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Turbulence quantities have been measured for a low-Reynolds-number fully developed
two-dimensional channel flow subjected to system rotation. Turbulence intensities,
Reynolds shear stress, correlation coefficient, skewness and flatness factors, four-
quadrant analysis, autocorrelation coefficient and power spectra are investigated.
According to the dimensional analysis, the relevant parameters of this flow are the
Reynolds number Re∗ = u∗D/ν and the Coriolis parameter Rc =Ων/u∗2 for the wall
region, and Re∗ and ΩD/u∗ for the turbulent core-region. The existence of a Coriolis
region where turbulence intensities are defined by a new variable y∗

c = y/δc has been
clarified on the pressure side in the rotating channel flow. The amount of turbulent
kinetic energy transported by the Coriolis term is extremely small compared to the
production term in the transport equation of Reynolds normal stress. However, the
Coriolis term makes a large contribution to Reynolds shear stress transport on
the pressure side of the channel. It is caused by the strong ejection which occurs
periodically on the pressure side even though the ejection frequency is low. The
strong ejection is conjectured to be caused by a large-scale longitudinal structure like
a roll cell on the pressure side of the channel.

1. Introduction
Turbulent flow in a channel rotating around an axis perpendicular to its axis can

be seen in cooling passages of gas turbine blades, electric motors and so on. Such
rotating turbulent flows are influenced by the Coriolis force. Coriolis force effects are
attributed to the induction of secondary flow by the endwall effect if there is a mean
vorticity component perpendicular to the rotation axis and the promoting/suppressing
effects on turbulence. If we confine consideration to channels having an aspect ratio
larger than 4 and consider only the mid-plane of the channel, the secondary flow
caused by the endwall effect does not appear, and the flow can be seen as nominally
two-dimensional. In rotating two-dimensional flow, on the other hand, it is well
known that roll cells occur above the critical value of a rotation parameter (Lezius &
Johnston 1976). Pioneering work by Johnston, Haleen & Lezius (1972) on the fully
developed turbulent flow through a duct of aspect ratio 7 demonstrated the following
three Coriolis effects related stability phenomena: (i) the reduction (increase) of the
turbulent wall-layer streak bursting rate in locally stabilized (destabilized) layers;
(ii) the total suppression of turbulence production in the locally stabilized layer;
and (iii) the development of roll cells on the destabilized side of the channel. An
appropriate local stability parameter is shown to be the Richardson number, which
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was introduced by Bradshaw (1969) for rotating flow by analogy with stratified
flow.

For fully developed rotating channel flow, large-eddy simulations by Miyake &
Kajishima (1986) and second-moment closure calculations by Launder, Tselepidakis
& Younis (1987) and Shima (1993) have been reported. Recently, Kristoffersen &
Andersson (1993) performed direct numerical simulations (DNS). We have studied
the relation between the similarity laws of velocity profiles and the Coriolis force
together with Reynolds number effects in low-Reynolds-number fully developed
two-dimensional channel flow (Nakabayashi & Kitoh 1996), where consideration of
turbulence was not reported.

Concerning turbulence quantities in turbulent boundary layers with system rotation,
Koyama et al. (1979) and Watmuff, Witt & Joubert (1985) studied experimentally
the relation between turbulence characteristics and the Coriolis force. The former
indicated that the turbulent activities are weakened on the suction side of the channel
(cyclonic case), whereas they are augmented on the pressure side (anti-cyclonic case).
The latter authors clarified that the turbulence quantities follow an inner and outer
scaling independent of rotation. Energy spectra of the streamwise velocity component
indicated that, for a given non-dimensional distance, it was the low-wavenumber
spectral components that were affected by rotation. Watmuff et al. observed Görtler-
type vortices which corresponded to large spatially periodic spanwise variations of
skin friction in the destabilized layers. Few other experimental result on the turbulence
measurements necessary for experimental clarification of turbulence models have been
published.

In this paper we supply experimental data needed for turbulence models and
consider Coriolis force effects on low-Reynolds-number turbulence from similarity
laws of turbulence. In § 2 we discuss similarity laws of turbulence as a theoretical
background for the present experimental study of turbulence. The experimental setup
and method are given in § 3. In § 4 the experimental results and discussion are
presented. In § 5 we present conclusions.

2. Similarity laws of turbulence
In our previous publication we studied the similarity laws of the mean velocity

distributions for the low-Reynolds-number fully developed two-dimensional turbulent
channel flow (Nakabayashi & Kitoh 1996). According to the dimensional analysis, the
relevant parameters of this flow are Reynolds number Re∗ = u∗D/ν and the Coriolis
parameter Rc = Ων/u∗2 for the wall region, and Re∗ and ΩD/u∗ for the turbulent
core-region. Figure 1(a) shows a schematic of the mean velocity and total shear stress
profiles in fully developed two-dimensional rotating channel flow. Here the channel
rotates in a counterclockwise direction (Ω < 0), where the x- and y-axes are taken to
be streamwise and wall-normal on the suction side, respectively. The y-axis is taken to
be the wall-normal direction on each side of the wall, figure 1(b). The configurations
of the pressure and suction sides in figure 1(a) are reversed when Ω > 0. 2D, Uc, τws

and τwp are the channel width, mean velocity in the central plane of the channel and
the wall shear stresses on the suction and pressure sides, respectively. Following the
dimensional analysis, the mean velocity normalized by the wall friction velocity u∗

can be given by

U/u∗ = F (yu∗/ν, Ων/u∗2, u∗D/ν). (1)
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Pressure side (unstable side)

Suction side (stable side)
x

y Uc
2 

D

τws

τwp

Ω < 0

U τ for Ω = 0

τ for Ω < 0

(a)

Pressure side

y y

Suction side

(b)

Figure 1. Schematic of fully developed two-dimensional flow in a rotating channel.
(a) Mean velocity and total shear stress profiles. (b) Definition of y-axis.

Similar to the mean velocity, the turbulence intensities normalized by the wall
friction velocity can be written

u/u∗, v/u∗, w/u∗ = f (yu∗/ν, Ων/u∗2, u∗D/ν) (2a)

= f (y+, Rc, Re∗) (2b)

= f (y/δν, δν/δc, D/δν), (2c)

where u, v and w are turbulence intensity in the streamwise, wall-normal and spanwise
directions, respectively. Here δν = ν/u∗ is the viscous length scale that is a measure
of the distance from the wall within which the viscous effect predominates. δc = u∗/|Ω |
is the Coriolis length scale that is a measure of the distance from the wall above which
the Coriolis force plays an important role. The channel half-width D is a measure of
the outer length scale of the flow. Figure 2 shows the range of each length scale, δν , δc

and D. These three length scales respectively play a prominent role in the following
regions:

viscous length scale δν for y < K1δν, (3a)

Coriolis length scale δc for y > K2δc, (3b)

outer length scale D for y > K3D, (3c)

where K1, K2 and K3 are constants.
Very close to the wall, where y+ = y/δν is smaller than K1, only the viscous length

scale is important for the streamwise component u/u∗, because the influence of the
Coriolis force does not penetrate close to the wall. So the following expression holds:

u/u∗ = f1(y
+). (4)
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CL
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Figure 2. Ranges of each length scale involved.

On expanding equation (4), simple momentum and continuity equations applicable
immediately adjacent to the wall indicate that

u/u∗ = A1y
+, (5a)

v/u∗ = A2y
+2, (5b)

w/u∗ = A3y
+, (5c)

where coefficients A1, A2 and A3 are universal constants when Ω = 0. But when |Ω |
becomes large, K2δc approaches zero, so that these coefficients become functions of
Rc.

In the viscosity-independent region farther from the wall, but not so distant that
the Coriolis and outer length scales influence the flow (i.e. y+ >K1, y+ <K2δc/δν and
y+ <K3D/δν), equation (2) reduces to

u/u∗ = B1, (6a)

v/u∗ = B2, (6b)

w/u∗ = B3, (6c)

where B1, B2 and B3 are constants. We can see plateau regions there.
Moreover, if |Ω | is increased and the relation K3D >K2δc holds, there exists a

Coriolis region for max (K1δν, K2δc) <y <K3D, where only the Coriolis length scale
δc plays a role in the viscous-independent region farther from the wall. Here, if we
introduce a new variable, y∗

c = y/δc, the Coriolis region exists in the range

max(K1|Rc|, K2) < y∗
c < K3R

∗
e |Rc|, (7)

and the following alternative similarity expression for the turbulence intensity can be
obtained:

u/u∗, v/u∗, w/u∗ = f2(y
∗
c ). (8)

From a consideration of the Coriolis region in relation to the mean velocity distribu-
tion, Nakabayashi & Kitoh (1996) found 30–50, 0.008–0.015 and 0.2–0.3 for K1, K2

and K3, respectively.
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x

y
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400D = (2000 mm)

361D

Ω

Aspect ratio = 8

2D = 9.9 mm

2h = 80 mm
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Measuring

2h

2D

station

Figure 3. Channel geometry and coordinate system.

Run Re= 2UmD/v Ro= 2D|Ω |/Um RΩ = (2D)2|Ω |/v Re∗ = u∗D/v Rc= Ωv/u
∗2 Symbol

1 2500 0 0 83 0 �

2 2500 0.028 70 P 100 0.00171 �

3 2500 0.056 140 P 107 0.00297 �
4 2500 0.028 70 S 70 − 0.00348 �

5 2500 0.056 140 S 70 − 0.00699 �
6 3700 0 0 119 0 �

7 3700 0.0189 70 P 141 0.001 �

141 0.0009
8 3700 0.0378 140 P 146 0.0016 �

157 0.0014
9 3700 0.0189 70 S 109 −0.0015 �

111 −0.0014
10 3700 0.0378 140 S 98 −0.0036 �

95 −0.0039
11 5500 0 0 173 0 �

12 5500 0.0127 70 P 183 0.0005 �

13 5500 0.0255 140 P 192 0.0009 ��

14 5500 0.0127 70 S 165 −0.0006 �
15 5500 0.0255 140 S 158 −0.0014 �

Table 1. Experimental conditions.

3. Experimental setup and method
The experimental apparatus and method are the same as presented earlier by

Nakabayashi & Kitoh (1996). Figure 3 shows the channel geometry and coordinate
system. The test channel has a cross-sectional dimension of 2D =9.9 mm and 2h =
80 mm. A measuring station is located at x = 361D downstream from the channel
inlet section, where the flow is two-dimensional and fully developed for the stationary
channel. The values of u′ and v′ were measured by a single X-probe and a hot-wire
anemometer. Tungsten filaments of 3 µm in diameter and 0.5 mm in length are soldered
onto the prongs with a separation of 0.1 mm. The measurements were performed
under the conditions of bulk Reynolds number Re =2UmD/ν = 2500, 3700, 5500 and
rotating Reynolds number RΩ = (2D)2|Ω |/ν =70, 120, 140, respectively. Table 1 shows
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Figure 4. Turbulence intensity distribution normalized by u∗
e at Re= 3700. Values of RΩ :

�, 0; �, 70; �, 140. Results of Kristoffersen & Andersson (1993): ———, Ro = 0; – – – – –,
Ro= 0.01; · · · · · · · · ·, Ro = 0.05.

the experimental conditions for the present measurements. The mean velocity profiles
for these parameter combinations were published in our previous paper, Nakabayashi
& Kitoh (1996). Positive values of Rc= Ων/u∗2 are found on the pressure side, and
negative ones on the suction side. The letters P and S in the column for RΩ in table 1
indicate the pressure and suction sides of the channel, respectively. Ro is the rotation
number 2|Ω |D/Um.

4. Experimental results and consideration
4.1. Distribution of turbulence intensities

Figure 4 shows an example of RΩ dependence of relative turbulence intensities
normalized by the effective velocity u/u∗

e and v/u∗
e at Re = 3700 in the cross-section

of the channel, where u∗
e is an effective velocity defined by

u∗
e =

((
u∗

s
2 + u∗

p
2
)/

2
)1/2

. (9)

Here u∗
s and u∗

p are wall friction velocities on the suction and pressure sides, respec-
tively. On the pressure side the increase of u/u∗

e with RΩ is extremely small, while
v/u∗

e shows a slight increase with RΩ . On the suction side, however, both u/u∗
e and

v/u∗
e are significantly decreased by suppression of turbulence. When RΩ = 140, in

particular, turbulence intensities show a large attenuation on the suction side, where
relaminarization occurs.

Relative turbulence intensities u/u∗ and v/u∗ at Re = 2500, 3700 and 5500 norma-
lized by the wall friction velocity u∗

s (for Ω < 0) or u∗
p (for Ω > 0) are shown against

wall variable y+ in figures 5(a), 5(b) and 5(c), respectively. The values of u/u∗ and
v/u∗ on the suction side are much smaller than those for the stationary channel flow,
and even smaller than those on the pressure side. This is caused by the Coriolis effect.
When Re= 5500, however, we cannot see a difference among values on the suction
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Figure 5. Turbulence intensity distribution normalized by u∗. For symbols, see table 1.
The values of Rc of Kristoffersen & Andersson (1993) at Re= 5800: ———, 0; –-–-–-–,
0.00161; –--–--–, −0.00322; – – – – –, 0.003; · · · · · · · · ·, −0.00729. (a) Re= 2500. (b) Re= 3700.
(c) Re= 5500.

and pressure sides and the stationary flow. As described in Nakabayashi & Kitoh
(1996), the Coriolis force effect depends on the Coriolis parameter Rc= Ων/u∗2.
When the Reynolds number increases, keeping Ω constant, Rc decreases, so that
the difference diminishes. DNS results by Kristoffersen & Andersson (Re =5800) are
shown in figures 4 and 5, where their u/u∗ results show some difference with those for
Re = 2500, 3700 even though all these cases have a similar Rc value. In particular, the
differences are significant when the flows at Re= 2500 and 3700 are relaminarized,
but the flows of DNS with similar Rc are not. When Re is small, the effect of the
outer scale D appears in the near-wall region, and the parameter Re∗ enters in the
functional form of equation (4). For low Re∗, relaminarization on the suction side
depends not only on Rc but also on Re∗.

Very close to the wall, turbulence intensity is governed by equations (5). Figure 6
shows the relation between coefficient A1 and Coriolis parameter Rc. In the range
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–0.02 –0.01 0 0.01 0.02
0

0.2

0.4

0.6

Rc

A1

Figure 6. Variation of coefficient A1 with Rc. Re: �, 2500; �, 3700; �, 5500; ×, 5800
(Kristoffersen & Andersson 1993); ∗, 4710 (Miyake & Kajishima 1998). �, Poiseuille flow of
Krepelinn & Eckelman (1979), Rec = 2DUc/ν = 7700, where Uc is a velocity at channel centre.
———, line joining Kristoffersen & Andersson data; · · · · · · · · ·, line joining present data.

−0.002 <Rc < 0.006, the present data scatter around a constant value of 0.39 as does
the result of Kristoffersen & Andersson (1993) which is a little higher than the present
one. When |Ω | becomes large, A1 shows a tendency to decrease on the suction side.
The present data show a sharper decrease than those of Kristoffersen & Andersson
(1993), because relaminarization occurs in the former for a smaller value of |Rc|.
From skin friction data, relaminarization occurs for Re = 2500 when Rc < −0.0023
(Nakabayashi & Kitoh 1996). This tendency for A1 to decrease on the suction side
indicates the suppression of turbulence caused by penetration of the Coriolis force
effect into the near-wall region.

Here we introduce y+
1%, which is the wall variable at which the u/u∗ profile deviates

by 1% from the non-rotating profile in figure 5. From the graphs, we can estimate the
depth of penetration. If we estimate y+

1% as the ratio of the distance (which the Coriolis
force effect penetrates) to the viscous length scale δv , we can take y = y+

1%δv = K2δc.
Then,

log y+
1% + log |Rc| = log K2. (10)

Figure 7 shows the relation between y+
1% and |Rc|, and for comparison the line of

y+
1% obtained from the mean velocity profile (Nakabayashi & Kitoh 1996). Although

there is some scatter among the present data, and those of Kristoffersen & Andersson
(1993) and Miyake & Kajishima (1988), y+

1% decreases monotonically along the solid
and broken lines indicated by equation (10). Although some Re∗-effect on y+

1% in
low-Reynolds-number flow (Re = 2500, 3700) might be expected, figure 7 suggests a
definite |Rc| dependence of y+

1%. The broken line is for K2 = 0.005 and the solid line
for K2 = 0.015. K2 = 0.008–0.015 was obtained from the data of the mean velocity
profile (Nakabayashi & Kitoh 1996).

Figure 8 shows the Coriolis region in the (y∗
c , |Rc|)-plane. In the figure, a broken line

and a chain double dot line indicate the relations y =K1δν and y = K2δc, respectively.
The upper area of these lines (grey shaded area) satisfies the left-hand side of
inequality (7). Solid lines indicate the relation y = K3D for different Re∗. The lower
area of each line, denoted by hatching, satisfies the right-hand side of inequality (7).
For the Coriolis region, the Reynolds number has to satisfy Re∗ >K1/K3. From this
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10–4 10–3 10–2
10–1

100

101

102

|Rc|

y+
1% K2 = 0.015Equation (10)

K2 = 0.005

Equation (10)

Figure 7. Coriolis penetration depth y1% as a function of Coriolis parameter Rc. Re: �, 2500;
�, 3700; �, 5500; ×, 5800 (Kristoffersen & Andersson 1993); *, 4710 (Miyake & Kajishima
1988).

0.002 0.004 0.006 0.0080

0.2

0.4

yc
* = K2

Re* = 100

Re* = 150

Re* = 250

yc
*

|Rc|

yc
* = K1|Rc|

Re* = 200

Figure 8. Coriolis region for various conditions. Shading and hatching indicate the boundaries
of each inequality relation for the Coriolis region. Double-arrow lines indicate range of the
Coriolis region. For symbols, see table 1. Values of Re∗ for DNS results by Kristoffersen &
Andersson (1993): – – – –, 210; · · · · · · · · ·, 220; –-–-–-–, 230; –--–--–--–--–, 230; and LES results
by Miyake & Kajishima (1988): ———, 180.
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0.1 0.2

(a) (b)

0.3 0.40

1

2

3

yc
*

u
—
u*

0.1 0.2 0.3 0.40

0.5

1

yc
*

v'
—
u*

Figure 9. Universal turbulence intensity distribution in the Coriolis region. For symbols, see
table 1. The shaded area is the Coriolis region for each condition estimated by assuming
K1 = 50, K2 = 0.0015 and K3 = 0.3. The hatched area indicates the estimated universal
turbulence intensity profile for the Coriolis region drawn as an overall curve of shaded
regions. The values of Rc for Kristoffersen & Andersson (1993) for Re= 5800: – – – –, 0.00161;
· · · · · · · · · · · ·, 0.003; –-–-–-–-–, 0.00418; –--–--–--–, 0.00539; and for Miyake & Kajishima
(1988) for Re= 4710: ——— 0.00469. (a) Streamwise velocity component. (b) Wall-normal
velocity component.

figure, it is evident that high |Rc| as well as high Re∗ are necessary for the Coriolis
region. The range covered by each arrow is the estimated Coriolis region for various
conditions, including the DNS by Kristoffersen & Andersson as well as the present
experiment. The present results for Re =5500 are marginally in the Coriolis region
because of low |Rc|.

Figures 9(a) and 9(b) shows the turbulence intensity against y∗
c . The Coriolis region

whose range is calculated from inequality (7) with K1 = 50, K2 = 0.015 and K3 = 0.3
is indicated by the shaded area for each condition. The overall curve of the shaded
areas, indicated by hatching, constitutes a similarity distribution, equation (8) in the
Coriolis region, though the overall curve for u/u∗ is not very smooth, perhaps due to
the unrefined values of K1, K2 and K3. The hatched area shows that u/u∗ decreases
almost linearly from 1.7 to 1.2 with an increase of y∗

c from 0.05 to 0.4 in the Coriolis
region. On the other hand, v/u∗ increases from 0.8 at y∗

c = 0.05 to 1.1 at y∗
c = 0.4.

Figures 10(a) and 10(b) show the RΩ dependence on shear stress distributions
measured at Re =2500 and 3700 by an X-probe in the cross-section of the channel.
Reynolds shear stress is augmented on the pressure side and reduced on the suction
side. The Reynolds shear stress profile for Re = 2500 at RΩ =140 shows that perfect
relaminarization occurs on the suction side as the Reynolds shear stress becomes
zero.

In the present experiment, the measuring station is located at an inlet length
(x/D = 361), sufficient to ensure fully developed flow and the measured shear stress
follows a linear distribution, as can be seen at RΩ =0. For the rotating channel,
however, the shear stress profiles are curved on the pressure side in contrast to the
straight ones expected for fully developed two-dimensional flow. The main reason for
the curved profiles is the existence of roll cells developed on the pressure side. The
shear stress is affected by the inertia term I through roll cell velocity components
V and W (V and W are wall-normal and spanwise mean velocity components)
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Figure 10. Total shear stress and Reynolds shear stress distribution. (a) Re= 2500, (b) Re=
3700: �, � and �, Total shear stress. �, � and �, Reynolds shear stress. Miyake & Kajishima
(1988) for Re= 4710 and Ro =0.12: – – – – –, total shear stress; ———, Reynolds shear stress.

as follows:

τ = τw + (dp/dx)y +

∫ y

0

Idy, (11)

where I denotes the inertia term and is given by

I = ρ(V ∂U/∂y + W∂U/∂z − 2ΩV ). (12)

In accordance with the experimental results for the rotating channel by Johnston
et al. (1972) and the curved channel by Barlow & Johnston (1988), roll cells of Taylor–
Görtler type occur randomly in space as well as in time, and do not remain at a
preferred location. Consequently, mean values of V and W become zero, so that the
inertia term given by equation (11) becomes zero. However, as Watmuff et al. (1985)
reported, the inevitable inlet disturbance at the inlet section of the duct, even in a two-
dimensional flow configuration without the endwall effect, causes quasi-stationary roll
cells on the pressure side, and non-zero velocity components V and W may appear.
Kristoffersen & Andersson (1993) also reported the quasi-stationary roll cells in their
DNS and discussed the various reasons for them to appear in numerical simulation.

4.2. Effect of Coriolis force on Reynolds stress transport

The effect of the Coriolis force on the distribution of each Reynolds normal and
shear stress component indicated in § 4.1 was examined by investigating the size of
each term that appears in Reynolds stress transport equations. The Reynolds stress
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transport equations under discussion here expressed using wall variables are

D

Dt+

(
u2

u∗2

)
= −2

u′v′

u∗2

dU+

dy+
+ 4

u′v′

u∗2

Ων

u∗2
+ Φ+

u2 + D+
u2 − ε+

u2, (13)

production term Coriolis term

D

Dt+

(
v2

u∗2

)
= −4

u′v′

u∗2

Ων

u∗2
+ Φ+

v2 + D+
v2− ∈+

v2, (14)

Coriolis term

D

Dt+

(
−u′v′

u∗2

)
=

v2

u∗2

dU+

dy+
+ 2

Ων

u∗2

u2 − v2

u∗2
+ Φ+

−uv + D+
−uv− ∈+

uv, (15)

production term Coriolis term

where t+ = t/(ν/u∗2), Φ+ is the pressure–strain correlation term, D+ is the diffusion
term, and ∈+ is the turbulent energy dissipation term. On the right-hand side of
the above equations, the terms including Ων/u∗2(=Rc) are the Coriolis terms. As
has been elucidated in research to date, from equations (13) and (14), the turbulent
energy is produced for u2, and part of this is transported to v2 or w2 by the Coriolis
and pressure–strain correlation terms. The Coriolis term transports energy from u2

to v2 on the pressure side (Ω > 0), and from v2 to u2 on the suction side (Ω < 0).
In this way the qualitative characteristics of the Coriolis terms can be understood.
Andersson & Kristoffersen (1995) and Kristoffersen et al. (1990) reported the detailed
budget of the terms in the transport equations using their DNS data and showed
the characteristic features of the stress transport in rotating channel flow. Here we
confirm their results from the experimental point of view.

Of all terms in equations (13)–(15), the only ones estimated from the observed
U+(y+) and the turbulence data are the production and Coriolis terms. Using these
terms, the extent of the relative contribution of the Coriolis term can be understood,
as shown in figures 11 and 12.

Concerning u2/u∗2 (figure 11), the amount transported by the Coriolis term, even
with large changes in the velocity distribution (from RΩ = 140 P to 140 S), is extremely
small compared to the production term and makes virtually no contribution to
turbulent energy transport. The production term is decreased on the pressure side by
the effect of the rotation, and this is considered to be the cause of the decline of u/u∗

on the pressure side as indicated in figure 5. The decline in the production term on
the pressure side is caused by a large decline in the mean velocity gradient dU+/dy+

on the pressure side, as shown in figure 13. On the other hand, because dU+/dy+

is very large on the suction side, the production term is about the same size as in
a stationary channel even with a decline in Reynolds shear stress −u′v′/u∗2 on the
suction side.

Next, we consider the transport of Reynolds shear stress −u′v′/u∗2 for each
transport term, shown in figure 12. The production term on the pressure side is
small compared to that for stationary channel flow or on the suction side because, as
can be seen in figure 13, the mean velocity gradient dU+/dy+ is small on the pressure
side. It is known that the Coriolis term acts as a −u′v′ producer on the pressure side
and as a suppressor on the suction side. Its size is about 1/3 that of the production
term on the pressure side and 1/2 that on the suction side. This means that the
Coriolis term makes a large contribution to the Reynolds shear stress transport.

As pointed out above, the Coriolis effect causes changes in the Reynolds shear
stress by working directly upon shear stress −u′v′/u∗2, and the velocity distribution
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0 10050

–0.05

0.05

0.15

y+

Figure 11. Contribution of Coriolis term to u2/u∗2 transport. Re= 3700. Open symbols, pro-
duction term; + and ×, Coriolis term. The values of Rc: �, 0; � and ×, 0.0014; � and +,
−0.0039.

500 100

–0.025

0.025

0.075

y+

Figure 12. Contribution of Coriolis term to u′v′/u∗2 transport. For legend, see figure 11.

U+(y+) is changed as a result. However, the direct effect of the Coriolis force on
the Reynolds normal stress u2/u∗2 is extremely small, and it exerts an indirect effect
through the changes in the velocity gradient dU+/dy+, −u′v′/u∗2 and perhaps also
the pressure–strain term.
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50 1000

0.5

1.0

y+

dU+

dy+

Figure 13. Velocity gradient expressed in wall variables for stationary channel and pressure
and suction sides of channel. For symbols, see table 1.

Suction side Pressure side

Sweep
Sweep

Interaction

Interaction Interaction

4 1

23

1

23

4

Ejection

Ω
y

x

u′ u′

v′ v′

Figure 14. Coordinate and quadrants on pressure and suction sides, respectively.

The above picture of the Reynolds stress transport u2/u∗2 and −u′v′/u∗2 is consistent
with that of Andersson & Kristoffersen (1995). According to them the budget of
v2/u∗2, not given here, is rather complicated compared to u2/u∗2, because no dominant
transport exists. The relative importance of the Coriolis term on the transport of v2/u∗2

was shown to be large.
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Figure 15. Contribution from each quadrant to Reynolds shear stress for Re= 3700.
Quadrant: �, 1st; �, 2nd; �, 3rd; 	, 4th; �, Total. Quadrant from Miyake & Kajishima
(1986) for RΩ = 0 and RΩ = 500 having Re∗ = 250: – – – –, 1st; · · · · · · · · ·, 2nd; –--–--–--–, 3rd;
–-–-–-–, 4th; ———, total.

4.3. Four-quadrant analysis, correlation coefficient, and higher statistics

In § 4.2 we found that the rotation effect works directly on the Reynolds shear stress
through the Coriolis term. Here we examine that effect in more detail. Frequency
and fractional contributions to the Reynolds shear stress from each velocity quadrant
are studied by four-quadrant analysis. The coordinate system and quadrants used
here are shown in figure 14. Figure 15 shows the four-quadrant analysis of −u′v′/u∗2

e

for stationary channel flow (RΩ = 0) and rotating channel flow (RΩ = 140 P and S),
figure 16 shows the respective frequency with which they appear in each quadrant.
Miyake & Kajishima (1986) pursued a similar discussion using the results of LES.
According to those investigations, the increase in Reynolds shear stress on the
pressure side comes mainly from the increase in ejection. The contribution of sweep
and interaction is of the same magnitude as in a stationary channel. Kristoffersen &
Andersson (1993) also reported that the relative contribution of ejection increases
on the pressure side. For the frequency distribution of each quadrant, the sweep is
large compared to a stationary channel, interaction is low, and ejection is at the same
level. On the suction side, the contributions of both ejection and sweep to −u′v′

are lowered, and the Reynolds shear stress is reduced. As for frequency distribution,
the sweep declines and interaction in quadrant 1 partly increases. In this connection,
an anomalous increase in the relative contribution from quadrant 1 interaction was
reported by Kristoffersen & Andersson (1993). On the pressure side, the contribution
of ejection to −u′v′ is large even though the frequency is not high. Miyake & Kajishima
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Figure 16. Frequency of each quadrant for Re= 3700. For legend, see figure 15.

(1986) have stated that this phenomenon is due to the effect of the Coriolis force
thrusting high-speed fluid against the wall on the pressure side, and the accompanying
forcing out of low-speed fluid from the wall.

This phenomenon is investigated here by simultaneous recordings of fluctuations
u′ and v′. Figure 17 compares the time series of fluctuations u′, v′, and u′v′ at y+ = 45
with those for the stationary channel and RΩ = 140 P. The ejection process (u′ < 0,
v′ < 0, u′v′ > 0) occurs randomly in the stationary channel, but develops very strongly
on the pressure side of the rotating channel at the times indicated by the vertical
dashed lines in figure 17. This occurrence is somewhat cyclical. Since this kind of
strong ejection occurs, the contribution to −u′v′ must be large despite a low ejection
frequency on the pressure side. The relation between the non-dimensional value
∆T Um/D of the average cycle ∆T for this strong ejection and the non-dimensional
cycle Um/(ΩD) of the channel rotation is shown in figure 18. The determination of
∆T is somewhat subjective, but from figure 18 a large-scale structural turbulence
having a time scale of 1/Ω is assumed to exist on the pressure side of the rotating
channel. This structural turbulence gives rise to strong ejection, and the Reynolds
shear stress on the pressure side increases. This large-scale turbulence would seem
to correspond to the large vortex concentration in the LES results of Miyake &
Kajishima (1986) (cf. figure 6 in their paper). This kind of turbulence is also seen in
the spectrum analysis described later. It is a special characteristic of rotating channel
turbulence, so it is not produced in ordinary wall turbulence.

Figure 19 shows the distribution of the turbulence correlation coefficient −u′v′/(uv).
The results for stationary channels, except near the wall, agree closely with the DNS
results of Kim, Moin & Moser (1987). For the case of rotating channels, however,
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Figure 17. Time series of u′, v′ and u′v′ showing strong ejection appearing quasi-periodically
at y+ = 45 for Re= 3700. RΩ : (a) 0; (b) 140 P.

the value of the correlation coefficient increases on the pressure side and decreases
on the suction side. This trend is consistent with the analogous results reported by
Kristoffersen & Andersson (1995). In figure 19, this is compared with the results
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Figure 18. Period of strong ejection versus rotation-related parameter.
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Figure 19. Correlation coefficient distribution for Re= 3700. |RΩ |: �, 0; �, 70; �, 140. ———,
DNS of Poiseuille flow by Kim et al. (1987) for Re= 5600; – – – – –, Barlow & Johnston (1988)
for curved boundary layer.

of Barlow & Johnston (1988) for curved boundary layer flow on concave surfaces.
The results tend to be the same as for the pressure side. Because the correlation
coefficient has almost no dependence on the Reynolds number (see Kim et al. 1987),
it is conjectured that the distribution shown in figure 19 is the same for high Reynolds
numbers.

Figure 20 shows the u′ and v′ skewness factors. The skewness factor S(v′) deviates
to the negative side as the rotation effect becomes stronger. In contrast, the skewness
factor S(u′) deviates in the positive direction on the suction side and in the negative
direction on the pressure side. For a stationary channel, because the ejection appears
in a burst process at y+ � 10, the u′ skewness takes a negative value. On the suction
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Figure 20. Skewness factors for u′ and v′. Re= 3700. |RΩ |: �, 0; ��, 70; �, 140;
———, 565 (Miyake & Kajishima 1988).
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Figure 21. Flatness factors for u′ and v′. For legend, see figure 20.
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Figure 22. Autocorrelation coefficient of u′(t) for Re= 3700. (a) At y+ = 15. (b) At y+ = 80.
RΩ : ———, 0; –-–-–-–, 70 P; –--–--–--–, 70 S; – – – –, 140 P; · · · · · · · · · · · ·, 140 S.

side of a rotating channel, the decreased frequency of bursts causes the u′ skewness
to deviate to the positive side, because the Coriolis force acts to suppress turbulence.
On the pressure side the opposite is true (i.e. increased burst activity causes deviation
to the negative side). The results of Miyake & Kajishima (1986) in the same figure
show the same qualitative trends, but the influence of the Coriolis force on their flow
is larger than in the present experiment, so the above tendencies are more marked.

Figure 21 shows the distribution of the u′ and v′ flatness factors F (u′) − 3 and
F (v′). Near the wall on the pressure side, there is no change in either F (u′) − 3 or
F (v′) from the case of a stationary channel, but at y/D � 1.6 an effect of rotation
appears. For v′, with y/D � 0.6, the flatness suddenly becomes larger as RΩ increases.
The change in u′ flatness from that of a stationary channel is comparatively small;
however, for the large RΩ of Miyake & Kajishima, the flatness becomes smaller and
a large difference in qualitative trend is evident.

Figures 22(a) and 22(b) show the definite difference in the autocorrelation coefficient
Ru(t) between y+ = 15 and 80 in the streamwise velocity fluctuation at Re= 3700.
Except for the relaminarized flow with RΩ = 140 S, there is no difference in the
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Figure 23. Variation of integral scale of u′ and v′ with Coriolis parameter at various
positions. (a) Tu, (b) Tv . Re: �, 2500; �, 3700; �, 5500.

distribution of Ru(t) at y+ = 15 among the pressure side, the suction side and the
stationary channel flow. At y+ = 80, however, there is a definite difference among
them. On the pressure side, the distribution curve decreases more slowly than the
curves for the suction side and the stationary channel. This means that a larger
structure like a roll cell exists on the pressure side but not on the suction side.

Figure 23 shows integral time scales Tu and Tv of Ru(t) and Rv(t), respectively
scaled by the outer time scale D/Um. With decreasing Re, the scaled integral time
scale of the u′ component increases near the wall at y+ = 15 for Rc < 0 because of
relaminarization. On the other hand, the influences of Re and Rc are smaller at
y+ =45 and 80 than at y+ = 15. The effect of rotation becomes clear far from the
wall on the pressure side, and the integral scale increases with Rc.

We can conjecture from this result that a large-scale longitudinal structure exists
for y+ > 15, as described before. But there is no clear influence of Re on the integral
scale of Rv(t).

4.4. Energy spectrum

The power spectrum Eu(k) of the velocity fluctuation components u′ can be normalized
and expressed as follows:

1 =

∫ ∞

0

k∗Ẽu(k
∗) d(lnk∗), (16)

where

Ẽu(k
∗) = Eu(k)/(Du2), k∗ = Dk. (17)

Here k is the wavenumber and is given by k = 2πf/U from the assumption of frozen
turbulence. The frequency of the time series signal is f , and the local mean velocity is
U . Figure 24 shows the experimental value k∗Ẽu(k

∗) at y+ =80. The minute element
of area k∗Ẽu(k

∗) d(lnk∗) on the logarithmic axis of k∗ in this figure is the power of
u′ corresponding to k+Ẽu(k

+). For the stationary channel and on the suction side
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Figure 24. Pre-multiplied power spectra of u′. Re= 3700 at y+ =80.

of the rotating channel, both have similar distribution shapes, but on the pressure
side a rise in the spectrum is seen in the low-frequency range. The dashed line in
figure 24 indicates the frequency corresponding to the cyclic variation of u′ mentioned
in § 4.3. This rise in the low-frequency range of the spectrum seems to be connected
to the gentle cyclic movements caused by the Coriolis force.

5. Conclusion
The present measurements of turbulence in a rotating channel flow indicate the

following results.
(i) Relative turbulence intensities near the wall normalized by wall variable are

lower than those of stationary channel flow both on the pressure and suction sides. In
the near-wall region, the wall variable y+

1% at which the u/u∗ profile deviates by 1%
from the non-rotating profile is independent of Reynolds number Re∗, but depends
only on the Coriolis parameter Rc. The Coriolis force effect penetrates the viscous
wall layer further with increasing Rc.

(ii) The Coriolis region where u/u∗ and v/u∗ have respective universal functions
of y∗

c was confirmed on the pressure side.
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(iii) The amount of Reynolds normal stress u2/u∗2 transported by the Coriolis
term is extremely small compared to the production term in the transport equation.
However, the Coriolis term makes a large contribution to Reynolds shear stress
transport on the pressure side as well as on the suction side of the channel.

(iv) The increase in Reynolds shear stress on the pressure side is caused by strong
ejection, which occurs quasi-periodically on the pressure side due to the Coriolis effect
even though the ejection frequency is low.

(v) From the results for the autocorrelation coefficient and integral time scale,
we conjecture that a large-scale longitudinal structure like the roll cell exists on the
pressure side and that it influences ejection at a position far from the wall. On the
pressure side, a rise in the spectrum which is relevant to a bursting phenomenon
excited by the roll cell’s motion is seen in the low-frequency range that corresponds
to the observed strong ejection.
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