
Mathematical Structures in Computer Science (2021), 31, pp. 64–88
doi:10.1017/S0960129520000171

PAPER

Extensional constructive real analysis via locators
Auke B. Booij

School of Computer Science, University of Birmingham, Birmingham, UK
Email: abb538@cs.bham.ac.uk

(Received 3 August 2018; revised 21 June 2020; accepted 19 July 2020; first published online 2 September 2020)

Abstract
Real numbers do not admit an extensional procedure for observing discrete information, such as the first
digit of its decimal expansion, because every extensional, computable map from the reals to the integers
is constant, as is well known. We overcome this by considering real numbers equipped with additional
structure, which we call a locator. With this structure, it is possible, for instance, to construct a signed-
digit representation or a Cauchy sequence, and conversely, these intensional representations give rise to
a locator. Although the constructions are reminiscent of computable analysis, instead of working with a
notion of computability, we simply work constructively to extract observable information, and instead of
working with representations, we consider a certain locatedness structure on real numbers.

Keywords: constructive mathematics, constructive analysis, homotopy type theory, dependent type theory, exact real
arithmetic

1. Introduction
It is well known how to compute with real numbers intensionally, with equality of real num-
bers specified by an imposed equivalence relation on representations (Bishop and Bridges, 1985;
Cruz-Filipe, 2004; O’Connor, 2009), such as Cauchy sequences or streams of digits. It has to
be checked explicitly that functions on the representations preserve such equivalence relations.
Discrete observations, such as finite decimal approximations, can be made because representa-
tions are given, but a different representation of the same real number can result in a different
observation, and hence discrete observations are necessarily non-extensional.

In univalent mathematics, equality of real numbers can be captured by identity types directly,
rather than by an imposed equivalence relation, thus avoiding the use of setoids. Preservation of
equality of real numbers is automatic, but the drawback is that we are prevented from making
any discrete observations of arbitrary real numbers. This kind of problem is already identified
by Hofmann (1995, Section 5.1.7.1) for an extensional type theory. Discrete observations of real
numbers are made by breaking extensionality using a choice operator, which does not give rise to
a function.

To avoid breaking extensionality, the central idea of this paper is to restrict our attention to real
numbers that can be equipped with a simple structure called a locator. Such a locator is a strength-
ening of the locatedness property of Dedekind cuts. While the locatedness of a real number x says
that for rational numbers q< r we have the property q< x or x< r, a locator produces a specific

© The Author(s), 2020. Published by Cambridge University Press

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171
https://orcid.org/0000-0003-3324-3167
mailto:abb538@cs.bham.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129520000171&domain=pdf
https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 65

selection of one of q< x and x< r. In particular, the same real number can have different locators,
and it is in this sense that locators are structure rather than property.

In a constructive setting such as ours, not all real numbers have locators, and we prove that
the ones that do are the ones that have Cauchy representations in Section 3.9. However, working
with locators rather than Cauchy representations gives a development which is closer to that of
traditional real analysis. For example, we can prove that if x has a locator, then so does ex, and this
allows to compute ex when working constructively, so that we say that the exponential function
lifts to locators. As another example, if f is given a modulus of continuity and lifts to locators, then∫ 1
0 f (x) dx has a locator and we can compute the integral in this way.
Thus the difference between locatedness and locators is that one is property and the other

is structure. Plain Martin-Löf type theory is not enough to capture this distinction because, for
example, it allows to define the notion of locator as structure but not the notion of locatedness as
property, and therefore it does not allow to define the type of Dedekind reals we have in mind,
whose identity type should capture directly the intended notion of equality of real numbers. A
good foundational system to account for such distinctions is univalent type theory (UTT), also
known as homotopy type theory (HoTT) (The Univalent Foundations Program, 2013). For us,
it is enough to work in the fragment consisting of Martin-Löf type theory with propositional
truncation, propositional extensionality, and function extensionality (see Section 2). The need
for univalence would arise only when considering types of sets with structure such as the type of
metric spaces or the type of Banach spaces for the purposes of functional analysis.

We believe that our constructions can also be carried out in other constructive foundations
such as Constructive Zermelo-Fraenkel the internal language of an elementary topos with a nat-
ural numbers object, or Heyting arithmetic of finite types. Our choice of UTT is to some extent
a practical one, as it is a constructive system with sufficient extensionality, which admits, at least
in theory, applications in proof assistants allowing for computation using the techniques in this
paper.

In summary, the work has two aspects. One aspect is that instead of working with functions
on intensional representations, we work with functions on real numbers that lift representations.
The second aspect is the particular representation that seems suitable.

We describe the assumptions on the foundational system in Section 2.
The definition and basic theory of locators is given in Section 3. We construct locators for

rationals in Section 3.3. We discuss preliminaries for observing data from locators in Sections 3.4
and 3.5, which is then used to compute rational bounds in Section 3.6. We compute locators
for algebraic operations in Sections 3.7 and for limits in Section 3.8. We compute signed digit
representations for reals with locators in Section 3.9. Given a real and a locator, we strengthen the
properties for being a Dedekind cut into structure in Section 3.10.

We show some ways of using locators in constructive analysis in Section 4. We compute loca-
tors for integrals in Section 4.2. We discuss how locators can help computing roots of functions in
Section 4.3.

2. Preliminaries
We work in type theory with universes U and U ′ with U : U ′, identity types x=X y for x, y : X,
a unit type 1, an empty type 0, a natural numbers type N, dependent sum types �, dependent
product types �, and propositional truncation ‖ · ‖ (see Section 2.1). We assume function exten-
sionality, which can be stated as the claim that all pointwise equal functions are equal. We assume
propositional extensionality, namely, the claim that if P and Q are propositions in the sense of
Section 2.1, and P ⇒Q and Q⇒ P, then P =Q.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

66 A. B. Booij

2.1 Propositions
Definition 2.1.1. A proposition is a type P all whose elements are equal, which is expressed type-
theoretically as

isHProp (P) := �(p, q : P) . (p=P q).
We have the type HProp := �(P : U) . isHProp (P) of all propositions, and we conflate elements of
HProp with their underlying type, that is, their first projection.

We assume that every type has a propositional truncation.

Definition 2.1.2. The propositional truncation ‖X‖ of a type X is a proposition together with a
truncation map | · | : X → ‖X‖ such that for any other proposition Q, given a map g : X →Q, we
obtain a map h : ‖X‖ →Q.

Remark. The uniqueness of the obtained map ‖X‖ →Q follows from the fact that Q is a
proposition, and function extensionality.

We may also think of propositional truncations categorically, in which case they have the uni-
versal property that given amapX →Q as in the diagram below, we obtain the vertical map, which
automatically makes the diagram commute becauseQ is a proposition, and which is automatically
equal to any other map that fits in the diagram.

X ‖X‖

Q

| · |

Propositional truncations can be defined as higher-inductive types, or constructed via impred-
icative encodings assuming propositional resizing.

Even though the elimination rule in Definition 2.1.2 only constructs maps into propositions,
we can sometimes get a map ‖X‖ → X, as we discuss in Theorem 3.5.1.

Definition 2.1.3. Truncated logic is defined by the following, where P,Q :HProp and R : X →
HProp (The Univalent Foundations Program, 2013, Definition 3.7.1):

� := 1
⊥ := 0

P ∧Q := P ×Q
P ⇒Q := P →Q
P ⇔Q := P =Q

¬P := P → 0
P ∨Q := ‖P +Q‖

∀(x : X) . R(x) := �(x : X) . R(x)
∃(x : X) . R(x) := ‖�(x : X) . R(x)‖ .

We use the following terminological conventions throughout the work.

Definition 2.1.4. We refer to types that are propositions as properties. We refer to types which may
have several inhabitants as data or structures. We indicate the use of truncations with the verb “to
exist”: so the claim “there exists an A satisfying B” is to be interpreted as ∃(a :A) . B(a), and “there
exists an element of X” is to be interpreted as ‖X‖. Most other verbs, including “to have,” “to find,” “to

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 67

construct,” “to obtain,” “to get,” “to give,” “to equip,” “to yield,” and “to compute,” indicate the absence
of truncations.

Example 2.1.5. One attempt to define when f : X → Y is a surjection is

�(y : Y) .�(x : X) . fx= y.

In fact, this is rather called split surjective, as from that structure, we obtain a map Y → X which
is inverse to f : so we have defined when a function is a section. Rather defining surjectivity as

∀(y : Y) . ∃(x : X) . fx= y,

by virtue of using the property ∃(x : X) . fx= y, does not yield an inverse map.
In words, we say that f is a surjection if for every y : Y there exists a pre-image. The terminology

that every y : Y has a pre-image means a choice of pre-images, which formalizes sections.

Example 2.1.6. Given a function f :A→ B, the image of f is the collection of elements b : B that
are reached by f , that is, for which there is an element a :A such that fa=B b. The propositions-
as-types interpretation would formalize this as

�(b : B) .�(a :A) . fa=B b.

However, because the type�(b : B) . fa=B b is contractible (The Univalent Foundations Program,
2013, Lemma 3.11.8), in fact this type is equivalent to the type A itself, in the sense that there is
a map with a left pointwise inverse and a right pointwise inverse, and so it does not adequately
represent the image of f .

Using truncations, we instead formalize the image of f as the collection of elements of B for
which there exists a pre-image along f , that is, in UTT the image of f is formalized as

�(b : B) . ∃(a :A) . fa=B b,

noting that the inner � is truncated whereas the outer is not: we want to distinguish elements in
the image of f , but we do not want to distinguish those elements based on a choice of pre-image
in A.

Example 2.1.7. Wemay compute the integral of a uniformly continuous function f as

∫ b

a
f (x) dx= lim

n→∞
b− a
n

n−1∑
k=0

f
(
a+ k · b− a

n

)
.

The construction of the limit value, for example, as in Lemma 2.2.4, uses the modulus of uniform
continuity of f as in Definition 4.1.4. However, since the integral is independent of the choice
of modulus, by unique choice, for example, as in Theorem 5.4 of Kraus et al. (2017), the exis-
tence (defined constructively as in Definition 2.1.3) of a modulus of uniform continuity suffices to
compute the integral. We discuss this further in Sections 3.8 and 4.2.

2.2 Dedekind reals
Although the technique of equipping numbers with locators can be applied to any archimedean
ordered field, for clarity and brevity we will work with the Dedekind reals RD as defined in The
Univalent Foundations Program (2013). A more general description is given in Booij (2020b).

Definition 2.2.1. A predicate B on a type X : U is a map B : X →HProp. For x : X, we write (x ∈
B) := B(x).

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

68 A. B. Booij

A Dedekind real is defined by a pair (L,U) of predicates onQ with some properties. To phrase
these properties succinctly, we use the following notation for x= (L,U):

(q< x) := (q ∈ L) and
(x< r) := (r ∈U).

This is justified by the fact that q ∈ L holds iff i(q)< x, with i :Q ↪→RD the canonical inclusion of
the rationals into the Dedekind reals.

Definition 2.2.2. A pair x= (L,U) of predicates on the rationals is a Dedekind cut or Dedekind
real if it satisfies the four Dedekind properties:

1. bounded: ∃(q :Q) . q< x and ∃(r :Q) . x< r;
2. rounded: for all q, r :Q,

q< x⇔ ∃(q′ :Q) . (q< q′)∧ (q′ < x), and
x< r ⇔ ∃(r′ :Q) . (r′ < r)∧ (x< r′);

3. transitive: (q< x)∧ (x< r)⇒ (q< r) for all q, r :Q;
4. located: (q< r)⇒ (q< x)∨ (x< r) for all q, r :Q.

The collection RD : U ′ of pairs of predicates (L,U) together with proofs of the four properties,
collected in a �-type, is called the Dedekind reals.

Remark. The Univalent Foundations Program (2013) has disjointness
∀(q :Q) .¬(x< q∧ q< x)

instead of the transitivity property, which is equivalent to it in the presence of the other conditions,
and it is this disjointedness condition that we use most often in proofs.

Proof. Assuming transitivity, if x< q∧ q< x, then transitivity yields q< q, which contradicts
irreflexivity of < on the rationals, which shows disjointedness.

Conversely, if q< x and x< r, apply trichotomy of the rationals on q and r: in case that q< r
we are done, and in the other two cases we obtain x< q, contradicting disjointness.

Definition 2.2.3. For Dedekind reals x and y, we define the strict ordering relation by
x< y := ∃(q :Q) . x< q< y,

where x< q< y means (x< q)∧ (q< y), and their apartness by
x # y := (x< y)∨ (y< x).

As is typical in constructive analysis, we have x # y⇒ ¬(x= y), but not the converse.

The following proof that RD is Cauchy complete is based on The Univalent Foundations
Program (2013, Theorem 11.2.12).

Lemma 2.2.4. The Dedekind reals are Cauchy complete. More explicitly, given amodulus of Cauchy
convergence M for a sequence x of Dedekind reals, that is, a map M :Q+ →N such that

∀(ε :Q+) . ∀(m, n :N) .m, n≥M(ε)⇒ |xm − xn| < ε,
we can compute l :RD as the Dedekind cut defined by:

(q< l) := ∃(ε, θ :Q+) . (q+ ε + θ < xM(ε)),

(l< r) := ∃(ε, θ :Q+) . (xM(ε) < r − ε − θ),
and l is the limit of x in the usual sense:

∀(ε :Q+) . ∃(N :N) . ∀(n :N) . n≥N ⇒ ∣∣xn − l
∣∣ < ε.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 69

Proof. Inhabitedness and roundedness of l are straightforward. For transitivity, suppose q< l< r,
then we wish to show q< r. There exist ε, θ , ε′, θ ′ :Q+ with q+ ε + θ < xM(ε) and xM(ε′) < r −
ε′ − θ ′. Now

∣∣xM(ε) − xM(ε′)
∣∣ ≤max (ε, ε′), so either q+ θ < xM(ε′) or xM(ε) < r − θ , and in either

case q< r.
For locatedness, suppose q< r. Set ε := r−q

5 , so that q+ 2ε < r − 2ε. By locatedness of xε , we
have (q+ 2ε < xε)∨ (xε < r − 2ε), hence (q< l)∨ (l< r).

In order to show convergence, let ε :Q+, set N :=M(ε), and let n≥N. We need to show∣∣xn − l
∣∣ ≤ ε, or equivalently, −ε ≤ xn − l≤ ε. For xn − l≤ ε, suppose that ε < xn − l, or equiv-

alently, l< xn − ε. There exist ε′, θ ′ :Q+ with xM(ε′) < xn − ε − ε′ − θ ′, or equivalently, ε + ε′ +
θ ′ < xn − xM(ε′), which contradictsM being a modulus of Cauchy convergence. We can similarly
show −ε ≤ xn − l.

We denote limits of sequences by limn→∞ xn.

Example 2.2.5 (Exponential function). We can define the exponential function exp :RD →
RD as exp (x)= ∑∞

k=0
xk
k! . We obtain the existence of a modulus of Cauchy convergence by

boundedness (as in Definition 2.2.2) of x.

3. Locators
The basic idea is that we equip real numbers with the structure of a locator, defined in Section 3.1.
The purpose of the work is to show how to extract discrete information from an existing theory of
real analysis in UTT.

The following example, which will be fully proved in Theorem 4.3.5, illustrates how we are
going to use locators. Suppose f is a pointwise continuous function, and a< b are real numbers
with locators. Further suppose that f is locally non-constant, that f (x) has a locator whenever x
has a locator, and that f (a)≤ 0≤ f (b). Then we can find a root of f , which comes equipped with a
locator. For the moment, we provide a proof sketch, to motivate the techniques that we are going
to develop in this section. We define sequences a, b :N→RD with an < an+1 < bn+1 < bn, with
f (an)≤ 0≤ f (bn), with bn − an ≤ (b− a)

(2
3
)n, and such that all an and bn have locators. Set a0 =

a, b0 = b. Suppose an and bn are defined. We will explain in the complete proof of Theorem 4.3.5
how to to find qn with 2an+bn

3 < qn < an+2bn
3 and f (qn) # 0. The important point for the moment

is that this is possible precisely because we have locators.

• If f (qn)> 0, then set an+1 := an and bn+1 := qn.
• If f (qn)< 0, then set an+1 := qn and bn+1 := bn.

The sequences converge to a number x. For any positive rational ε, we have
∣∣f (x)∣∣ ≤ ε, hence

f (x)= 0. This completes our sketch.
We need to explain why the sequences a and b come equipped with locators and why their limit

x has a locator. In fact, all qn are rationals and hence have locators, as discussed in Section 3.3.
The number qn is constructed using the central techniques for observing data from locators, see
Sections 3.4 and 3.5. These techniques can then also be used in Section 3.6 to compute rational
bounds. Locators for 2an+bn

3 and an+2bn
3 can be constructed as locators for algebraic operations, as

in Section 3.7. Locators for limits are discussed in Section 3.8.
We compute signed-digit representations for reals with locators in Section 3.9. Given a real and

a locator, we strengthen the properties for being a Dedekind cut into structure in Section 3.10.

3.1 Definition
Recall that there is a canonical embedding of the rationals into RD. Throughout the remainder of
this paper, we identify q :Q with its embedding i(q) :RD.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

70 A. B. Booij

Recall from Definition 2.2.2 that a pair of predicates on the rationals x= (L,U) is located
if ∀(q, r :Q) . (q< r)⇒ (q< x)∨ (x< r). Indeed, this property holds for an arbitrary x :RD by
cotransitivity of <.

Definition 3.1.1. A locator for x :RD is a function � : �(q, r :Q) . q< r → (q< x)+ (x< r).
We denote by locator (x) the type of locators on x. That is, we replace the logical disjunction in
locatedness by a disjoint sum, so that we get structure rather than property, allowing us to compute.

A locator for x can be thought of as falling in theDedekind tradition of considering the rationals
to the left and right of x, in contrast with Cauchy-style representations such as sequences of nested
intervals. Whereas existing Dedekind-style developments directly define a fixed notion of real
number (Bridges and Vita, 2006), locators are a structure that can be defined for an arbitrary type
of reals.

A locator can be seen as an analogue to a Turing machine representing a computable real num-
ber, in the sense that it will provide us with enough data to be able to type-theoretically compute,
for instance, signed-digit expansions. However, a locator does not express that a given real is a
computable real: in the presence of excluded middle, there exists a locator for every x :RD, despite
not every real being computable. To make this precise, we first formalize the principle of excluded
middle type-theoretically.

Definition 3.1.2. A decidable proposition is a proposition P such that P + ¬P. We have the
collection

DHProp := �(P :HProp) . P + ¬P

of decidable propositions. We identify elements of DHProp with their underlying proposition, and
hence with their underlying types.

Remark. If P and Q are decidable, then so is P ∧Q, and we use this fact in later developments.

Definition 3.1.3. The principle of excluded middle (PEM) is the claim that every proposition is
decidable, that is,

PEM := �(P :HProp) . P + ¬P.

Lemma 3.1.4. Assuming PEM, for every x :RD, we can construct a locator for x.

Proof. For given rationals q< r, use PEM to decide q< x. If q< x holds, we can simply return the
proof given by our application of PEM. If ¬(q< x) holds, then we get x≤ q< r so that we can
return a proof of x< r.

Remark. Note that we use the word “proof ” also to refer to type-theoretic constructions of types
that are not propositions. This section contains many such proofs that do not prove propositions
in the sense of Definition 2.1.1.

In Section 4, we will define when a function f :RD →RD lifts to locators, which can be seen as
an analogue to a computable function on the reals. There, the contrast with the theory of com-
putable analysis becomes more pronounced, as the notion of lifting to locators is neither stronger
nor weaker than continuity.

The structure of a locator has been used previously by The Univalent Foundations Program
in a proof that assuming either countable choice or excluded middle, the Cauchy reals, and the
Dedekind reals coincide (The Univalent Foundations Program, 2013, Section 11.4).

The reader may wonder why we only choose to modify one of the Dedekind properties to
become structure.We show in Theorem 3.10.4 that given only a locator, we can obtain the remain-
ing structures, corresponding to boundedness, roundedness, and transitivity, automatically.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 71

3.2 Terminology for locators
A locator � for a real x can be evaluated by picking q, r :Q and ν : q< r. The value �(q, r, ν) has
type (q< x)+ (x< r), and so �(q, r, ν) can be either in the left summand or the right summand.
We say that “we locate q< x” when the locator gives a value in the left summand, and similarly
we say “we locate x< r” when the locator gives a value in the right summand.

We often do case analysis on �(q, r, ν) : (q< x)+ (x< r) by constructing a value c : C(q<x r)
for some type family C : (q< x)+ (x< r)→ U . To construct c, we use the elimination principle of
+, for which we need to specify two values corresponding to the disjuncts q< x and x< r, so the
two values have corresponding types �(ξ : q< x) . C(inl(ξ)) and �(ζ : x< r) . C(inr(ζ)). These
two values correspond to the two possible answers of the locator, and we will often indicate this
by using the above terminology: the expression “we locate q< x” corresponds to constructing a
value of the former type, and the expression “we locate x< r” corresponds to constructing a value
of the latter type.

For example, for every real x with a locator �, we can output a Boolean depending on whether �

locates 0< x or x< 1. Namely, if we locate 0< x, we output true, and if we locate x< 1, we output
false. We use this construction in the proof of Lemma 3.10.1.

3.3 Locators for rationals
Lemma 3.3.1. Suppose x :RD is a rational, or more precisely, that ∃(s :Q) . (x= i(s)), with i :Q ↪→
RD the canonical embedding of the rationals into the Dedekind reals, then x has a locator.

We give two constructions to emphasize that locators are not unique. We use trichotomy of the
rationals, namely, for all a, b :Q,

(a< b)+ (a= b)+ (a> b).

First proof. Let q< r be arbitrary, then we want to give (q< s)+ (s< r). By trichotomy of the
rationals applied to q and s, we have

(q< s)+ (q= s)+ (q> s).
In the first case q< s, we can locate q< s. In the second case q= s, we have s= q< r, so we locate
s< r. In the third case, we have s< q< r, so we locate s< r.

Second proof. Let q< r be arbitrary, then we want to give (q< s)+ (s< r). By trichotomy of the
rationals applied to s and r, we have

(s< r)+ (s= r)+ (s> r).
In the first case s< r, we can locate s< r. In the second case s= r, we have q< r = s, so we locate
q< s. In the third case, we have q< r = s, so we locate q< s.

In the case that q< s< r, the first construction locates s< r, whereas the second construc-
tion locates q< s. In particular, given a pair q< r of rationals, the first proof locates q< 0 if q is
indeed negative, and 0< r otherwise. The second proof locates 0< r if r is indeed positive, and
q< 0 otherwise. Note that these locators disagree when q< 0< r, illustrating that locators are not
unique.

3.4 The logic of locators
Our aim is to combine properties of real numbers with the structure of a locator to make discrete
observations.

If one represents reals by Cauchy sequences, one obtains lower bounds immediately from the
fact that any element in the sequence approximates the real up to a known error. As a working

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

72 A. B. Booij

example, we show, perhaps surprisingly, that we can get a lower bound for an real x, that is an
element of �(q :Q) . q< x, from the locator alone.

Recall that Dedekind reals are bounded from below, so that ∃(q :Q) . q< x. We will define
a proposition P which gives us a bound, in the sense that we can use the elimination rule for
propositional truncations to get a map

(∃(q :Q) . q< x)→ P,
and then we can extract a bound using a simple projection map

P → (�(q :Q) . q< x).
More concretely, we define a type of rationals which are bounds for x and which are minimal

in a certain sense. The minimality is not intended to find tight bounds but is intended to make
this collection of rationals into a proposition: in other words, minimality ensures that the answer
is unique, so that we may apply the elimination rule for propositional truncations.

Our technique has two central elements: reasoning about the structure of locators using
propositions and the construction of a unique answer using bounded search (Section 3.5).

Given a locator � : locator (x), q, r :Q and ν : q< r, we have the notation

q<�
x r := �(q, r, ν) : (q< x)+ (x< r),

leaving the proof of q< r implicit. We further often drop the choice of locator, writing q<x r for
q<�

x r.

Lemma 3.4.1. For types A and B, we have
A+ B� �(P :DHProp) . (P →A)× (¬P → B).

Proof. For a given element x :A+ B, the proposition P is defined to hold when x an given by an
element of A, and false otherwise, so that the two conditions on P hold. Vice versa, for a given
proposition P, we simply decide P to obtain the respective element of A+ B. It has to be checked
that these two constructions result in an equivalence.

Lemma 3.4.2. The type locator (x) of Definition 3.1.1 is equivalent to the type
�(locatesRight : �(q, r :Q) . q< r →DHProp) .

(�(q, r :Q) .�(ν : q< r) . locatesRight (q, r, ν)→ q< x)

× (�(q, r :Q) .�(ν : q< r) .¬ locatesRight (q, r, ν)→ x< r).

Proof. The previous lemma yields the equivalence
locator (x)� �(q, r :Q) . q< r →

�(P :DHProp) . (P → q< x)× (¬P → x< r),
and then we can apply Theorems 2.15.5 and 2.15.7 in The Univalent Foundations Program (2013)
to distribute the �-types over � and ×.

Remark. We emphasize that, confusingly, locatesRight (q, r, ν) is defined type-theoretically as
isLeft (q<�

x r).

Definition 3.4.3. For a real x with a locator � and rationals q< r, we write

locatesRight (q<�
x r) or locatesRight (q<x r)

for the decidable proposition locatesRight (q, r, ν) obtained from Lemma 3.4.2. We write

locatesLeft (q<�
x r) or locatesLeft (q<x r)

to be the negation of locatesRight (q<x r): so it is the proposition which is true if we locate x< r.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 73

Remark. In general, if we have q′ < q< r, then locatesRight (q<x r) does not imply
locatesRight (q′ <x r).

Lemma 3.4.4. For any real x with a locator � and rationals q< r,

¬(q< x)⇒ locatesLeft (q<�
x r), and

¬(x< r)⇒ locatesRight (q<�
x r).

Proof. From the defining properties of locatesRight in Lemma 3.4.2, we know

locatesRight (q<�
x r)⇒ (q< x), and

¬ locatesRight (q<�
x r)⇒ (x< r).

The contrapositives of these are, respectively,

¬(q< x)⇒ ¬ locatesRight (q<�
x r) and

¬(x< r)⇒ ¬¬ locatesRight (q<�
x r).

Using the fact that ¬¬A⇒A when A is decidable, this is the required result.

Example 3.4.5. Let x be a real equipped with a locator. We can type-theoretically express that the
locator must give certain answers. For example, if we have q< r < x, shown visually as

xq < r
RD

we must locate q< x, because ¬(x< r). In other words, we obtain truth of the proposition
locatesRight (q<x r): the property ¬(x< r) yielded a property of the structure q<x r.

Continuing our working example of computing a lower bound, for any q :Q, we have the claim

P(q) := locatesRight (q− 1<x q)

that we locate q− 1< x. This claim is a decidable proposition. And from the existence
∃(q :Q) . q< x of a lower bound for x, we can deduce that ∃(q :Q) . P(q), because if q< x then
¬(x< q) and hence the above lemma applies. If we manage to find a q :Q for which P(q) holds,
then we have certainly found a lower bound of x, namely q− 1.

3.5 Bounded search
Even though the elimination rule for propositional truncation in Definition 2.1.2 only constructs
maps into propositions, we can use elements of propositional truncations to obtain witnesses of
non-truncated types – in other words, we can sometimes obtain structure from property.

Theorem 3.5.1 (Escardó 2013; Escardó and Xu 2015; The Univalent Foundations Program
2013, Exercise 3.19). Let P :N→DHProp. If ∃(n :N) . P(n), then we can construct an element
of �(n :N) . P(n).
Remark. In general, we do not have ‖X‖ → X for all types X, as this would imply excluded mid-
dle (Kraus et al., 2017). But for some types X, we do have ‖X‖ → X, namely when X has a constant
endomap (Kraus et al., 2017).

Even without univalence, Theorem 3.5.1 also works for any type equivalent to N.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

74 A. B. Booij

Corollary 3.5.2. Let A be a type and e :N�A be an equivalence, that is, a function N→A with
a left inverse and right inverse. Let P :A→DHProp. If ∃(a :A) . P(a), then we can construct an
element of �(a :A) . P(n).
Proof. Use Theorem 3.5.1 with P′(n) := P(e(n)). In order to show ∃(n :N) . P′(n), it suffices to
show (�(a :A) . P(a)) → (

�(n :N) . P′(n)
)
, so let a :A and p : P(a). Then since a= e(e−1(a)), we

get P(e(e−1(a))) by transport.
Hence from Theorem 3.5.1, we obtain some (n, p′) : �(n :N) . P′(e(n)), so we can output

(e(n), q).

3.6 Computing bounds
We are now ready to finish our running example of computing a lower bound for x.

Lemma 3.6.1. Given a real x :RD equipped with a locator, we get bounds for x, that is, we can find
q, r :Q with q< x< r.

Proof. We pick any enumeration ofQ, that is, an equivalence N�Q. Set
P(q) := locatesRight (q− 1<x q).

From Section 3.4, we know that ∃(q :Q) . P(q), and so we can apply Corollary 3.5.2. We obtain
�(q :Q) . P(q), and in particular �(q :Q) . q− 1< x.

Upper bounds are constructed by a symmetric argument, using
P(r) := locatesLeft (r <x r + 1).

We emphasize that even though we cannot decide q< x in general, we can decide what the
locator tells us, and this is what is exploited in our development. Given a real x with a locator, the
above construction of a lower bound searches for a rational q for which we locate q− 1< x. We
emphasize once more that the rational thus found is minimal in the sense that it appears first in
the chosen enumeration ofQ, and not a tight bound.

Remark. The proof of Theorem 3.5.1 works by an exhaustive, but bounded, search. So our con-
struction for Lemma 3.6.1 similarly exhaustively searches for an appropriate rational q. The
efficiency of the algorithm thus obtained can be improved:

(1) We do not need to test every rational number: it suffices to test, for example, bounds of
the form ±2k+1 for k :N, as there always exists a bound of that form. Formally, such a
construction is set up by enumerating a subset of the integers instead of enumerating all
rationals, and showing the existence of a bound of the chosen form, followed by application
of Corollary 3.5.2.

(2) More practically, Lemma 3.6.1 shows that we may as well additionally equip bounds to
reals that already have locators. Then, any later constructions that use rational bounds
can simply use these equipped rational bounds. This is essentially the approach of interval
arithmetic with open nondegenerate intervals. We can also see this equipping of bounds as
a form of memoization, which we can apply more generally.

Lemma 3.6.2. For a real x equipped with a locator and any positive rational ε, we can find u, v :Q
with u< x< v and v− u< ε.

Proof. The construction of bounds in Lemma 3.6.1 yields q, r :Q with q< x< r. We can compute
n :N such that r < q+ nε

3 . Consider the equidistant subdivision

q− ε

3
, q, q+ ε

3
, q+ 2ε

3
, . . . , q+ nε

3
, q+ (n+ 1)ε

3
.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 75

By Lemma 3.4.4, necessarily locatesRight (q− ε
3 <x q) because q< x. Similarly, we have

locatesLeft (q+ nε
3 <x q+ (n+1)ε

3) because x< q+ nε
3 .

For some i, which we can find by a finite search using a one-dimensional version of Sperner’s
lemma, we have

locatesRight
(
q+ iε

3
<x q+ (i+ 1)ε

3

)
∧ locatesLeft

(
q+ (i+ 1)ε

3
<x q+ (i+ 2)ε

3

)
.

For this i, we can output u= q+ iε
3 and v= q+ (i+2)ε

3 .

Remark.The above result allows us to compute arbitrarily precise bounds for a real number xwith
a locator. But, as in Remark 3.6, the above theorem shows that wemay as well equip an appropriate
algorithm for computing arbitrarily precise lower and upper bounds to real numbers. This may
be a better idea when efficiency of the computation matters.

3.7 Locators for algebraic operations
If x and y are reals that we can compute with in an appropriate sense, then we expect to be able to
do so with −x, x+ y, x · y, x−1 (assuming x # 0), min (x, y) and max (x, y) as well. In our case, that
means that if x and y come equipped with locators, then so should the previously listed values.

If one works with intensional real numbers, such as when they are given as Cauchy sequences,
then the algebraic operations are specified directly on the representations. This means that the
computational data are automatically present. Since in our case the algebraic operations are spec-
ified extensionally, they do not give any discrete data, and so the construction of locators has to
be done explicitly in order to compute.

The algebraic operations can be defined for Dedekind cuts as in The Univalent Foundations
Program (2013, Section 11.2.1). Recall from Section 2.2 that for a Dedekind cut x= (L,U), we
write q< x for the claim that q :Q is in the left cut L. In fact, now that we have identified q :Q
with its canonical embedding i(q) :RD in the reals, we can simply understand q< x as i(q)<RD x,
which coincides with the notation for Dedekind cuts. In summary, we have the following relations
for x, y, z,w :RD with w< 0< z and q, r :Q:

q< −x⇔ x< −q
−x< r ⇔ −r < x

q< x+ y⇔ ∃(s :Q) . s< x∧ (q− s)< y
x+ y< r ⇔ ∃(t :Q) . x< t ∧ y< (r − t)

q< xy⇔ ∃(a, b, c, d :Q) . q<min (ac, ad, bc, bd)
∧ a< x< b∧ c< y< d

xy< r ⇔ ∃(a, b, c, d :Q) . max (ac, ad, bc, bd)< r
∧ a< x< b∧ c< y< d

q< z−1 ⇔ qz < 1
z−1 < r ⇔ 1< rz
q<w−1 ⇔ 1< qw
w−1 < r ⇔ rw< 1

q<min (x, y)⇔ q< x∧ q< y
min (x, y)< r ⇔ x< r ∨ y< r
q<max (x, y)⇔ q< x∨ q< y
max (x, y)< r ⇔ x< r ∧ y< r

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

76 A. B. Booij

The Dedekind reals satisfy the Archimedean property, which can be succinctly stated as the
claim that for all x, y :RD,

x< y⇒ ∃(q :Q) . x< q< y.
We will use the following variation of the Archimedean property. We writeQ+ for the positive

rationals.

Lemma 3.7.1. For real numbers x< y, there exist q :Q and ε :Q+ with x< q− ε < q+ ε < y.

Proof. By a first application of the Archimedean property, we know ∃(s :Q) . x< s< y. Since
we are showing a proposition, we may assume to have such an s :Q. Now for s< y, by the
Archimedean property, we know ∃(t :Q) . s< t < y, and again we may assume to have such a
t. Now set q := s+t

2 and ε := t−s
2 .

In particular, the above variation can be used to strengthen the ∃ of the Archimedean property
into � when the reals involved come equipped with locators. Its corollary, Corollary 3.7.3, is used
to compute locators for multiplicative inverses.

Lemma 3.7.2. For reals x and y equipped with locators, we have the Archimedean structure
x< y→ �(q :Q) . x< q< y.

Proof. Let x and y be reals equipped with locators. By Lemma 3.7.1, there exist q :Q and ε :Q+
with x< q− ε < q+ ε < y. The following proposition is decidable for any (q′, ε′), and we have
∃((q, ε) :Q×Q+) . P(q, ε):

P(q′, ε′) := locatesLeft (q′ − ε′ <x q′)∧ locatesRight (q′ <y q′ + ε′).
Using Corollary 3.5.2, we can find (q′, ε′) with P(q′, ε′) and hence x< q′ < y.

Corollary 3.7.3. For reals x and y equipped with locators, and s :Q a rational, if x< y then we have
a choice of x< s or s< y, that is,

�(s :Q) . x< y→ (x< s)+ (s< y).

Proof. By Lemma 3.7.2, we can find q :Q with x< q< y. Apply trichotomy of the rationals: if
q< s or q= s, then we locate x< s, and if s< q, then we locate s< y.

Remark. Instead of the rational s :Q, we can have any real z equipped with a locator in the above
corollary, so that we obtain a form of strong cotransitivity of the strict ordering relation on the
real numbers, but we will not be using this.

Having developed such a strong cotransitivity, we could characterize the algebraic opera-
tions on the Dedekind reals using the Archimedean structure of Lemma 3.7.2 rather than using
the Archimedean property. This would then yield a structural characterization of the algebraic
operations for x, y :RD equipped with locators, along the lines of:

q< x+ y ⇔ �(s, t :Q) . (q= s+ t)∧ s< x∧ t < y
q< x · y ⇔ �(a, b, c, d :Q) . q<min (a · c, a · d, b · c, b · d)

∧ a< x< b∧ c< y< d
q<max (x, y) ⇔ q< x+ q< y

...

Theorem 3.7.4. If reals x, y :RD are equipped with locators, then we can also equip−x, x+ y, x · y,
x−1 (assuming x # 0),min (x, y) andmax (x, y) with locators.

Remark.As we define absolute values by |x| =max (x,−x), as is common in constructive analysis,
if x has a locator, then so does |x|, and we use this fact in the proof of the above theorem.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 77

Proof of Theorem 3.7.4. Throughout this proof, we assume x and y to be reals equipped with
locators, and q< r to be rationals.

We construct a locator for −x. We can give (q< −x)+ (− x< r) by considering −r <x −q.
We construct a locator for x+ y. We need to show (q< x+ y)+ (x+ y< r). Note that q<

x+ y iff there exists s :Q with q− s< x and s< y. Similarly, x+ y< r iff there exists t :Q with
x< r − t and y< t.

Set ε := (r − q)/2, such that q+ ε = r − ε. By Lemma 3.6.2, we can find u, v :Q such that u<

x< v and v− u< ε, so in particular x< u+ ε. Set s := q− u, so that q− s< x. Now consider
s<y s+ ε. If we locate s< y, we locate q< x+ y. If we locate y< s+ ε, we have x< q− s+ ε =
r − s− ε, that is, we can set t := s+ ε to locate x+ y< r.

We construct a locator for min (x, y). We consider both q<x r and q<y r. If we locate x< r
or y< r, we can locate min (x, y)< r. Otherwise, we have located both q< x and q< y, so we can
locate q<min (x, y).

The locator for max (x, y) is symmetric to the case of min (x, y).
We construct a locator for xy. We need to show (q< xy)+ (xy< r). Note that q< xymeans:

∃(a, b, c, d :Q) . (a< x< b)∧ (c< y< d)∧ (q<min{ac, ad, bc, bd}).
Similarly, xy< r means

∃(a, b, c, d :Q) . (a< x< b)∧ (c< y< d)∧ (max{ac, ad, bc, bd} < r).
Using Lemma 3.6.2, we can find z,w :Qwith |x| + 1< z and |y| + 1<w, since we have already

constructed locators for max, +, − and all rationals.
Set ε := r − q, δ :=min{1, ε

2z } and η :=min{1, ε
2w } . Find a< x< b and c< y< d such that

b− a< η and d − c< δ. Note that |a| < |x| + η ≤ |x| + 1< z and similarly |b| < z, |c| <w and
|d| <w. Then, the distance between any two elements of {ac, ad, bc, bd} is less than ε. For instance,
|ac− bd| < ε because |ac− bd| ≤ |ac− ad| + |ad − bd|, and |ac− ad| = |a||c− d| < |a|δ < ε

2 and
similarly |ad − bd| < ε

2 . Hence, max{ac, ad, bc, bd} −min{ac, ad, bc, bd} < ε. Thus, by dichotomy
of the rationals, one of q<min{ac, ad, bc, bd} and max{ac, ad, bc, bd} < r must be true, yielding a
corresponding choice of (q< xy)+ (xy< r).

We construct a locator for x−1. Consider the case that x> 0. Given q< r, we need (q< x−1)+
(x−1 < r), or equivalently (qx< 1)+ (1< rx). By the previous case, qx and rx have locators, so we
can apply Corollary 3.7.3. The case x< 0 is similar.

This proof works whether we use a definition of algebraic operations as in The Univalent
Foundations Program (2013), or whether we work with the archimedean field axioms, because
from the archimedean field axioms we deduce the same properties as the definitions.

Remark. Locators for reciprocals can also be constructed by more elementary methods, as fol-
lows. For x> 0, we use dichotomy of the rationals for 0 and q. If q≤ 0, we may locate q< x, and
otherwise, we have 0< 1/r < 1/q, so that by considering 1/r <x 1/q we may either locate x< r or
q< x. There is a similar construction for x< 0.

By using the techniques of Sections 3.4 and 3.5, we have computed locators for algebraic
operations applied to reals equipped with locators.

3.8 Locators for limits
In a spirit similar to the previous section, if we have a Cauchy sequence of reals, each of which
equipped with a locator, then we can compute a locator for the limit of the sequence.

Lemma 3.8.1. Suppose x :N→RD has modulus of Cauchy convergence M, and suppose that every
value in the sequence x :N→RD comes equipped with a locator, that is, suppose we have an element
of �(n :N) . locator (xn). Then, we have a locator for limn→∞ xn.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

78 A. B. Booij

Proof. Let q< r be arbitrary rationals. We need (q< limn→∞ xn)+ (limn→∞ xn < r). Set
ε := r−q

3 so that q+ ε < r − ε. Since M is a modulus of Cauchy convergence, we have∣∣xM(ε/2) − limn→∞ xn
∣∣ < ε, that is,

xM(ε/2) − ε < lim
n→∞ xn < xM(ε/2) + ε.

We consider the locator equipped to xM(ε/2) and do case analysis on q+ ε <xM(ε/2) r − ε. If we
locate q+ ε < xM(ε/2), then we can locate q< limn→∞ xn. If we locate xM(ε/2) < r − ε, then we
can locate limn→∞ xn < r.

Remark.We emphasize that Lemma 3.8.1 requires the sequence to be equipped with a modulus of
Cauchy convergence, whereas existence suffices for the computation of the limit limn→∞ xn itself,
namely the element of RD.

Example 3.8.2 (Locators for exponentials). Given a locator for x, we can use Lemma 3.6.1 to
obtain a modulus of Cauchy convergence of exp (x)= ∑∞

k=0
xk
k! . Hence, exp (x) has a locator.

Example 3.8.3. Many constants such as π and e have locators, which can be found by examining
their construction as limits of sequences.

We can now construct locators for limits of sequences whose elements have locators, and so
using Lemma 3.3.1, in particular, limits for sequences of rationals. As we will make precise in
Theorem 3.9.7, this covers all the cases.

3.9 Calculating digits
Example 3.9.1. Wewould like to print digits for numbers equipped with locators, such as π . Such
a digit expansion gives rise to rational bounds of the number in question: if a digit expansion of π
starts with 3.1 . . ., then we have the bounds 3.0< π < 3.3.

We now wish to generate the entire sequence of digits of a real number x equipped with a
locator. As in computable analysis and other settings where one works intensionally, with reals
given as Cauchy sequences or streams of digits, we wish to extract digit representations from a
real equipped with a locator.

In fact, various authors including Brouwer (1921) and Turing (1937) encountered problems
with computing decimal expansions of real numbers in their work. As is common in constructive
analysis, we instead consider signed-digit representations. Wiedmer shows how to calculate
directly on the signed-digit representations in terms of computability theory (Wiedmer, 1977).

Definition 3.9.2. A signed-digit representation for x :RD is given by k :Z and a sequence a of signed
digits ai ∈

{
9̄, 8̄, . . . , 1̄, 0, 1, . . . , 9

}
, with ā := −a, such that

x= k+
∞∑
i=0

ai · 10−i−1.

Example 3.9.3. The number π may be given by a signed-decimal expansion as 3.1415 . . ., or as
4.8̄6̄15 . . ., or as 3.25̄8̄5̄

Lemma 3.9.4. For any x equipped with a locator, we can find k :Z such that x ∈ (k− 1, k+ 1).

Proof. Use Lemma 3.6.2 with ε = 1 to obtain rationals u< v with u< x< v and v< 1+ u. Set
k= �u� + 1. Then,

k− 1= �u� ≤ u< x< v< u+ 1< k+ 1.

Theorem 3.9.5. For a real number x, locators and signed-digit representations are interdefinable.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 79

Proof. If a real number has a signed-digit representation, then it is the limit of a sequence of
rational numbers, and so by Lemma 3.8.1 it has a locator.

Conversely, assume a real x has a locator. By Lemma 3.9.4, we get k :Z with x ∈ (k− 1, k+ 1).
Consider the equidistant subdivision

k− 1< k− 9
10

< · · · < k− 1
10

< k< k+ 1
10

< · · · < k+ 1.

By applying the locator several times, we can find a signed-digit a0 such that

k+ a0 − 1
10

< x< k+ a0 + 1
10

.

We find subsequent digits in a similar way.

Note that since RD is Cauchy complete, there is a canonical inclusion RC →RD from the
Cauchy reals into RD.

Definition 3.9.6. We write isCauchyReal (x) for the claim that a given real x :RD is in the image
of the canonical inclusion of the Cauchy reals into RD. Equivalently, isCauchyReal (x) holds when
there is a rational Cauchy sequence with limit x.

We emphasize that ‖locator (x)‖ is not equivalent to the locatedness property of
Definition 2.2.2.

Theorem 3.9.7. The following are equivalent for x :RD:

1. ‖locator (x)‖, that is, there exists a locator for x.
2. There exists a signed-digit representation of x.
3. There exists a Cauchy sequence of rationals that x is the limit of.
4. isCauchyReal (x).

Proof. Items 1 and 2 are equivalent by Theorem 3.9.5. Item 2 implies item 3 since a signed-digit
representation gives rise to a sequence with a modulus of Cauchy convergence. Item 3 implies
item 1 because a sequence of rational numbers with modulus of Cauchy convergence has a locator
by Lemma 3.8.1. Equivalence of items 3 and 4 is a standard result.

Remark. The notion of locator can be truncated into a proposition in three ways:∥∥�(q, r :Q) . q< r → (q< x)+ (x< r)
∥∥ (1)

�(q, r :Q) .
∥∥q< r → (q< x)+ (x< r)

∥∥ (2)

�(q, r :Q) . q< r → ∥∥(q< x)+ (x< r)
∥∥ . (3)

Now (1) is ‖locator (x)‖, and (3) is the locatedness property of Definition 2.2.2, which holds for
all x :RD as mentioned in Section 3.1. In summary, we have

(1) =⇒ (2) ⇐⇒ (3),

where the implications to the right can be shown using the induction rule for propositional trun-
cations, and the implication to the left follows from the fact that q< r is a decidable proposition
for q, r :Q.

In other words, we cannot expect to be able to equip every real with a locator, as this would
certainly imply that the Cauchy reals and the Dedekind reals coincide, which is not true in
general (Lubarsky, 2007).

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

80 A. B. Booij

Corollary 3.9.8. The following are equivalent:

1. For every Dedekind real, there exists a signed-digit representation of it.
2. The Cauchy reals and the Dedekind reals coincide.

The types RC and RD do not coincide in general, but they do assuming excluded middle or
countable choice. We are not aware of a classical principle that is equivalent with the coincidence
of RC and RD.

3.10 Dedekind cuts structure
Let x= (L,U) be a pair of predicates on the rationals, that is, L,U :PQ. In Definition 2.2.2,
we specified the necessary properties for x to be a Dedekind cut. More explicitly, we have
isDedekindCut :PQ×PQ→HProp defined by:

isDedekindCut (x) := boundedLower (x)∧ boundedUpper (x)

∧ closedLower (x)∧ closedUpper (x)

∧ openLower (x)∧ openUpper (x)

∧ transitive (x)∧ located (x),
where

boundedLower (x) := ∃(q :Q) . q< x,

boundedUpper (x) := ∃(r :Q) . x< r,

closedLower (x) := ∀(q, q′ :Q) . (q< q′)∧ (q′ < x)⇒ q< x,

closedUpper (x) := ∀(r, r′ :Q) . (r′ < r)∧ (x< r′)⇒ x< r,

openLower (x) := ∀(q :Q) . q< x⇒ ∃(q′ :Q) . (q< q′)∧ (q′ < x),

openUpper (x) := ∀(r :Q) . x< r ⇒ ∃(r′ :Q) . (r′ < r)∧ (x< r′),
transitive (x) := ∀(q, r :Q) . (q< x)∧ (x< r)⇒ (q< r),

located (x) := ∀(q, r :Q) . (q< r)⇒ (q< x)∨ (x< r).
We may also consider when x has these data as structure, that is, when it is equipped with the

structure isDedekindCut§ :PQ×PQ→ U defined by:

isDedekindCut§ (x) := boundedLower§ (x)× boundedUpper§ (x)

× closedLower§ (x)× closedUpper§ (x)

× openLower§ (x)× openUpper§ (x)

× transitive§ (x)× located§ (x),
where

boundedLower§ (x) := �(q :Q) . q< x,

boundedUpper§ (x) := �(r :Q) . x< r,

closedLower§ (x) := �(q, q′ :Q) . (q< q′)× (q′ < x)→ q< x,

closedUpper§ (x) := �(r, r′ :Q) . (r′ < r)× (x< r′)→ x< r,

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 81

openLower§ (x) := �(q :Q) . q< x→ �(q′ :Q) . (q< q′)× (q′ < x),

openUpper§ (x) := �(r :Q) . x< r → �(r′ :Q) . (r′ < r)× (x< r′),

transitive§ (x) := �(q, r :Q) . (q< x)× (x< r)→ (q< r),

located§ (x) := �(q, r :Q) . (q< r)→ (q< x)+ (x< r)= locator (x).

In this section, we investigate when x= (L,U) has the property isDedekindCut (x), and when
it has the data isDedekindCut§ (x). First, note that we cannot expect all Dedekind cuts to come
equipped with that data.

Lemma 3.10.1. Suppose given a choice �(x :RD) . locator (x) of locator for each x :RD. Then, we
can define a strongly non-constant function f :RD → 2 in the sense that there exist reals x, y :RD
with f (x) �= f (y).

Proof. Given a locator for x :RD, we can output true or false depending on whether the locator
return the left or the right summand for 0< 1, as follows.

f (x)=
{
true if locatesRight (0<x 1)
false if locatesLeft (0<x 1).

The map thus constructed must give a different answer for the real numbers 0 and 1.

Since any strongly non-constant map from the reals to the Booleans gives rise to a discon-
tinuous map on the reals, we have violated the continuity principle that every map on the reals
is continuous. Following Ishihara (2001), we can derive weak limited principle of omniscience
(WLPO) from it.

Definition 3.10.2. Theweak limited principle of omniscience is the following consequence of PEM:
for every decidable predicate P :N→DHProp on the naturals, we can decide ¬∃(n :N) . P(n):

WLPO := �(P :N→DHProp) .¬(∃(n :N) . P(n))+ ¬¬(∃(n :N) . P(n)).
Note that this is a proposition in the sense of Definition 2.1.1 because if Q is one then Q+ ¬Q is one.

Lemma 3.10.3. If there exists a strongly non-constant function RD → 2, thenWLPO holds.

Proof. SinceWLPO is a proposition, we may assume to have f :RD → 2 and x, y :RD with f (x) �=
f (y). Let P :N→DHProp be a decidable predicate.

We start by setting up a decision procedure. We define two sequences a, b :N→RD with
f (ai)= ff and f (bi)= tt for each i, and so that a and b converge to the same real l.

Without loss of generality, assume f (x)= ff and f (y)= tt, and set

a0 := x b0 := y

an+1 :=
{

an+bn
2 if f

(
an+bn

2

)
= ff

an otherwise
bn+1 :=

{
an+bn

2 if f
(
an+bn

2

)
= tt

bn otherwise.

In words, with an and bn defined, we decide the next point by considering f evaluated at the
midpoint an+bn

2 , and correspondingly updating one of the points. The sequences converge to the
same point l. Without loss of generality, we have f (an)= f (l)= ff and f (bn)= tt for all n :N.

We may now decide ¬∃(n :N) . P(n). We first define a sequence c :N→RD as follows. For a
given n :N, we decide if there is any i< n for which P(i) holds, and if so, we set cn = bi for the least
such i. Otherwise, we set cn = l.

The sequence c converges, giving a limitm :RD. Consider f (m).
If f (m)= ff, then ¬∃(n :N) . P(n), since if there did exist n with P(n), then m= bi for some

i≤ n, so that f (m)= f (bi)= tt.
https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

82 A. B. Booij

If f (m)= tt, then ¬¬∃(n :N) . P(n), since if ∀(n :N) .¬P(n), thenm= l and so f (m)= ff.

The following key theorem explains the relationships between being a Dedekind cut, having
the Dedekind data isDedekindCut§ (x), and equipping a real with a locator.

Theorem 3.10.4. For a pair x= (L,U) of predicates on the rationals, we have the following:

1. isDedekindCut§ (x)→ isDedekindCut (x),
2.

∥∥isDedekindCut§ (x)∥∥ ⇒ isDedekindCut (x),
3. isDedekindCut (x)× locator (x)→ isDedekindCut§ (x),
4. isDedekindCut (x)× ‖locator (x)‖ ⇒ isCauchyReal (x), and
5.

∥∥isDedekindCut§ (x)∥∥ ⇒ isCauchyReal (x).

The third item tells us that for a given Dedekind real x, in order to obtain the structures that
make up isDedekindCut§ (x), we only require locator (x).

Proof. We show the first item by considering all property/structure pairs above.
boundedLower§ (x)→ boundedLower (x) follows by applying the truncation map | · | of

Definition 2.1.2, and similarly for boundedUpper.
closedLower§ (x)→ closedLower (x) is trivial since, followingDefinition 2.1.3, their definitions

work out to the same thing: we do not need to make any changes to make closedLower§ structural.
openLower§ (x)→ openLower (x) by a pointwise truncation: let q :Q be arbitrary and assume

q< x, then we get �(q′ :Q) . (q< q′)× (q′ < x), and hence ∃(q′ :Q) . (q< q′)∧ (q′ < x).
Again following Definition 2.1.3, transitive (x) and transitive§ (x) are defined equally.
locator (x)→ located (x) again by a pointwise truncation.
The second item follows using the elimination rule for propositional truncations since

isDedekindCut (x) is a proposition.
For the third item, it remains to construct bounds, and to construct openLower§ (x) and

openUpper§ (x). The former is Lemma 3.6.1. The latter follows from the Archimedean structure
of Lemma 3.7.2 and the fact that we have locators for rationals, as in Lemma 3.3.1.

The fourth item follows from Theorem 3.9.7.
The fifth item follows by combining the second and the fourth.

Theorem 3.10.5. For an arbitrary pair x= (L,U) of predicates on the rationals, it is not provable
that isDedekindCut (x) implies

∥∥isDedekindCut§ (x)∥∥.
Proof. By Theorem 3.10.4,

∥∥isDedekindCut§ (x)∥∥ implies that x is a Cauchy real. However, in
general, the Cauchy reals and the Dedekind reals do not coincide (Lubarsky, 2007).

4. Some Constructive Analysis with Locators
We show some ways of using locators in an existing theory of constructive analysis. We re-
emphasize that although the technique of equipping numbers with locators can be applied to any
archimedean ordered field, for clarity and brevity we will work with the Dedekind reals RD, with
more general description given in Booij (2020b).

The central notion is that of functions on the reals that lift to locators, discussed in Section 4.1,
which is neither weaker nor stronger than continuity. We compute locators for integrals in
Section 4.2. We discuss how locators can help computing roots of functions in Section 4.3.

4.1 Preliminaries
What are the functions on the reals that allow us to compute? When such a function f :RD →
RD is applied to an input real number x :RD that we can compute with, then we should be able

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 83

to compute with the output f (x). This can be formalized in terms of locators in the following
straightforward way, which we use as an abstract notion of computation.

Definition 4.1.1. A function f :RD →RD lifts to locators if it comes equipped with a method for
constructing a locator for f (x) from a locator for x. This means that f lifts to locators if it is equipped
with an element of the type

�(x :RD) . locator (x)→ locator (f (x)).

Another way to say this is that f lifts to locators iff we can find the top edge in the diagram

RL
D RL

D

RD RD

pr1 ◦ pr1
f

where RL
D := �(x :RD) . locator (x) is the type of real numbers equipped with locators.

“Lifting to locators” itself is structure.

Remark. If the reals are defined intensionally, for example, as the collection of all Cauchy
sequences without quotienting, then every function on them is defined completely by its behavior
on those intensional reals. However, in our case, given only the lifting structure RL

D →RL
D, we

cannot recover the function f :RD →RD, because we do not have a locator for every x :RD.
In other words, well-behaved maps are specified by two pieces of data, namely a function f :

RD →RD representing the extensional value of the function, and a map RL
D →RL

D that tells us
how to compute.

Example 4.1.2. The exponential function exp (x)= ∑∞
k=0

xk
k! of Examples 2.2.5 and 3.8.2 lifts to

locators, for example, using our construction of locators for limits as in Lemma 3.8.1.

In order to start developing analysis, we define some notions of continuity.

Definition 4.1.3. A function f :RD →RD is continuous at x :RD if

∀(ε :Q+) . ∃(δ :Q+) . ∀(y :RD) .
∣∣x− y

∣∣ < δ ⇒ ∣∣f (x)− f (y)
∣∣ < ε.

f is pointwise continuous if it is continuous at all x :RD.

Definition 4.1.4. A modulus of uniform continuity for f on [a, b], with a, b :RD, is a map ω :
Q+ →Q+ with:

∀(x, y ∈ [a, b]) .
∣∣x− y

∣∣ < ω(ε)⇒ ∣∣f (x)− f (y)
∣∣ < ε.

Example 4.1.5 (Continuity of exp). For any a, b, there exists a modulus of uniform continuity for
exp on the range [a, b]. If a and b have locators, then we can find a modulus of uniform continuity
for exp on that interval.

From a constructive viewpoint in which computation and continuity align, it would be desir-
able if some form of continuity of f :RD →RD would imply that it lifts to locators. Alas, this is
not the case, not even for constant functions.

Lemma 4.1.6. If it holds that all constant functions lift to locators, then every x :RD comes equipped
with a locator.

Using Lemmas 3.10.1 and 3.10.3, this then yields the constructive taboo WLPO.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

84 A. B. Booij

Proof. For x :RD, let f :RD →RD be the constant map at x, and note that f is continuous, so
that by assumption it lifts to locators. Since the rational number 0 has a locator, f (0)= x has a
locator.

The converse direction that lifting to locators would imply continuity also fails dramatically.

Lemma 4.1.7. Assuming PEM, we can define a discontinuous map f :RD →RD that lifts to
locators.

Proof. We can use PEM to define a discontinuous function, which automatically lifts to locators
by applying Lemma 3.1.4.

It may be the case that the structure of lifting to locators can be used to strengthen certain
properties of continuity into structures. For example, does every function that lifts to locators and
is pointwise continuous come equipped with the structure

�(x :RD) .�(ε :Q+) .�(δ :Q+) . ∀(y :RD) .
∣∣x− y

∣∣ < δ ⇒ ∣∣f (x)− f (y)
∣∣ < ε

of structural pointwise continuity at every x :RD? We leave this as an open question.
For the above reasons, the theorems in this section and the next assume continuity and a struc-

ture of lifting to locators: the former to make the constructive analysis work, and the latter to
compute.

4.2 Integrals
We can compute definite integrals of uniformly continuous functions in the following way.

Theorem 4.2.1. Suppose f :RD →RD has a modulus of uniform continuity on [a, b], and a and b
are real numbers with locators. Suppose that f lifts to locators. Then

∫ b
a f (x) dx has a locator.

Proof. For uniformly continuous functions, the integral
∫ b
a f (x) dx can be computed as the limit

lim
n→∞

b− a
n

n−1∑
k=0

f
(
a+ k · b− a

n

)
.

Now every value

b− a
n

n−1∑
k=0

f
(
a+ k · b− a

n

)
,

in the sequence comes equipped with a locator using Lemmas 3.3.1 and 3.7.4, and using the fact
that a and b have locators and f lifts to locators. From the modulus of uniform continuity of
f , and the computation of a rational B with b− a≤ B using Lemmas 3.7.4 and 3.6.1, we can
compute a modulus of Cauchy convergence of the sequence. Hence, the limit has a locator using
Lemma 3.8.1.

Combining this with the calculation of signed-digit representations of reals with locators in
Theorem 3.9.5, the above means we can generate the digit sequence of certain integrals. Through
the construction of close bounds in Lemma 3.6.2, we can in principle verify the value of integrals
up to arbitrary precision.

Remark. Integrals, as elements of RD, can be defined given only the existence of a modulus of
uniform continuity. To get a locator, we use the modulus of uniform continuity to find a modulus
of Cauchy convergence.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 85

Example 4.2.2. The integral
∫ 8
0 sin (x+ exp (x)) dx has a locator (where sin is defined, and shown

to lift to locators, in a way similar to exp). This integral is often incorrectly approximated by com-
puter algebra systems. Mahboubi et al. (2016, Section 6.1) have formally verified approximations
of this integral, and in principle, our work gives an alternative method to do so. However, our
constructions are not efficient enough to do so in practice, and we give some possible remedies in
the conclusions in Section 5.

4.3 Intermediate value theorems
We may often compute locators of real numbers simply by analysing the proof of existing theo-
rems in constructive analysis. The following construction of the root of a function is an example
of us being able to construct locators simply by following the proof in the literature.

Theorem 4.3.1. Suppose f is pointwise continuous on the interval [a, b] and f (a)< 0< f (b) with
a, b :RD. Then for every ε :Q+ we can find x :RD with

∣∣f (x)∣∣ < ε. If f lifts to locators, and a and b
are equipped with locators, then x is equipped with a locator.

Proof. The first claim is shown as in Frank (2017) by defining sequences c, d, z,w :
N→RD:

z0 = a cn = (zn +wn)/2 zn+1 = cn − dn(b− a)/2n+1

w0 = b dn =max
(
0, min

(
1
2

+ f (cn)
ε

, 1
))

wn+1 =wn − dn(b− a)/2n+1

with x defined as the limit of c :N→RD, which converges since z,w :N→RD are monotone
sequences with zn ≤ cn ≤wn and zn −wn = (b− a)/2n. Because f lifts to locators, and a and b
have a locator, all cn have locators. For a modulus of Cauchy convergence, Lemma 3.7.4 gives a
locator for b− a so that we can use Lemma 3.6.1 to compute a rational B with |zn −wn| ≤ B/2n.
So by Lemma 3.8.1, x has a locator.

We will now work toward an intermediate value theorem in which the locators help us with the
computation of the root itself, avoiding any choice principles. We stated this intermediate value
theorem and its proof informally in the introduction to Section 3.

Definition 4.3.2. A function f :RD →RD is locally nonconstant if for all x< y and t :RD, there
exists z :RD with x< z < y and f (z) # t, recalling that (f (z) # t)= (f (z)> t)∨ (f (z)< t).

Example 4.3.3. Every strictly monotone function is locally nonconstant, but not every locally
nonconstant function is strictly monotone.

Lemma 4.3.4. Suppose f is a pointwise continuous function, and x, y, and t are real numbers with
locators with x< y. Further suppose that f is locally nonconstant, and lifts to locators. Then, we can
find r :Q with x< r < y and f (r) # t.

Proof. Since f is locally nonconstant, there exist z :RD and ε :Q+ with
∣∣f (z)− t

∣∣ > ε. Since f is
continuous at z, there exists q :Q with

∣∣f (q)− t
∣∣ > ε/2. SinceQ+ andQ are denumerable, we can

find r :Q such that there exists η :Q+ with
∣∣f (r)− t

∣∣ > η. In particular, r satisfies
∣∣f (r)− t

∣∣ > 0,
that is, f (r) # t.

The above result can be thought of as saying that if f is a pointwise continuous function that
lifts to locators, then the property of local nonconstancy implies a certain structure of local non-
constancy: for given reals with locators x< y and t, we do not just get the existence of a real z, but
we can explicitly choose a point z where f is apart from t.

Exact intermediate value theorems based on local nonconstancy usually assume dependent
choice, see, for example, Bridges and Richman (1987, Chapter 3, Theorem 2.5) or Troelstra and

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

86 A. B. Booij

van Dalen (1988, Chapter 6, Theorem 1.5). The following result holds in the absence of such
choice principles. It can perhaps be compared to developments in which the real numbers are
represented directly as Cauchy sequences (Hendtlass, 2012; Schuster and Schwichtenberg, 2004;
Schwichtenberg, 2017) or with Taylor (2010). Note, however, that

1. we assume local nonconstancy rather than monotonicity and
2. we use the property of local nonconstancy to compute roots, rather than assuming this as

structure.

Theorem 4.3.5. Suppose f is a pointwise continuous function, and a< b are real numbers with
locators. Further suppose that f is locally nonconstant, and lifts to locators, with f (a)≤ 0≤ f (b).
Then, we can find a root of f , which comes equipped with a locator.

Proof. We define sequences a, b :N→RD with an < an+1 < bn+1 < bn, with f (an)≤ 0≤ f (bn),
with bn − an ≤ (b− a)

(2
3
)n, and such that all an and bn have locators. Set a0 = a, b0 = b. Suppose

an and bn are defined, and use Lemma 4.3.4 to find qn with 2an+bn
3 < qn < an+2bn

3 and f (qn) # 0.

• If f (qn)> 0, then set an+1 := an and bn+1 := qn.
• If f (qn)< 0, then set an+1 := qn and bn+1 := bn.

For a modulus of Cauchy convergence, we can compute a locator for b− a and from this we can
compute a rational B with

∣∣bn − an
∣∣ ≤ B

(2
3
)n. The sequences converge to a number x. For any ε,

we have
∣∣f (x)∣∣ ≤ ε, hence f (x)= 0.

Remark. Since we only appealed to Lemma 4.3.4 with t = 0, that is, since we were only interested
in points where f is apart from 0, Theorem 4.3.5 may be strengthened by only requiring that f is
locally nonzero.

Theorem 4.3.5 is an improvement on existing exact intermediate value theorems (Schuster
and Schwichtenberg, 2004; Taylor, 2010) since it assumes the property of local nonconstancy to
compute roots.

Example 4.3.6. The function exp is strictly increasing, and hence locally nonconstant. So if y> 0
has a locator, then exp (x)= y has a solution x with a locator.

5. Closing Remarks
We have paid attention to the difference between property and structure while defining the real
numbers and other foundations of constructive analysis. We have introduced the term locator to
mean the structure that is the focus of this paper and have introduced a basic theory of locators.
The fact that the results about locators have equivalents in terms of intensional representations
of reals suggests that we are not doing anything new. This is desirable: we merely introduced a
particular representation that seems suitable for computation. The presence of the locators is not
to make the constructive analysis work; rather, it is to make the computation work. In this sense,
we have made the computation work without a conceptual burden of intensional representations.

The constructions and results remind of computable analysis. But our development is orthog-
onal to computability: even reals that are not computable in some semantics can have locators, for
example, in the presence of choice axioms, in which case all reals have locators.

Locators allow to observe information of real numbers, such as signed-digit expansions.
We have shown the interdefinability of locators with Cauchy sequences, and in this way, we
characterized the Cauchy reals as those Dedekind reals for which a locator exists.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000171

Mathematical Structures in Computer Science 87

The new notion of lifting to locators grew out of a naive desire to have locators for the output
of a function whenever we have a locator for the input. We have left the following open question:
given that f :RD →RD lifts to locators, do we obtain a certain structure of continuity from a
property of continuity?

We have not spent much time finding an alternative notion of “functions that compute” with
a closer relationship to continuity, and this could be the topic of further research. Such a notion
could perhaps allow for more satisfying formulations of the theorems in Sections 4.2 and 4.3.

Our work allows to obtain signed-digit representations of integrals. These results are based on
backwards error propagation, essentially due to our notion of lifting to locators. The advantage of
this is that we are guaranteed to be able to find results. However, forward error propagation, as in
Mahboubi et al. (2016), may be more efficient. It may be possible to combine the naturalness of
locators with forward error propagation by equipping the real numbers involved with bounds as
in the remark below Lemma 3.6.1. Having shown that we can compute arbitrarily precise approxi-
mations to reals with locators in Lemma 3.6.2, we may as well equip real numbers with an efficient
method for doing so. Thus, in future work, some of the techniques of previous work on verified
computation with exact reals may be developed in our setting as well.

Another possible future direction is to find a more general notion of locator that applies to
more general spaces, such as the complex plane, function spaces, or metric spaces. This could
then be a framework for observing information of differential equations, which are also discussed
in a more general description of locators (Booij, 2020b).

The work lends itself to being formalized in proof assistants such as Agda or
Coq. In this way, we can automatically obtain algorithms from proofs. Part of the
work has indeed been formalized in Coq (Booij, 2020a). Results in the work above
correspond with the formalized proofs in theories/Analysis/Locator.v as follows:
Lemma 3.1.4 as all_reals_locators, Lemma 3.3.1 as locator_left and locator_right,
Lemma 3.4.2 as equiv_locator_locator’, Lemma 3.4.4 as nltqx_locates_left and
nltxr_locates_right, Lemma 3.6.1 as lower_bound and upper_bound, Lemma 3.6.2 as
tight_bound, Lemma 3.7.2 as archimedean_structure, and the majority of Theorem 3.7.4,
as well as Lemma 3.8.1, as the terms starting with locator_. This development has been merged
into the HoTT library (Bauer et al., 2017). But we may worry that the proofs we provided are not
sufficiently efficient for useful calculations, and we intend to address this important issue in future
work.

Acknowledgments
We would like to thank the reviewers for their invaluable feedback. This project has received
funding from the European Union’s Horizon 2020 research and innovation programme under
the Marie Skłodowska-Curie grant agreement No 731143.

References
Bauer, A., Gross, J., Lumsdaine, P. L., Shulman, M., Sozeau, M. and Spitters, B. (2017). The HoTT library: a formalization of

homotopy type theory in Coq. In: Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2017, Paris, France, January 16–17, 2017, 164–172. doi:10.1145/3018610.3018615.

Bishop, E. and Bridges, D. (1985). Constructive Analysis, Berlin, Heidelberg, Springer-Verlag. doi:10.1007/978-3-642-
61667-9.

Booij, A. B. (2020a). Coq development of locators. https://github.com/abooij/HoTT/tree/locators (accessed February 2020).
Booij, A. B. (2020b). Analysis in Univalent Type Theory. PhD thesis, University of Birmingham.
Bridges, D. and Richman, F. (1987). Varieties of Constructive Mathematics, London Mathematical Society Lecture Notes, vol.

97, Cambridge, Cambridge University Press.
Bridges, D. and Vita, L. S. (2006). Techniques of Constructive Analysis, New York, Springer-Verlag. doi:10.1007/978-0-

387-38147-3.

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

http://dx.doi.org/10.1145/3018610.3018615
http://dx.doi.org/10.1007/978-3-642-61667-9
http://dx.doi.org/10.1007/978-3-642-61667-9
https://github.com/abooij/HoTT/tree/locators
http://dx.doi.org/10.1007/978-0-387-38147-3
http://dx.doi.org/10.1007/978-0-387-38147-3
https://doi.org/10.1017/S0960129520000171

88 A. B. Booij

Brouwer, L. E. J. (1921). Besitzt jede reelle zahl eine Dezimalbruchentwicklung? Mathematische Annalen 83, 201–210.
http://eudml.org/doc/158869.

Cruz-Filipe, L. (2004). Constructive Real Analysis: A Type-Theoretical Formalization and Applications. PhD thesis, University
of Nijmegen.

Escardó, M. H. (2013). Message to the Univalent Foundations mailing list. https://groups.google.com/d/msg/ univalent–
foundations/SA0dzenV1G4/d5iIGdKKNxMJ.

Escardó, M. H. and Xu, C. (2015). The inconsistency of a Brouwerian continuity principle with the Curry-Howard interpre-
tation. In: 13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015, July 1–3, 2015, Warsaw,
Poland, 153–164. doi:10.4230/LIPIcs.TLCA.2015.153.

Frank, M. (2017). Interpolating between choices for the approximate intermediate value theorem. ArXiv e-prints, January
2017. arXiv:1701.02227.

Hendtlass, M. (2012). The intermediate value theorem in constructive mathematics without choice. Annals of Pure and
Applied Logic 163(8), 1050–1056. doi:10.1016/j.apal.2011.12.026.

Hofmann, M. (1995). Extensional Concepts in Intensional Type theory. PhD thesis, University of Edinburgh.
Ishihara, H. (2001). Sequentially continuity in constructive mathematics. In: Calude, C. S., Dinneen, M. J. and Sburlan, S.

(eds.) Combinatorics, Computability and Logic, London, Springer, 5–12. doi:10.1007/978-1-4471-0717-0_2.
Kraus, N., Escardó,M. H., Coquand, T. and Altenkirch, T. (2017). Notions of anonymous existence inMartin-Löf type theory.

Logical Methods in Computer Science 13(1). doi:10.23638/LMCS-13(1:15)2017.
Lubarsky, R. S. (2007). On the Cauchy completeness of the constructive Cauchy reals. Electronic Notes in Theoretical

Computer Science 167, 225–254. doi:10.1016/j.entcs.2006.09.012.
Mahboubi, A., Melquiond, G. and Sibut-Pinote, T. (2016). Formally verified approximations of definite integrals. In:

Interactive Theorem Proving–7th International Conference, ITP 2016, Nancy, France, August 22–25, 2016, Proceedings,
274–289. doi:10.1007/978-3-319-43144-4_17.

O’Connor, R. (2009). Incompleteness & Completeness: Formalizing Logic and Analysis in Type Theory. PhD thesis, Radboud
Universiteit Nijmegen.

Schuster, P. and Schwichtenberg, H. (2004). Constructive solutions of continuous equations. In: Link, G. (eds.) de Gruyter
Series in Logic and Its Applications, Walter de Gruyter. doi:10.1515/9783110199680.227.

Schwichtenberg, H. (2017). Constructive analysis with witnesses. http://www.math.lmu.de/∼schwicht/seminars/semws16/
constr16.pdf.

Taylor, P. (2010). A lambda calculus for real analysis. Journal of Logic and Analysis 2. http://logicandanalysis.org/index.php/
jla/article/view/63/25.

The Univalent Foundations Program. (2013). Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for
Advanced Study. https://homotopytypetheory.org/book.

Troelstra, A. S. and van Dalen, D. (1988). Constructivism in Mathematics, An Introduction, Studies in Logic and the
Foundations of Mathematics, vol. 1, North-Holland.

Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London
Mathematical Society. Second Series 42, 230–265. See correction Turing (1937).

Turing, A. M. (1937). On computable numbers, with an application to the Entscheidungsproblem. A correction. Proceedings
of the London Mathematical Society. Second Series 43, 544–546. See Turing (1936).

Wiedmer, E. (1977). Exaktes Rechnen mit reellen Zahlen und anderen unendlichen Objekten. PhD thesis, ETH Zurich.

Cite this article: Booij AB (2021). Extensional constructive real analysis via locators. Mathematical Structures in Computer
Science 31, 64–88. https://doi.org/10.1017/S0960129520000171

https://doi.org/10.1017/S0960129520000171 Published online by Cambridge University Press

http://eudml.org/doc/158869
https://groups.google.com/d/msg/univalent-foundations/SA0dzenV1G4/d5iIGdKKNxMJ
https://groups.google.com/d/msg/univalent-foundations/SA0dzenV1G4/d5iIGdKKNxMJ
http://dx.doi.org/10.4230/LIPIcs.TLCA.2015.153
http://arxiv.org/abs/1701.02227
http://dx.doi.org/10.1016/j.apal.2011.12.026
http://dx.doi.org/10.1007/978-1-4471-0717-0_2
http://dx.doi.org/10.23638/LMCS-13(1:15)2017
http://dx.doi.org/10.1016/j.entcs.2006.09.012
http://dx.doi.org/10.1007/978-3-319-43144-4_17
http://dx.doi.org/10.1515/9783110199680.227
http://www.math.lmu.de/~schwicht/seminars/semws16/constr16.pdf
http://www.math.lmu.de/~schwicht/seminars/semws16/constr16.pdf
http://logicandanalysis.org/index.php/jla/article/view/63/25
http://logicandanalysis.org/index.php/jla/article/view/63/25
https://homotopytypetheory.org/book
https://doi.org/10.1017/S0960129520000171
https://doi.org/10.1017/S0960129520000171

	Extensional constructive real analysis via locators
	Introduction
	Preliminaries
	Propositions
	Dedekind reals

	Locators
	Definition
	Terminology for locators
	Locators for rationals
	The logic of locators
	Bounded search
	Computing bounds
	Locators for algebraic operations
	Locators for limits
	Calculating digits
	Dedekind cuts structure

	Some Constructive Analysis with Locators
	Preliminaries
	Integrals
	Intermediate value theorems

	Closing Remarks

