, note that ¥y = >""" | Y,; — Xy — X3, we have by Holder’s inequality
again that for all n large enough,

1 Aby, dn Aopd,
bzlogEexp{\/ﬁzl}_ b2d logEexp{ (= 2) ZYM}

n

Ab,dy, 1 Ab,dy,
logEexp{ n Zg}—i—de logEexp{— Jn 23},

1
b2d

which is equivalent to

1 Nond, d, by,
- - . > —
5 1ogEexp{\/ﬁ(dn_2) iE_lYm} B =) logEexp{\/ﬁzl}

B2
1 Ab,d,,
i e
1 b, d,,
————log F — >
b2(d, —2) ° eXp{ NG }
= J1 - J2 - J3 (3.8)

Repeating the steps of (3.4)—(3.6), we can easily obtain the following conclusions:

2 Ok
lim J; = 5 lim J, =0, and limsupJs <0,

n—00 n—00 n—00
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which together with (3.8) yields that

n—0oo

Aby,
lim inf b— log E exp {\/ﬁ

WM:
N

n

b, d u 2%
— liminf — log E _ 20 Ny L . 3.9
Tiloréb 8 eXp{\/ﬁ(dnz); }— 2 (3.9)
Combining (3.7) and (3.9), we have
Abr, AZ6
A(N) = nler;Q b— log E exp {\/ﬁ ; Ym} = (3.10)
Thus, the Fenchel-Legendre transform of A(\) is
A2 z?
A* = — =
=g (2= 27) = 5
which together with Géartner—Ellis theorem (see Dembo and Zeitouni [7]) yields that
1 n, . 1 .
Jim ol log P <\b/>(€np —&) 2 7") = lim = log P (Z Yo > bn\/ﬁm)
n " n i=1
. F(&)r?
=— inf A%(z)=-"—2"—. 3.11
w2 f(Ep)r . 20% R

On the other hand, for any r > 0, we have by Lemma 3.1 again that

rlivso- ) - (ee- ) )
:p<§<1(xis5p—%)—E1<Xi§5”_%))

where

and

np —nEI(X; <&, — (byr/y/n))
b/ '

We can obtain by Taylor’s theorem again that

np —np + f(§p)rbuy/n + o(bny/n)
bnv/n

09 =

= [(&)r +o(1).

09 =
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Denote for each j =0,1,...,k — 1 and k = |n/(m + a,)| that

an m
* *
S] = E Zn,(an+m)j+i7 and /Tj = E Zn,(an+m)j+an+i-
= i=1

Analogous to (3.3)—(3.10), we have that

A(N) = lim log Eexp {
Therefore we have by the Géartner—Ellis theorem again that

NG 1 -
lim 2 logP<bn(§np§p)§r :nlLrI;oglogP ;Zmzbnﬁ@

n— oo

. f2(&p)r?
—— inf A*(g)= 1> 3.13
ot (z) o5+ (3.13)

The desired result follows immediately from (3.1), (3.11), and (3.13). The proof is completed.
]

PrROOF OF THEOREM 2.2: Utilizing the approach in the proof of Theorem 2.1, for any
r > 0 we have that

bnr by,
P (glem =&l = r) =P <X(k) > &+ f) +P (X(k) <& — \/%) . (3.14)

It follows from Lemma 3.1 that

bar\ " _ bar

( I(XiEbnr-i-fp)Zn—k—i—l)

=P (zn:Unz >b \f0'3> y
=1

|
s

i
£

where
bn’l” bnr
Uni:I<Xi > \/ﬁ+§p) - FEI <Xi > \/ﬁ+§p)7
and
oy — n—k—i—l—nEIl() \/HZ(b /1) +&p) (&) + o(1).

On the other hand,

P(X(k>§£p )z <ZI<X <¢ - bf)_)

=P (i Vi > bn\/ﬁ0—4> ;

i=1
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where
VeI (xi<e ") _pr(x,<e - "
ni — i > GQp \/77, i > Sp \/H ’
and
k— nBI(X: < & — (bur/v/))
= o = (&) +o(1).

Since U,; = Y,;, 03 =01, and V,,; = Z,,;, 04 = 02, the reminder of the proof follows by
repeating (3.3)—(3.13) of Theorem 2.1. Here we omit the details. [ |

4. PROOF OF LEMMA 3.2.

We only prove lim,, .., E®2/n = (31, and the proof of lim,, .., E©? /n = (3 is completely

analogous. Denote ¢; = I(X; > a+¢,) — FI(X; > a+ ¢,). Noting that {¢;,i > 1} and
{¢s,7 > 1} are both stationary m-dependent sequences, we have that for all n > m + 1,

B} E(Xi,e)
n

n—i
=Ep}+2> ——Eo1pi11,
" w1+ L, LP1vi

i=1

and

EXT . ¢ : 1
% = E¢? + 2; %Eﬁbl@vﬁ

It follows from the Taylor’s theorem that

|Ept — BE¢t| = |P(X; 2 a+cq) = PX(X; 2 a+c,) — P(X; 2 a) + P*(X; 2 a)
=[(P(X;>a+c¢,) —P(X;>a))(1l-P(X; >a+c¢,) — P(X; >a))
<3|P(X; > a+c,) — P(X; > a)
=3|F(a+ c,) — F(a)]
= 3f(a)en + ocn) = o(1),

and

|[Ep1pit1 — Edr1¢iy1]

=|EI(X1>a+c)(Xiy1 > a+c¢,)— P(X1 > a+c¢,)P(Xi01 > a+cy)
—FBI(X; > a)[(Xiy1 > a)— P(X; > a)P(X;111 > a)]

<|EI(Xy; > a4 cp)[(Xip1 > a+c¢,) — EI(X1 > a+cy)(Xip1 > a)
+|EI( X1 > a+cp)I(Xi41 > a) — EI(X; > a)l(X;41 > a)]
+|P(X1>a+c¢,)P(Xiy1 > a+c¢,) — P(Xy1 > a+¢,)P(Xip1 > a)]
+|P(X1 > a+c¢,)P(Xip1 > a) — P(X1 > a)P(Xip1 > a)]

<A4|F(a+¢,) — F(a)| =4f(a)c, + o(c,) = o(1).

Hence,

2 .
. n—1

lim
n—oo

= B¢} +2 lim Y ——E¢16i41 = f.
i=1

n
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Moreover, since the distribution function of X is continuous, we have

¢i+0; =I1(X;, =a) — P(X;=a) =0 as.,

which implies that ¢; = —0; a.s. for each i >1, and thus, (; = #2. The proof is
completed. ]
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