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In this paper, we mainly study the moderate deviation principle of sample quantiles and
order statistics for stationary m-dependent random variables. The results obtained in
this paper extend the corresponding ones for an independent and identically distributed
sequence to a stationary m-dependent sequence.
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1. INTRODUCTION

A quantile has no restrictions on moment conditions, which enables it to be widely used
in various problems in finance, for instance, quantile-hedging, optimal portfolio allocation,
risk management, and so forth. In practice, the large sample theory, which can give the
asymptotic properties of sample estimator, is a significant approach to analyze statistical
problems.

To present our main results, firstly let us recall the concept of m-dependence. A sequence
{Xn, n ≥ 1} of random variables is called m-dependent if for a given fixed m, {Xi, i ∈ A}
and {Xj , j ∈ B} are independent whenever ρ(A,B) > m for A,B ⊂ N, where

ρ(A,B) � inf{|i − j| : i ∈ A, j ∈ B}.

If we take m = 0, then m-dependence is equivalent to independence, so the concept of m-
dependence is an extension of independence. There are some results based on m-dependent
sequence, one can refer to Hoeffding and Robbins [8], Sen [17], Schönfeld [16], Romano and
Wolf [15] for instance.

The random sequence {Xn, n ≥ 1} is called stationary, if for any positive integers t1 <
t2 < · · · < tl and all positive integer k, (Xt1 ,Xt2 , . . . , Xtl

) has the same distribution with
(Xt1+k,Xt2+k, . . . , Xtl+k).

In this paper, suppose that we have a stationary m-dependent sample of size n from
a distribution function F (x) with a continuous probability density function f(x). For 0 <
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p < 1, the p-quantile of F is defined as

ξp = inf{x : F (x) ≥ p}.

As is known, there are two important estimators to estimate the p-quantile, one of which is
the sample p-quantile, which is denoted as

ξ̂np = inf{x : Fn(x) ≥ p}, 0 < p < 1,

where Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x), x ∈ R is the empirical distribution function. The other esti-

mator of the p-quantile is order statistics. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the order
statistics of the sample {X1,X2, . . . , Xn} of observations on F (x).

There are many results for the deviation between the sample quantiles and the quantile.
Bahadur [4] introduced a representation for the sample quantiles based on independent and
identically distributed (i.i.d.) random variables. Subsequently the result, called Bahadur
representation, was extended to numerous dependent sequences, for instance, Ling [10] and
Xing and Yang [20] studied the Bahadur representation for sample quantiles under neg-
atively associated (NA) sequence; Wendler [25] established the Bahadur representation
for U-quantiles of strongly mixing random variables and functionals of absolutely reg-
ular sequences; Li et al. [9] further investigated the Bahadur representation for sample
quantiles under negatively orthant dependent (NOD) sequence; Yang et al. [28] obtained
the Bahadur representation for sample quantiles under widely orthant dependent (WOD)
sequence, which is weaker than NOD sequence, and thus weaker than NA sequence. For
weakly dependent sequences, one can refer to Babu and Gingh [3], Sen [18], Wang, Hu,
and Yang [23], Xing et al. [21], and so on. There are also some results on Berry–Esséen
bounds of sample quantiles, we refer the readers to Yang et al. [26,27], Liu et al. [11]
among others. Meanwhile, some results were established for order statistics, one can refer
to David [6], Park [13,14], Childs et al. [5], Adler [1,2], Wang, Zhuang, and Hu [24] for the
details.

Recently, Xu and Miao [22] established the following asymptotic properties of the
moderate deviation between the sample quantiles ξ̂np and the quantile ξp.

Theorem 1.1: Let {X1,X2, . . . , Xn} be independent and identically distributed random
variables with a continuous distribution F (x), and let ξp be a p-quantile of F for 0 < p < 1.
Corresponding to the sample {X1,X2, . . . , Xn}, the sample p-quantile which is denoted by
ξ̂np is defined as the p-quantile of the empirical distribution function Fn(x). Assume that
F (x) has a continuous density function f(x) in the neighborhood of ξp and f(ξp) > 0. In
addition, let {bn} be a positive sequence satisfying

bn → ∞ and
bn√
n
→ 0, as n → ∞.

Then for any r > 0,

lim
n→∞

1
b2
n

log P

(√
n

bn
|ξ̂np − ξp| ≥ r

)
= − f2(ξp)r2

2p(1 − p)
.

Miao et al. [12] obtained the asymptotic properties of the moderate deviation between
order statistics and the quantile ξp.
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Theorem 1.2: Let X(1),X(2), . . . , X(n) denote the order statistics of {X1,X2, . . . , Xn}
which is a sequence of independent and identically distributed random variables with a con-
tinuous distribution F (x), and let ξp be a p-quantile of F for 0 < p < 1. Assume that F (x)
has a continuous density function f(x) in the neighborhood of ξp and f(ξp) > 0. In addition,
let {bn} be a positive sequence satisfying

bn → ∞ and
bn√
n
→ 0, as n → ∞.

Then for any r > 0,

lim
n→∞

1
b2
n

log P

(√
n

bn
|X(k) − ξp| ≥ r

)
= − f2(ξp)r2

2p(1 − p)
,

where k = np + o(bn
√

n).

The aim of this paper is to further study the asymptotic properties of the moderate devi-
ation of sample quantiles and order statistics under the sequence of m-dependent random
variables. The results obtained in this paper extend the corresponding ones of Theorems
1.1 and 1.2 for i.i.d. setting to stationary m-dependent setting. We should point out that
the methods used in the paper are different from those in Theorems 1.1 and 1.2.

The layout of our work is as follows. Main results are presented in Section 2. The proofs
of the main results are provided in Section 3. Throughout the paper, let log x = ln max(x, e),
	x
 denotes the integer part of x and I(A) represents the indicator function of the set A.

2. MAIN RESULTS

First, we present the result of moderate deviation principle between the sample quantiles
ξ̂np and the quantile ξp.

Theorem 2.1: Let {X1,X2, . . . , Xn} be stationary m-dependent random variables with a
continuous distribution F (x). Let ξ̂np and ξp be the sample p-quantile and the p-quantile,
respectively. Assume that F (x) has a continuous density function f(x) in the neighborhood
of ξp and f(ξp) > 0. In addition, let {bn} be a positive sequence satisfying

bn → ∞ and
bn√
n
→ 0, as n → ∞.

Then for any r > 0,

lim
n→∞

1
b2
n

log P

(√
n

bn
|ξ̂np − ξp| ≥ r

)
= −f2(ξp)r2

2δ∗
,

where δ∗ = Eη2
1 + 2

m∑
i=1

Eη1ηi+1 > 0 with ηi = I(Xi ≥ ξp) − EI(Xi ≥ ξp).

The result of moderate deviation principle between order statistics and the quantile ξp

is given as follows.

Theorem 2.2: Let X(1),X(2), . . . , X(n) denote the order statistics of {X1,X2, . . . , Xn}
which is a sequence of stationary m-dependent random variables with a continuous dis-
tribution F (x), and let ξp be a p-quantile of F for 0 < p < 1. Assume that F (x) has a
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continuous density function f(x) in the neighborhood of ξp and f(ξp) > 0. In addition, let
{bn} be a positive sequence satisfying

bn → ∞ and
bn√
n
→ 0, as n → ∞.

Then for any r > 0,

lim
n→∞

1
b2
n

log P

(√
n

bn
|X(k) − ξp| ≥ r

)
= −f2(ξp)r2

2δ∗
,

where k = np + o(bn
√

n), and δ∗ is defined in Theorem 2.1.

Remark 1: As is known, m-dependence is equivalent to independence if we take m = 0.
Thus, we have δ∗ = Eη2

1 = p(1 − p) if m = 0, which is obtained in Theorems 1.1 and 1.2.
Hence, the results of Theorems 2.1 and 2.2 extend the corresponding ones of Theorems 1.1
and 1.2 for i.i.d. case to stationary m-dependent case, respectively. We should point out
that the methods used in the proofs of Theorems 2.1 and 2.2 are somewhat different from
those in Theorems 1.1 and 1.2. The proofs of Theorems 2.1 and 2.2 are more difficult than
the corresponding ones of Theorems 1.1 and 1.2.

3. PROOFS OF MAIN RESULTS

To prove the main results of the paper, we need the following two lemmas. The first one is
a basic property for distribution function, which can be found in Serfling [19], for instance.

Lemma 3.1: Let F (x) be a right-continuous distribution function. The inverse function
F−1(t), 0 < t < 1, is non-decreasing and left-continuous, and satisfies

F−1(F (x)) ≤ x, x ∈ (−∞,∞),

and

F (F−1(t)) ≥ t, t ∈ (0, 1).

Then we have

F (x) ≥ t if and only if x ≥ F−1(t).

The following lemma is also essential to prove our main results, whose proof is placed
in Section 4.

Lemma 3.2: Let {Xn, n ≥ 1} be a sequence of stationary m-dependent random variables
with a continuous distribution F (x), and {cn, n ≥ 1} be a sequence of positive numbers such
that cn → 0 as n → ∞. Denote

Φn =
n∑

i=1

(I(Xi ≥ a + cn) − EI(Xi ≥ a + cn)),
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Θn =
n∑

i=1

(I(Xi ≤ a − cn) − EI(Xi ≤ a − cn))

and
φi = I(Xi ≥ a) − EI(Xi ≥ a), θi = I(Xi ≤ a) − EI(Xi ≤ a),

where a ∈ R is a constant. Then

lim
n→∞

EΦ2
n

n
= β1, lim

n→∞
EΘ2

n

n
= β2,

where β1 = Eφ2
1 + 2

∑m
i=1 Eφ1φi+1 and β2 = Eθ2

1 + 2
∑m

i=1 Eθ1θi+1. Moreover, φi = −θi

a.s. for each i ≥ 1, and thus, β1 = β2 � β∗ > 0.

Proof of Theorem 2.1: It can be easily obtained for any r > 0 that

P

(√
n

bn
|ξ̂np − ξp| ≥ r

)
= P

(
ξ̂np ≥ ξp +

bnr√
n

)
+ P

(
ξ̂np ≤ ξp − bnr√

n

)
. (3.1)

It follows from Lemma 3.1 that

P

(
ξ̂np ≥ ξp +

bnr√
n

)
= P

(
p ≥ Fn

(
ξp +

bnr√
n

))

= P

(
1
n

n∑
i=1

I(Xi ≤ ξp +
bnr√

n
) ≤ p

)

= P

(
n∑

i=1

I(Xi ≥ ξp +
bnr√

n
) ≥ n(1 − p)

)

= P

(
n∑

i=1

(
I

(
Xi ≥ ξp +

bnr√
n

)
− EI

(
Xi ≥ ξp +

bnr√
n

))

≥ n(1 − p) − nEI

(
X1 ≥ ξp +

bnr√
n

))

= P

(
n∑

i=1

Yni ≥ bn

√
nσ1

)
, (3.2)

where

Yni = I

(
Xi ≥ ξp +

bnr√
n

)
− EI

(
Xi ≥ ξp +

bnr√
n

)
,

and

σ1 =
n(1 − p) − nEI(X1 ≥ ξp + (bnr/

√
n))

bn
√

n
.

It follows from Taylor’s theorem that

EI

(
Xi ≥ ξp +

bnr√
n

)
= P

(
Xi ≥ ξp +

bnr√
n

)
= 1 − F

(
ξp +

bnr√
n

)

= 1 −
(

F (ξp) + F
′
(ξp)

bnr√
n

+ o

(
bn√
n

))

= 1 − p − f(ξp)
bnr√

n
+ o

(
bn√
n

)
.
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Thus, we have that

σ1 =
n(1 − p) − n(1 − p) + f(ξp)rbn

√
n + o(bn

√
n)

bn
√

n
= f(ξp)r + o(1).

Denote k = 	n/(m + an)
, where {an, n ≥ 1} is a sequence of positive integers such that
an → ∞ and anbn/

√
n → 0. Hence, we can see that an > m + 1 for all n large enough.

Denote for each j = 0, 1, . . . , k − 1 that

Sj =
an∑
i=1

Yn,(an+m)j+i, and Tj =
m∑

i=1

Yn,(an+m)j+an+i.

Then
n∑

i=1

Yni =
k−1∑
j=0

Sj +
k−1∑
j=0

Tj +
n∑

i=(m+an)k+1

, Yni � Σ1 + Σ2 + Σ3.

Now we give the Cramér function of the random variable
∑n

i=1 Yni. Let {dn, n ≥ 1} be a
sequence of positive constants such that dn → ∞ and dn = o(an). Then for any λ ∈ R, we
obtain by Hölder’s inequality that for all n large enough,

1
b2
n

log E exp

{
λbn√

n

n∑
i=1

Yni

}
≤ dn − 2

b2
ndn

log E exp
{

λbndn√
n(dn − 2)

Σ1

}

+
1

b2
ndn

log E exp
{

λbndn√
n

Σ2

}

+
1

b2
ndn

log E exp
{

λbndn√
n

Σ3

}

=: I1 + I2 + I3. (3.3)

It follows from |Yni| ≤ 1 that |S0| ≤ an and thus |λbndnS0/[
√

n(dn − 2)]| ≤
λanbndn/[

√
n(dn − 2)] → 0. Hence, for any ϑ ∈ (0, 1),∣∣∣∣∣∣∣E exp
{

ϑλbndn√
n(dn − 2)

S0

} ( λbndn√
n(dn−2)

S0

)3

3!

∣∣∣∣∣∣∣ ≤ C
λanbndn√
n(dn − 2)

E

(
λbndn√

n(dn − 2)
S0

)2

= o(1)E
(

λbndn√
n(dn − 2)

S0

)2

.

Note that Sj are independent for j = 0, 1, . . . , k − 1, we have by Taylor’s theorem and
Lemma 3.2 that

lim
n→∞ I1 = lim

n→∞
(dn − 2)k

b2ndn
log E exp

{
λbndn√

n(dn − 2)
S0

}

= lim
n→∞

(dn − 2)k

b2ndn
log

{
1 +

(1 + o(1))λ2b2nd2
n

2n(dn − 2)2

(
anEY 2

n1 + 2

m∑
i=1

(an − i)EYn1Yn,i+1

)}

= lim
n→∞

(dn − 2)k

b2ndn
· (1 + o(1))λ2b2nd2

n

2n(dn − 2)2

(
anEY 2

n1 + 2

m∑
i=1

(an − i)EYn1Yn,i+1

)

=
λ2δ∗

2
. (3.4)
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Similarly, Tj are also independent for j = 0, 1, . . . , k − 1; thus, it follows from the stationarity
and dn = o(an) that

lim
n→∞ I2 = lim

n→∞
k

b2
ndn

log E exp
{

λbndn√
n

T0

}

= lim
n→∞

k

b2
ndn

log

{
1 +

(1 + o(1))λ2b2
nd2

n

2n

(
mEY 2

n1 + 2
m∑

i=2

(m − i + 1)EYn1Yni

)}

= lim
n→∞

(1 + o(1))λ2kdn

2n

(
mEY 2

n1 + 2
m∑

i=2

(m − i + 1)EYn1Yni

)
= 0. (3.5)

Since |Yni| ≤ 1, we can easily obtain that

lim sup
n→∞

I3 ≤ lim sup
n→∞

1
b2
ndn

log E exp
{

λbndn√
n

(m + an)
}

= lim sup
n→∞

1
b2
ndn

log exp
{

λbndn√
n

(m + an)
}

= lim sup
n→∞

(m + an)λ
bn
√

n
= 0. (3.6)

Combining (3.3)–(3.6), we can see that

lim sup
n→∞

1
b2
n

log E exp

{
λbn√

n

n∑
i=1

Yni

}
≤ λ2δ∗

2
. (3.7)

On the other hand, note that Σ1 =
∑n

i=1 Yni − Σ2 − Σ3, we have by Hölder’s inequality
again that for all n large enough,

1
b2
n

log E exp
{

λbn√
n

Σ1

}
≤ dn − 2

b2
ndn

log E exp

{
λbndn√

n(dn − 2)

n∑
i=1

Yni

}

+
1

b2
ndn

log E exp
{
−λbndn√

n
Σ2

}
+

1
b2
ndn

log E exp
{
−λbndn√

n
Σ3

}
,

which is equivalent to

1
b2
n

log E exp

{
λbndn√

n(dn − 2)

n∑
i=1

Yni

}
≥ dn

b2
n(dn − 2)

log E exp
{

λbn√
n

Σ1

}

− 1
b2
n(dn − 2)

log E exp
{
−λbndn√

n
Σ2

}

− 1
b2
n(dn − 2)

log E exp
{
−λbndn√

n
Σ3

}

=: J1 − J2 − J3. (3.8)

Repeating the steps of (3.4)–(3.6), we can easily obtain the following conclusions:

lim
n→∞ J1 =

λ2δ∗

2
, lim

n→∞J2 = 0, and lim sup
n→∞

J3 ≤ 0,
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which together with (3.8) yields that

lim inf
n→∞

1
b2
n

log E exp

{
λbn√

n

n∑
i=1

Yni

}

= lim inf
n→∞

1
b2
n

log E exp

{
λbndn√

n(dn − 2)

n∑
i=1

Yni

}
≥ λ2δ∗

2
. (3.9)

Combining (3.7) and (3.9), we have

Δ(λ) = lim
n→∞

1
b2
n

log E exp

{
λbn√

n

n∑
i=1

Yni

}
=

λ2δ∗

2
. (3.10)

Thus, the Fenchel–Legendre transform of Δ(λ) is

Δ∗(x) = sup
λ∈R

(
λx − λ2δ∗

2

)
=

x2

2δ∗
,

which together with Gärtner–Ellis theorem (see Dembo and Zeitouni [7]) yields that

lim
n→∞

1
b2
n

log P

(√
n

bn
(ξ̂np − ξp) ≥ r

)
= lim

n→∞
1
b2
n

log P

(
n∑

i=1

Yni ≥ bn

√
nσ1

)

= − inf
x≥f(ξp)r

Δ∗(x) = −f2(ξp)r2

2δ∗
. (3.11)

On the other hand, for any r > 0, we have by Lemma 3.1 again that

P

(
ξ̂np ≤ ξp − bnr√

n

)
= P

(
1
n

n∑
i=1

I

(
Xi ≤ ξp − bnr√

n

)
≥ p

)

= P

(
n∑

i=1

(
I

(
Xi ≤ ξp − bnr√

n

)
− EI

(
Xi ≤ ξp − bnr√

n

))

≥ np − nEI

(
X1 ≤ ξp − bnr√

n

))

= P

(
n∑

i=1

Zni ≥ bn

√
nσ2

)
, (3.12)

where

Zni = I

(
Xi ≤ ξp − bnr√

n

)
− EI

(
Xi ≤ ξp − bnr√

n

)
,

and

σ2 =
np − nEI(Xi ≤ ξp − (bnr/

√
n))

bn
√

n
.

We can obtain by Taylor’s theorem again that

σ2 =
np − np + f(ξp)rbn

√
n + o(bn

√
n)

bn
√

n
= f(ξp)r + o(1).
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Denote for each j = 0, 1, . . . , k − 1 and k = 	n/(m + an)
 that

S∗
j =

an∑
i=1

Zn,(an+m)j+i, and T ∗
j =

m∑
i=1

Zn,(an+m)j+an+i.

Analogous to (3.3)–(3.10), we have that

Δ(λ) = lim
n→∞

1
b2
n

log E exp

{
λbn√

n

n∑
i=1

Zni

}
=

λ2δ∗

2
.

Therefore we have by the Gärtner–Ellis theorem again that

lim
n→∞

1
b2
n

log P

(√
n

bn
(ξ̂np − ξp) ≤ −r

)
= lim

n→∞
1
b2
n

log P

(
n∑

i=1

Zni ≥ bn

√
nσ2

)

= − inf
x≥f(ξp)r

Δ∗(x) = −f2(ξp)r2

2δ∗
. (3.13)

The desired result follows immediately from (3.1), (3.11), and (3.13). The proof is completed.
�

Proof of Theorem 2.2: Utilizing the approach in the proof of Theorem 2.1, for any
r > 0 we have that

P

(√
n

bn
|X(k) − ξp| ≥ r

)
= P

(
X(k) ≥ ξp +

bnr√
n

)
+ P

(
X(k) ≤ ξp − bnr√

n

)
. (3.14)

It follows from Lemma 3.1 that

P

(
X(k) ≥ ξp +

bnr√
n

)
= P

(
k ≥

n∑
i=1

I

(
Xi ≤ bnr√

n
+ ξp

))

= P

(
n∑

i=1

I

(
Xi ≥ bnr√

n
+ ξp

)
≥ n − k + 1

)

= P

(
n∑

i=1

Uni ≥ bn

√
nσ3

)
,

where

Uni = I

(
Xi ≥ bnr√

n
+ ξp

)
− EI

(
Xi ≥ bnr√

n
+ ξp

)
,

and

σ3 =
n − k + 1 − nEI(Xi ≥ (bnr/

√
n) + ξp)

bn
√

n
= f(ξp)r + o(1).

On the other hand,

P

(
X(k) ≤ ξp − bnr√

n

)
= P

(
n∑

i=1

I

(
Xi ≤ ξp − bnr√

n

)
≥ k

)

= P

(
n∑

i=1

Vni ≥ bn

√
nσ4

)
,
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where

Vni = I

(
Xi ≤ ξp − bnr√

n

)
− EI

(
Xi ≤ ξp − bnr√

n

)
,

and

σ4 =
k − nEI(Xi ≤ ξp − (bnr/

√
n))

bn
√

n
= f(ξp)r + o(1).

Since Uni = Yni, σ3 = σ1, and Vni = Zni, σ4 = σ2, the reminder of the proof follows by
repeating (3.3)–(3.13) of Theorem 2.1. Here we omit the details. �

4. PROOF OF LEMMA 3.2.

We only prove limn→∞ EΦ2
n/n = β1, and the proof of limn→∞ EΘ2

n/n = β2 is completely
analogous. Denote ϕi = I(Xi ≥ a + cn) − EI(Xi ≥ a + cn). Noting that {φi, i ≥ 1} and
{ϕi, i ≥ 1} are both stationary m-dependent sequences, we have that for all n ≥ m + 1,

EΦ2
n

n
=

E (
∑n

i=1 ϕi)
2

n
= Eϕ2

1 + 2
m∑

i=1

n − i

n
Eϕ1ϕi+1,

and
E (
∑n

i=1 φi)
2

n
= Eφ2

1 + 2
m∑

i=1

n − i

n
Eφ1φi+1.

It follows from the Taylor’s theorem that

|Eϕ2
1 − Eφ2

1| = |P (Xi ≥ a + cn) − P 2(Xi ≥ a + cn) − P (Xi ≥ a) + P 2(Xi ≥ a)|
= |(P (Xi ≥ a + cn) − P (Xi ≥ a))(1 − P (Xi ≥ a + cn) − P (Xi ≥ a))|
≤ 3|P (Xi ≥ a + cn) − P (Xi ≥ a)|
= 3|F (a + cn) − F (a)|
= 3f(a)cn + o(cn) = o(1),

and

|Eϕ1ϕi+1 − Eφ1φi+1|
= |EI(X1 ≥ a + cn)I(Xi+1 ≥ a + cn) − P (X1 ≥ a + cn)P (Xi+1 ≥ a + cn)

− EI(X1 ≥ a)I(Xi+1 ≥ a) − P (X1 ≥ a)P (Xi+11 ≥ a)|
≤ |EI(X1 ≥ a + cn)I(Xi+1 ≥ a + cn) − EI(X1 ≥ a + cn)I(Xi+1 ≥ a)|

+ |EI(X1 ≥ a + cn)I(Xi+1 ≥ a) − EI(X1 ≥ a)I(Xi+1 ≥ a)|
+ |P (X1 ≥ a + cn)P (Xi+1 ≥ a + cn) − P (X1 ≥ a + cn)P (Xi+1 ≥ a)|
+ |P (X1 ≥ a + cn)P (Xi+1 ≥ a) − P (X1 ≥ a)P (Xi+1 ≥ a)|

≤ 4|F (a + cn) − F (a)| = 4f(a)cn + o(cn) = o(1).

Hence,

lim
n→∞

EΦ2
n

n
= Eφ2

1 + 2 lim
n→∞

m∑
i=1

n − i

n
Eφ1φi+1 = β1.
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Moreover, since the distribution function of Xi is continuous, we have

φi + θi = I(Xi = a) − P (Xi = a) = 0 a.s.,

which implies that φi = −θi a.s. for each i ≥ 1, and thus, β1 = β2. The proof is
completed. �
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