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Abstract

Weed species develop resistance to herbicides through the repeated use of the same herbicide
mechanism of action (MOA). Farmers often resort to different MOAs once a weed population
has become resistant to the MOA that resulted in a resistant weed population. Delaying herbicide
resistance is of great importance to growers due to the limited number of commercially available
MOAs. Resistance may occur through monogenic or polygenic traits, and various academic and
industrial modeling tools have been developed to help infer cause–effect from multiple interacting
factors that may not be intuitive. This work explores various best management practices in
delaying weed resistance, and we give details for monogenic and quantitative polygenic resistance
models and investigate combinations of management strategies that lead to maximizing the
product life span for a herbicide. Management practices under parametric uncertainty are
provided to showcase how various practices can be used to extend lifetime product performance
before resistance is manifest. Penalty functions associated with choosing a unique management
strategy, based upon grower constraints, are the subject of a companion manuscript.

Introduction

Controlling weed populations is essential for optimal productivity of agricultural crops. Weeds
can diminish crop yield by outcompeting for resources and may also interfere with farming
equipment at harvest. Selective herbicides are used as a management strategy to remove weeds
from a cropping system such that crops may grow without interference.

Herbicides often work through a single mechanism of action (MOA), targeting a single
gene product in the weed and disrupting part of the weed’s normal life cycle. However,
applications of a herbicide year after year can select for weed resistance. Resistance can occur
via monogenic or polygenic (quantitative) mechanisms. Monogenic resistance develops when
weeds that possess a resistant gene begin to flourish, eventually dominating the population.
Polygenic resistance occurs when more than one gene contributes to resistance. Polygenic
resistance is often quantitative, with each gene contributing a small amount to the overall
resistance trait (Powles and Yu 2010).

Since the advent of GMO crops in the 1980s, there has been increased use of the herbicide
glyphosate in commercial agriculture in the United States. After a decade or more of intense
glyphosate use, glyphosate-resistant weeds began to emerge across the country. Many of the
current herbicide MOAs (trazines, acetolactate synthase and acetyl-CoA carboxylase inhibi-
tors, glyphosate) have already produced resistance in a variety of weed species (Heap 2017).
The objective of this work is to increase the life span of a herbicide before resistance occurs.
However, predicting the time before resistant weed populations develop is difficult through
experimentation alone. The frequency of a resistant gene in a weed population is likely
extremely small (10−6 to 10−9 resistant seeds per total population), so an experimental study of
resistance would require millions to billions of plants (Neve et al. 2011a, 2011b). Other than
the technical difficulties of studying such large populations, having so many plants creates the
possibility of growing a rare resistant plant, which could then spread outside the experimental
population. Furthermore, resistant populations may take decades to appear (as was seen for
glyphosate). Modeling weed population dynamics provides a cheaper, more practical alter-
native for studying weed population dynamics and herbicide-resistance evolution. Modeling
allows the simulation of various “what if” scenarios within minutes, not years. Additionally, a
model can be used to investigate management strategies (hundreds of potential best
management practices [BMPs] combinations) to predict the best course of action to delay
resistance and maximize a product’s life span. With reliable models, multiple sites of herbicide
action could be considered by farmers and agricultural producers to minimize the onset of
weed resistance for remaining herbicide products.

Applying every herbicide management practice each year would be impractical. In a follow-
up paper, an appropriate objective function with penalties is defined and optimization
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procedures are exercised to offer the best combinations of man-
agement strategies that lead to maximizing herbicide life span.
However, in the current paper, we document the modeling used
and illustrate how various mitigation practices can be used to
extend a product concept over a long (many year) duration.
Examples for the new EnlistTM weed control system herbicide
(2,4-D) used in cotton fields are provided.

Materials and Methods

Life Cycle and Seedbank Dynamics

This work follows the weed life cycle (LC) originally proposed by
Maxwell et al. (1990), Figure 1A. Beginning at the seedbank,
which is the natural storage of viable seeds in the soil, weeds go
through various life stages, ultimately ending with the plant
producing new seeds, which enter the seedbank. At the start of the
season, seeds exit the seedbank. The seeds (plants) go through a
variety of life cycle functions. A life cycle function takes a
population as an input and produces a new population as its
output. The life cycle chosen for this study was: seedbank→
germination→ cultivation→ herbicide(s) application(s)→ growth
to reproductive maturity→ hand weeding→mating + seed
production→mutation of newly produced seed→ predation→
winter survival→ next year’s seedbank.

Many weeds do not emerge at a single time within a season,
but instead emerge continuously throughout the season. An
approximation is to relax the model to allow weeds to appear in
groups at different times in the season, called cohorts.
For example, if weeds appear continuously from May through
August, an approximation to this could be to group weeds
into four cohorts, one for each month in that time period. The
cohort life cycle structure is shown in Figure 1. At the end
of each cohort period, seed can be passed back to the current
seedbank to emerge during the same season (to create new
cohorts) or directly to next year’s seedbank at the end of the
season (Figure 1B).

Model Setup

A chief goal of the current weed resistance models is modularity
that allows for ease, freedom, and flexibility in creating an LC.
Several generic and specific resistance functions were created to
simulate various stages in the weed LC. All functions take
population as an input (Po) and return a new population (Pn),
respectively. The resistance specific functions for a weed are
herbicide survival, mating, and mutation. Each function will be
discussed separately. Before we discuss the LC functions in detail,
we describe how population information for the different types of
resistance is stored at each step.

Monogenic Resistance
Monogenic resistance occurs when a single gene confers resis-
tance. Single-MOA herbicides are used to target a single gene
product for which a diploid plant is assumed to have a pair of
alleles of either the resistant (R) or susceptible (S) type, or one of
each. For a single herbicide, three genotypes are therefore con-
sidered: homozygous resistant (RR), heterozygous (RS), and
homozygous susceptible (SS). As additional herbicide MOAs are
used, additional single target-gene loci must be considered, with a
subscript assigned to each gene locus. When multiple genes are
considered, we assume they are not linked. There are 3M different
genotypes, if M is the number of different herbicide MOAs
against a weed species. For example, for two herbicides each
targeting a separate gene product, there would be nine possible
genotypes (e.g., 32), where P represents the total population and
the genotype indexes represent the population of the respective
genotype, as seen below.

P R1R1R2R2 R1R1R2S2 R1R1S2S2 R1S1R2R2 R1S1R2S2 R1S1S2S2
S1S1R2R2 S1S1R2S2 S1S1S2S2

Quantitative Resistance
Polygenic resistance typically occurs when multiple polygenes each
confer a small amount to the overall herbicide resistance. The
assumption is that the herbicide dosage a weed can survive to

Figure 1. Weed life cycles of (A) a single cohort and (B) multiple cohorts.
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reproduce follows a normal (or log-normal) distribution with a
fixed standard deviation for each generation (Falconer and Mackay
1996). We also assume tolerance levels follow a log-normal
distribution to avoid unphysical negative values (Liu et al. 2017).

A log-normal distribution is parameterized by μ and σ (the
mean and standard deviation of the normal distribution
associated with the log-normal distribution). Note the median
tolerance level, LD50, is equal to e μ. We assume, for simplicity,
there is no cross-resistance. Hence, if M is the number of
herbicide MOAs, then there are M pairs of μ and σ. For example,
when using two different herbicides having different MOAs,
P represents the population, and μ and σ define the log-normal
distribution for their respective herbicide tolerance levels.

P μ1; σ1ð Þ μ2; σ2ð Þ
Life Cycle Functions

The generic life cycle functions, survival and competition, are the
same for monogenic and polygenic resistance. However, the
resistant specific functions differ.

Survival
The simplest function is survival, which assumes a linear model to
calculate the change in the population. Survival is used to model
germination, cultivation, hand weeding, predation, and winter
survival. The equation is

Pn = fPo [1]

where f is a proportionality constant, Pn is the new plant density,
Po is the original plant density. Survival can be used to model
population growth if f is greater than 1 or death if f is less than 1.

Competition
A competition function is used to model the process for a weed to
compete for resources for survival. The competition algorithm is

Pn =
APo

1 +C + kPo
; [2]

where A is a weed growth rate constant, C represents competition
with the crop plants, and k is the weed competitiveness para-
meter. Thus, competition for seed survival to maturity and seed
production is accounted for. Some further explanation may help
clarify the behavior of the competition function. For the special
case of C= 0 and k<< 1, the model reduces to

Pn � APo;

which is a simple linear model like survival. For the limit of
P0 → ∞, the ratio limits to the value

A
k
;

which is the maximum value that the function can attain (and
thus is a ceiling on how large the population can get). This ceiling
is the maximum number of weeds possible per unit area used in
modeling weed growth.

In the context of seed production, the model may be written as

Pn =
A

1 +C + kPo

� �
Po: [3]

Since Po (plants area
−1) is a plant density, and the new population

of seed produced has units of seed density (seed area−1), the
quantity in parentheses must have units of (seeds plant−1).

An equivalent form for Equation 3 can be written as:

Pn =
αPo

1 +C + α
Pmax

Po
; [4]

where α is a growth parameter and Pmax is the maximum
population achievable by the competition model.

Herbicide Survival
The user may specify whether a herbicide application is applied to
each cohort or not. Herbicides do not always have 100% efficacy.
For example, it can be the case that weeds in the field may escape
an application of herbicide altogether. In this paper, “weeds sur-
viving a herbicide application” refers to weeds that survive a
herbicide application undamaged and are able to reproduce
unimpeded. This assumption, while not perfect, relaxes the model
and allows for more straightforward computations.

Monogenic Resistance. Herbicide survival for monogenic resis-
tance uses a linear model to calculate the change in the popula-
tion. It acts on each genotype and is represented as:

Pn;j = fjPo;j: [5]

Here the subscript j is an index that can take on value RR, RS,
or SS. Each genotype will have a unique proportionality constant
fj. Like survival, this function can be used to simulate growth
(or death) for a weed species.

Polygenic Resistance. When a herbicide dose is applied to a
population, P, all plants with a tolerance level, TL, above the
applied dose survive (those with a lower tolerance die off)
(Figure 2). However, herbicides do not always have 100% efficacy.
Thus, a fraction of the susceptible plants may escape the herbicide
application.
One can calculate the fraction of resistant plants, FR, surviving

the dose and the average tolerance level, TLR, of that population
assuming the weed population’s tolerance levels follow a log-normal
distribution. The fraction of susceptible plants, FS, escaping the
herbicide application and the average tolerance level, TLS, of that
population is known (depending on the efficacy of the herbicide).
When more susceptible plants escape a herbicide application,

seed production is increased but the average tolerance level of the
produced seed is reduced. Hence, if no susceptible plants survive,
there will be fewer seedlings sprouting the next year but, on average,
those seedlings will have a higher tolerance level. In contrast, if
more susceptible plants survive, more seedlings will sprout the next
year, but those seedlings will have a lower tolerance level.

Figure 2. Herbicide dose–response function. The dark solid line represents the
herbicide dose. A percentage of plants (in green) with higher tolerance level than the
dose can survive.
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With σ assumed to be constant, the population surviving the
herbicide, PH, the tolerance level of that population, TLH, and the
mean μ value for the surviving population, μH, is calculated as:

PH = PðFR + FSÞ; [6]

TLH =
FRTLR + FSTLS

FR + FS
; [7]

μH = ln TLHð Þ� σ2

2
: [8]

Mating
Monogenic Resistance. Plants may mate with neighboring
plants (outcrossing) or self-fertilize (selfing), and a selfing frac-
tion, τ, is defined to allow for all combinations (i.e., τ may assume
any value from 0 [pure outcrossing] to 1 [pure selfing]). To
illustrate the two cases, a single gene locus and three unique
genotypes are considered: RR, RS, and SS. When plants cross-
pollinate or are self-compatible, the genetics of the progeny are
assumed to follow Mendelian genetics, producing offspring
according to the Punnett square. For example, an RR mating with
an RS have the Punnett square and offspring summarized in
Table 1. In this case, two offspring have the RR genotype and two
have RS. In the case of a selfing plant, the alleles for Parent 1 and
Parent 2 would be the same.

A mating table for outcrossing can be constructed wherein each
possible combination of parent genotypes is considered. There are
nine possibilities for outcrossing plants with one gene locus
(Table 2), where each row corresponds to one mating-pair possi-
bility and one Punnett square. The columns RR, RS, and SS are the
total number of offspring of each type from each mating pair.
Columns fRR,o, and so on are the frequency of each genotype,
computed by dividing each of the previous three columns by the
total number of offspring (four for this example). The offspring
frequency can be related to the parent frequency. For example, the
frequency of Parent 1 RR×Parent 2 RR matings are equal to the
parent frequencies fRR ´ fRR = f 2RR. The frequency of offspring from
this pair is 1f 2RR. Similarly, the frequency of Parent 1 RR×Parent 2
RS matings are equal to the parent frequencies fRR× fRS. Since this
mating produces 2 RR and 2 RS, the frequency of offspring from
these pairs is RR:0.5fRRfRS and RS:0.5fRRfRS. The bookkeeping for
each mating pair is shown in Table 3. The total offspring frequency
is found by summing the rows in each column. It is customary to
define the total allele frequency of R and S as:

p � fRR + 0:5fRS; [9]

q � fSS + 0:5fRS; [10]

where p+ q= 1. After some algebra, it can be found that

fRR;o = p2 fRS;o = 2pq fðSS;oÞ = q2:

There is an underlying assumption that the gene pool is infinite.
Outcrossing populations that mate according to the infinite gene
pool assumption achieve equilibrium after one round of mating,

this is known as the Hardy-Weinberg equilibrium.
For multiple genotypes, outcrossing generalizes in a straight-

forward manner to

fj;o =
YNloci

n= 1

Qn; [11]

where j is the genotype identifier, n is an index to refer to the gene
locus under consideration, Nloci are the total number of gene loci, and

Qn =
p2n

2pnqn:
q2n

8<
: [12]

For example, the offspring proportions for two gene loci are repre-
sented in Table 4.
Selfing does not generalize as easily and requires a mating table

approach. The single gene locus case is presented here. Unlike in
outcrossing, Parent 1 and Parent 2 are the same plant, and thus have
the same genotype. The mating table for a single gene locus (Table 5)
with the frequency of offspring (Table 6) is provided.
These results show that for a pure selfing population, the

frequency of the RS genotype is halved each time. Thus, the hetero-
zygote population tends to approach zero for a selfing population.
Selfing with multiple genes, is programmed into the model. However,
the calculations are not reader-friendly.

Quantitative Resistance. Weeds that survive the herbicide appli-
cation and competition functions pass their genetic information to
their seeds through additive heritability via Breeder’s equation
(Falconer and Mackay 1996), where the subscript H represents the
weeds that survived the herbicide, NS represents new seed, CSB
represents the current seedbank, NSB represents the new seedbank
after incorporation of new seeds into the current seedbank, and h2 is
the narrow-sense heritability constant between 0 (no heritability) and
1 (full heritability)

μNS = μCSB + h
2 μH�μCSBð Þ: [13]

Seed are incorporated into the seedbank when produced. The
following equations are used to calculate the new herbicide tolerance
level (TL) for newly produced seeds (TLNS), the tolerance level for the
new seedbank (TLNSB), the population of the new seedbank (PNSB),

Table 1. Punnett square example for a homozygous resistant (RR) mating with
a heterozygous (RS).

Parent 2 Allele 1 Parent 2 Allele 2

R S

Parent 1 Allele 1 R RR RS

Parent 1 Allele 2 R RR RS

Table 2. Mating table for outcrossing plants.a

Parentsb Offspringc

1 2 RR RS SS fRR,o fRS,o fSS,o

RR RR 4 0 0 1 0 0

RR RS 2 2 0 0.5 0.5 0

RR SS 0 4 0 0 1 0

RS RR 2 2 0 0.5 0.5 0

RS RS 1 2 1 0.25 0.5 0.25

RS SS 0 2 2 0 0.5 0.5

SS RR 0 4 0 0 1 0

SS RS 0 2 2 0 0.5 0.5

SS SS 0 0 4 0 0 1

aAbbreviations: RR, homozygous resistant; RS, heterozygous; SS, homozygous susceptible.
bEach row corresponds to one Punnett square.
cRR, RS, and SS columns represent the number of offspring of each genotype from each
mating pair. f columns are the frequency of each genotype of the offspring.
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and the mean value for the new seedbank (μNSB).

TLNS = expðμNS +
σ2

2
Þ; [14]

TLNSB =
PNSTLNS + PCSBTLCSB

PNS + PCSB
; [15]

PNSB = PNS + PCSB [16]

μNSB = lnðTLNSBÞ� σ2

2
: [17]

Mutation
Mutation is important if gene amplification is the mechanism
conferring resistance. The effect of mutation for monogenic
resistance is included in the model code. However, mutation will
not be considered in this paper.

Extinction
Populations are tracked on a per area basis, (e.g., 2 plants m−2 or
500 seed m−2), and if a field were considered infinite, populations
could become indefinitely small. However, a finite field cannot have
a population smaller than 1 plant field−1, and this is when an
extinction event is used. As an example, suppose that the population
after 5 yr of simulation reaches a small value of 10−7 plants m−2. In
the infinite-field assumption, this is not an issue, because the field is
always large enough for fractions of plants or seeds. On the other
hand, if the field is 106m 2, and the model predicted 10−1plants in
the field, this would be a physical impossibility. Thus, to enforce the
finite-field assumption, a random number is used to decide whether
the population is 1 plant field−1 or 0 plant field−1.

In the monogenic resistance model, the population density of
each genotype is checked after each life stage. If the field size is
infinite, no extinction event is enforced. Otherwise, the

population will randomly be set to 0 or 1 (which adds a stochastic
element to make each simulation unique).

Genetics of the progeny are not considered in this model.
Hence, if a gene goes extinct, there is no possibility of that gene
returning to the field via gene drift. However, gene drift could be a
future extension of this model.

Management Practices

Herbicide applications, cultivation, hand weeding, cover crops,
and deep tillage are weed management methods considered in
this model. With the exception of deep tillage, the methods are
built into the life cycle shown in Figure 1. Currently four herbi-
cides (MOAs) are allowed. One can specify a herbicide applica-
tion rate for each cohort in each year as long as a representative
dose–response function is also specified. Different efficacy values
may be used for each of the genotypes for monogenic resistance,
allowing for partial resistance for the heterozygote.

Cultivation and hand weeding are incorporated using the
survival function (user specified) and may be unique for each
cohort per year. Cover crops are modeled using the competition
function and, similar to cultivation and hand weeding, are spe-
cified in an on/off manner. The competition function has a term
that accounts for weed competition with surrounding cover crop
plants. While not considered in this paper, a user could set cover
crops to also affect germination rates of weeds.

Deep tillage (any other shallower form of tillage falls under
cultivation) requires a slight modification to the life cycle. The
seedbank is divided into a lower seedbank and an upper seedbank
(Figure 3). Beneath the upper seedbank lies the lower seedbank,
which is deep enough in the soil to keep seed from growing into
weeds. Instead, the seed lies dormant. Depending on the soil

Table 3. Relationship between parent frequency and offspring frequency.a

Parents Parents Offspringb

1 2 RR RS SS

RR RR f RR
2 0 0

RR RS 0.5fRRfRS 0.5fRRfRS 0

RR SS 0 fRRfSS 0

RS RR 0.5fRRfRS 0.5fRRfRS 0

RS RS 0.25f RS
2 0.5f RS

2 0.25f RS
2

RS SS 0 0.5fSSfRS 0.5fSSfRS

SS RR 0 fSSfRR 0

SS RS 0 0.5fSSfRS 0.5fSSfRS

SS SS 0 0 f SS
2

fRR; o = f 2RR + fRRfSS +
1
4 f

2
RS fRS;o = fRRfRS + fSSfRS + 2fRRfSS + 0:5f 2RS fSS;o = f 2SS + fRRfSS +

1
4 f

2
RS

aRows correspond to the rows seen in Table 2.
bOffspring frequency, shown in the final row, is found by summing the columns and assumes the plants are not spatially structured.

Table 4. Offspring proportions for two gene loci.

fR1R1;R2R2=ðp21Þðp22Þ fR1S1;R2R2=ð2p1q1Þðp22Þ fS1S1;R2R2=ðq21Þðp22Þ
fR1R1;R2S2=ðp21Þð2p2q2Þ fR1S1,R2S2= (2p1q1)(2p2q2) fS1S1;R2S2=ðq21Þð2p2q2Þ
fR1R1;S2S2=ðp21Þðq21Þ fR1S1;S2S2=ð2p1q1Þðq22Þ fS1S1;S2S2=ðq21Þðq22Þ

Table 5. Mating table for a selfing plant for a single gene locus.

Parents Offspring

1 1 RR RS SS fRR,o fRS,o fSS,o

RR RR 4 0 0 1 0 0

RS RS 1 2 1 0.25 0.5 0.25

SS SS 0 0 4 0 0 1
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conditions, seed may decay rapidly or slowly, and a simple
survival function acts on the seed population once per year.

Seeds dropped from the growing weeds are assumed to only be
incorporated into the upper seedbank. Hence, it is assumed there
are no cracks for seeds to fall into the lower seedbank. Thus, the
seed density and the fraction of resistant seeds increases in the
upper seedbank over time (and without deep tillage). The lower
seedbank density decreases as seeds degrade over time, since no
seeds are assumed to be incorporated into the lower seedbank.
When a deep-tillage event occurs, it is assumed that the
upper seedbank is completely replaced by the lower seedbank
(and vice versa) (Figure 3).

For example, consider two simple populations for the upper
and lower seedbanks. The frequency of resistance in each is
denoted by U and L, respectively. Suppose that in the
upper seedbank, the frequency is increasing by two times per year,
represented by the difference equation (n= new, o= old)

Un = 2Uo; [18]

and in the lower seedbank, the frequency remains constant

Ln = Lo: [19]

If deep tillage is assumed to occur in year 10, the upper and lower
seedbank values are swapped

U10 $ L10: [20]

As we will see in the “Results” section, simulations assuming no
deep tillage versus deep tillage suggest weed resistance can be greatly
delayed simply by swapping the upper and lower seedbanks

Parameterizing the Model

Palmer amaranth (Amaranthus palmeri S. Watson) is the weed
chosen and assumed growing in cotton (Gossypium hirsutum L.)
fields. The herbicides used are not specific to any particular
chemistry, but each herbicide is assumed to operate by a different
MOA. Cotton seed is typically planted with 10-cm spacing, in
rows spaced 91 cm apart. For the following section, Y, sd, pl, and
M represent yield, seeds, plants and population, respectively. An
average cotton plant density is about 10 plants m−2. Properties for
A. palmeri (PA) include:

∙ Massinga et al. (2001) found that Y *= 421,000 sd pl−1,
Ym= 582,300 sdm−2 for A. palmeri growing with corn, fitting
equation Y=Y *M/(1 +MY */Ym). Note that Y * is the maximum
number of seeds produced per plant (as defined above), and Ym

is the maximum number of seeds per area as M → ∞.
∙ Norsworthy et al. (2008) assumed cotton is 16.7% more

competitive than corn, yielding Y *= 505,200 sd pl−1,
Ym= 698,760 sdm−2

∙ Keeley et al. (1987) report that, with no competition, PA
produces 613,000, 245,000, 83,000, and 62,000 seeds from
weeds that were planted in May, June, July, and August,
respectively. This study was done in Shafter, CA.

∙ MacRae et al. (2008) also report (citing various sources):

° PA with 3-leaf cotton: 61,000 sd pl−1 (or 1.1 × 109 sd ha−1

and 1.8 PA m−2)
° PA with peanut: 1.1 × 109 sd ha−1 at 5.7 pl m−2

° PA with soybean: 32,300 sd m−2 at 8 pl m−1 row
° PA with corn: 514,000 sd m−2 (5.1 × 109 sd ha−1 in corn)
° PA with 17-leaf cotton: 14,000 sd pl−1

° PA with 6- to 7-leaf corn: 83% reduction relative to
emerging with corn

° PA with soybean: 34% fewer seeds at 19-cm soy spacing
versus 91 cm

Table 6. The frequency of the offspring for a selfing plant with a single
gene locus.

Parents Parents Offspring

1 1 RR RS SS

RR RR fRR 0 0

RS RS 0.25fRS 0.5fRS 0.25fRS

SS SS 0 0 fSS

fRR,o= fRR + 0.25fRS fRS,o= 0.5fRS fSS,o= fSS + 0.25fRS

Figure 3. When a deep-tillage event occurs, the upper and lower seedbanks (and respective properties as seen: density, fraction of resistant seeds, and so on) are switched.
Seeds are only input into the upper seedbank. If no deep-tillage event occurs, seeds accumulate in the upper seedbank, while seeds in the lower seedbank degrade over time.
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° PA density early season can exceed 50 pl m−2 (>500 pl m−2

in heavily infested), but <15 pl m−2 later in the season

Seed Production Parameters
Norsworthy et al. (2008) assumed that typical cotton density is
10 pl m−2 and the ratio Y */Ym= 0.723 is fixed and holds for other
PA crop systems. For MacRae’s value Y *= 613,000 sd/pl, we find
that Ym= 847,860 pl/m 2. Comparing the relationship used by
many researchers to that of Massinga et al. (2001) yields

Y =
Y�M

1+MY�=Ym
=

Y�M
1 + kwM

; [21]

where the ratio Y */Ym (taken as 0.723) is kw. To incorporate the
competition between PA and cotton, PA at 1.8 pl m−2 yields
1.1 × 109 sd ha−1 (1.1 × 105 sd m−2) (from MacRae et al. 2008).
Therefore

Y =
Y�M

1 + kcC + kwM
=

613; 000ð Þ 1:8ð Þ
1 + ð10Þð0:773Þ + 1:8ð Þð0:723Þ = 110; 000:

[22]

The maximum amount of seed produced decreases for each
subsequent cohort. From Keeley et al. (1987), Y * is 245,000,
83,000, and 62,000 for the second, third, and fourth cohorts,
respectively. Table 7 summarizes the seed production parameters
used in this analysis, while Table 8 tabulates the additional input
parameters required to parameterize the weed resistance model.

Initialization Parameters
Two parameters set the initial state of the seedbank for mono-
genic resistance: the initial resistant allele frequency and the
seedbank density. These parameters are likely to vary from field to
field and may depend on factors such as cross-contamination
from farm equipment and soil runoff. Neve et al. (2011a, 2011b)
provide a range of values for initial resistant allele frequency of
5 × 10−10 to 5 × 10−7 and initial seedbank densities of 100 to 2,000.
The average frequency and density used by Neve et al. (2011a,
2011b) and this analysis are 5 × 10−9 and 500sd/m 2. For quanti-
tative resistance, there are four initial parameters: initial LD50, the
variance of ln(LD50), heritability, and the seedbank density. LD50

is in the range 1.0 to 1.2 kg ha−1. One can calculate the variance of
ln(LD50) using a similar assumption from (Liu et al. 2017) that in
a pristine population between 5 × 10−3and 5 × 10−5 of the A.
palmeri weeds are resistant to a conventional application of
herbicide. The heritability constant of 0.5 was made as an
assumption.

The estimates provided by Neve et al. (2011a, 2011b) are used
for the fraction of PA seeds that germinate, fG, the natural

mortality of seedlings, fM, and the fraction of seeds which survive
predation, winter, and so on to reach next year’s seedbank, fW
(also known as the winter survival fraction). The range of ger-
mination fraction is given to be 0.01≤ fG,≤ 0.2, with a typical
value of 0.05. In addition to surviving a herbicide application; a
seedling must overcome natural mortality. We estimate fM= 0.1.
Neve et al. (2011a, 2011b) presents a range of 0.05≤ fM≤ 0.5,
depending on when in the season the plant emerges (seedlings
emerging later are more likely to succumb to natural mortality,
with 50% of them dying in the latest part of the season).

Neve et al. (2011a, 2011b) assumed that 90% of new seeds are
viable and that 50% of new seeds fall to predation (e.g., for 100
seeds, 50 fall to predation and only 45 of those are viable). To
estimate the number of seeds that are viable at the end of the
growing season (fW), we define a summer fraction fSu= 0.45. Neve
et al. (2011a, 2011b) estimates that 0.7 of the seeds are lost in the
seedbank, with a range of 0.3≤ fW≤ 0.9. All parameters used in
the analysis are summarized in Table 8.

Herbicide Dose–Response Function (Monogenic Resistance)
The selection of a sigmoid function is based upon the ability to fit
the function to data observed for susceptible weed species (SS),
and is easily parameterized to qualitatively mimic a dose–
response function for RS and RR species. Often, dose–response
data do not exist for fully resistant or partially resistant weed
species. However, several trends are commonly observed. As weed
populations build up resistance, the dose–response function is
typically shifted to the right of the x-axis (dose must increase to
observe the same effect in resistant weeds as observed in sus-
ceptible weed populations). Resistant weeds can often be con-
trolled by the herbicide, but now at much higher applications
rates than what was necessary for the susceptible weeds. Also, the
efficacy against resistant weed species has a very broad span at the
higher efficacies (i.e., it requires a large change in dose to register
small changes in efficacy).

Table 7. Seed production parameters used in the analysis.

Parameter Description Typical value

Y* Maximum seed yield per plant for C1 613,000 sd pl−1

Y�
2 Maximum seed yield per plant for C2 245,000 sd pl−1

Y�
3 Maximum seed yield per plant for C3 83,000 sd pl−1

Y�
4 Maximum seed yield per plant for C4 62,000 sd pl−1

kw Weed competition coefficient 0.723

kc Crop competition coefficient 0.773

C Typical cotton density 10 plm−2

Table 8. Summary of input parameters used in this analysis.

Parameter Value Description

Initialization/genetic

fres 5 × 10–9

(5 × 10−10to 5 × 10−6)
Initial frequency of resistance

allele for monogenic resistance

μ ln(1,125)
(ln(1,000) to ln(1,200) )

e μ= LD50, the median tolerance
level for quantitative resistance

σ 0.16
(0.14–0.18)

Standard deviation of ln(LD50)
for quantitative resistance

h 2 0.5
(0.3–0.7)

Narrow-sense heritability
constant

P0 500 sdm−2(100–
2,000 sdm−2)

Initial seedbank density

Survival

fG 0.05
(0.01–0.2)

Annual germination fraction

fSu 0.45 Summer survival fraction

fW 0.3
(0.1–0.7)

Winter survival
fraction

Seedling competition

M* 5 plm−2 Maximum adult weed density

α 0.067 Hyperbolic growth rate
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A sigmoid function was selected that could fit the observed
data for susceptible species (SS) and through simple scaling of one
or more parameters could mimic qualitative behavior for RS and
RR weed species. The four-parameter logistic function (b, c, d,
LD50) is one of the most routine sigmoid-type functions used
to approximate dose–response functions from experimental
observations (S Ray, Dow AgroSciences statistician, personal
communication) (Equation 23). A representative synthetic
dose–response (DR) data set (Table 9) was fit to Equation 23 for
2,4-D response

Efficacy=c +
d�c

1+ dose
LD50

� �b
: [23]

The DR data are dependent upon the pesticide used and the
targeted weed species. An efficacy of 0 is indicative of no impact
to the weed, whereas an efficacy of 1.0 indicated the dose was
large enough to kill 100% of the weeds. Resistant weed popula-
tions can often be killed simply by increasing the application rate,
since it takes a larger herbicide application rate to achieve similar
control as a weed populations starts to build up resistance to a
herbicide. Therefore, Equation 23 can be used to estimate the DR
function for SS, RS, and RR weed species simply by changing the
magnitude for LD50 (e.g., the dose at which 50% of the weeds are
killed). As LD50 increases, the DR function is stretched and
indicative of the increased amount of herbicide required for the
different weed susceptibilities (SS, RS, RR) (Figure 4).

Weed Resistance Metrics

For an infinite field size, the resistance fraction can become
extremely small but assumed real. However, for a finite field, the
resistant seed has the capability of becoming extinct once there
becomes only 1 resistant seed or plant left in the field. Three
thresholds for the resistant fraction of the population must be
specified: a resistance onset threshold (lowest level of resistance,
when a grower might first notice the weeds not responding to
herbicides), a critical resistance threshold (once exceeded, a
grower would regard the current herbicide ineffective), and a total
resistance threshold (highest threshold representing the level of
resistance when a field is completely overrun with weeds)
(Figure 5).

Achieving total resistance in a field is unrealistic, as a grower
would likely resort to other means of weed management. The
values of the resistance thresholds are arbitrary and possibly vary

among fields, crops, and growers. Henceforth, resistance onset
(RO), critical resistance (CR), and total resistance (TR) are
denoted by fRO= 0.05, fCR= 0.3, and fTR= 0.95, respectively. The
risk integral (RI), was developed for this model and is used as a
metric to evaluate risk of resistance. It is defined as

RI=

Ð T
0 f tð ÞdtÐ T

0 dt
=

1
T

ðT
0
f tð Þdt; [24]

where T is the simulation interval (years) for fractional resistance.
In actuality, f is not a continuous function but has a discrete

value for every cohort in every year. Therefore, the sum of the
area is approximated using the trapezoid rule (Stewart 1995).
Letting T= ncohorts*nyears, the trapezoid rule states

RI=
1
2T

XT�1

j= 0

ðfj + 1 + fjÞ: [25]

The prefactor (1/T) ensures the risk integral may take on
values from 0 to 1. For noninfinite-field simulations, RI and the
threshold time metrics will likely vary between simulations.

Results and Discussion

The application of various management strategies showcases their
impact on delaying monogenic resistance. The efficacy for each
herbicide at standard rates is assumed to be 0.95, 0.28, and 0.07
for RR, RS, and SS, respectively. The model was implemented and
run in MATLAB.

Finite Field Size

For this simulation, the default parameters are used with one
cohort, one application of herbicide per year, and no additional

Table 9. Dose–response data used to compare the fit associated with different
sigmoid functions for 2,4-D against common weed species.

Rate (kg ha − 1) Efficacy

0 0

0.2 0.05

0.6 0.1

0.8 0.15

1 0.3

1.2 0.6

1.4 0.85

1.9 0.95
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Figure 4. Quantitative dose–response functions for homozygous resistant (RR),
heterozygous (RS), and homozygous susceptible (SS) weeds approximated by a four-
parameter sigmoid function.

Figure 5. Three metrics used to characterize the weed resistant fraction over time.
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management strategies. When the field size is finite, resistant seed
has the capability of becoming extinct once there is only 1
resistant seed or plant left in the field. When and if this scenario is
encountered, a random number is generated and used to assign if
the seed becomes extinct or continues into the next year of
simulation. Simulation results for resistance onset occurring in a
finite size field are summarized in Table 10, with differences
observed in this table due to smaller field size having a higher
probability for extinction.

Infinite Field Size

In this section, we investigate the effect of various management
strategies on delaying herbicide resistance. In each simulation,
unless stated otherwise, we assume the default parameters are
used with one cohort and one application of herbicide per year.

Multiple Herbicides
A plausible scenario today is that significant resistance to the first
herbicide has developed (glyphosate), and a second herbicide
(EnlistTM weed control system) is introduced. Suppose that the
initial frequency for gene locus 1 is10−4 (some resistance) and for
gene locus 2 is 10−8 (little to no resistance). The best results occur
when both MOAs are used each year, even when the first
mechanism has already shown signs of resistance pressure
(Figure 6).

Cultivation
The default initial seed density and resistant allele frequencies for
the herbicides set to 100sd/m2 and 10−8 for both the upper and
lower seedbanks. Simulations for cultivation, are carried out for
OFF (no management practice) every year, ON and OFF in
alternating years, and ON in all years. The effect of cultivation is
shown in Figure 7. Resistance was delayed the longest when using
cultivation each year. Hence, the risk integral would also be
reduced when cultivation is used every year. Similarly, the effects
of hand weeding and cover crops show similar trends in delaying
resistance, but the effect of each is less pronounced than culti-
vation (unpublished data).

Deep Tillage
Three cases are considered to explore the effect of deep tilling.
These cases include (1) no tilling, (2) tilling at year 10, and (3)
tilling at year 10 and year 17. Although A. palmeri seeds have
short longevity (see Table 8), in all cases seed degradation in the
lower seedbank is set to zero to showcase the effectiveness of a
deep-tilling event. All three cases track together until year 10,
when the tilling event places the upper seedbank into the lower
(and vice versa) (Figure 8). As the fraction of resistance for the
no-till example continues to rise over time, both deep-tillage cases
drop to nearly zero when deep tillage is assumed in year 10.
Following the initial drop in resistance in the surface soil layer,

the year 10 till case steadily increases, eventually reaching total
resistance at around year 20. Deep tillage in the year 10 and year
17 till case has a smaller jump following year 17 deep tillage. This
is because there is no seed degradation in the lower seedbank (and
it is assumed seed cannot be transported from the upper seedbank
via soil cracks). The highly resistant seeds that were buried in year
10 are reintroduced in year 17. Thus, depending on soil degra-
dation conditions, more than one deep tillage may not decrease
resistance, and deep tillage over the product life span (25 yr in this
example) is the most sensitive management practice, and any
further deep tillage in subsequent years provides a diminishing
return.

This article describes the simulation of weed resistance to
various herbicide MOAs, including multiple MOAs and cohorts
(user specified) that may exist throughout a growing season. Both
monogenic and polygenic weed resistance mechanisms can be
considered. Multiple management practices include (1) cultiva-
tion, (2) hand weeding, (3) cover cropping, (4) herbicide appli-
cation rates, and (5) deep tillage, and examples for monogenic
resistance are provided. Deep tillage proved to be the most

Table 10. Simulation results for resistance onset occurring in a finite size field.

Field size in
hectares

Median RO
time

(probability of
exceeding)

Median CR
time

(probability of
exceeding)

Median TR
time

(probability of
exceeding)

Average
risk index

102 3.7 (38%) 5.1 (38%) 18.2 (38%) 0.32

104 5.6 (100%) 7.4 (100%) 21.2 (100%) 0.81
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Figure 6. Simulation results for two herbicide mechanisms of action, but monogenic
resistance has already been established for the first herbicide, H1, (initial resistant
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versus time.
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effective management practice for reducing the onset of weed
resistance. However, deep-tillage effectiveness significantly
diminishes after the first deep-tillage event. Multiple deep tillages
could prove effective if the degradation effect of seed viability in
the lower seedbank in soil is increased. All parameters for A.
palmeri used in this analysis were taken from the literature.

We assumed that when seeds are produced they are only
placed into the upper seedbank and that there were no cracks for
seed to fall into the lower seedbank. We also assumed that when a
deep-tillage event occurs, both the upper and lower seedbanks are
completely swapped. Although these are not perfect assumptions,
this model still provides insight on how different strategies can
delay the onset of resistance and how critical it is incorporate
nonchemical management strategies. From a resistance stand-
point, deep tillage is advantageous, but one would also have to
consider the cost associated from soil erosion.

One preferable approach is to manage a pesticide over the
longevity of a product line (i.e., different herbicides with the same
MOA) and to expand participation of growers. This work has
shown an extension of herbicide MOA usefulness through
appropriate choices of management practices. The use of a her-
bicide product line ends if weed resistance within a field is greater
than what a farmer deems acceptable. This work allows one to
consider the longevity of a product line under different man-
agement practices and using the simple practice of periodic deep-
tillage practices to increase product longevity. In future work, we
explore optimization procedures built around management

practices such that the optimal selection of BMPs over the pro-
duct life span are made that extend (maximize) product longevity
for both monogenic and polygenic mechanisms of herbicide
resistance.
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