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Abstract
Inland waterway transportation is one of the most important means to transport cargo in rivers and canals.
To facilitate autonomous navigation for ships in inland waterways, this paper proposes a data-driven approach
for predictions and control of underactuated ships with unknown dynamics, which integrates model predictive
control (MPC) with an iterative learning control (ILC) scheme. In each iteration, kernel-based linear regressors are
used to identify the relations between the evolution of ship states and control inputs based on the stored data from
previous iterations and the collected data during operation, so as to build the system prediction model. The data are
dynamically used to fix the prediction model over iterations, as well as to improve the controller performance until
it converges. The proposed approach does not require prior knowledge regarding the hydrodynamic coefficients
and ship parameters, but learns from the data instead. In addition, it exploits the advantages of MPC in handling
constraints with minimised overall cost. Simulation results show that the controller could start from a nominal, linear
data-driven ship model and then learn to reduce the path-following errors based on the data obtained over iterations.

1. Introduction

With the trends towards autonomous shipping, advanced ship motion control techniques are being devel-
oped to ensure that ships can independently control their actions, especially in complicated situations.
When a ship is navigated in a confined waterway with limited width, it needs to maintain a sufficient
distance from the banks to ensure safety. This brings in the problem of path-following, in which the
control design is to calculate the control inputs to drive the ship to a reference path. Most cargo ships are
underactuated with propellers and rudders for surge and yaw motions and without other actuators for
the sway motion, which are coupled with the nonlinear ship hydrodynamic characteristics. Various con-
trol methods have been proposed for solving the path-following problem of ships, such as sliding-mode
control (Zhang et al., 2022), adaptive control (Culverhouse et al., 2015), observer-based control (Liu et
al., 2019), model predictive control (Liang et al., 2021), etc. These methods require an ideal and accu-
rate mathematical model of the ship. Inland ships face speed loss and decline of manoeuvrability when
sailing in a confined waterway, according to experienced seafarers, which increases the risk of collision
with the bank (Du et al., 2020). To investigate the ship–waterway interactions, a numerical model has
been developed by Du et al. (2017) to predict ship manoeuvring in a confined waterway using a nonlin-
ear model with optimisation techniques to accurately identify the hydrodynamic coefficients involved.
Finding a prior ship model for such effects is challenging as the ship would be affected by uncertainties
and disturbances induced by the environment.
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Over the last decade, several data-driven control methods have been proposed, which may alleviate
the efforts spent in identifying and modelling all disturbances that a model-based controller may need
to take into account. Weng and Wang (2020) developed a data-driven robust back-stepping control
approach for tracking of unmanned ships with uncertainties and unknown parametric dynamics, in which
the requirement of model information, including system order and inertia matrix, could be completely
removed. A data-driven performance-prescribed reinforcement learning control scheme was investigated
by Wang et al. (2021) to deal with the trajectory tracking problem considering control optimality and
prescribed tracking accuracy simultaneously. Gao et al. (2022) proposed a data-driven model-free
resilient speed control method using available input and output data only with pulse-width-modulation
inputs. Wang et al. (2022) proposed an antenna mutation beetle swarm predictive reinforcement learning
algorithm to address the path-following problem of underactuated ships using the input and output data
retrieved from experiments.

A growing number of data-driven methods have been proposed and integrated with Model Predictive
Control (MPC), which uses system identification techniques and stored data to build the prediction
model, and the data collected during operation can be dynamically incorporated in MPC controller
design and be used to fix the system prediction model (Hewing et al., 2020). MPC enables optimal control
inputs while guaranteeing constraints satisfaction, and data-driven modelling enhances performances
and adapts to system changes. MPC requires a system model that can capture the characteristics of
its dynamics while not being too complicated to be incorporated in an online optimisation framework
(Kabzan et al., 2019). For a system that involves complex high-order nonlinear terms, applying MPC
directly on a nonlinear system model may be computationally expensive, whereas an over-simplified
system may result in reduced performance and control accuracy. In this paper, a system identification
method is proposed to build a linear, data-driven ship model based on the data gathered over time, which
enables accurate approximations of the true ship dynamics.

Iterative Learning Control (ILC) is an effective strategy in handling repeated control processes, due
to its structural simplicity and effective learning ability (Jin, 2016). By taking advantage of the repetitive
nature in the learning process, ILC algorithms can improve the control performance gradually with the
increase of iterations. By combining the iterative learning control scheme and MPC, in each iteration,
the controller could learn from stored data in previous iterations and improve its closed-loop tracking
performance and modelling accuracy.

This paper proposes a data-driven approach for predictions and control of underactuated ships with
unknown dynamics in confined waterways via integrating MPC with an ILC scheme. The stored datasets
form the basis of the learning procedure, which consist of ship states and control sequences that could
successfully steer the ship to complete path-following tasks while satisfying all required constraints,
upon which regression techniques are used to approximate the unknown ship dynamics as a linear state-
space model. This alleviates the need for accurate ship dynamics and parameter-specific observers,
while maintaining the advantages of MPC including predictive behaviour and constraints satisfaction.
Based on the identified linear prediction model, a learning-based MPC controller is designed.

The main contribution of this paper is threefold.

• A learning-based MPC strategy is proposed, which makes use of the stored data from previous
iterations and the collected data during operation to improve the performance of the controller with
an ILC scheme.

• A system identification strategy is proposed to build a linear state-space prediction model that
approximates unknown ship dynamics, which uses kernel-based linear regressors to minimise the
error between the predicted evolution of states and true states.

• A confined waterway is divided into a series of straight-line and curved lines, a line-of-sight
guidance law is used as the guidance principle for straight-line segments, and a curvilinear reference
frame is introduced, as the guidance principles for curved segments.

The rest of the paper is organised as follows. Section 2 gives the nonlinear ship dynamics. Section 3
introduces the guidance principles. Section 4 describes the proposed learning scheme and controller
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Figure 1. Ship coordinate system.

design steps. Simulation results are presented in Section 5. Conclusions and future work are given in
Section 6.

2. Nonlinear ship dynamics

A 3-DOF (degree of freedom) model is used to represent the ship dynamics on the surge, sway and
yaw axes with the MMG (Manoeuvring Modelling Group) form, in which the hydrodynamic forces
and moments on the ship are divided into hull, rudder and propeller, expressed in the following form
(SNAME, 1950): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(𝑚 + 𝑚𝑥) �𝑢 − (𝑚 + 𝑚𝑦)𝑣𝑟 − 𝑥𝐺𝑚𝑟2 = 𝑋𝐻 + 𝑋𝑃 + 𝑋𝑅

(𝑚 + 𝑚𝑦) �𝑣 + (𝑚 + 𝑚𝑥)𝑢𝑟 + 𝑥𝐺𝑚 �𝑟 = 𝑌𝐻 + 𝑌𝑃 + 𝑌𝑅

(𝐼𝑧 + 𝑥2
𝐺𝑚 + 𝐽𝑧) �𝑟 + 𝑥𝐺𝑚( �𝑣 + 𝑢𝑟) = 𝑁𝐻 + 𝑁𝑃 + 𝑁𝑅

(2.1)

where subscripts 𝐻, 𝑃, 𝑅 represent the hull, the propeller and the rudder; 𝑚, 𝑚𝑥 and 𝑚𝑦 are ship mass,
added mass in 𝑥-direction and added mass in 𝑦-direction; 𝐼𝑧 and 𝐽𝑧 are moments of inertia and added
moment of inertia around the 𝑧-axis.

Figure 1 shows the ship coordinate system used in this paper: the earth-fixed coordinate system
𝑂0—𝑥0𝑦0𝑧0 and the ship-fixed coordinate system 𝑜—𝑥𝑦𝑧, where 𝑜 locates on the midship of the ship,
with 𝑥, 𝑦 and 𝑧 axes that point towards the bow, towards the starboard and vertically downwards,
respectively. Variables 𝑢 and 𝑣 are ship longitudinal and lateral speeds. Course angle 𝜓 is defined as
the angle between the 𝑥0 and 𝑥 axes, 𝛿 represents the rudder angle and 𝑟 represents the yaw rate. The
evolution of ship states is usually expressed in the following way (Fossen, 2011):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�𝑥 = 𝑢 cos𝜓 − 𝑣 sin𝜓

�𝑦 = 𝑢 sin𝜓 + 𝑣 cos𝜓
�𝜓 = 𝑟

�𝑢 =
𝑚𝑣

𝑚𝑢
𝑣𝑟 −

𝑓𝑢 (𝒗)

𝑚𝑢
+
𝑇𝑢 (·)

𝑚𝑢
|𝑛|𝑛 + 𝑑𝑤𝑢

�𝑣 = −
𝑚𝑢

𝑚𝑣
𝑢𝑟 −

𝑓𝑣 (𝒗)

𝑚𝑣
+ 𝑑𝑤𝑣

�𝑟 =
(𝑚𝑢 − 𝑚𝑣 )

𝑚𝑟
𝑢𝑣 −

𝑓𝑟 (𝒗)

𝑚𝑟
+

𝐹𝑟 (·)

𝑚𝑟
𝛿 + 𝑑𝑤𝑟

(2.2)
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Parameters 𝑑𝑤𝑢 , 𝑑𝑤𝑣 and 𝑑𝑤𝑟 represent the disturbances on the 𝑥, 𝑦 and 𝑧 axes. The main control
forces are the surge force 𝑇𝑢 (·) and the yaw moment 𝐹𝑟 (·), which are generated with different propeller
revolution rate 𝑛 and rudder angle 𝛿, respectively. It is also noted that there is no direct control force on
its lateral movement on the 𝑦 axis, which makes the ship an underactuated system. In practice, a ship
rarely changes its propeller revolution rate when it is sailing. Therefore, this paper assumes that control
input 𝑛 and force 𝑇𝑢 (·) are constants and considers the rudder angle 𝛿 as the main control input, as it is
the case in actual ship manoeuvring operations. The yaw moment 𝐹𝑟 is a nonlinear term, and together
with the high-order fluid dynamics items 𝑓𝑢 (𝒗), 𝑓𝑣 (𝒗) and 𝑓𝑟 (𝒗), add up to the nonlinear characteristics
of ship manoeuvring.

In Equation (2.2), parameters 𝑚𝑢 , 𝑚𝑣 and 𝑚𝑟 are calculated as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑢 = 𝑚 − 𝑋 �𝑢 = 𝑚 + 𝑚𝑥𝑥

𝑚𝑣 = 𝑚 − 𝑌 �𝑣 = 𝑚 + 𝑚𝑦𝑦

𝑚𝑟 = 𝐼𝑧𝑧 − 𝑁 �𝑟 = 𝐼𝑧𝑧 + 𝐽𝑧𝑧

(2.3)

Variables 𝑓𝑢 (𝒗), 𝑓𝑣 (𝒗) and 𝑓𝑟 (𝒗) represent the high-order fluid dynamics items, which are defined as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑓𝑢 (𝒗) = −(𝑋 |𝑢 |𝑢 |𝑢 |𝑢 + 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑣𝑣𝑣
2 + 𝑋𝑟𝑟𝑟

2)

= − 1
2 𝜌𝐿𝑝𝑝𝑇𝑉

2 (−𝑅′
0 + 𝑋 ′

𝑣𝑣𝑣
′2 + 𝑋 ′

𝑣𝑟𝑣
′𝑟 ′ + 𝑋 ′

𝑟𝑟𝑟
′2 + 𝑋 ′

𝑣𝑣𝑣𝑣𝑣
′4)

𝑓𝑣 (𝒗) = −(𝑌𝑣𝑣 + 𝑌𝑟𝑟 + 𝑌 |𝑣 |𝑣 |𝑣 |𝑣 + 𝑌 |𝑟 |𝑟 |𝑟 |𝑟 + 𝑌𝑤𝑟𝑣
2𝑟 + 𝑌𝑣𝑟𝑟𝑣𝑟

2)

= − 1
2 𝜌𝐿𝑝𝑝𝑇𝑉

2 (𝑌 ′
𝑣𝑣

′ + 𝑌 ′
𝑟𝑟

′ + 𝑌 ′
𝑣𝑣𝑣𝑣

′3 + 𝑌 ′
𝑣𝑣𝑟𝑣

′2𝑟 ′ + 𝑌 ′
𝑣𝑟𝑟𝑣

′𝑟 ′2 + 𝑌 ′
𝑟𝑟𝑟𝑟

′3)

𝑓𝑟 (𝒗) = −(𝑁𝑣𝑣 + 𝑁𝑟𝑟 + 𝑁 |𝑣 |𝑣 |𝑣 |𝑣 + 𝑁 |𝑟 |𝑟 | |𝑟 |𝑟 + 𝑁𝑤𝑟𝑣
2𝑟 + 𝑁𝑣𝑟 𝑣𝑣

2)

= − 1
2 𝜌𝐿

2
𝑝𝑝𝑇𝑉

2 (𝑁 ′
𝑣𝑣

′ + 𝑁 ′
𝑟𝑟

′ + 𝑁 ′
𝑣𝑣𝑣𝑣

′3 + 𝑁 ′
𝑣𝑣𝑟𝑣

′2𝑟 ′ + 𝑁 ′
𝑣𝑟𝑟𝑣

′𝑟 ′2 + 𝑁 ′
𝑟𝑟𝑟𝑟

′3)

(2.4)

in which ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑢′ = 𝑢/𝑉

𝑣′ = 𝑣/𝑉

𝑟 ′ = 𝑟𝐿𝑃𝑃/𝑉

𝑉 =
√
𝑢2 + 𝑣2

(2.5)

The surge force 𝑇𝑢 (·) is determined by propeller revolution rate 𝑛, propeller diameter 𝐷𝑃 and the
propeller thrust coefficient 𝐾𝑇 :

𝑇𝑢 (·) = (1 − 𝑡𝑃)𝜌𝐷
4
𝑃𝐾𝑇 (2.6)

where 𝐾𝑇 is commonly expressed by second-order polynomials of the propeller advance ratio 𝐽𝑃 as

𝐾𝑇 = 𝑘2𝐽
2
𝑃 + 𝑘1𝐽𝑃 + 𝑘0 (2.7)

in which 𝐽𝑃 can be obtained as

𝐽𝑃 =
𝑢(1 − 𝑤𝑃)

𝑛𝐷𝑃
(2.8)

In Equation (2.8), 𝑤𝑃 is the wake factor at the propeller position in manoeuvring. It is commonly
estimated based on the wake factor at the propeller position in straight moving 𝑤𝑃0 and the geometrical
inflow angle to the propeller in manoeuvring 𝛽𝑃 , defined as

𝛽𝑃 = 𝛽 − 𝑥 ′𝑃𝑟
′ (2.9)

where 𝛽 = arctan(−𝑣/𝑢), 𝑥 ′𝑃 = 𝑥𝑃/𝐿𝑝𝑝 = −0·48 and 𝑥𝑃 is the longitudinal portion of the propeller.
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Parameter 𝑤𝑃 , introduced as

(1 − 𝑤𝑃)

(1 − 𝑤𝑃0 )
= 1 + {1 − exp(−𝐶1 |𝛽𝑃 |)}(𝐶2 − 1) (2.10)

where 𝑤𝑃0 is the wake factor at the propeller position in straight moving, and𝐶1 and𝐶2 are experimental
constants. Furthermore,𝐶1 and𝐶2 are different in motions for port and starboard owing to an asymmetric
wake factor with respect to the propeller rotational effect.

The yaw moment 𝐹𝑟 (·) is defined as

𝐹𝑟 (·) = (𝑥𝑅 + 𝑎𝐻 𝑥𝐻 )

[
−

6·13𝜆
𝜆 + 2·25

𝐴𝑅

𝐿2
𝑃𝑃

(𝑢2
𝑅 + 𝑣2

𝑅) cos 𝛿

]
(2.11)

where 𝑎𝐻 = 𝑎′
𝐻 = 𝐿𝑃𝑃 and 𝑥𝐻 = 𝑥 ′𝐻 = 𝐿𝑃𝑃 .

Considering the effect of the propeller on the increment of the rudder inflow velocity, the longitudinal
velocity of the inflow to the rudder 𝑢𝑅 is expressed as

𝑢𝑅 = 𝑢𝜀(1 − 𝑤𝑃)

√√√√√
𝜂

⎧⎪⎪⎨⎪⎪⎩1 + 𝜅

⎡⎢⎢⎢⎢⎣
√(

1 +
8𝐾𝑇

𝜋𝐽2

)
− 1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

2

+ (1 − 𝜂) (2.12)

where 𝜀 = (1 − 𝑤𝑅)/(1 − 𝑤𝑃), 𝑤𝑅 is the wake factor at the rudder position in manoeuvring, 𝜅 is an
experimental constant for expressing 𝑢𝑅 and 𝜂 is the ratio of the propeller diameter to the rudder span.
The lateral inflow velocity to the rudder 𝑣𝑅 is written as

𝑣𝑅 = 𝑉𝛾𝑅 (𝛽 − ℓ′𝑅𝑟
′) (2.13)

where 𝛾𝑅 is the flow straightening factor and, different for port and starboard motions, ℓ′𝑅 = ℓ𝑅/𝐿𝑝𝑝

is the effective longitudinal coordinate of the rudder position. We refer the readers to Yasukawa and
Yoshimura (2014) for more details on the nonlinear ship manoeuvrability model.

As can be seen, the evolution of states 𝑢, 𝑣 and 𝑟 in the nonlinear ship model in Equation (2.2) are
dependent on the hydrodynamic coefficients and ship parameters. These coefficients and parameters are
usually identified via computational fluid dynamics analysis and tank tests, which takes time and much
effort. Meanwhile, the manoeuvrability of a ship changes when it is sailing with different speed and
rudder angle alterations, which makes the identification procedure a complicated task. Therefore, this
paper proposes to learn the ship dynamics from data in a linear state-space form, which will be further
explained in Section 4.

3. The guidance principles for straight-line and curved waterways

A confined waterway usually consists of straight-line and curved segments. This paper divides a
waterway into a set of segments 𝑆. When the ship is sailing within a straight-line segment, a line-
of-sight guidance principle is used generate reference course angle. For curved segments, a curvilinear
reference frame is introduced.

3.1. Line-of-sight guidance law

Line-of-sight (LOS) is a conventional guidance principle, and its main idea is that if a ship is able to
keep its course angle aligned with the so-called LOS angle, then the convergence to the desired position
is also achieved. The LOS scheme was first applied to surface ships by Fossen et al. (2003). Researchers
found it is useful when considering the control of underactuated ships, since it renders possible an
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Figure 2. Illustration of the guidance principles.

approach of reducing the desired reference from 𝑥𝑑 , 𝑦𝑑 , 𝜓𝑑 to only one reference 𝜓𝑑 . In this way, the
path-following task 𝜓 → 𝜓𝑑 is achieved using only the one control input 𝛿.

The desired reference path is composed of a set of way-points. As shown in Figure 2, if the ship’s
current position is 𝑝 = [𝑥, 𝑦], the LOS position 𝑝los is located between the previous 𝑝𝑘−1 and current
𝑝𝑘 way-points. Let the ship’s current horizontal position 𝑝 be the centre of a circle with the radius of 𝑛
times the ship length 𝐿length. This circle then intersects the current straight-line segment at two points
where 𝑝los is selected as the point closest to the next way-point.

To calculate 𝑝los = [𝑥los, 𝑦los], the following two equations need to be solved:

(𝑦los − 𝑦)2 + (𝑥los − 𝑥)2 = (𝑛𝐿length)
2 (3.1)

𝑦los − 𝑦𝑘−1

𝑥los − 𝑥𝑘−1
=

𝑦 − 𝑦𝑘−1

𝑥 − 𝑥𝑘−1
+ tan(𝛼𝑘−1) (3.2)

Selecting way-points in the way-point table relies on a switching algorithm. A criteria for selecting
the next way-point, located at 𝑝𝑘+1 = [𝑥𝑘+1, 𝑦𝑘+1]

�, is for the ship to be within the range of acceptance
of the current 𝑝𝑘 , as shown in Figure 2. If at time 𝑡, the ship’s current position satisfies

(𝑥𝑘 − 𝑥(𝑡))2 + (𝑦𝑘 − 𝑦(𝑡))2 ≤ 𝑅2
𝑘 (3.3)

then the next way-point will be selected from the way-point set.
With the LOS position 𝑝los, the LOS angle can be computed:

𝜓los = arctan 2
(
𝑦los − 𝑦

𝑥los − 𝑥

)
(3.4)

in which the four quadrant inverse tangent function arctan 2(𝑦, 𝑥) is used to ensure that 𝜓los ∈ [−𝜋, +𝜋].
The ship state vector 𝒙 = [𝑢, 𝑣, 𝑟, 𝑥, 𝑦, 𝜓]� ∈ R6. Then ship kinematics can be discretised as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜓𝑘+1(𝒙) = 𝜓𝑘 + 𝑟𝑘Δ𝑡

𝑥𝑘+1 (𝒙) = 𝑥𝑘 + (𝑢𝑘 cos𝜓𝑘 − 𝑣𝑘 sin𝜓𝑘 )Δ𝑡

𝑦𝑘+1 (𝒙) = 𝑦𝑘 + (𝑢𝑘 sin𝜓𝑘 + 𝑣𝑘 cos𝜓𝑘 )Δ𝑡

(3.5)

https://doi.org/10.1017/S0373463322000522 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000522


The Journal of Navigation 1395

where Δ𝑡 refers to the discretisation time. We can rewrite it with a linear state-space form:

⎡⎢⎢⎢⎢⎣
𝜓𝑘+1
𝑥𝑘+1
𝑦𝑘+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
(∇𝒙𝜓𝑘+1(𝒙))

�

(∇𝒙𝑥𝑘+1(𝒙))
�

(∇𝒙𝑦𝑘+1 (𝒙))
�

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝜓𝑘

𝑥𝑘
𝑦𝑘

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎦
[
𝑛𝑘
𝛿𝑘

]

+

⎡⎢⎢⎢⎢⎣
𝜓𝑘+1(𝒙) − (∇𝒙𝜓𝑘+1(𝒙))

�𝜓𝑘

𝑥𝑘+1 (𝒙) − (∇𝒙𝑥𝑘+1 (𝒙))
�𝑥𝑘

𝑦𝑘+1 (𝒙) − (∇𝒙𝑦𝑘+1 (𝒙))
�𝑦𝑘

⎤⎥⎥⎥⎥⎦ . (3.6)

3.2. Curvilinear reference frame

Curvature 𝐶 (𝑠) is introduced to describe the curved features of the waterway segment 𝑠 ∈ 𝑆, which is a
known parameter that can be drawn from the map information of a waterway. As shown in Figure 2, the
control task is to ensure 𝑒𝑦 → 0, 𝑒𝜓 → 0 so that the ship can follow the reference path. The evolution
of ship states 𝑒𝜓, 𝑠, 𝑒𝑦 are expressed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�𝑒𝜓 = 𝑟 −
𝑢 cos(𝑒𝜓) − 𝑣 sin(𝑒𝜓)

1 − 𝐶 (𝑠)𝑒𝑦
𝐶 (𝑠)

�𝑠 =
𝑢 cos(𝑒𝜓) − 𝑣 sin(𝑒𝜓)

1 − 𝐶 (𝑠)𝑒𝑦

�𝑒𝑦 = 𝑢 sin(𝑒𝜓) + 𝑣 cos(𝑒𝜓)

(3.7)

Therefore, the ship state vector 𝒙 = [𝑢, 𝑣, 𝑟, 𝑒𝜓, 𝑒𝑦 , 𝑠]
� ∈ R6. Then, the ship kinematic model in

Equation (3.7) is discretised as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑒𝜓𝑘+1 (𝒙) = 𝑒𝜓𝑘
+

(
𝑟𝑘 −

𝑢𝑘 cos(𝑒𝜓𝑘
) − 𝑣𝑘 sin(𝑒𝜓𝑘

)

1 − 𝐶 (𝑠𝑘 )𝑒𝑦𝑘
𝐶 (𝑠𝑘 )

)
Δ𝑡

𝑠𝑘+1(𝒙) = 𝑠𝑘 +

(
𝑢𝑘 cos(𝑒𝜓𝑘

) − 𝑣𝑘 sin(𝑒𝜓𝑘
)

1 − 𝐶 (𝑠𝑘 )𝑒𝑦𝑘

)
Δ𝑡

𝑒𝑦𝑘+1 (𝒙) = 𝑒𝑦𝑘 +
(
𝑢𝑘 sin(𝑒𝜓𝑘

) + 𝑣𝑘 cos(𝑒𝜓𝑘
)
)
Δ𝑡

(3.8)

Similar to Equation (3.6), it can be reformulate as follows:

⎡⎢⎢⎢⎢⎣
𝑒𝜓𝑘+1

𝑠𝑘+1
𝑒𝑦𝑘+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
(∇𝒙𝑒𝜓𝑘+1 (𝒙))

�

(∇𝒙𝑠𝑘+1(𝒙))
�

(∇𝒙𝑒𝑦𝑘+1 (𝒙))
�

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑒𝜓𝑘

𝑠𝑘
𝑒𝑦𝑘

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎦
[
𝑛𝑘
𝛿𝑘

]

+

⎡⎢⎢⎢⎢⎣
𝑒𝜓𝑘+1 (𝒙) − (∇𝒙𝑒𝜓𝑘+1 (𝒙))

�𝑒𝜓𝑘

𝑠𝑘+1(𝒙) − (∇𝒙𝑠𝑘+1(𝒙))
�𝑠𝑘

𝑒𝑦𝑘+1 (𝒙) − (∇𝒙𝑒𝑦𝑘+1 (𝒙))
�𝑒𝑦𝑘

⎤⎥⎥⎥⎥⎦ . (3.9)

In this paper, the control input is chosen as 𝒖 = [𝑛, 𝛿]� ∈ R2, in which 𝑛 refers to the propeller
revolution rate and 𝛿 refers to the rudder angle.

According to Section 2, the dynamic equations of ship motion variables 𝑢, 𝑣 and 𝑟 in Equation (2.2)
include many nonlinear high-order terms. To deal with the nonlinearity, this paper proposes to learn a
linear model around states (𝑢, 𝑣, 𝑟), in which regression vectors 𝚪𝑙 ∈ R5 (𝑙 = {𝑢, 𝑣, 𝑟}) are introduced.
Based on the values of the regression vectors, the prediction model can be reformulated as follows:

⎡⎢⎢⎢⎢⎣
𝑢𝑘+1
𝑣𝑘+1
𝑟𝑘+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
𝚪𝑢

1:3(𝒙)
𝚪𝑣

1:3(𝒙)
𝚪𝑟

1:3(𝒙)

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑢𝑘

𝑣𝑘
𝑟𝑘

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
𝚪𝑢

4 (𝒙) 0
0 𝚪𝑣

4 (𝒙)
0 𝚪𝑟

4 (𝒙)

⎤⎥⎥⎥⎥⎦
[
𝑛𝑘
𝛿𝑘

]
+

⎡⎢⎢⎢⎢⎣
𝚪𝑢

5 (𝒙)
𝚪𝑣

5 (𝒙)
𝚪𝑟

5 (𝒙)

⎤⎥⎥⎥⎥⎦ , (3.10)
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where 𝚪𝑙
𝑖 (𝒙) denotes the 𝑖th element of vector 𝚪𝑙 (𝒙). Linear regression methods are used to identify 𝚪,

which will be introduced in Section 4.
Combining Equation (3.6) or (3.9) with Equation (3.10), the 6-states ship prediction model can be

restructured in the form of 𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 + 𝐶. As can be seen, the evolution of states (𝜓, 𝑥, 𝑦)
or (𝑒𝜓, 𝑠, 𝑒𝑦) are derived from ship kinematic characteristics and independent of ship parameters. The
values of 𝚪 are determined via regression methods based on the data collected from the ship. In other
words, the formulation in Equation (3.10) does not require pre-knowledge on ship parameters and
hydrodynamic coefficients. This makes it possible to construct a prediction model for unknown ship
dynamics.

4. Iterative learning scheme and controller design

Figure 3 illustrates the iterative learning scheme and controller design steps of the proposed method.
First, a model-free control law is applied to the ship and steer the ship from the start to finish point of a
confined waterway for several loops while the ship states and the control inputs are stored. Each loop is
referred to as one iteration. In this paper, we choose a proportional-integral-derivative (PID) controller as
the nominal controller. In other words, each iteration finishes a successful ship track around the waterway.
Based on the stored dataset 𝑋PID, a linear time-varying (LTV) prediction model is constructed using a
system identification strategy. Then a rolling horizon optimisation problem is formulated with the LTV
model, and an MPC controller is designed. Similarly, another dataset is collected after applying the MPC
controller to the ship for several loops (iterations), referred as 𝑋MPC. Datasets 𝑋PID and 𝑋MPC are then
employed to build the initial prediction model of the proposed Learning-based MPC (LMPC) controller.
Together with the data obtained from LMPC running during iterations, the prediction model is improved
with an iterative learning scheme. In each iteration, the data collected from previous iterations are used
to construct a sampled safe set, terminal constraint set, and cost function, which are exploited in the
LMPC controller design. In LMPC, the control problem of path-following is formulated as a repetitive
task, and the controller uses the data from previous iterations to enhance the controller performance.

4.1. Kernel-based linear regression of prediction model

To facilitate a data-driven modelling of unknown ship dynamics, this paper estimates the evolution of
𝑢, 𝑣 and 𝑟 via linear regression instead of identifying the ship parameters first and then linearising them.
It learns a linear affine time-varying ship model around each point so as to construct the prediction
model in the MPC controller.

For the unknown ship dynamics, a PID controller is designed and applied to the ship, and steering
the ship from the start point 𝒙𝑆 to the finish point of the waterway for 𝑀1 loops:

𝛿 = 𝐾𝑝𝒆 + 𝐾𝑑 �𝒆 + 𝐾𝑖

∫
𝒆 d𝑡 (4.1)

where 𝛿 represents the rudder angle and 𝒆 = {𝑒𝑦 , 𝑒𝜓}. After running 𝑀1 loops (iterations), the ship states
and control inputs are stored in dataset 𝑋PID with vectors 𝒙𝑖 = [𝒙𝑖0, . . . , 𝒙

𝑖
𝑇 𝑖 ] and 𝒖𝑖 = [𝒖𝑖

0, . . . , 𝒖
𝑖
𝑇 𝑖 ], in

which 𝑇 𝑖 denotes the time when the ship reaches the finish point, and 𝒙𝑇 𝑖 ∈ X𝐹 . Here, X𝐹 is a set of
points beyond the finish point, and X𝐹 = {𝒙 ∈ R6 : [0 0 0 0 1 0] · 𝒙 = 𝑠 ≥ 𝐿}, in which 𝐿 is the length
of the waterway. Here, 𝑠 ≥ 𝐿 means that the ship has passed the finish point of the waterway.

Based on dataset 𝑋PID, a set time of indices 𝐼𝑖 (𝒙) of 𝑃 nearest neighbours of point 𝒙 at iteration 𝑖 are
identified and defined as

𝐼𝑖 (𝒙) = [𝑘 𝑖∗1 , . . . , 𝑘 𝑖∗𝑃 ] = arg min
𝑘1 ,...,𝑘𝑃

𝑃∑
𝑚=1

‖𝒙 − 𝒙𝑖𝑘𝑚 ‖
2
𝑄 (4.2)
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Figure 3. Iterative learning scheme of data-driven MPC.

in which 𝑘𝑚 ∈ {0, . . . , 𝑇 𝑖}, 𝑚 ∈ {1, . . . , 𝑃}, and 𝑇 𝑖 refers to the ship sailing time spent in iteration 𝑖.
Additionally, 𝑄 is a scaling matrix of different variables. In other words, the set 𝐼𝑖 include the associated
indices of the neighbours of each state point 𝒙. Based on these data with index 𝐼, three kernel functions
are introduced as the linear regressors, including Epanechnikov, Tri-cube and Gaussian density kernel
functions:

𝐾Epanechnikov (𝑧) =

⎧⎪⎪⎨⎪⎪⎩
3
4
(1 − 𝑧2) ∀|𝑧 | < 1

0 otherwise
(4.3)

𝐾Tri-cube (𝑧) =

{
(1 − |𝑧 |3)3 ∀|𝑧 | < 1
0 otherwise (4.4)

𝐾Gaussian (𝑧) =

{
e−(1/2)𝑧2

∀|𝑧 | < 1
0 otherwise (4.5)
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where 𝑧 = ‖𝒙 − 𝒙𝑖𝑘𝑚 ‖
2
𝑄/ℎ, and ℎ is a hyperparameter that represents the bandwidth.

To find 𝚪𝑢 (𝒙), 𝚪𝑣 (𝒙), 𝚪𝑟 (𝒙) ∈ R5 in Equation (3.10) for 𝑢, 𝑣 and 𝑟 , the following three optimisation
functions are formulated:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝐽𝑢 = min
∑

𝑘,𝑖∈𝐼 (𝑥)

𝐾

(
‖𝒙 − 𝒙𝑖𝑘𝑚 ‖

2
𝑄

ℎ

)
𝒚𝑖,𝑢 (𝚪𝑢)

𝐽𝑣 = min
∑

𝑘,𝑖∈𝐼 (𝑥)

𝐾

(
‖𝒙 − 𝒙𝑖𝑘𝑚 ‖

2
𝑄

ℎ

)
𝒚𝑖,𝑣 (𝚪𝑣 )

𝐽𝑟 = min
∑

𝑘,𝑖∈𝐼 (𝑥)

𝐾

(
‖𝒙 − 𝒙𝑖𝑘𝑚 ‖

2
𝑄

ℎ

)
𝒚𝑖,𝑟 (𝚪𝑟 )

(4.6)

in which ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝒚𝑖,𝑢 (𝚪𝑢) = ‖𝑢𝑖𝑘+1 − 𝚪𝑢 (𝒙) · [𝑢𝑖𝑘 , 𝑣

𝑖
𝑘 , 𝑟

𝑖
𝑘 , 𝑛

𝑖
𝑘 , 1]

�‖

𝒚𝑖,𝑣 (𝚪𝑣 ) = ‖𝑣𝑖𝑘+1 − 𝚪𝑣 (𝒙) · [𝑢𝑖𝑘 , 𝑣
𝑖
𝑘 , 𝑟

𝑖
𝑘 , 𝛿

𝑖
𝑘 , 1]

�‖

𝒚𝑖,𝑟 (𝚪𝑟 ) = ‖𝑟 𝑖𝑘+1 − 𝚪𝑟 (𝒙) · [𝑢𝑖𝑘 , 𝑣
𝑖
𝑘 , 𝑟

𝑖
𝑘 , 𝛿

𝑖
𝑘 , 1]

�‖

(4.7)

Problems 𝐽𝑢 , 𝐽𝑣 and 𝐽𝑟 form quadratic programming problems, which can be easily solved via an
optimisation solver. Here, 𝒙𝑖𝑘 represents the stored ship states data in iteration 𝑖 at time 𝑘 . Solutions
to problems 𝐽𝑢 , 𝐽𝑣 and 𝐽𝑟 are 𝚪𝑢 (𝒙) = arg𝚪 min 𝐽𝑢 , 𝚪𝑣 (𝒙) = arg𝚪 min 𝐽𝑣 and 𝚪𝑟 (𝒙) = arg𝚪 min 𝐽𝑟 ,
respectively.

Based on the identified model in Equation (3.10), a linear time-varying prediction model can be
constructed at time 𝑡 of iteration 𝑖 as follows:

𝒙𝑖𝑘+1 |𝑡 = 𝐴𝑖
𝑘 |𝑡𝒙

𝑖
𝑘 |𝑡 + 𝐵𝑖

𝑘 |𝑡𝒖
𝑖
𝑘 |𝑡 + 𝐶𝑖

𝑘 |𝑡 , 𝑘 ∈ {𝑡, . . . , 𝑡 + 𝑁 − 1} (4.8)

in which it is noted that 𝒙𝑖
𝑘 |𝑡

= [𝑢𝑖
𝑘 |𝑡

, 𝑣𝑖
𝑘 |𝑡

, 𝑟 𝑖
𝑘 |𝑡

, 𝜓𝑖
𝑘 |𝑡

, 𝑦𝑖
𝑘 |𝑡

, 𝑥𝑖
𝑘 |𝑡
] if it is a straight-line waterway segment and

that 𝒙𝑖
𝑘 |𝑡

= [𝑢𝑖
𝑘 |𝑡

, 𝑣𝑖
𝑘 |𝑡

, 𝑟 𝑖
𝑘 |𝑡

, 𝑒𝑖𝜓𝑘 |𝑡
, 𝑒𝑖𝑦𝑘 |𝑡 , 𝑠

𝑖
𝑘 |𝑡
] if it is a curved waterway segment. The matrices 𝐴𝑖

𝑘 |𝑡
, 𝐵𝑖

𝑘 |𝑡

and 𝐶𝑖
𝑘 |𝑡

are calculated as follows:

𝐴𝑖
𝑘 |𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝚪𝑢
1:3(𝒙̄

𝑖
𝑘 |𝑡
) 0 0 0

𝚪𝑣
1:3(𝒙̄

𝑖
𝑘 |𝑡
) 0 0 0

𝚪𝑟
1:3(𝒙̄

𝑖
𝑘 |𝑡
) 0 0 0

(∇𝒙𝑒𝜓𝑘−1/𝜓𝑘−1(𝒙) | 𝒙̄𝑖
𝑘 |𝑡
)�

(∇𝒙𝑒𝑦𝑘−1/𝑦𝑘−1 (𝒙) | 𝒙̄𝑖
𝑘 |𝑡
)�

(∇𝒙𝑠𝑘−1/𝑥𝑘−1 (𝒙) | 𝒙̄𝑖
𝑘 |𝑡
)�

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐵𝑖
𝑘 |𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝚪𝑢
4 (𝒙̄

𝑖
𝑘 |𝑡
) 0

0 𝚪𝑣
4 (𝒙̄

𝑖
𝑘 |𝑡
)

0 𝚪𝑟
4 (𝒙̄

𝑖
𝑘 |𝑡
)

0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐶𝑖
𝑘 |𝑡 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝚪𝑢
5 (𝒙̄

𝑖
𝑘 |𝑡
)

𝚪𝑣
5 (𝒙̄

𝑖
𝑘 |𝑡
)

𝚪𝑟
5 (𝒙̄

𝑖
𝑘 |𝑡
)

𝑒𝜓𝑘−1/𝜓𝑘−1 (𝒙̄
𝑖
𝑘 |𝑡
) − (∇𝒙𝑒𝜓𝑘−1/𝜓𝑘−1(𝒙) | 𝒙̄𝑖

𝑘 |𝑡
)�𝒙̄𝑖

𝑘 |𝑡

𝑒𝑦𝑘−1/𝑦𝑘−1 (𝒙̄
𝑖
𝑘 |𝑡
) − (∇𝒙𝑒𝑦𝑘−1/𝑦𝑘−1 (𝒙) | 𝒙̄𝑖

𝑘 |𝑡
)�𝒙̄𝑖

𝑘 |𝑡

𝑠𝑘−1/𝑥𝑘−1 (𝒙̄
𝑖
𝑘 |𝑡
) − (∇𝒙𝑠𝑘−1/𝑥𝑘−1(𝒙) | 𝒙̄𝑖

𝑘 |𝑡
)�𝒙̄𝑖

𝑘 |𝑡

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

where

𝒙̄𝑖𝑘 |𝑡 =

{
𝒙̄𝑖,∗
𝑘 |𝑡−1, 𝑘 ∈ {𝑡, . . . , 𝑡 + 𝑁 − 1}

𝒛𝑖𝑡 , 𝑘 = 𝑡 + 𝑁
(4.10)
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Here, 𝒙̄𝑖
𝑘 |𝑡

∈ 𝒙̄𝑖𝑡 = {𝑥𝑖
𝑘 |𝑡

, . . . , 𝑥𝑖
𝑘+𝑁 |𝑡

} refers to a set of candidate solutions that are defined using the
optimal solution from the previous time step 𝑡 − 1, and 𝑧𝑖𝑡 represents one of the candidate terminal state
of the planned ship trajectory at time 𝑡.

Then an MPC controller can be designed using Equation (4.8) as the prediction model. The control
objective is to steer the ship from initial state 𝒙𝑆 to the terminal set X𝐹 . In each sampling interval 𝑘 , the
MPC controller solves an infinite time horizon optimal control problem:

𝐽∗0→∞(𝒙𝑆) = min
𝒖0 ,𝒖1 ,...

∞∑
𝑘=0

ℎ(𝒙𝑘 , 𝒖𝑘 ) (4.11)

such that 𝒙𝑘+1 = 𝐴𝒙𝑘 + 𝐵𝒖𝑘 ∀𝑘 ≥ 0 (4.12)
𝒙0 = 𝒙𝑆 (4.13)
𝒙𝑘 ∈ X = {𝒙 ∈ R6 : 𝐹𝑥 ≤ 𝑏𝑥} ∀𝑘 ≥ 0 (4.14)
𝒖𝑘 ∈ U = {𝒖 ∈ R2 : 𝐹𝑢 ≤ 𝑏𝑢} ∀𝑘 ≥ 0 (4.15)

where Equation (4.12) represents the linearised ship prediction model, Equation (4.13) defines the initial
ship states, Equations (4.14) and (4.15) represent input and state constraints. In Equation (4.11), it is
assumed that ℎ(·, ·) = ‖𝒙𝑭 − 𝒙𝑘 ‖𝑄 + ‖𝒖𝑘 ‖𝑅, which refers to the stage cost. It is continuous and satisfies
the following conditions in all iterations:

ℎ(𝒙𝐹 , 0) = 0, ℎ(𝒙𝑘 , 𝒖𝑘 ) � 0 ∀𝒙𝑘 ∈ R6 \ {𝒙𝐹 } ∀𝒖𝑘 ∈ R2 \ {0} (4.16)

After solving Equation (4.11), an optimal control sequence 𝑼 = {𝒖0, . . . , 𝒖𝑁−1} with prediction
horizon 𝑁 at each sample time 𝑘 , such that the resulting state sequence 𝑿 = {𝒙0, . . . , 𝒖𝑁 } and the
control sequence 𝑼 are obtained without violating Constraints (4.12)–(4.15). This controller is then
applied to the ship to run for 𝑀2 loops to create another dataset 𝑋MPC. Datasets 𝑋PID and 𝑋MPC form the
basis for LMPC controller design.

4.2. Learning-based MPC controller design

In each iteration 𝑖, the controller selects 𝑁ss points from the previous 𝑖 − 𝑁s iteration to construct a
sampled safe set. Here, 𝑁ss and 𝑁s are the control parameters to be determined. A sampled safe set SS𝑖

at iteration 𝑖 consists of all successful trajectories performed in the previous 𝑖 − 1 number of iterations,
which is defined as

SS𝑖 =

⎧⎪⎪⎨⎪⎪⎩
⋃
𝑗∈𝑀 𝑖

∞⋃
𝑡=0

𝒙 𝑗
𝑡

⎫⎪⎪⎬⎪⎪⎭ , 𝑀 𝑖 ∈
{
𝑘 ∈ [1, 𝑖] : lim

𝑡→∞
𝒙𝑘
𝑡 = 𝒙𝐹

}
(4.17)

Figure 4 gives the illustration of safe set SS𝑖 in iteration 𝑖, which is the collection of all ship states
at iteration 𝑗 for 𝑗 ∈ 𝑀 𝑖 , where 𝑀 𝑖 refers to the set of indexes 𝑘 associated with successful iteration 𝑘
for 𝑘 ≤ 𝑖. It is also noted that 𝑀 𝑗 ⊆ 𝑀 𝑖 and SS 𝑗 ⊆ SS𝑖 , ∀ 𝑗 ≤ 𝑖. For every point in SS𝑖 , there exists a
feasible control strategy which satisfies the state constraints and steers the state towards terminal state
𝒙𝐹 .

In addition, terminal cost and constraints are updated in each time step based on the planned ship
trajectory in the previous time steps, so as to reduce computational burden. The LMPC solves a finite
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Figure 4. Illustration of safe set SS𝑖 .

time constrained optimal control problem at time 𝑘 of iteration 𝑖:

𝐽LMPC,𝑖
𝑘:𝑘+𝑁 (𝒙𝑖𝑘 ) = min

𝒖𝑘 |𝑘 ,...,𝒖𝑘+𝑁−1|𝑘

(
𝑘+𝑁−1∑
𝑡=𝑘

ℎ(𝒙𝑡 |𝑘 , 𝒖𝑡 |𝑘) +𝑄𝑖−1(𝒙𝑘+𝑁 |𝑘 )

)
(4.18)

such that 𝒙𝑡+1 |𝑘 = 𝐴𝒙𝑡 |𝑘 + 𝐵𝒖𝑡 |𝑘 ∀𝑡 ∈ [𝑘, . . . , 𝑘 + 𝑁 − 1] (4.19)
𝒙𝑘 |𝑘 = 𝒙𝑖𝑘 (4.20)
𝒙𝑡 |𝑘 ∈ X, 𝒖𝑡 |𝑘 ∈ U ∀𝑡 ∈ [𝑘, . . . , 𝑘 + 𝑁 − 1] (4.21)
𝒙𝑘+𝑁 |𝑘 ∈ SS𝑖−1 (4.22)

where Equation (4.19) represents the linearised ship dynamics and Equation (4.20) defines the initial
condition. The state and input constraints are defined via Equation (4.21). Equation (4.22) ensures that
the terminal state reaches one of the points in the sampled safe set SS𝑖−1 of the previous iteration 𝑖 − 1.
Stage cost ℎ(·, ·) is used to quantify the controller performance, which is the same as the stage cost in
MPC formulation.

Function 𝑄𝑖 (·) is defined over SS𝑖 , which represents the learned minimum cost from previous
iterations:

𝑄𝑖 (𝒙) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

𝑗 ,𝑡 ∈𝐹 𝑖 (𝒙)
𝐽 𝑗
𝑡→∞(𝒙)

∞∑
𝑘=𝑡∗

ℎ(𝒙 𝑗∗
𝑘 , 𝒖 𝑗∗

𝑘 ) if 𝒙 ∈ SS𝑖

+∞ if 𝒙 ∉ SS𝑖

(4.23)

where

𝐹𝑖 (𝒙) = {( 𝑗 , 𝑡) : 𝑗 ∈ [0, 𝑖], 𝒙 = 𝒙 𝑗
𝑡 , 𝒙

𝑗
𝑡 ∈ SS𝑖} (4.24)

For every point 𝒙 ∈ SS𝑖 , the value of 𝑄𝑖 is determined over index pairs ( 𝑗∗, 𝑡∗) in the 𝑁ss points,
which is the minimum cost along the ship trajectories in SS𝑖 , in which

𝐽 𝑗∗
𝑡∗→∞(𝒙) =

∞∑
𝑘=𝑡∗

ℎ(𝒙 𝑗∗
𝑘 , 𝒖 𝑗∗

𝑘 ) (4.25)
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After Equation (4.18) at time 𝑘 of iteration 𝑖 is solved, solutions are obtained, including 𝒙𝑖∗
𝑘:𝑘+𝑁 |𝑘

and
𝒖𝑖∗
𝑘:𝑘+𝑁 |𝑘

: {
𝒙𝑖∗𝑘:𝑘+𝑁 |𝑘 = [𝒙𝑖∗𝑘 |𝑘 , ·, 𝒙

𝑖∗
𝑘+𝑁 |𝑘 ]

𝒖𝑖∗
𝑘:𝑘+𝑁 |𝑘 = [𝒖𝑖∗

𝑘 |𝑘 , ·, 𝒖
𝑖∗
𝑘+𝑁−1 |𝑘 ]

(4.26)

Then the first element of 𝒖𝑖∗
𝑘:𝑘+𝑁 |𝑘

is applied to the ship. The finite-time optimal control problem in
Equation (4.18) is solved with an primal-dual interior point method based on the Nesterov–Todd scaling
at time 𝑘 + 1, based on updated state 𝒙𝑘+1 |𝑘+1 = 𝒙𝑖𝑘+1. For more details regarding the solution algorithm,
we refer readers to Andersen et al. (2003) and Sturm (2002). Algorithm 1 concludes the algorithmic
steps.

Algorithm 1 The algorithmic steps of the proposed LMPC.
Require: Curvature𝐶 (𝑠) of each segment 𝑠 ∈ 𝑆 of the waterway, reference path information and control parameters

determination
1: // Generate dataset 𝑋PID
2: Apply PID control law to the ship for 𝑀1 iterations, store the data, calculate the cost of ship trajectories

according to the stage cost function ℎ in Equation (4.14)
3: // Linear state-space model construction
4: Use linear regression techniques to approximate ship states evolution, formulate linear time-varying prediction

model in Equation (4.8) based on data stored in 2
5: // Generate dataset 𝑋MPC
6: Formulate optimisation problem in Equation (4.11) and apply MPC to the ship model for 𝑀2 iterations, repeat

similar procedure as in 2
7: // Starting LMPC procedure
8: While 𝑖 ≤ 𝑀3 do
9: if ship has not reached finish point then

10: Initialisation of ship states at the beginning of iteration 𝑖
11: Measure the state 𝒙𝑘 at time interval 𝑘 , use data in previous 𝑖 − 𝑁s iterations to build prediction model in

Equation (4.19)
12: Construct safe set SS𝑖 based on previous 𝑖 − 𝑁s ship trajectories, select 𝑁ss points
13: Formulate function𝑄𝑖 and optimal control problem in Equation (4.18) in each time interval 𝑘 of iteration 𝑖
14: Compute the optimal control sequence 𝒖𝑖∗

𝑘:𝑘+𝑁 = arg min 𝐽LMPC,i (𝒖𝑘 , 𝒙𝑘 ) with primal-dual interior point
method

15: Apply the first element of optimal sequences to ship, and update ship’s state, set time 𝑘 = 𝑘 + 1, then go
to 10

16: else 𝑖 = 𝑖 + 1, go to 9
17: Terminate

4.3. Asymptotic stability

To guarantee the asymptotic stability of the proposed LMPC, it is desirable to use infinite prediction and
control horizons. While it is not feasible to get solutions for an infinite horizon nonlinear optimisation
problem, stability of LMPC can still be guaranteed by choosing suitable safe sets and setting initial
conditions. This has been studied by Rosolia and Borrelli (2018), and the required stability conditions
are summarised as follows.

1. There exists a controller that keeps the ship in the waterway when the ship has passed the finish
point of the waterway. Assume that X𝐹 is a control invariant, ∀𝒙𝑘 ∈ X𝐹 ,
∃𝒖𝑘 ∈ U : 𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 ∈ X𝐹 .
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2. Let SS𝑖 be the sampled safe set at iteration 𝑖, SS0 is non-empty, and 𝒙0 ∈ SS𝑖 is feasible and
convergent to control invariant set X𝐹 .

3. At 𝑡 = 0, 𝐽LMPC,i
0→𝑁 (𝒙𝑖0) ≤ 𝐽LMPC,i

0→𝑁 (𝒙𝑖−1
0 ) holds, ∀𝑖 ≥ 1.

If Conditions (1)–(3) hold, then the system in a closed-loop with the controller obtained by Algorithm
1 converges to a steady-state trajectory when the number of iterations goes to infinity.

5. Simulation results

To evaluate the effectiveness of the proposed method, a KVLCC2 tanker model with a length of 7 m, and
a width of 1·16 m is taken as the target ship, its parameters are given in Appendix A1. The hydrodynamic
parameters can be found in Yasukawa and Yoshimura (2015). We use a modular type ship manoeuvring
model which was proposed in our earlier work in Liu et al. (2016) as the simulation model. This model
was validated by comparing simulated and tested results (Lee et al., 2007; Yasukawa and Yoshimura,
2015) to reflect the actual characteristics of ship motion.

Experiments are performed on an Intel Core i9-10900K CPU with 16 GB RAM running Windows 10
with Python 3.7.6. CVXOPT 1·2 is used as an optimisation solver, in which a quadratic cone program
solver is used. The initial ship state is set as 𝑥0 = 0, 𝑦0 = 0, 𝜓0 = 0, 𝑢0 = 1 m/s, 𝑣0 = 0 m/s and
𝑟0 = 0 rad/s. A small input rate cost is added to take into account the changing rate of the rudder angle
alterations of a ship. As a ship engine usually runs at a fixed speed in practice, the value of the control
input 𝑛, which represents the propeller revolution rate, is set as 𝑛 = 10·34. The rudder angle input ranges
from −35◦ to +35◦.

In addition, unknown disturbances are also considered, in which the following stochastic dynamics
are employed: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑑𝑤𝑢 = 0·1 sin(0·03𝑡 + 0·2𝜋) + 0·1𝑢2𝑣𝑟3

𝑑𝑤𝑣 = 0·1 sin(0·02𝑡 + 0·1𝜋) + 0·1𝑢3𝑣𝑟2

𝑑𝑤𝑟 = 0·01 sin(0·01𝑡 + 0·1𝜋) + 0·01𝑢2𝑣𝑟

(5.1)

To generate dataset 𝑋PID, a PID controller is used to manoeuvre the ship to a reference path for
𝑀1 = 2 loops, in which 𝐾𝑝 = [2, 0·6], 𝐾𝑖 = [random(0·1, 0·2), random(0, 0·1)], 𝐾𝑑 = [0·6, 0·9]. It
is noted that a random perturbation has been introduced in the control action deployed on the ship,
so as to cover a larger region of the state space. Based on 𝑋PID, a linear state space prediction model
is formulated and used to construct an MPC controller. The parameters of the MPC controller are
𝑄 = diag(1, 0, 0, 100, 0, 10), 𝑅 = diag(0, 10). Then, dataset 𝑋MPC is generated via applying the MPC
controller to the ship to perform another 𝑀2 = 2 loops along the reference path.

The safe sets and the 𝑄-functions in the proposed LMPC controller are retrieved from datasets
𝑋PID and 𝑋MPC. The LMPC controller is then applied to the ship for 𝑀3 = 30 loops. In each loop,
the previous 𝑁s = 3 trajectories are chosen, in which 𝑁ss = 60 points are chosen from each trajec-
tory. In the LMPC controller, 𝑄 = diag(1, 0, 0, 100, 0, 10), 𝑅 = diag(0, 10), 𝑄input rate = [0, 15·8◦],
𝑄terminal cost = diag(100, 1, 1, 1, 10, 1). In both MPC and LMPC controllers, the prediction horizon
𝑁 = 15. In each iteration loop, the LMPC problem in Equation (4.18) is solved in each sampling
interval with a length of 𝑡 = 1𝑠, and the ship data are stored to update the controller for the next
iteration.

5.1. Open-loop prediction performance

To evaluate the prediction performance, the changes of ship states over time are predicted with the
identified linear state-space model in Equation (4.19) with a time horizon of 20 s, starting from
each point on its simulated trajectory with 1-second interval. Figure 5 shows the Root Mean Square
Error (RMSE) between the predicted states and true states of the ship over prediction horizon in
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Figure 5. Open-loop prediction performance of ship states.

Table 1. Comparison of Root Mean Square Errors (RMSEs) over iterations.

RMSE 𝑢 (m/s) RMSE 𝑣 (m/s) RMSE 𝑟 (◦/s)

Max Min Avg Max Min Avg Max Min Avg

LMPC-𝐾Epanechinikov 0 · 372 0 · 096 0 · 114 0 · 165 0 · 116 0 · 120 5 · 09 4 · 099 4 · 190
LMPC-𝐾Tri-cube 0 · 348 0 · 092 0 · 109 0 · 153 0 · 116 0 · 119 4 · 76 4 · 120 4 · 173
LMPC-𝐾Gaussian 0 · 253 0 · 096 0 · 107 0 · 145 0 · 116 0 · 118 4 · 63 4 · 107 4 · 167

RMSE 𝑒𝜓 (◦) RMSE 𝑠 (m) RMSE 𝑒𝑦 (m)

Max Min Avg Max Min Avg Max Min Avg

LMPC-𝐾Epanechinikov 13 · 634 9 · 207 9 · 486 1 · 032 0 · 637 0 · 658 0 · 622 0 · 238 0 · 253
LMPC-𝐾Tri-cube 12 · 096 9 · 227 9 · 422 1 · 054 0 · 633 0 · 655 0 · 538 0 · 235 0 · 247
LMPC-𝐾Gaussian 11 · 226 9 · 202 9 · 396 0 · 838 0 · 633 0 · 648 0 · 399 0 · 236 0 · 244

all iterations, with the prediction models constructed with different kernel functions labelled as
LMPC-𝐾Epanechinikov, LMPC-𝐾Tri-cube and LMPC-𝐾Gaussian, respectively. Table 1 presents the maxi-
mum, minimum and average RMSEs of different prediction models. As can be seen, the RMSEs of
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Figure 6. Simulated ship trajectories over iterations.

Figure 7. Simulated ship trajectories in the last iteration.
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Figure 8. Simulated control inputs over iterations.

motion variables 𝑢, 𝑣 and 𝑟 are much smaller than the ship’s nominal speed 1·4 m/s and rated speed
10◦/s. The average RMSEs of the position variable 𝑒𝜓 range from 9·396◦ to 9·486◦, those for vari-
able 𝑠 range from 0·648 to 0·658 m and those for variable 𝑒𝑦 range from 0·244 to 0·253 m. Among
these prediction models, LMPC-𝐾Gaussian performs best as it leads to smaller deviations from true
states.

5.2. Closed-loop path-following control performance of MPC

To evaluate the optimisation cost and controller performance improvements over iterations, 𝑀3 = 30
loops (iterations) have been carried out with different kernel functions. Figure 6 gives the simu-
lated ship trajectories. In the first iteration, the simulated ship trajectories of LMPC-𝐾Epanechinikov

and LMPC-𝐾Gaussian deviate from the reference path in the beginning but then keep up after-
wards, while the ship trajectories of LMPC-𝐾Tri-cube show larger deviations over the whole path.
Figure 7 gives the simulated ship trajectories in the last iteration. It can be seen that with the
increase of iterations, the simulated ship trajectories converge to better path-following performance.
Among these LMPC controllers, LMPC-𝐾Gaussian shows relatively smaller path-following errors over
iterations.

Figure 8 illustrates the simulated control inputs over iterations. It can be seen that the control inputs
of different LMPC controllers varies in the beginning iterations and then converges to similar values in
the last iteration.
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Figure 9. Changes of optimisation costs over iterations.

5.3. Computation costs

Figure 9 presents the changes of optimisation costs of ship trajectories over iterations, which is the sum
of values of the objective function in Equation (4.18) over all sampling intervals on each trajectory. It
can be seen that LMPC-𝐾Epanechinikov converges at an earlier iteration, while LMPC-𝐾Tri-cube and LMPC-
𝐾Gaussian show larger fluctuations. Figure 10 gives the changes of path-following errors over iterations,
in which the course angle error 𝑒𝜓 converges and stabilises at approximately 4·15◦, and the error on the
𝑦-axis 𝑒𝑦 stabilises at approximately 0·18 m.

Figure 11 gives the average computation times for solving the optimisation problem in each sampling
instant. As can be seen, the computation time ranges from 0·16 to 0·26 s, with an average of 0·20 s.
This implies that the proposed LMPC requires far less computation time than the 1-s sampling interval,
which could facilitate its implementation in practice.

6. Conclusions and future work

In this paper, a data-driven MPC strategy is proposed for path-following of unknown underactuated ship
dynamics in confined waterways. It uses off-line historical data and data collected during operation to
create safe sets and terminal costs. A kernel-based linear regression is used for system identification,
so as to build a linear time-varying prediction model of ship states evolution. With an ILC scheme, the
control approach learns from previous iterations to guarantee the stability of the system and improve
controller performance. Simulation results demonstrate that it improves the path-following performance
in terms of root mean square tracking error over iterations.
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Figure 10. Changes of average path-following errors over iterations.

Figure 11. Average computation times for solving the optimisation problem in each sampling interval
over iterations.

For future work, this research will be extended in several directions. First, experiments in actual
waterways will be carried out to further validate its effectiveness. Second, the theoretical properties of
the LMPC strategy only applies for deterministic cases. For this, a Gaussian process can be introduced to
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model the uncertainties as a function of relevant variables such as the system state and input. Moreover,
it is noted that this paper uses PID to generate initial data due to its simplicity and practicality; however,
the PID controller could also be replaced with other advance control techniques to generate even better
initial data. It would be interesting to investigate how the quality of the off-line data would affect the
performance of the LMPC controller.
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A. Appendix

Table A.1. Applied parameters in the simulations of the KVLCC2 tanker.

Main particulars of the KVLCC2 tanker
𝐿𝑃𝑃 7 · 0 𝑚′

𝑥𝑥 0 · 022
𝐵𝑊𝐿 1 · 1688 𝑚′

𝑦𝑦 0 · 223
∇ 3 · 2724 𝑥𝐺 0 · 244
𝐶𝑏 0 · 8098 𝐽 ′𝑧𝑧 0 · 011
𝑇 0 · 455

Parameters for hull forces and moments
𝑅′

0 0 · 022 𝑌 ′
𝑣𝑟𝑟 −0 · 391

𝑋 ′
𝑣𝑣 −0 · 040 𝑌 ′

𝑟𝑟𝑟 0 · 008
𝑋 ′
𝑣𝑟 0 · 002 𝑁 ′

𝑣 −0 · 137
𝑋 ′
𝑟𝑟 0 · 011 𝑁 ′

𝑟 −0 · 049
𝑋 ′
𝑣𝑣𝑣𝑣 0 · 771 𝑁 ′

𝑣𝑣𝑣 −0 · 030
𝑌 ′
𝑣 −0 · 315 𝑁 ′

𝑣𝑣𝑟 −0 · 294
𝑌 ′
𝑟 0 · 083 𝑁 ′

𝑣𝑟𝑟 0 · 0550
𝑌 ′
𝑣𝑣𝑟 0 · 379 𝑁 ′

𝑟𝑟𝑟 −0 · 013
𝑌 ′
𝑣𝑣𝑣 −1 · 607

Parameters for propeller forces and moments
𝐷𝑃 0 · 216 𝑘1 −0 · 2753
𝑘0 0 · 2931 𝑘2 −0 · 1385
𝑡𝑃 0 · 220 𝑤𝑃0 0 · 40
𝑥 ′𝑃 −0 · 48 𝑛 10 · 4

Parameters for rudder forces and moments
𝐴𝑅 0 · 0539 𝑡𝑅 0 · 387
𝑎𝐻 0 · 312 ℓ′𝑅 −0 · 710
𝑥 ′𝐻 −0 · 464 𝜀 1 · 09
𝐶1 2 · 04 𝜅 0 · 50
𝐶2 (𝛽𝑃 > 0) 1 · 6 �𝛿 15 · 8
𝐶2 (𝛽𝑃 < 0) 1 · 1 𝜂 0 · 6252
𝛾𝑅 (𝛽𝑅 < 0) 0 · 395 Λ 1 · 827
𝛾𝑅 (𝛽𝑅 > 0) 0 · 640 𝑥 ′𝑅 −0 · 50

Source: Yasukawa and Yoshimura (2015) and Liu et al. (2016).
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