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Magnetorotational stability is revisited for self-consistent three-dimensional magnetized
hot plasma equilibria in a gravitational field. The eikonal analysis presented
finds that magnetorotational stability analysis must be performed with some care
to retain compressibility and density gradient effects, and departures from strict
Keplerian motion. Indeed, retaining these effects highlights differences between the
magnetorotational instability found in the absence of gravity (Velikhov, Sov. Phys.
JETP, vol. 36, 1959, pp. 995–998) and that found the presence of gravity (Balbus
& Hawley, Astrophys. J., vol. 376, 1991, pp. 214–222). In the non-gravitational case,
compressibility and density variation alter the stability condition, while these effects
only enter for departures from strict Keplerian motion in a gravitational field. The
conditions for instability are made more precise by employing recent magnetized
equilibrium results (Catto et al., J. Plasma Phys., vol. 81, 2015, 515810603), rather
than employing a hydrodynamic equilibrium. We focus on the stability of the β > 1
limit for which equilibria were found in the absence of a toroidal magnetic field,
where β = plasma/magnetic pressure.
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1. Background
The groundbreaking effort of Velikhov (1959) and the pioneering work of Balbus &

Hawley (1991) has led to a generally accepted explanation that the magnetorotational
instability (MRI) is responsible for the existence of turbulence in accretion disks and
provides a possible anomalous transport mechanism for particle accretion by compact
astrophysical objects while angular momentum is transport outward. Cylindrical
numerical simulations retaining the drive for magnetorotational instability indicate
that the flow in the washer-shaped disk becomes turbulent with angular momentum
redistribution (Hawley & Balbus 1991). Later simulations observed turbulent angular
momentum distribution by continuing to omit the vertical component of gravity and
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neglecting pressure and density gradients (Hawley, Gammie & Balbus 1995). These
early analytic results focused on the incompressible limit and the early simulation of
Hawley & Balbus (1991) indicated insensitivity to compressibility. Even more recent
simulations (Stone, Pringle & Begelman 1999; Stone & Pringle 2001) apply a vertical
magnetic field to the polytropic (or adiabatic) hydrodynamic equilibrium of Papaloizou
& Pringle (1984). Other treatments exist (Ogilvie 1998), but most treatments seem to
assume strict Keplerian motion by which we mean the gravitational and centrifugal
forces are in exact balance at the equatorial plane. When this assumption is removed,
recent stratified shearing box simulations exhibit some sensitivity to compressibility
(McNally & Pessah 2015). Here we assume a magnetized equilibrium and allow
for general compressibility, more general rotational motion allowing an imbalance
between the gravitational and centrifugal forces, and a fully self-consistent equilibrium
with density variation. We find that all these ingredients are important in the overall
stability threshold. However, when the motion is strictly Keplerian we show that both
compressibility and density variation effects are absent, but departures from an axial
magnetic field provide further destabilization. Interestingly, in the non-gravitational,
axial magnetic field limit of Velikhov (1959) we find that density gradient effects are
always present for a careful treatment of compressibility.

The MRI is thought to play a role in the formation of stars (Stone et al. 2000),
the production of X-rays in neutron star and black hole systems (Blaes 2004) and
the creation of gamma-ray bursts (Wheeler 2004). Local numerical investigations
indicate that the magnetorotational instability allows mass to be accreted by the
central compact object while angular momentum is transported radially outwards
(Hawley et al. 1995; Hawley, Gammie & Balbus 1996; Stone et al. 1996) and
that the instability might result in a magnetohydrodynamic (MHD) accretion disk
dynamo generating a self-sustaining magnetic field. A possible implication is that a
re-examination of stability for a fully self-consistent rotating and magnetized global
gravitational equilibrium with compressibility and density gradient effects retained is
a natural and needed step.

The lack of a fully self-consistent magnetized three-dimensional equilibrium in
the presence of gravity is a shortcoming of previous work that can now be better
addressed thanks to the self-similar equilibrium model recently formulated by Catto
& Krasheninnikov (2015) and solved analytically and numerically by Catto, Pusztai
& Krasheninnikov (2015). This global equilibrium model allows, but does not require,
strict Keplerian motion in the equatorial plane. It fully retains the imbalance between
the cylindrical centrifugal force and the central gravitational force that makes disk
equilibria possible for some parameter ranges. Moreover, the condition for unstable
modes to fit in the plasma disk results in the disk width entering the condition for
instability. Catto et al. (2015) have shown numerically that the β� 1 equilibria found
analytically by Catto & Krasheninnikov (2015) actually require a toroidal magnetic
field as well. However, in the more interesting β > 1 limit, both numerical and
analytic equilibrium solutions are found without a toroidal magnetic field. The work
herein only considers magnetorotational stability in this zero toroidal magnetic field
limit, since retaining it substantially complicates the analysis.

In the following sections we re-consider ideal magnetohyrodynamic magneto-
rotational stability. We begin by briefly summarizing in § 2 the axisymmetric
equilibrium equations for a general poloidal magnetic field satisfying the constraints
imposed by the kinetic equation for a drifting Maxwellian (Hinton & Wong 1985;
Catto, Bernstein & Tessarotto 1987; Helander 2014). In § 3 we then derive the
linearized equations for an arbitrary axisymmetric perturbation in a hot, compressible,
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finite β, magnetized plasma rotating in a gravitational field. We then investigate the
general magnetorotational stability condition for arbitrary β when the magnetic field
is assumed axial. The results without gravity in § 4 are consistent with Velikhov
(1959), and the eikonal results of §§ 5 and 6 with gravity reduce to Balbus &
Hawley (1991) in the strict Keplerian limit. The Velikhov case without gravity is
considered to illustrate our analysis technique in the simplest possible limit and
to contrast its differences with the gravitational cases that follow. A self-consistent
equilibrium without gravity (Catto & Krasheninnikov 2015) allows us to make a
further connection to the seminal work of Velikhov (1959) in the unbounded plasma
limit (most of Velikhov’s analysis is for plasma bounded by two rotating cylindrical
surfaces). Unlike Velikhov, we allow compressibility and radial density variation. To
make further connections to the insightful astrophysical work of Balbus & Hawley
(1991) we retain compressibility and density gradient effects when the rotation is
not strictly Keplerian as both impact the stability threshold. Moreover, we also
apply our stability results to the self-consistent magnetized gravitational equilibrium
recently found by Catto et al. (2015) In this case we account for the thinness of the
self-consistent plasma disk width when β � 1. In § 7 and the appendix we consider
the stability of arbitrary β non-axial, magnetic field equilibria.

2. Equilibrium
We consider the stability of a hot, axisymmetric magnetized plasma rotating

toroidally in a gravitational field. We assume the unperturbed axisymmetric magnetic
field, B0, has no toroidal component so we can write

B0 =∇ψ0 ×∇ζ , (2.1)

where ζ is the toroidal angle and ψ0 is the unperturbed poloidal flux function. The
unperturbed velocity V0 must be toroidal to satisfy the constraints (B0 · ∇V0 ·B0 = 0
and B0 · ∇T0 = 0) imposed on a drifting Maxwellian solution in an axisymmetric
system by the gyro-averaged kinetic equation in the presence of Coulomb collisions
(Hinton & Wong 1985; Catto et al. 1987; Helander 2014):

V0 =ΩR2
∇ζ , (2.2)

where the toroidal rotation frequency Ω is related to the electrostatic potential Φ0 by
Ω = c dΦ0/dψ0 with the electric field given by E0 =−∇Φ0 =−∇ψ0 dΦ0/dψ0, R the
cylindrical radius from the axis of symmetry and c the speed of light. We have used
c∇Φ0 = V0 × B0 and Bo · ∇Φ0 = 0 to find that the electrostatic potential Φ0, and
therefore Ω , must be a flux function to lowest order. The ideal gas relation between
the total unperturbed pressure p0 and the ion density n0, p0 = n0(T0i + ZT0e)= 2n0T0,
defines the effective temperature T0, with T0i and T0e the unperturbed ion and electron
temperatures.

We write the gravitational potential G as

G=−G0M0/r, (2.3)

with G0 the gravitational constant, r the spherical radius and M0 the mass of the
astrophysical body that is assumed to be a massive localized source centred at r= 0,
such that R = r sin ϑ with ϑ the angle from the axis of symmetry. We define our
spherical and cylindrical coordinates to satisfy r∇ϑ =R∇ζ ×∇r and ∇z=R∇R×∇ζ .
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The hot magnetized plasma must adjust its flux surfaces to satisfy Ampere’s law
and total momentum balance under the influence of the attractive force of gravity and
the outward centrifugal and plasma pressure forces:

c−1J0 ×B0 =∇p0 +Mn0(∇G+V0 · ∇V0)=Mn0(∇G−Ω2R∇R)+∇(2n0T0), (2.4)

where M is the mass of the plasma ions and the plasma is quasi-neutral (Zn0= n0e=

electron density, with Z the charge number of the ions). Importantly, the density must
satisfy total parallel momentum balance

B0 · ∇[2G−Ω2R2
+ (4T0/M)`n(n0/η0)] = 0, (2.5)

with both T0 and the unperturbed normalizing density η0 (which we refer to as the
psuedo-density to distinguish it from n0) flux functions,

B0 · ∇T0 = 0=B0 · ∇η0, (2.6)

and `n the natural logarithm. The density and pseudo-density are related by a
poloidally varying Maxwell–Boltzmann exponential factor κ0 that conveniently
accounts for the mismatch between the centrifugal and gravitational potentials

n0 = n0(ψ, ϑ)= η0(ψ)eκ0(ψ,ϑ). (2.7)

The parallel momentum constraint determines κ0 within a flux function that can be set
to zero by absorbing it into the pseudo-density η0. As a result, (2.5) and (2.7) yield

(4T0/M)κ0 =Ω
2R2
− 2G, (2.8)

showing that the flux surfaces and poloidal variation of the density in the plasma
pressure must adjust to maintain parallel force balance between the inward central
gravitational force and the outward cylindrical rotation.

The preceding constraints differ from a true hydrodynamic equilibrium. For a
drifting Maxwellian to satisfy the Boltzmann equation, constant T0, Ω and η0 are
required in the Maxwell–Boltzmann density relation n0=η0 exp[(M/2T0)(Ω

2R2
−2G)].

If we allow Ω = Ω(R), using ∇ × ∇G = 0 in the momentum conservation,
n−1

0 ∇p0 = M(∇G − Ω2R∇R), gives ∇n0 × ∇T0 = 0. However, we desire a solution
with n0 = n0(R, z), so we need to keep T0 constant. Keeping η0 constant, then
n0 = η0 exp[(M/T0)(

∫
dRΩ2R− G)]. Then f or example, angular momentum can be

preserved by assuming constant ΩR2, to obtain n0 = η0 exp[−(M/2T0)(Ω
2R2
+ 2G)].

Perhaps, more interestingly, assuming Ω2R3
=MM0G0 and defining 2g=MM0G0/T0R0,

with R0 an arbitrary equatorial plane reference location, gives n0=η0 exp{−2g[(R0/R)−
(R0/r)]}, with r > R so that n0/η0 < 1. Notice that n0(r = R) = η0 is the density at
the equatorial plane, and that for g� 1 a thin plasma disk occurs.

The ∇ψ0 and ∇r components of Ampere’s law, c∇ × B0 = 4πJ0, require
J0 · ∇ψ0 = 0 and J0 · ∇r = 0 giving J0 · B0 = 0. As a result, there is unperturbed
current only in the toroidal direction

J0 = J0R∇ζ = (cMn0/B2
0)∇ψ0 · [(2/Mn0)∇(n0T0)+∇G−Ω2R∇R]∇ζ . (2.9)

The toroidal component of Ampere’s law gives the Grad–Shafranov equation,

∇ · (R−2
∇ψ0)=−(4πMn0/R2B2

0)∇ψ0 · [(1/Mn0)∇p0 +∇G−Ω2R∇R] =−4πJ0/cR,
(2.10)

that must be solved to find the equilibrium flux surfaces.
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3. Linearized equations
Linear stability is normally examined by perturbing about a presumed equilibrium

to find the conditions for instability. However, a self-consistent equilibrium normally
imposes additional constraints that can determine whether these unstable conditions
are accessible. Consequently, the actual stability of a system can only be determined
for a fully self-consistent equilibrium. Said another way, we want to avoid instability
being an artefact of perturbing around a state that has not fully relaxed to a
self-consistent magnetized equilibrium. Consequently, we perturb about an equilibrium
satisfying (2.5) and (2.10)

We investigate the stability of our axisymmetric equilibrium to axisymmetric ideal
MHD perturbations with adiabatic index γ = 5/3. We denote linearized quantities by
a subscript ‘1’ except for Bζ , the toroidal component of the perturbed magnetic field
B1, and the displacement vector ξ , which is related to the perturbed velocity V1 by

∂ξ/∂t=V1. (3.1)

The total (unperturbed plus perturbed) conservation of number and energy equations,

∂n /∂t+∇ · (nV)= 0 and ∂p/∂t+V · ∇p+ γ p∇ ·V = 0, (3.2a,b)

are then conveniently used to obtain the perturbed density and pressure, n1 and p1, as

n1 +∇ · (n0ξ)= 0 and p1 + ξ · ∇p0 + γ p0∇ · ξ = 0, (3.3a,b)

since ∇ · V0 = 0 = ∇ · (n1V0) = V0 · ∇p1. The unperturbed particle and energy
conservation equations are satisfied by the unperturbed flow so there is no need
to assume an unperturbed adiabatic or polytropic relation between the unperturbed
density and pressure. If n1 and p1 are combined to eliminate ∇ · ξ the result is the
entropy constraint,

n0(p1 + ξ · ∇p0)= γ p0(n1 + ξ · ∇n0), (3.4)

which differs in form from Balbus & Hawley (1991) who are missing the perturbed
pressure term in their equations (2.2h) and (2.3a). They also employ incompressibility
by using their equation (2.3c).

We desire to find a set of three equations in which only the three components of
the displacement enter, as in ideal MHD without an unperturbed flow. To begin, we
consider Faraday’s law for ideal MHD, ∂B/∂t=−c∇×E=∇× (V×B). Linearization
gives the equation for the perturbed magnetic field B1 to be

∂B1/∂t=∇× [(∂ξ/∂t) ×B0 +ΩR2
∇ζ ×B1]. (3.5)

The ∇ζ component of (3.5) gives the equation for Bζ ≡ RB1 · ∇ζ to be

∂Bζ/∂t= RB0 · ∇(R−1∂ξζ/∂t)+ RB1 · ∇Ω, (3.6)

where ξζ ≡Rξ ·∇ζ , and we have used∇·B0= 0=∇·B1= 0=∇·V0= 0=V0 ·∇(B1 ·∇ζ ).
For the poloidal components of Faraday’s law we use (3.5) to form the equation for
B1 · ∇Q, where Q is an arbitrary axisymmetric scalar function so that ∇ζ · ∇Q= 0.
Taking advantage of axisymmetry Faraday’s law gives the simple result

B1 · ∇Q=B0 · ∇(ξ · ∇Q)−∇ · (ξB0 · ∇Q). (3.7)
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Using Q = ψ0, the preceding gives B1 · ∇ψ0 = B0 · ∇(ξ · ∇ψ0). Axisymmetry and
∇ ·B1 = 0 mean we can write

B1 = RBζ∇ζ +∇ψ1 ×∇ζ , (3.8)

with ψ1 the perturbed flux function defined so that B1 · ∇ψ0 + B0 · ∇ψ1 = 0.
Consequently, ψ1 =−ξ · ∇ψ0 and we may write

B1 = RBζ∇ζ +∇ζ ×∇(ξ · ∇ψ0). (3.9)

Then we can form R2∇ζ ×B1 =−∇(ξ · ∇ψ0) and

∂Bζ/∂t= RB0 · ∇(ξ · ∇Ω + R−1∂ξζ/∂t). (3.10)

Finally, we turn our attention to the linearization of the momentum conservation
equation,

cMn(∂V/∂t+V · ∇V +∇G)+ c∇p= J×B. (3.11)

To carry out the linearization we use

(∇×B1)×B0 =∇ψ0∇ · (B1 ×∇ζ )−∇ζ∇ · (B1 ×∇ψ0)

= ∇ψ0∇ · [R−2
∇(ξ · ∇ψ0)] +∇ζB0 · ∇(RBζ ), (3.12)

J0 ×B1 = J0R∇ζ × [∇ζ ×∇(ξ · ∇ψ0)] =−R−1J0∇(ξ · ∇ψ0), (3.13)
R∇∇ζ =−∇ζ∇R−∇R∇ζ , (3.14)

and
V0 · ∇V0 =−Ω

2R∇R, (3.15)

as well as axisymmetry. We obtain

∂2ξ

∂t2
+ΩR2

∇ζ · ∇
∂ξ

∂t
+
∂ξ

∂t
· [∇(ΩR2)∇ζ −ΩR(∇ζ∇R + ∇R∇ζ )]

−
n1

n0

(
Ω2R∇R −

M0G0

r2
∇r
)
=−
∇p1

Mn0
−

J0∇(ξ · ∇ψ0)

cMn0R

+
∇ψ0∇ · (R−2ξ · ∇ψ0)+∇ζB0 · ∇(RBζ )

4πMn0
. (3.16)

Recalling (3.3) and (3.10) we see that a time derivative of (3.16) will result in an
equation in which only the three components of the displacement enter.

The preceding observation leads us to taking a time derivative of the ∇ζ component
of (3.16) and inserting (3.10) yields a form in which only the displacement enters

R∂3ξζ/∂t3
+∇(ΩR2) · ∂2ξ/∂t2

= (4πMn0)
−1B0 · ∇[R2B0 · ∇(ξ · ∇Ω + R−1∂ξζ/∂t)].

(3.17)
Using parallel and radial pressure balance allows us to rewrite equation (3.16) and

then dot it by B0 to obtain a second component, namely[
∂2ξ

∂t2
− 2

∂ξζ

∂t
Ω∇R−

n1

n0

∇p0

Mn0
+
∇p1

Mn0

]
·B0 =

∇ · (R−2∇ψ0)

4πMn0
B0 · ∇(ξ · ∇ψ0), (3.18)

https://doi.org/10.1017/S0022377816000854 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000854


Magnetorotational instability 7

where using that the unperturbed current density is azimuthal we find ∇B0 · ∇ζ =
∇ζ · ∇B0, giving

∇ζ · ∇U ·B0=−∇ζ · ∇B0 ·U=−U · ∇B0 · ∇ζ =U · ∇∇ζ ·B0=−R−1U · ∇ζB0 · ∇R,
(3.19)

with U an arbitrary vector.
For the final component we use 0 = ∇ζ × (∇ × ∇Q) = ∇∇Q · ∇ζ − ∇ζ · ∇∇Q

to form the ∇Q component of the momentum equation by noting that ∇ζ · ∇∇Q=
R−1∇ζ ∇R · ∇Q. The result is[

∂2ξ

∂t2
− 2

∂ξζ

∂t
Ω∇R−

n1

n0

(
Ω2R∇R−

M0G0

r2
∇r
)
+
∇p1

Mn0

]
· ∇Q

=−
J0∇Q · ∇(ξ · ∇ψ0)

cMn0R
+
∇ψ0 · ∇Q

4πMn0
∇ · [R−2

∇(ξ · ∇ψ0)]. (3.20)

Equations (3.17), (3.18) and (3.20) are the key equations we will make use of to
obtain our stability condition. It has only been necessary to take the extra time
derivative when forming (3.17).

Only the displacement enters in equations (3.18) and (3.20), since n1 and p1
are known in terms of ξ . Equations (3.16)–(3.20), with (3.3) inserted, are the key
equations for the three displacement components from the momentum equation. They
are given in vector forms to allow us to work in any axisymmetric coordinate system
we desire.

4. Cylindrically symmetric magnetic field in the absence of gravity (G= 0)

To illustrate the subtleties of retaining compressibility and unperturbed radial
variation in a self-consistent equilibrium it is informative to first consider the simplest
limit of rotation in an axial magnetic field without gravity (G= 0) or any unperturbed
axial variation. In this limit the equilibrium magnetic field B0 is axial and of the
form

B0 = B0(R)∇z, (4.1)

with ψ0 = ψ0(R) and RB0 = dψ0/dR. In this cylindrical geometry limit J0 × B0 =

J0B0∇R so equilibrium pressure balance has only the ∇R component

c−1J0B0 = ∂p0/∂R−Mn0RΩ2
=−(8π)−1∂B2

0/∂R, (4.2)

and T0, p0 and n0 depend only on R since the equilibrium has no axial variation.
Defining the Alfvén speed by

v2
A = B2

0/4πMn0, (4.3)

the equation for (3.17) becomes

∂3ξζ/∂t3
+ [R−1 d(ΩR2)/dR] ∂2ξR/∂t2

= v2
A(∂

2/∂z2)[ξRR(dΩ/dR)+ (∂ξζ/∂t)], (4.4)

where we now write the displacement as ξ = ξR∇R + ξz∇z + ξζR∇ζ . We may use
Ω =Ω(R) because Ω =Ω(ψ0).

To get the remaining components we use the parallel or Q = z form of (3.20) to
find the ξz equation and then insert p1 and use unperturbed pressure balance to find

∂2ξz

∂t2
=

[
RΩ2 ∂ξR

∂z
+ c2

S
∂

∂z
(∇ · ξ)

]
, (4.5)
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where

c2
S = γ p0/Mn0, (4.6)
β = 8πp0/B2

0, (4.7)

and
γβ = 2c2

S/v
2
A. (4.8)

The last equation for ξR follows by using Q= R in (3.20) and then substituting in n1
and p1 from (3.3) to obtain

∂2ξR

∂t2
− 2Ω

∂ξζ

∂t
+ RΩ2 ∂ξz

∂z
− RξR

∂Ω2

∂R

=
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
+ v2

A
∂2ξR

∂z2
+
γ

n0

∂

∂R

(p0

M
∇ · ξ

)
, (4.9)

where we eliminate ∂p0/∂R by using unperturbed pressure balance.
The preceding two equations (4.5) and (4.9), along with (4.4) for ξζ are the general

set of equations for a cylindrically symmetric magnetic field configuration with no
axial variation in the absence of gravity. The final forms of the equations for ξR and
ξz allow us to be sure that we are carefully treating all terms in n1 and p1.

To simplify the description we Fourier transform in z and seek solutions harmonic
in time by assuming

ξ ∝ e−iωt+ikzz. (4.10)
We obtain the three equations for the three components of the displacement

iω(ω2
− k2

zv
2
A)ξζ = ξR[ω

2R−1 d(ΩR2)/dR− k2
zv

2
AR dΩ/dR], (4.11)

(ω2
− k2

z c2
S)ξz =−ikz

[
RΩ2ξR +

c2
S

R
∂

∂R
(RξR)

]
, (4.12)

and (
ω2
− k2

zv
2
A + R

∂Ω2

∂R

)
ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ + ikz

[
RΩ2ξz −

1
n0

∂

∂R
(n0c2

Sξz)

]
. (4.13)

First, eliminating ξz by substituting (4.12) into (4.13) gives(
ω2
− k2

zv
2
A + R

∂Ω2

∂R

)
ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ +

k2
z

n0c2
S

(
RΩ2
− c2

S
∂

∂R

){
n0c2

S

(ω2 − k2
z c2

S)

[
RΩ2ξR +

c2
S

R
∂

∂R
(RξR)

]}
.

(4.14)

Then eliminating ξζ from the preceding by using (4.11) gives the full radial
differential equation for ξR to be[

ω2
− k2

zv
2
A −

R
n0

∂(n0Ω
2)

∂R
−

4ω2Ω2

(ω2 − k2
zv

2
A)

]
ξR +

v2
A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
=

k2
z R2Ω4ξR

(ω2 − k2
z c2

S)
−
ω2RξR

n0

∂

∂R

[
n0Ω

2

(ω2 − k2
z c2

S)

]
−
ω2

n0

∂

∂R

[
n0c2

SR−1∂(RξR)/∂R
(ω2 − k2

z c2
S)

]
, (4.15)
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where we have combined the n0c2
S∂(RξR)/∂R terms to exactly cancel some first

derivatives of RξR terms. Equation (4.15) is the generalization of the radial
differential form of Velikhov (1959) to retain compressibility. Its solution for a
self-consistent equilibrium with the appropriate boundary conditions will give the
exact eigenfrequencies, eigenfunctions and stability threshold condition. To retain
Alfvén and sound waves and their coupling it allows k2

z c2
S∼Ω

2
∼ k2

zv
2
A &ω

2, k2
z R2
∼ 1,

and ∂/∂R ∼ 1/R. These orderings will be further verified shortly when we consider
the integral constraint associated with the self-adjoint form (4.15).

To perform a Wentzel–Kramers–Brillouin (WKB) analysis we must assume

Rξ−1
R ∂ξR/∂R� Rn−1

0 ∂n0/∂R∼ Rp−1
0 ∂p0/∂R∼ RΩ−1∂Ω/∂R∼ 1, (4.16)

so that k2
RR2
� 1, where ξR ∝ ei

∫
dR kR . To allow k2

z R2 & 1 and correctly treat marginal
stability, we order

k2
z c2

S ∼ R2Ω4/c2
S ∼Ω

2
∼ k2

Rv
2
A & k2

zv
2
A &ω

2 (4.17)

and thereby assume β� 1. The geometric optics dispersion relation allowing k2
R & k2

z
is then

k2v2
A +

4ω2Ω2

(ω2 − k2
zv

2
A)
−

k2
z R2Ω4

+ω2k2
Rc2

S

k2
z c2

S
+

R
n0

∂

∂R
(n0Ω

2)= 0, (4.18)

where k2
= k2

z + k2
R. All terms in (4.18) are allowed to be the same order. Notice that

at marginality (ω2
→ 0) equation (4.18) recovers a radial density gradient term as well

as the usual rotation frequency gradient

k2v2
A

Ω2
<

R2Ω2

c2
S
−

R
n0Ω2

∂(n0Ω
2)

∂R
. (4.19)

Marginal stability is most easily determined graphically from (4.18) by examining the
behaviour near ω2

= 0. The instability window for this new result is larger than if we
had assumed strict incompressibility (c2

S→∞). Also, (4.19) does not assume constant
n0 as in Velikhov (1959) or Ω2

∝ R−3.
In the hydrodynamic limit (v2

A ≡ 0), WKB still requires kRR� 1, but in (4.15) we
can allow c2

S/R
2
∼ k2

z c2
S∼Ω

2
∼R2Ω4/c2

S &ω
2 to find ω2k2k−2

z =R−3n−1
0 ∂(n0Ω

2R4)/∂R−
R2Ω4/ c2

S when ω2
� k2

z c2
S. For a hydrodynamic equilibrium at constant Ω , T0 and η0

stability is assured. In fact, for Ω =Ω(R) and constant T0 and η0, an inviscid Couette
flow instability requires −RΩ−2∂Ω2/∂R> 4+ (γ − 1)MΩ2R2/γT0, since in the fluid
limit c2

S→ γT0/M and γ → 5/3.
The preceding results are consistent with the following integral constraint obtained

by multiplying (4.15) by n0Rξ ∗R :∫
∞

0
dR n0|ξ

2
R|

{
ω2
− k2

zv
2
A −

R
n0

∂(n0Ω
2)

∂R
−

4ω2Ω2

(ω2 − k2
zv

2
A)

−
k2

z R2Ω4

(ω2 − k2
z c2

S)
+

k2
z R
n0

∂

∂R

[
n0Ω

2c2
S

(ω2 − k2
z c2

S)

]}
=

∫
∞

0
dR

n0

R

[
v2

A +
ω2c2

S

(ω2 − k2
z c2

S)

] ∣∣∣∣ ∂∂R
(RξR)

∣∣∣∣2 , (4.20)
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where ξ ∗R is the complex conjugate of ξR and we assume the total derivative terms
vanish at R= 0 and infinity. At marginality this gives the threshold constraint∫

∞

0
dR n0

{
R
∣∣ξ 2

R

∣∣ [k2
zv

2
A +

R
n0

∂(n0Ω
2)

∂R
−

R2Ω4

c2
S

]
−
v2

A

R

∣∣∣∣ ∂∂R
(RξR)

∣∣∣∣2
}
= 0. (4.21)

These integral constraints are consistent with the WKB dispersion relation, stability
threshold condition, and our orderings, and remain valid even when geometric
optics fails for β . 1 so that the full differential equation (4.15) must be solved.
Indeed, (4.21) indicates there are no other unstable modes besides the MRI. At
marginality (4.15) becomes[

R2Ω4

c2
S
−

R
n0

∂(n0Ω
2)

∂R
− k2

zv
2
A

]
ξR +

v2
A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 0, (4.22)

which is consistent with our WKB treatment. We can see from (4.20) to (4.22) that we
need to order k2

z c2
S ∼ R2Ω4/c2

S ∼Ω
2
∼ k2

Rv
2
A & k2

zv
2
A & ω2 for β � 1. These orderings

based on the cylindrical limit provide much of the basis for the orderings in limits
with gravity.

The Velikhov (1959) condition for marginality (ω→ 0) is obtained from

iωξζ = ξRR dΩ/dR, (4.23)

kzc2
Sξz = i

[
RΩ2ξR +

c2
S

R
∂

∂R
(RξR)

]
, (4.24)

and

R
∂Ω2

∂R
ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ + ikz

[
RΩ2ξz −

1
n0

∂

∂R
(n0c2

Sξz)

]
. (4.25)

Inserting (4.23) into (4.25) leaves (4.24) and the radial momentum balance equation

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= ikz

[
RΩ2ξz −

1
n0

∂

∂R
(n0c2

Sξz)

]
. (4.26)

Then eliminating ξz by inserting (4.24) into (4.26) yields (4.19). To recover the
incompressible limit we see that a careful treatment of the c2

S→∞ terms is required.

4.1. Self-consistent equilibrium for an axial magnetic field without gravity
For the exact self-similar equilibrium solution of Catto & Krasheninnikov (2015)

ψ0 =CH(µ)/rα, (4.27)

where µ= cos ϑ, C is a constant and α is an eigenvalue determined by solving the
nonlinear Grad–Shafranov equation for H. The density, temperature and rotation are of
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the form n0∝R−2α−3, T0∝R−1 and Ω ∝R−3/2, and the solution of the Grad–Shafranov
equation requires α to satisfy

α + 2=−γΩ2R2/(2c2
S + γ v

2
A). (4.28)

For α+ 2< 0 the axial magnetic field of this equilibrium model increases away from
the axis of symmetry for instability. Using the preceding gives

−
R

n0Ω2

∂(n0Ω
2)

∂R
= 2(α + 3)= 2−

2γΩ2R2

2c2
S + γ v

2
A
. (4.29)

Then for β � 1, inserting (4.29) our condition for instability for this self-consistent
equilibrium becomes

1>
Ω2R2

3c2
S
+

k2v2
A

2Ω2
=

2Ω2R2

3γβv2
A
+

k2R2v2
A

2Ω2R2
, (4.30)

where we must keep k2
RR2
� 1 to satisfy our geometric optics treatment in the radial

direction. Therefore, compressibility stabilizes the MRI for all wavelengths when
γβ > 2Ω2R2/3v2

A � 1. Also, density variation is stabilizing since it results in the
standard Balbus & Hawley (1991) result k2v2

A/3Ω
2 being replaced by k2v2

A/2Ω
2. It

is interesting to notice that the compressibility effects hidden in the self-consistent
variation of nΩ2 from (4.29) give rise to an implicit stabilizing compressibility effect
larger than the explicit destabilizing one in (4.19).

Our incompressible condition for instability 2Ω2 > k2v2
A is consistent with the

findings of Velikhov (1959) who worked in the β� 1 limit by assuming ∇ · ξ = 0 so
that c2

S→∞. In the absence of an azimuthal unperturbed magnetic field he considered
the full radial eigenvalue problem. However, he only mentions in passing ‘the flow
near a cylinder rotating in an unbounded medium’ as his work focused on plasma
being driven unstable between two concentric rotating cylinders. In the unbounded
limit Velikhov’s quasi-classical calculation for a radial mode number of 10 at the end
of his section 2 estimated magnetic fields B0 < (4πMn0)

1/2ΩR/18 as being unstable
– a condition in rough agreement with our result of 2Ω2 > k2

Rv
2
A for kRR= 10 when

3c2
S�Ω2R2.

5. Axial magnetic field with gravity and strict Keplerian rotation
In this strict Keplerian limit in which the equilibrium magnetic field B0 is axial

and any unperturbed axial variation caused by the imbalance of the centrifugal and
gravitational forces ignored, the calculation of the previous section can be repeated
by keeping gravity in the radial and axial pressure balance conditions. We order
c2

S ∼ Ω
2R2 so that we can consider the thin disk limit c2

S � Ω2R2, as well as the
extended, non-disk global equilibrium that exist more generally (Catto et al. 2015).

We first obtain the equations for general Keplerian rotation by letting Ω2
→Ω2

−

M0G0r−3 in (4.12) and (4.13) except in the 2iωΩξζ term in (4.13). No changes are
needed in (4.11). The equations for the components of the displacement then become

iω(ω2
− k2

zv
2
A)ξζ = [(ω

2
− k2

zv
2
A)R dΩ/dR+ 2ω2Ω]ξR, (5.1)

(ω2
− k2

z c2
S)ξz =−

ikzc2
S

R
∂

∂R
(RξR)− ikzR(Ω2

−M0G0r−3)ξR, (5.2)
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and

(ω2
− k2

zv
2
A) ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ −

ikz

n0

∂

∂R
(n0c2

Sξz)+ ikzR(Ω2
−M0G0r−3)ξz − ξRR

∂

∂R
(Ω2
−M0G0r−3).

(5.3)

Next we assume strict Keplerian rotation by using Ω2
=M0G0r−3 in (5.2) and (5.3).

Again, eliminating ξz first gives

(ω2
− k2

zv
2
A)ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ −

k2
z

n0

∂

∂R

[
n0c4

S

(ω2 − k2
z c2

S)R
∂

∂R
(RξR)

]
. (5.4)

Then, eliminating ξζ gives the radial eigenvalue equation[
ω2
− k2

zv
2
A −

4ω2Ω2

(ω2 − k2
zv

2
A)
− R

∂Ω2

∂R

]
ξR

+
ω2

n0

∂

∂R

[
n0c2

S

(ω2 − k2
z c2

S)R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 0. (5.5)

Solving by geometric optics (k2
RR2
� 1) the dispersion relation that results is

k2v2
A + R

∂Ω2

∂R
+

4ω2Ω2

(ω2 − k2
zv

2
A)
−
ω2k2

R

k2
z

= 0, (5.6)

where k2
= k2

z + k2
R. We allow k2

z c2
S ∼ R2Ω4/c2

S ∼Ω
2
∼ k2

Rv
2
A & k2

zv
2
A &ω

2 and k2
z R2 & 1,

and note that β � 1. Graphically, (5.6) gives magnetorotational (or equivalently,
magnetogravitational) instability to be the standard result of Balbus & Hawley (1991),

k2v2
A

Ω2
<−

R
Ω2

∂Ω2

∂R
, (5.7)

where for Keplerian rotation −RΩ−2∂Ω2/∂R = 3. The preceding is in agreement
with Balbus & Hawley (1991) provided their small ∂p0/∂R and ∂p0/∂z terms are
ignored. In Hawley et al. (1995) the entropy equation is corrected to be consistent
with energy conservation (recall our entropy equation after (3.2)). Condition (5.7)
gives the MRI as B0→ 0. Stability may be possible for strong magnetic fields since
k2

RR2 . 1 gives 3Ω2R2/v2
A . 1, implying β . 2c2

S/3γΩ
2R2
∼ 1 for our c2

S ∼ Ω
2R2

ordering. Interestingly, in the hydrodynamic limit (v2
A≡ 0) if ω2

� k2
z c2

S, (5.4) reduces
to ω2k2k−2

z = R−3∂(Ω2R4)/∂R.
This strict Keplerian case is the one that the insightful physical interpretation by

Balbus (2006) of masses attached by springs is most appropriate. The bare bones strict
Keplerian WKB treatment reduces (5.1)–(5.3) to

iω(ω2
− k2

zv
2
A)ξζ = [(ω

2
− k2

zv
2
A)R dΩ/dR+ 2ω2Ω]ξR, (5.8)

(ω2
− k2

z c2
S)ξz =−

ikzc2
S

R
∂

∂R
(RξR), (5.9)
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and

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ −

ikz

n0

∂

∂R
(n0c2

Sξz), (5.10)

from which we obtain

v2
A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
=

[
R
∂Ω2

∂R
+

4ω2Ω2

(ω2 − k2
zv

2
A)

]
ξR −

ω2

n0

∂

∂R

[
n0c2

S

(ω2 − k2
z c2

S)R
∂

∂R
(RξR)

]
,

(5.11)
where we can now use k2

z c2
S�ω2 to further simplify the last term to obtain (5.6). If

we simply want to get the MRI threshold (ω→ 0) we may assume incompressibility
in (5.9) to remove the c2

S terms in (5.10) to obtain

iωξζ = ξRR dΩ/dR (5.12)

and
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ . (5.13)

The only non-Alfvénic term is from the inertial term 2iωΩξζ in (5.13) since (5.12) is
from the right side of (3.17). The simple toroidal momentum conservation equation
of (5.12) is recovered from the vanishing of the toroidal component of the perturbed
magnetic field for a frozen-in flow, (3.6), or equivalently, the vanishing of the
perturbed radial current density, ∇ · (B1 × ∇ψ0) = 0. Equation (5.13) is radial
momentum balance between the inertial term and J×B force to lowest order:

Mn0(V1 · ∇V0+V0 · ∇V1) · ∇ψ0' [c−1J0×B1+ (4π)−1(∇×B1)×B0] · ∇ψ0. (5.14)

Equations (5.12) and (5.13) are the ones for which the Balbus (2006) physical
interpretation is valid. For a marginally unstable mode ω → i Imω with Imω > 0
we see from (5.12) that ξζ → 3ΩξR/2 Imω, where Im denotes the imaginary part.
Using ∂2ξR/∂R2

→−k2
RξR in (5.13) gives ξR → 2Ωξζ Imω/k2

Rv
2
A, where the signs of

two displacements ξR and ξζ are seen to be the same. Therefore, two incremental
axisymmetric toroidal mass rings stacked one above the other with oppositely directed
initial radial displacements rotate toroidally in opposite directions and continue to
separate radially due to the MRI. Noticing ξζ Imω → −R∇ζ · V1, the upper mass
ring with an initial radial perturbation ξR > 0 slows (ξζ > 0) when moved outward,
thereby decreasing its angular rotation frequency (Ω ∝ R−3/2) and increasing its
angular momentum (ΩR2

∝ R1/2). Similarly, the initial ξR < 0 radial perturbation of
the lower mass ring increases its angular rotation frequency (ξζ < 0) as it moves
inward, causing its angular momentum to drop. In the unstable limit, the tension
of the frozen-in magnetic field lines resists any decrease (or increase) in angular
rotation frequency of the upper (lower) ring by a positive (negative) torque that
increases its angular momentum, thereby moving the ring to still larger (smaller) R
and further lowering (raising) its angular frequency. As a result, the upper mass ring
continues to move to a larger radius, thereby lowering its angular frequency, while
the lower mass ring moves to smaller radii in an attempt to gain angular frequency.
The presence of a magnetic field importantly changes the azimuthal component (3.17)
of the conservation of angular momentum equation. In the absence of a magnetic
field only the left side of (3.17) enters and acts to try to keep the angular momentum
ΩR2 constant. If a magnetic field is present then field line bending dominates at
marginality and tries to keep the angular frequency Ω fixed.

https://doi.org/10.1017/S0022377816000854 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000854


14 P. J. Catto and S. I. Krasheninnikov

5.1. Self-consistent strict Keplerian equilibrium for an axial magnetic field
In the strict Keplerian limit, Catto et al. (2015) obtain β > 1 analytic and numerical
results with the equatorial plane plasma density increasing linearly with R for a thin
equatorial plane disk when MΩ2R2/4T=M0G0M/4TR�1. In this case the disk width
∆ is given by ∆/R= 2T1/2/M1/2ΩR� 1. Perturbation wavelengths in the z direction
are limited to the disk width and therefore must satisfy kz∆> 2π, while our eikonal
treatment requires k2

RR2
� 1. Assuming k2

R> k2
z in the condition for instability requires

3γβΩ2R2/2c2
S > k2

RR2 > k2
z R2 > 4π2R2/∆2

= 2π2γΩ2R2/c2
S or

β > 4π2/3. (5.15)

Therefore, the high β ordering is appropriate with large β needed for instability
as might be expected. Moreover, thin disk equilibria exist for the self-similar
equilibria of Catto et al. (2015) in the strict Keplerian limit when H ' (1− µ2)−α/3

inside the thin disk, transitions to H ' (1 − µ2)−α/2 outside the disk and α ≈ −2.
Global extended or non-disk strict Keplerian self-similar solutions are found when
MΩ2R2/4T =M0G0M/4TR . 1.

The preceding treatment might be viewed as somewhat unsatisfactory since we seem
to have assumed Ω2

= M0G0r−3 for all z. To counter the imbalance between the
centrifugal and gravitational forces the density must depend on z and satisfy parallel
pressure balance. Consequently, in the next section we justify the preceding limit by
extending the analysis of (5.1)–(5.3) to a fully self-consistent configuration allowing
z variation without assuming strict Keplerian rotation.

6. Axial magnetic field with gravity for general rotation
When the equilibrium magnetic field is axial as in (4.1) and unperturbed axial

variation of the plasma density retained, the calculation of the previous sections can
be repeated for general Keplerian motion by using a geometric optics approach in the
z direction that seeks solutions of the form ξ ∝ e−iωt+ikzz. The equations obtained are
identical to (5.1)–(5.3) which retain gravity in the radial and axial pressure balance
conditions. Parallel momentum balance accounts for the difference between Ω2R2 and
M0G0/r and results in the unperturbed pressure gradient term in (3.18). The axial
eikonal treatment then requires n1B0 · ∇p0� n0B0 · ∇p1 or kz∆� 1, with ∆ the disk
thickness.

For the general Keplerian case self-similar solutions are found to exist when Ω2R2 >
M0G0/R in the equatorial plane, but not for Ω2R2 <M0G0/R as gravity is so strong
it cannot be balanced by the centrifugal force. In this general Keplerian limit thin
disk equilibria require M0G0M /4TR � 1, but when Ω2R2 > M0G0/R the Maxwell–
Boltzmann behaviour of the density as given by (2.7) only seems to allow thin disks
with β � 1 in the strict Keplerian limit Ω2R2

= M0G0/R (Catto et al. 2015). We
continue to order c2

S ∼Ω
2R2 to be able to treat the thin disks of the strict Keplerian

limit as well as the global solutions of more general Keplerian motion.
Eliminating ξz by inserting (5.2) into (5.3) gives[

ω2
− k2

zv
2
A + R

∂

∂R

(
Ω2
−

M0G0

r3

)]
ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ +

1
n0

[
R
c2

S

(
Ω2
−

M0G0

r3

)
−
∂

∂R

]
×

{
n0k2

z c2
S

(ω2 − k2
z c2

S)

[
R
(
Ω2
−

M0G0

r3

)
ξR +

c2
S

R
∂

∂R
(RξR)

]}
. (6.1)
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Then using (5.1) to eliminate ξζ from (6.1) gives the radial differential equation[
ω2
− k2

zv
2
A − R

∂

∂R

(
M0G0

r3

)]
ξR +

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
=

4ω2Ω2ξR

(ω2 − k2
zv

2
A)
+

1
n0

[
R
c2

S

(
Ω2
−

M0G0

r3

)
−
∂

∂R

]
×

{
n0k2

z c2
S

(ω2 − k2
z c2

S)

[
R
(
Ω2
−

M0G0

r3

)
ξR +

c2
S

R
∂

∂R
(RξR)

]}
. (6.2)

Equation (6.2) is the radial differential equation for general rotation in an axial
magnetic field for the MRI instability when an axial eikonal treatment is employed.

We seek a WKB, geometric optics or eikonal radial solution by using ξR ∝ ei
∫

kR dR

and ∂ξR/∂R= ikRξR with

kRR∼ Rξ−1
R ∂ξR/∂R� Rn−1

0 ∂n0/∂R∼ Rp−1
0 ∂p0/∂R∼ RΩ−1∂Ω/∂R∼ 1, (6.3)

by allowing

k2
z c2

S ∼ R2Ω4/c2
S ∼Ω

2
∼M0G0r−3

∼ k2
Rv

2
A & k2

zv
2
A &ω

2, (6.4)

k2
z R2 & 1 and β� 1. From (6.2) we obtain the dispersion relation

k2v2
A + R

∂

∂R

(
M0G0

r3

)
+

4ω2Ω2

(ω2 − k2
zv

2
A)
−
ω2k2

R

k2
z

−
R2(Ω2

−M0G0r−3)2

c2
S

+
R
n0

∂

∂R
[n0(Ω

2
−M0G0r−3)] = 0, (6.5)

where k2
= k2

z + k2
R. Graphically, the behaviour near ω2

= 0 gives gravitational
magnetorotational instability when

k2v2
A + R

∂Ω2

∂R
<

R2(M0G0r−3
−Ω2)2

c2
S

+ (M0G0r−3
−Ω2)

R
n0

∂n0

∂R
. (6.6)

Clearly, the preceding reduces to the Velikhov (1959) result (4.18) in the absence
of gravity and the Balbus & Hawley (1991) result (5.7) when Ω2

=M0G0r−3. More
importantly, it is clear that unless the motion is strictly Keplerian, compressibility and
density gradient effects will impact the stability threshold.

For a hydrodynamic equilibrium (v2
A = 0), equation (6.2) yields the dispersion

relation

ω2k2k−2
z = R−3∂(Ω2R4)/∂R− (Ω2

−M0G0r−3)n−1
0 ∂n0/∂R− R2(Ω2

−M0G0r−3)2/c2
S.

(6.7)
For strict Keplerian motion we see that instability occurs whenever angular momentum
decreases with radius.

We can interpret (6.6) by first considering radial force balance for two adjacent,
axisymmetric, incompressible plasma rings ( j = 1, 2) near the equatorial plane with
radius Rj, plasma mass density Mnj = ρj, rotation frequency Ωj and pressure pj:

∂pj/∂R= ρj(Ω
2
j Rj −M0G0/R2

j ). (6.8)
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16 P. J. Catto and S. I. Krasheninnikov

If the first ring is displaced outward to the location of the second ring (R1→R2 >R1
and ρ1 → ρ1), the frozen-in magnetic field lines moves with it. Therefore, the ring
continues to rotate at the original angular frequency Ω1 of these frozen in field lines.
Consequently, the resulting torques due to field line bending act on the first ring to
keep its angular frequency fixed while its fluid element is moved (Ω1 → Ω1), as
pointed out by Velikhov (1959) and Balbus & Hawley (1991). After being displaced
the first ring is acted on by the pressure difference across its new location ∂p2/∂R.
However, force balance is no longer satisfied as a restoring force 1F arises due to
its movement:

1F+ ∂p2/∂R= ρ1(Ω
2
1 R2 −M0G0/R2

2). (6.9)

Subtracting force balance for the initial second ring from the preceding expression
gives

1F = ρ1(Ω
2
1 R2 −M0G0/R2

1)− ρ2(Ω
2
2 R2 −M0G0/R2

2)

= −

[
ρR
∂Ω2

∂R
+
∂ρ

∂R
(Ω2R−M0G0/R2)

]
(R2 − R1). (6.10)

If 1F< 0, then the new plasma pressure difference across the displaced ring returns it
to its original location. If instead, 1F> 0 then the plasma pressure across the ring is
too small to prevent the displaced ring from continuing to move outward. Therefore,
in agreement with (6.6) the incompressible instability condition is

nR
∂Ω2

∂R
+
∂n
∂R
(Ω2R−M0G0/R2) < 0. (6.11)

To get the marginal stability condition in general rotation case we need only
combine the following ω→ 0 versions of (5.1)–(5.3):

iωξζ = ξRR dΩ/dR, (6.12)

ikzξz =−
1
R
∂

∂R
(RξR)− (Ω

2
−M0G0r−3)

RξR

c2
S
, (6.13)

and

1
n0

∂

∂R

[
n0c2

S

R
∂(RξR)

∂R

]
+
v2

A

B2
0

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
= 2iωΩξζ −

ikz

n0

∂

∂R
(n0c2

Sξz)

+ ikzR(Ω2
−M0G0r−3)ξz − ξRR

∂

∂R
(Ω2
−M0G0r−3). (6.14)

Of course these equations are more complicated than (5.12) and (5.13) because
compressibility effects must be retained when Ω2

6=M0G0r−3.

6.1. Self-consistent equilibrium in an axial magnetic field with gravity at β� 1
We consider the limit of the self-consistent equilibrium of Catto et al. (2015) with B0
axial, Ω2

∝ R−3, T0 ∝ R−1 and axial pressure balance in the vicinity of the equatorial
plane requiring

p0 = 2n0T0 = p̄0e−(z/∆)
2
, (6.15)

with p̄0 a constant and ∆/R = 2(TR/MM0G0)
1/2. In this limit the motion cannot

be strictly Keplerian since Ω2 > M0G0R−3 is required to find a solution. Also, disk
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formation is unlikely for the nearly axial equilibrium solutions found as β is required
to be extremely large: β�[Ω2/(Ω2

−M0G0R−3)]2e−3(R/∆)2 . Taking ∆/R∼ 1, we can
use n0 ∝ R to find R∂n0/∂R ' R. In addition, we have R∂Ω2/∂R = −3Ω2 so that
using (6.6) and k2

RR2
� 1 for β� 1 gives instability when

2c2
S

γβ Ω2R2
�

k2v2
A

Ω2
< 2+

M0G0

Ω2r3
+

R2(Ω2
−M0G0r−3)2

Ω2c2
S

, (6.16)

where β � 2c2
S/γΩ

2R2. Consequently, the departure from strict Keplerian rotation
increases the size of the instability window when

R2(Ω2
−M0G0r−3)2

Ω2c2
S

> 1−
M0G0

Ω2r3
> 0, (6.17)

and decreases it otherwise. The smallest non-disk window of instability occurs in the
Velikhov limit (4.24) when Ω2R2/c2

S� 1 and M0G0/Ω
2r3
� 1. Stability may only be

possible for strong magnetic fields when WKB fails (k2R2 . 1) and

Ω2R2

v2
A

[
2+

M0G0

Ω2r3
+

R2(Ω2
−M0G0r−3)2

Ω2c2
S

]
< k2

RR2 . 1, (6.18)

implying β . 2c2
S/3γΩ

2R2
∼ 1 for our c2

S ∼Ω
2R2 and M0G0/Ω

2r3
∼ 1 ordering.

Often the magnetic field is not cylindrically symmetric so the self-similar form
of (4.14), ψ0 = CH(cos ϑ)/rα, allows solutions away from α ≈−2 (see figures 1, 3
and 4 of Catto et al. (2015), for example, where α ≈ −3, −4 and −6 respectively).
For smooth, slowly varying departures from cylindrical symmetry for which the radial
magnetic field component is sufficiently weak, (6.16) can be generalized slightly by
using n0 ∝ R−2α−3. In such cases

2c2
S

γβΩ2R2
�

k2v2
A

Ω2
< 2+

M0G0

Ω2r3
+ (2α + 4)

(Ω2
−M0G0r−3)

Ω2
+

R2(Ω2
−M0G0r−3)2

Ω2c2
S

,

(6.19)
with α 6−2 an eigenvalue determined by solving the self-similar form of the Grad–
Shafranov equation, and where α = −2 corresponds to the cylindrically symmetric
limit. When α <−2, stronger density variation further narrows the instability window;
however, once |α| becomes too large the radial magnetic field may no longer be
negligible.

It is important to realize that equilibrium solutions can be found for β � 1 and
Ω2 >M0G0R−3 with very strong departures from cylindrical symmetry (see figures 2
and 5 of Catto et al. (2015) for examples). The general, but rather complicated,
magnetorotational stability treatment in the next section is intended to deal these and
other non-cylindrically symmetric equilibrium solutions for which the radial magnetic
field cannot be ignored.

7. Stability in a general poloidal magnetic field for β > 1

In a strong gravitational field at high β, the magnetic field is comparatively
weak. The rotating frozen-in plasma is more easily distorted, with the field lines
bulging outward substantially and the possibility of quite substantial departures from
cylindrical symmetry.
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18 P. J. Catto and S. I. Krasheninnikov

To perform the stability analysis for an arbitrary axisymmetric poloidal magnetic
field it is convenient to use the azimuthal, parallel and Q = ψ0 components of the
∂2ξ/∂t2 equation:

R∂3ξζ/∂t3
+∇(ΩR2) · ∂2ξ/∂t2

= v2
AB−2

0 B0 · ∇[R2B0 · ∇(ξ · ∇Ω + R−1∂ξζ/∂t)],
(7.1)[

∂2ξ

∂t2
− 2

∂ξζ

∂t
Ω∇R−

n1

n0

∇p0

Mn0
+
∇p1

Mn0

]
·B0 =

v2
A

B3
0

[
∇ · (R−2

∇ψ0)
]

B0 · ∇(ξ · ∇ψ0),

(7.2)

and [
∂2ξ

∂t2
− 2

∂ξζ

∂t
Ω∇R−

n1

n0

(
Ω2R∇R−

M0G0

r2
∇r
)
+
∇p1

Mn0

]
· ∇ψ0

= v2
AR2

[
∇ · (R−2

∇ψ0)
] ∂

∂ψ0
(ξ · ∇ψ0)+ v

2
AR2
∇ · [R−2

∇(ξ · ∇ψ0)], (7.3)

where to remove J0 in the last equation we used the Grad–Shafranov equation

4πJ0/cR=−∇ · (R−2
∇ψ0)= R−2v−2

A ∇ψ0 · [(1/Mn0)∇p0 +M0G0r−2
∇r−Ω2R∇R].

(7.4)
To complete the description we only need n1 and p1 as given in § 3.

For the general analysis we write

∇=∇ψ0∂/∂ψ0 + B−2
0 B0B0 · ∇+∇ζ∂/∂ζ , (7.5)

ξ = (RB0)
−2(ξ · ∇ψ0)∇ψ0 + B−2

0 ξ ·B0B0 + ξζR∇ζ

= (RB0)
−2ξψ∇ψ0 + B−1

0 ξ‖B0 + ξζR∇ζ , (7.6)

and

∇ · ξ =B0 · ∇(B−1
0 ξ‖)+∇ · (R

−2B−2
0 ξψ∇ψ0)=B0 · ∇(B−1

0 ξ‖)+∇ · (B
−2
0 ξψ∇ζ ×B0).

(7.7)
Using the preceding, the equations for ξζ and ξ‖ become

R∂3ξζ/∂t3
+ R2(dΩ/dψ0)∂

2ξψ/∂t2
+ 2Ω

(
B0zB−2

0 ∂
2ξψ/∂t2

+ RB0RB−1
0 ∂

2ξ‖/∂t2
)

= v2
AB−2

0 B0 · ∇
{

R2B0 · ∇
[
ξψ(dΩ/dψ0)+ R−1∂ξζ/∂t

]}
(7.8)

and, after using the Grad–Shafranov equation and inserting p1 and n1,

∂2ξ‖

∂t2
− 2

∂ξζ

∂t
ΩB0RB−1

0 −
γB0 · ∇(p0∇ · ξ)

Mn0B0
−
ξψB0 · ∇(∂p0/∂ψ0)

Mn0B0

−
ξ||B0 · ∇(n0B0 · ∇p0)

Mn2
0B2

0
=−

B0 · ∇p0

Mn2
0B0
∇ ·

(
n0ξψ

R2B2
0
∇ψ0

)
−R−2B−3

0 ∇ψ0 · [M0G0r−2
∇r−Ω2R∇R]B0 · ∇ξψ , (7.9)

where
B0R =B0 · ∇R (7.10)
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and
RB0z =∇R · ∇ψ0. (7.11)

Inserting p1 and n1 and using

R2B2
0

Mn0

∂

∂ψ0

(
ξψ
∂p0

∂ψ0

)
=−R2v2

A
∂

∂ψ0

[
ξψ∇ · (R−2

∇ψ0)
]

−
R2B2

0

n0

∂

∂ψ0

[
ξψn0

R2B2
0

(
M0G0

r2
∇r−Ω2R∇R

)
· ∇ψ0

]
, (7.12)

we obtain a convenient form for the third equation:

∂2ξψ

∂t2
− 2

∂ξζ

∂t
ΩRB0z −

R2B2
0

Mn0

∂

∂ψ0

(
γ p0∇ · ξ + ξ‖B−1

0 B0 · ∇p0
)

− (n−1
0 ξ · ∇n0 +∇ · ξ)

(
M0G0

r2
∇r−Ω2R∇R

)
· ∇ψ0

+ n−1
0 ∇ψ0 · ∇

[
ξψn0

R2B2
0

(
M0G0

r2
∇r−Ω2R∇R

)
· ∇ψ0

]
= v2

AR2

[
B0 · ∇

(
B0 · ∇ξψ

R2B2
0

)
− ξψ

∂

∂ψ0
∇ · (R−2

∇ψ0)+∇ ·

(
∂ξψ

∂ψ0
R−2
∇ψ0

)]
,

(7.13)

where in the axial magnetic field limit

∇ ·

(
∂ξψ

∂ψ0
R−2
∇ψ0

)
− ξψ

∂

∂ψ0
∇ · (R−2

∇ψ0)→
1

B2
0R

∂

∂R

[
B2

0

R
∂

∂R
(RξR)

]
. (7.14)

Using

ξψn−1
0 ∂n0/∂ψ0 +∇ · (B−2

0 R−2ξψ∇ψ0)= n−1
0 ∇ · (B

−2
0 R−2n0ξψ∇ψ0) (7.15)

to simplify further gives

∂2ξψ

∂t2
−

R2B2
0

Mn0

∂

∂ψ0

(
γ p0∇ · ξ + ξ‖B−1

0 B0 · ∇p0
)

+ ξψB−1
0 ∇ψ0 · ∇

[
(M0G0r−2∇r−Ω2R∇R) · ∇ψ0

R2B0

]
− 2

∂ξζ

∂t
ΩRB0z

−
[
ξψB−1

0 ∇ · (B
−1
0 R−2

∇ψ0)+ n−1
0 B0 · ∇(B−1

0 n0ξ‖)
] (M0G0

r2
∇r−Ω2R∇R

)
· ∇ψ0

= v2
AR2

[
B0 · ∇

(
B0 · ∇ξψ

R2B2
0

)
− ξψ

∂

∂ψ0
∇ · (R−2

∇ψ0)+∇ ·

(
∂ξψ

∂ψ0
R−2
∇ψ0

)]
,

(7.16)

where in the axial magnetic field limit ∇ · (B−1
0 R−2∇ψ0)→ 0.

The three equations (7.8), (7.9) and (7.16) are the most general forms of our
equations for the three components of the displacement ξζ , ξ‖ and ξψ . They are the
full ideal MHD representation for the magneto-rotational instability for axisymmetric
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perturbations to a self-consistent axisymmetric magnetic field having both radial and
axial components at high β.

Our three displacement equations are now in the desired form to begin to employ
the eikonal approximation by assuming

ξ ∝ e−iωt+iS, (7.17)

with S independent of ζ ,

k=∇S= kψ∇ψ0 + k‖B−1
0 B0, (7.18)

k‖ = B−1
0 B0 · ∇S, (7.19)

k⊥ = kψRB0, (7.20)

kψ = ∂S/∂ψ0, and the wave vector assumed to be slowly varying. As in earlier sections
we only perform the eikonal treatment in the parallel direction to start. We need to be
careful with ψ0 derivatives in c2

S terms as before, but we also want to retain departures
from cylindrical symmetry for the magnetic field.

For a general poloidal magnetic field we assume k2
⊥

R2
� 1 and

c2
S/R

2
∼ k2
‖
c2

S ∼Ω
2
∼ k2
⊥
v2

A� k2
‖
v2

A &ω
2, (7.21)

k2
‖
R2 & 1 and β � 1 and use k2

= k2
‖
+ k2

⊥
. We assume small wavelengths parallel

unperturbed magnetic field,

k‖ ∼ ξ−1
ψ B−1

0 B0 · ∇ξψ � B−1
0 B0 · ∇p0 ∼ n−1

0 B−2
0 B0 · ∇B0 ∼ R−1B−1

0 B0 · ∇R, (7.22)

so that

B0 · ∇(γ p0∇ · ξ)� n1n−1
0 B0 · ∇p0� ξ‖B−1

0 n−1
0 B0 · ∇(n0B0 · ∇p0)∼ ξψB0 · ∇(∂p0/∂ψ0),

(7.23)
and recall B0 · ∇(dΩ/dψ0)= 0. Then the ξζ equation gives

iω(ω2
− k2
‖
v2

A)ξζ =
[
(ω2
− k2
‖
v2

A)(R dΩ/dψ0)+ 2ω2ΩR−1B−2
0 B0z

]
ξψ + 2ω2ΩB−1

0 B0Rξ‖.
(7.24)

The ξζ equation contains ξ‖ dependence which accounts for a new non-axial field
effect.

Using the eikonal approximation on the equation for ξ‖ and neglecting the small
terms already noted we obtain

(ω2
− k2
‖
c2

s )ξ‖ = 2iωΩB−1
0 B0Rξζ

+ ik‖[ξψR−2B−2
0 ∇ψ0 · (M0G0r−2

∇r −Ω2R∇R)− c2
S∇ · (ξψR−2B−2

0 ∇ψ0)],

(7.25)

where once again all components of the displacement enter. In the ξ‖ equation we have
been careful to retain seemingly small terms. We will eventually find that the ∂ξψ/∂ψ0
terms will cancel exactly and the remaining large ∂2ξψ/∂ψ

2
0 term will enter with a

small coefficient at marginality (ω2
→ 0) as in earlier sections. For this reason we

must retain ξψR−2B−2
0 ∇ψ0 · (M0G0r−2∇r −Ω2R∇R), as well as c2

S∇ · (ξψR−2B−2
0 ∇ψ0).

For the third equation we use

∂ξψ/∂ψ0� ξψB−1
0 ∂B0/∂ψ0 ∼ ξψp−1

0 ∂p0/∂ψ0 ∼ ξψR−1∂R/∂ψ0, (7.26)
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for v2
A terms, but we again keep seemingly small terms to carefully deal with the later

cancelation in c2
S terms:

(ω2
− k2
‖
v2

A)ξψ + R2B2
0v

2
A
∂2ξψ

∂ψ2
0
+

c2
SR2B2

0

p0

∂

∂ψ0

[
p0∇ ·

(
ξψ∇ψ0

B2
0R2

)]
+
ξψ [(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0

∇ ·

{
∇ψ0

[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

}
= 2iωΩRB0zξζ − ik‖

[
ξ‖

(
M0G0

r2
∇r−Ω2R∇R

)
· ∇ψ0 +

c2
SR2B2

0

p0

∂

∂ψ0
(p0ξ‖)

]
,

(7.27)

where to combine terms we use

R2B2
0(∂/∂ψ0)(R−2B−1

0 Q)=∇ψ0 · ∇(R−2B−1
0 Q)

=Q∇ · (R−2B−1
0 ∇ψ0)−Q2R−2B−1

0 ∇ · (Q
−1
∇ψ0). (7.28)

We retain all the ξ‖ terms because of the cancelation that will occur as already noted.
To highlight a new effect due to the non-axial magnetic fields we consider

marginality (ω→ 0) for strict Keplerian rotation (M0G0r−2∇r · ∇ψ0=Ω
2R∇R · ∇ψ0),

to reduce these equations to

iωξζ = ξψR dΩ/dψ0, (7.29)

k2
‖
c2

sξ‖ =−2iωΩB−1
0 B0Rξζ + ik‖c2

S∇ · (ξψR−2B−2
0 ∇ψ0), (7.30)

and

R2B2
0v

2
A
∂2ξψ

∂ψ2
0
+

c2
SR2B2

0

p0

∂

∂ψ0

[
p0∇ ·

(
ξψ∇ψ0

B2
0R2

)]
= 2iωΩRB0zξζ −

ik‖c2
SR2B2

0

p0

∂

∂ψ0
(p0ξ‖).

(7.31)
Combining to eliminate ξζ and ξ‖ and using the radial eikonal form instability
occurs if

k2v2
A <−R2

[B0z − k⊥k−1
‖

B0R] dΩ2/dψ0. (7.32)

The new term that appears in the preceding is always destabilizing when k−1
‖ k⊥B0RB−1

0z
< 0 and accounts for non-axial magnetic field effects. Moreover, instability occurs for
dΩ2/dψ0 > 0 when k−1

‖ k⊥B0RB−1
0z > 1, a new limit not previously noted.

The eikonal treatment for the general axisymmetric poloidal magnetic field case is
quite complex so the details are relegated to the appendix A. The general condition
for instability is found from ω2

= 0 to be

k2v2
A <

[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]
2

R2B2
0c2

S
−

(
B0z −

k⊥
k‖

B0R

)
R2 dΩ2

dψ0

+ (M0G0r−2
∇r−Ω2R∇R) · ∇ψ0

∂n0

∂ψ0
, (7.33)

where ∇ψ0 ·∇n0=R2B2
0∂n0/∂ψ0. For our ordering (k⊥/k‖)2� 1, making the new non-

axial magnetic field term potentially important when |k⊥B0R|& |k‖|B0z. The preceding
is our most general expression for gravitational magnetorotational instability. Once
again strict Keplerian motion removes compressibility and density gradient effects.

https://doi.org/10.1017/S0022377816000854 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000854


22 P. J. Catto and S. I. Krasheninnikov

8. Discussion and conclusions
We have re-examined magnetorotational stability with and without gravity by

retaining compressibility and density variation, and allowing general axisymmetric
poloidal magnetic fields in fully self-consistent equilibria. Within the limitations of
a geometric optics or eikonal analysis, we have obtained general expressions for the
stability threshold, which is found to have a different form in the absence of gravity
than in the presence of strict Keplerian motion, as can be seen by comparing (4.19)
and (5.7). Further subtle and important modifications arise when gravity is present if
the rotation frequency is general as can be seen by the appearance of compressibility
and density gradient terms in (6.6). For the β � 1 equilibria of Catto et al. (2015)
with rotation stronger than Keplerian these compressibility and density gradient effects
become important as seen by (6.16). Interestingly, the incompressible limit without
gravity, but with density variation is unstable for the model equilibrium of Catto &
Krasheninnikov (2015) for a geometric optics approach when 2Ω2 > k2v2

A. However,
in the strict Keplerian limit of Balbus & Hawley (1991), compressibility and density
variation do not matter and 3Ω2 > k2v2

A is required for instability.
In the absence of gravity our WKB results are consistent with the unbounded

medium case of Velikhov (1959) in the incompressible limit he considered. Our
general compressibility results modify his results and are illustrated by applying
them to the self-consistent equilibrium of Catto & Krasheninnikov (2015). This
analysis highlights the need to treat the radial WKB analysis carefully to fully retain
compressibility and radial density variation as well as the radial variation of the
rotation frequency. Compressibility is found to completely stabilize the Velikhov
(1959) limit when 3c2

S/Ω
2R2 < 1. However, when 3c2

S/Ω
2R2 > 1 instability occurs

when

1−
Ω2R2

3c2
S
>

k2v2
A

2Ω2
=

k2c2
S

γβΩ2
, (8.1)

thereby requiring β � 1. The self-similar equilibrium for this case without gravity
has a magnetic field strength that increases with radius as in most of the cases with
gravity.

In the presence of gravity our results are in agreement with Balbus & Hawley
(1991) and Hawley et al. (1995) for strict Keplerian motion, but there are subtle and
significant differences whenever there are departures from strict Keplerian motion or
non-axial magnetic field effects. Departure from strict Keplerian motion gives rise
to compressibility and density gradient effects in our cylindrically symmetric and
general axisymmetric magnetic field treatments for β > 1. These extensions allow us
to obtain a general threshold for gravitational magnetorotational instability in thermal
magnetized plasmas. The results depend explicitly on gravity, compressibility, and
density variation as well as rotation frequency. In the presence of a sufficiently strong
radial magnetic field at β > 1, the radial component of the magnetic field provides
further destabilization based on (7.33), and the density gradient term depends on axial
as well as radial gradients.

In the strict Keplerian limit these compressibility and density gradient effects vanish.
For an axial magnetic field the disk width ∆ is given by ∆/R= 2T1/2/M1/2ΩR� 1,
limiting perturbation wavelengths in the z direction. Then, for kz∆> 2π and k2

RR2
� 1,

the instability requires large β,

β > 4π2/3. (8.2)

This limit is the case for which Balbus’ (2006) intuitive physical picture of masses
attached by springs is most appropriate.
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Whether instability is responsible for shedding excess momentum in an accretion
disk is unclear, of course, based on a linear eikonal analysis of axisymmetric
perturbations. The nonlinear evolution will have to be determined by sophisticated
nonlinear global simulations, presumably requiring full kinetic simulations with
dissipation. Clearly much work remains if speculation is to be converted to substance
To do so requires using fully self-consistent global magnetized equilibria when
performing global simulations allowing non-axisymmetric fluctuations
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Appendix A. General poloidal field case
Equations (7.24) to (7.27) can be combined to obtain the general eikonal stability

condition. We first eliminate ξ‖ from the ξζ equation to obtain

iω
[
(ω2
− k2
‖
v2

A)−
4ω2Ω2B2

0R

B2
0(ω

2 − k2
‖c2

S)

]
ξζ = [(ω

2
− k2
‖
v2

A)(R dΩ/dψ0)+ 2ω2ΩR−1B−2
0 B0z]ξψ

+
2ik‖ω2ΩB0R

B0(ω2 − k2
‖c2

S)
[ξψR−2B−2

0 ∇ψ0 · (M0G0r−2
∇r−Ω2R∇R)− c2

S∇ · (ξψR−2B−2
0 ∇ψ0)].

(A 1)

Eliminating ξ‖ from the ξψ equation we find

(ω2
− k2
‖
v2

A)ξψ + R2B2
0v

2
A
∂2ξψ

∂ψ2
0
+

c2
SR2B2

0

p0

∂

∂ψ0

[
p0∇ ·

(
ξψ

B2
0R2
∇ψ0

)]
− 2iωΩRB0zξζ

+ ξψ
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0

∇ ·

{
∇ψ0

[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

}

=+ k‖R2B2
0p−1

0

[
R−2B−2

0 (M0G0r−2
∇r−Ω2R∇R) · ∇ψ0 + c2

S
∂

∂ψ0

] {
2ωΩp0B0Rξζ

B0(ω2 − k2
‖c2

S)

+
k‖p0

(ω2 − k2
‖c2

S)
[ξψR−2B−2

0 (M0G0r−2
∇r−Ω2R∇R) · ∇ψ0 − c2

S∇ · (ξψR−2B−2
0 ∇ψ0)]

}
.

(A 2)

Next, we may use

c2
SR2B2

0∂ξζ/∂ψ0� ξζ (M0G0r−2
∇r−Ω2R∇R) · ∇ψ0 (A 3)
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for the ξζ terms in this last equation, since cancelation of ∂ξζ/∂ψ0 terms is not an
issue. Doing so we obtain

(ω2
− k2
‖
v2

A)ξψ + R2B2
0v

2
A
∂2ξψ

∂ψ2
0
+

c2
SR2B2

0

p0

∂

∂ψ0

[
p0∇ ·

(
ξψ

B2
0R2
∇ψ0

)]
− 2iωΩRB0zξζ

+ ξψ
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0

∇ ·

{
∇ψ0

[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

}
=

2k‖c2
SR2B0ωΩB0R

(ω2 − k2
‖c2

S)

∂ξζ

∂ψ0

+ k‖R2B2
0p−1

0

[
R−2B−2

0 (M0G0r−2
∇r−Ω2R∇R) · ∇ψ0 + c2

S
∂

∂ψ0

]
×

{
k‖p0

(ω2−k2
‖c2

S)
[ξψR−2B−2

0 (M0G0r−2
∇r−Ω2R∇R)·∇ψ0−c2

S∇ · (ξψR−2B−2
0 ∇ψ0)]

}
.

(A 4)

Combining ∂2ξψ/∂ψ
2
0 terms and cancelling the ∂ξψ/∂ψ0 terms in the c2

S terms leaves

(ω2
− k2
‖
v2

A)ξψ + R2B2
0v

2
A
∂2ξψ

∂ψ2
0
+
ω2c2

SR2B2
0

p0

∂

∂ψ0

[
p0∇ · (ξψB−2

0 R−2∇ψ0)

(ω2 − k2
‖c2

S)

]
+ ξψ
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0

∇ ·

{
∇ψ0

[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

}
=−ξψ

p0k2
‖
c2

S

R2B2
0

[
(M0G0r−2∇r−Ω2R∇R) · ∇ψ0

(ω2 − k2
‖c2

S)

]2

×∇ ·

[
(ω2
− k2
‖
c2

S)∇ψ0

p0(M0G0r−2∇r−Ω2R∇R) · ∇ψ0

]

+
k2
‖
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2ξψ

R2B2
0(ω

2 − k2
‖c2

S)
+ 2iωΩRB0zξζ

+
2k‖c2

SR2B0ωΩB0R

(ω2 − k2
||c2

S)

∂ξζ

∂ψ0
, (A 5)

where we use

R2B2
0

p0

∂

∂ψ0

(
p0Q
R2B2

0

)
−Q∇ ·

(
∇ψ0

R2B2
0

)
=

1
p0B0
∇ψ0 · ∇

(
p0Q
R2B0

)
−

Q
B0
∇ ·

(
∇ψ0

R2B0

)
=−

p0Q2

R2B2
0
∇ ·

(
∇ψ0

p0Q

)
. (A 6)

Notice that within the eikonal approximation it is tempting to assume

ω2c2
SR2B2

0

p0

∂

∂ψ0

[
p0∇ · (ξψB−2

0 R−2∇ψ0)

(ω2 − k2
‖c2

S)

]
�

k2
‖
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2ξψ

R2B2
0(ω

2 − k2
‖c2

S)
,

(A 7)
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however, at marginality (ω2
→ 0) this large term becomes unimportant so we have

been extra careful to retain the next largest terms.
Inserting ξζ in its lowest order form

iω
[
(ω2
− k2
‖
v2

A)−
4ω2Ω2B2

0R

B2
0(ω

2 − k2
‖c2

S)

]
ξζ

=

[
(ω2
− k2
‖
v2

A)R
dΩ
dψ0
+

2ω2ΩB0z

RB2
0

]
ξψ −

2ik‖c2
Sω

2ΩB0R

B0(ω2 − k2
‖c2

S)

∂ξψ

∂ψ0
, (A 8)

into the preceding equation for ξψ we can finally use the remaining eikonal
approximation ∂ξψ/∂ψ0 = ikψξψ to obtain the full stability relation

ω2
− k2v2

A −
ω2k2

⊥
c2

S

(ω2 − k2
‖c2

S)
=

k2
‖
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0(ω

2 − k2
‖c2

S)

−
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0

∇ ·

{
∇ψ0

[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

}
−

p0k2
‖
c2

S

R2B2
0

[
(M0G0r−2∇r−Ω2R∇R) · ∇ψ0

(ω2 − k2
‖c2

S)

]2

∇ ·

[
(ω2
− k2
‖
c2

S)∇ψ0

p0(M0G0r−2∇r−Ω2R∇R) · ∇ψ0

]

+

[
B0z +

k‖k⊥c2
S B0R

(ω2 − k2
‖c2

S)

]{(ω2
− k2
||
v2

A)(R
2 dΩ2/dψ0)+ 4ω2Ω2B−2

0

[
B0z +

k‖k⊥c2
SB0R

(ω2 − k2
‖c2

S)

]}
{(ω2 − k2

‖v
2
A)− [4ω2Ω2B2

0R/(ω
2 − k2

‖c2
S)B

2
0]}

,

(A 9)

where we have used k⊥= kψRB0 and k2
= k2
‖
+ k2
⊥
' k2
⊥

. Discarding small terms leaves

k2v2
A −

ω2k2
⊥

k2
‖

=
[(M0G0r−2∇r−Ω2R∇R) · ∇ψ0]

2

R2B2
0c2

S

+
∇ψ0 · ∇n0

n0R2B2
0
(M0G0r−2

∇r−Ω2R∇R) · ∇ψ0

+

[
B0z −

k⊥ B0R

k‖

] {(ω2
− k2
‖
v2

A)(R
2 dΩ2/dψ0)+ 4ω2Ω2B−2

0

[
B0z −

k⊥ B0R

k‖

]}
[(ω2 − k2

‖v
2
A)+ (4ω2Ω2B2

0R/k
2
‖c2

SB2
0)]

.

(A 10)

At marginality (A 10) reduces to (7.33).
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