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DESTRUCTIBILITY OF THE TREE PROPERTY AT ℵ�+1

YAIR HAYUT ANDMENACHEMMAGIDOR

Abstract. We construct a model in which the tree property holds in ℵ�+1 and it is destructible under
Col(�, �1). On the other hand we discuss some cases in which the tree property is indestructible under
small or closed forcings.

§1. Introduction. A partial order 〈T,≤T 〉 is called a tree, if it has a minimal
element and for every t ∈ T , the set {s ∈ T | s ≤T t} is well ordered by ≤T .
The order type of the chain of elements that lie below t in the tree order is called
the level of t and denoted by LevT (t). For a cardinal κ, T is called a κ-tree if
supt∈T (LevT (t) + 1) = κ and the cardinality of each level of T is strictly below κ.
By a theorem of Kőnig, every �-tree has a cofinal branch (namely, a cofinal
chain). On the other hand, a theorem of Aronszajn states that there is an �1-tree
that has no cofinal branches. Such a tree is called Aronszajn tree. For any larger
successor cardinal, κ > �1, it is independent of ZFC whether there is a κ-tree with
no cofinal branches. This question is related to other combinatorial topics and in
order to get the consistency of the nonexistence of κ-Aronszajn trees, one must
assume the consistency of some large cardinals. If every κ tree has a cofinal branch,
we say that κ has the tree property.
By a theorem of Silver, if uncountable cardinal κ has the tree property then κ
is weakly compact in L. On the other end, Mitchell proved that if κ is weakly
compact and � < κ is regular then there is a generic extension in which κ = �++

and the tree property holds at κ, thus showing that the tree property at the double
successor of a regular cardinal is equiconsistent with the existence of a weakly
compact cardinal. Where κ is a successor of a singular cardinal, the situation is
more complicated. In [4], Magidor and Shelah showed that it is consistent, relative
to some large cardinals, that the tree property holds at ℵ�+1. The large cardinal
assumption was later reduced by Sinapova and Neeman to the existence of an �-
sequence of supercompact cardinals (see, e.g., [5] for the Prikry-free version). In
both constructions, ℵ1 plays a special role. It reflects, in some sense, the properties
of ℵ�+1.
In Section 3 we will show that it is consistent to have a model in which the tree
property holds at ℵ�+1, but after collapsing ℵ1, it fails. This extends a work by
Cummings, Foreman and the second author [2, Theorem 14]. In this article they
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622 YAIR HAYUT ANDMENACHEMMAGIDOR

show that it is possible that aweak square is added by a small forcing.Our arguments
are very similar to the arguments there. In [6], Rinot shows that it is consistent that
there is no special Aronszajn tree on ℵ�1+1 and a �-closed ℵ2-Knaster forcing of
cardinality ℵ3 introduces one. We note that we do not know how to apply a similar
argument for this case.
In Section 4 we discuss three cases in which the tree property at a successor of a
singular cardinal is somewhat indestructible. In 4.1 we will show that it is consistent
that the tree property holds at ℵ�2+1 and it is indestructible under any forcing of
cardinality <ℵ�2 . In 4.2 we will show that the tree property at ℵ�+1 can be made
indestructible under small �-closed forcings.

§2. Preliminaries. The following notation, due to Magidor and Shelah [4], plays
an important role in the investigation of the tree property at successors of singular
cardinals. For more information about narrow systems and their connections to
squares we refer to [3].

Definition 2.1. Let � be a regular cardinal. A system is a triplet S = 〈I, κ,R〉
such that:

(1) I ⊆ � unbounded. κ < �.
(2) R is a collection of partial order relations on I × κ.
(3) Each R ∈ R is a tree like partial order. R respects the lexicographic order
on I × κ. Namely, 〈α, �〉R〈	, 
〉 implies α ≤ 	 and if α = 	 then � = 
.
Moreover, if 〈	, 
〉, 〈�, �〉R〈α, �〉 and 	 ≤ � then 〈	, 
〉R〈�, �〉.

(4) For every α < 	 in I there are �, 
 < κ and R ∈ R such that 〈α, �〉R〈	, 
〉.
A branch through S is a set of elements on I × κ which is a chain relative to some
R ∈ R. We say that a branch b meets the α-th level of S if b ∩ {α} × κ 	= ∅. A
branch is cofinal if it meets cofinally many levels.
A system S is narrow if max(κ+, |R|+) < �.
Definition 2.2. Let � be a regular cardinal. We say that the narrow system
property holds at � if every narrow system of height � has a cofinal branch.

Unlike the tree property, the narrow system property is indestructible by any
small forcing. Let P be a forcing notion with |P|+ < � and let Ṡ be a name for a
narrow system. Let Ṙ be the collection of names of relations in S and let I be the
set of all ordinals that can be levels of the P. Let us define the narrow system Ŝ in
the natural way: the relations of Ŝ are indexed by P×Ṙ, and let 〈α, 	〉(p,R)〈�, 〉 iff
p � 〈α, 	〉R〈�, 〉 for R ∈ Ṙ. A branch in the system Ŝ corresponds to a condition
p ∈ P and a set of element in S which are forced to be a branch in the generic
extension by p.

§3. Destructible tree property.
Theorem 3.1. Let κ = κ0 < κ1 < · · · be an �-sequence of supercompact cardi-
nals. Then there is a forcing extension in which the tree property holds at ℵ�+1 and the
forcing Col(�,�1) adds a special ℵ�+1-Aronszajn tree.
We will prove something slightly stronger. We will define a forcing poset that
forces that in the generic extension there is a partial weak square on ℵ�+1 whose
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DESTRUCTIBILITY OF THE TREE PROPERTY AT ℵ�+1 623

domain contains all ordinals with cofinality above�1, while the tree property holds
at ℵ�+1. If we further extend the universe and collapse �1 to be countable, then
we can complete all the missing places in this square sequence by just adding �
sequences. By a theorem of Shelah andBen-David [1, Theorem 3], without violating
the continuum hypothesis at ℵ� , we cannot hope to have this kind of partial square
with only one club at each ordinal, while having the tree property.
Let � = supκn and let � = �+.
We begin with some definitions:

Definition 3.2. A partial square on a set S ⊆ � with width < � is a sequence
C = 〈Cα | α < �〉 such that:
(1) For every α < �, Cα is a set of cardinality < �. If α ∈ S then Cα 	= ∅.
(2) Every D ∈ Cα is a closed and unbounded subset of α and otpD < α.
(3) If 	 ∈ accD, D ∈ Cα then D ∩ 	 ∈ C	 .
When � = �+, we may assume that otpD ≤ � for every D ∈ Cα.
Since successor ordinals are never accumulation points of a club, the values of the
square sequence at successor points are irrelevant. We will assume that Cα+1 = {α}
for every α, for consistency.
We want to force a partial square for the set S�≥κ with width < �.

Definition 3.3. Let S be the following forcing notion. A condition s ∈ S is a
sequence s = 〈ci | i ≤ �〉 for some ordinal � < �+ such that all three requirements
for the partial square sequence hold for every α ≤ �. Namely,
(1) ∀α ≤ �, cα is a set of less than � sets. If cf α ≥ κ, then cα 	= ∅.
(2) For every D ∈ cα, otpD ≤ � and D is a closed and unbounded subset of α.
(3) If 	 ∈ accD, D ∈ cα then D ∩ 	 ∈ c	 .
We order S by end extension.

We will think of the conditions s ∈ S as functions, so for s = 〈ci | i ≤ �〉 we will
write dom s = � + 1 and s(i) = ci for i ∈ dom s .
Lemma 3.4. S is κ-directed closed.

Given a partial square C, we will define a threading forcing, T�. This forcing will
add a club at � with order type � such that all its initial segments are from C.
Definition 3.5. Let T� = {D | ∃α, D ∈ Cα, 1 < otpD < �}, ordered by end
extension.

The following lemma is standard:

Lemma 3.6. Let S,T� be as above. Then:

(1) S is �-distributive.
(2) Let C be the generic partial square added by S, and let � be a regular cardinal.

S ∗ T� is equivalent to an �-directed closed forcing. Moreover, for every � < �,
S ∗ T

�
� (where we use full support power in V S) contains an �-directed closed

dense subset.

Proof. Let us show that S is �-distributive. We will show that it is �-strategically
closed for every regular � < �. We will do this by showing the second part of the
lemma—that S ∗ T� contains a �-closed dense set.
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Let us observe first that the set of conditions 〈s, ť〉 ∈ S ∗ T� , dom(s) = � + 1,
t ∈ s(�) is dense. For every condition 〈s, ṫ〉,

s � “ṫ is a member of some set in the square sequence”,
and therefore ṫ is forced to be a member of the ground model.
Thus, there is an extension of s , s ′, which decides the value of ṫ to be equal to an
element in V , that we will denote by t. The closed set t might have no extension in
s ′(max dom s ′) but we can extend s ′ to s ′′ where dom s ′′ = dom s ′ + � + 1, and t
has an extension in the top element of s ′′. Let call this extension t′. Thus we have a
condition 〈s ′′, t′〉 ≤ 〈s, t〉 and 〈s ′′, t′〉 has the desired form.
The set

D = {〈s, ť〉 ∈ S ∗ T� | max t = maxdom s}
is �-directed closed. Let � < � and let {〈si , ťi〉 | i < �} ⊂ D be a directed set. Let us
assume that sup dom si is a limit ordinal (otherwise, the sequence is fixed on a tail).
The condition 〈s�, t�〉, where t� =

⋃
ti and s� = (

⋃
si)�〈{t�}〉 is a condition in D,

stronger than si for all i .
The claim that S ∗ T�� contains a �-closed dense subset (for all � < �), is proved
by the same method. For this case, we consider

D = {〈s, 〈tα | α < �〉〉 | ∀α < �, max tα = max dom s}.
By the same argument, using the fact that the bound on the cardinality of the
set s(max dom s), for s ∈ S, is greater than �, we conclude that D is dense and
�-directed closed in S ∗ T�� . �
Let us move now toward the proof of 3.1. Let κ0 < κ1 < · · · < κn < · · · be
supercompact cardinals. By using Laver’s preparation, we may assume that they are
Laver-indestructible, i.e., that for every n < � and every κn-directed closed forcing
P, �P κ̌n is supercompact. LetM =

∏
i<� Col(κi ,< κi+1) a full support product of

Levy collapses.
Lemma 3.7. After forcing with S×M, the narrow system property holds at �.
Proof. LetHS ⊆ S,HM ⊆ M bemutually generic filters. LetG = HS×HM . Let
us denote by Hi ⊆ Col(κi−1, <κi) be the i-th coordinate of the generic filter HM
(i > 0). LetHi be the generic filters for all the parts ofM except the i-th coordinate,
namely Hi = 〈Hm | m 	= i〉.
Let S ∈ V [G ] be a narrow system on I × �, with relations R. Let us assume,
towards a contradiction, that S has no cofinal branch in V [G ]. Since the set I will
play no role later in the proof, we will restrict ourselves to the notation-wise simpler
case in which I = �. Let n ≥ 2 be large enough such that κn−2 ≥ |�×R|+ in V S×M.
LetWn = V [HS ][Hn]. Let us force overWn with T

κn−2
κn . LetK = 〈Ki | i < κn−2〉

be the sequence of pairwise mutually generic filters. We stress that the product,
T
κn−2
κn , is taken over V [G ] and not overWn .
Fix 
 < κn−2.Wn[K
] |= κn is supercompact since:
(1) S ∗ Tκn−2κn contains a dense κn-directed closed subset,
(2)

∏
n≤i<� Col(κi ,< κi+1) is κn-directed closed.

(3)
∏
i<n−1 Col(κi ,< κi+1) has cardinality κn−1 which is < κn.

We are using the indestructibility in the two first items and Lévy-Solovay Theorem
in the last one.
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Let j : Wn[K
] → M be a �-supercompact embedding with crit j = κn. Since
Col(κn−1, < κn) is κn-c.c., after forcing with

Col(κn−1, < j(κn)) = Col(κn−1, < κn)× Col(κn−1, [κn, j(κn)))
wemay extend the elementary embedding j to a �-supercompact elementary embed-
ding j̃ : Wn[Hn][K
 ]→M [j̃(Hn)]. SinceWn[Hn] = V [G ], S ∈Wn[Hn], so j̃(S) is
defined.
Let L = 〈Li | i < κn−2〉 be a generic filter for Col(κn−1, [κn, j(κn)))κn−2 . Note
that the forcing that adds L is κn−1-closed over V , the ground model.
Let  = sup j̃′′� < j̃(�). Let ≤i∈ R and let

bi,ε = {〈α, 	〉 | 〈j(α), 	〉 ≤i 〈, ε〉 in j̃(S)}.
Since |R|, � < κn−2 < crit j̃, for some i, ε, bi,ε is a cofinal branch and moreover⋃
i,ε{α | ∃	, 〈α, 	〉 ∈ bi,ε} = �.
We say that forcing with Col(κn−1, [κn, j(κn))) × Tκn adds a system of branches
for S. Without loss of generality, all branches are new (and thus, cofinal).
In particular the forcing Col(κn−1, [κn,< j(κn)))κn−2 × T

κn−2
κn introduces κn−2

many distinct realizations for the system of branches {ḃi | i ∈ J}. Note that in
order to claim that there is no pair of system of branches which are equal we only
used the pairwise mutual genericity.
We conclude that inV [G ][H ][K ][L] there are κn−2 different systems of branches,

{bαi | α < κn−2, i ∈ J}. In this model κn−2 ≥ |� ×R|+ is regular and cf � ≥ κn−1.
Since for every α < 	 < κn−2, and every relation ≤i∈ R, bαi , b	i split at some point
below �, and since there are only κn−2 realizations and only |R| relations inR, there
is �� < � such that for every 
 ≥ ��, and for every α, 	 , bαi (
) 	= b	i (
) (where
it is possible that only one of them is defined). By the Pigeonhole Principle there
are α, 	 < κn−2 such that 〈��, 
〉 ∈ bαi , b	i for the same 
, i , because there are only
|R|×�many possibilities for this pair. This is a contradiction to the choice of ��. We
conclude that it is impossible that there was not cofinal branch in S in the ground
model, as wanted. �
LetW = V S×M. Note thatκ is supercompact inW , by the Laver indestructibility
of κ.

Theorem 3.8. There is � < κ such that forcing with Col(�, �+�) × Col(�+�+1,
< κ) overW forces the tree property atℵ�+1. Further collapsing the new ℵ1 introduces
a weak square at ℵ�+1.
Proof. Assume otherwise. Let L� = Col(�, �+�)× Col(�+�+1, < κ). For every
� < κ, let Ṫ� , be a L�-name for an Aronszajn tree at �. Since κ is supercompact,
there is j : W → M such that �M ⊆ M . By our assumption, M models that
�j(L)κ “j(Ṫ )κ is an Aronszajn tree”. Let  = sup j“� < j(�), and let t = 〈, 0〉.
Work inM . For every α < �, pick a condition pα = 〈cα, qα〉 such that

∃� < j(κ+�), pα �j(Lκ) 〈j(α), �〉 ≤j(Ṫ )κ ť.
Let us denote this � by �α . We may pick the conditions pα in a way that qα is
a decreasing sequence. Since � is regular and |Col(�, κ+�)| = κ+� < �, there is a
cofinal set I ⊆ �, n < � and c� ∈ Col(�, κ+�) such that for every α ∈ I , cα = c�
and �α < j(κ+n).
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By elementarity, for every α, 	 ∈ I , there are �, � ′ < κ+n , � < κ and p ∈ L� such
that p �L� 〈α, �〉 ≤Ṫ� 〈	, � ′〉.
This defines a narrow system in W : The domain of the system is I × κ+n . The
indices set is

⋃
�<κ L� × {�}. 〈α, 
〉 ≤p,� 〈	, �〉 iff p �L� 〈α, 
〉 ≤Ṫ� 〈	, �〉.

By the narrow system property there is a cofinal branch inW . Namely there are
� < κ, p ∈ L�, and � < κ+n such that for every α, 	 ∈ I , p �L� 〈α, �〉 ≤ 〈	, �〉.
This proves that the tree property holds at ℵ�+1 in the generic extension.
For the last claim, note that after collapsing ℵ1, for every � < ℵ�+1 either cf � = �
or C� 	= ∅. Thus, one can complete the partial square to a full �ℵ�,<ℵ� by adding
cofinal �-sequences. �

§4. Indestructible tree property. In this section we will build three models in
which the tree property at a successor of singular cardinal is indestructible under
certain class of forcing notions. We start by building a model in which the tree
property holds at ℵ�2+1 and it is indestructible under any forcing P of cardinality
less than ℵ�2 . Similarly, we will construct a model for the tree property at ℵ�+1 in
which the tree property still holds after any �-closed forcing of cardinality < ℵ�.
We remark that we do not know whether it is possible to force the tree property
at ℵ�+1 to be indestructible under any ℵ�+1-closed forcing notions.
4.1. Indestructible tree property for ℵ�2+1. In this subsection, we will show that
in Sinapova’s model for the tree property at ℵ�2+1 [7] (without the failure of SCH),
the tree property is indestructible under small forcings. We start with some simple
observations:

Lemma 4.1. Let � be a cardinal such that the tree property holds at �+ and it is
indestructible by any forcing of the form Col(�, �) for � < �. Then the tree property
at �+ is indestructible by any forcing of size < �. Moreover, it is enough to assume
that for every � < � there is � ≤ �′ < � such that Col(�, �′) forces the tree property
at �+.

Proof. Let P be a forcing notion of cardinality< �. Let � = |P|. Col(�, �) adds a
generic filter for P. Let G ⊆ P be a generic filter. The quotient forcing Col(�, �)/G
has cardinality at most � and therefore it does not add a cofinal branch to any
�+-Aronszajn tree. Since the tree property holds after forcing with Col(�, �) and
the forcing Col(�, �)/G does not add a branch to Aronszajn tree – the tree property
holds in V [G ] as well. �
Theorem 4.2. Let κ = κ0 < κ1 < · · · be a sequence of � supercompact cardinals.
Let � = supκn and � = �+. There is a generic extension in which κ = ℵ�2 , � = ℵ�2+1
and for every � < �, the tree property holds after forcing with Col(�, �).

In order to prove this theorem, we will work with Sinapova’s model for the tree
property at ℵ�2+1 from [7]. We will not need to violate SCH at this point, so the
proof is somewhat simpler at some points.
The main idea behind the indestructibility is that one can define a projection
f : P× Col(�, �)→ Pn that shifts the Prikry sequence by n steps to the left, where
Pn is a “shifted” version of the forcing P which forces the tree property as well. This
way, we can analyze the sets that were added by a forcing of the form Col(�, �)
simply by shifting the first element of the Prikry sequence to be above �.

https://doi.org/10.1017/jsl.2019.4 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2019.4


DESTRUCTIBILITY OF THE TREE PROPERTY AT ℵ�+1 627

We start with a well known fact:

Lemma 4.3. Let M =
∏
n<� Col(κn,< κn+1)—a full support product of Levy

collapses. In VM the narrow branch property holds at �+.
The proof is similar to the proof of Lemma 3.7 and appears in [5].
Work in VM. The cardinal κ = κ0 is still supercompact, by the Laver indestruc-
tibility. Let U be a normal measure on Pκ� in VM. Let Un be the projection of U to
Pκκn for n < �.
Let jn : W → Nn ∼= Ult(W,Un) be the elementary embedding derived from Un.
Let us construct anNn-generic filterHn for the forcing Col(κ+�+2, < j(κ))Nn . This
is possible by the standard arguments: the forcing notion Col(κ+�+2, < j(κ))Nn is
κ+n+1-closed inW and has only κ+n+1-dense subsets in Nn (as counted by VM).
Let us define the main forcing notion P:
A condition p ∈ P has the following form

p = 〈d0, a0, c0, . . . , an−1, cn−1, An, Cn, . . . 〉
where,

(1) ai ∈ Pκκ+i and Ai ∈ Ui . Let �i = ai ∩ κ if i < n and �i = κ otherwise.
(2) d0 ∈ Col(�, �+�0 ) if �0 < κ and otherwise d0 ∈ Col(�, κ).
(3) ci ∈ Col(�+�+2i , < �i+1).
(4) Ci : Ai →W such that Ci(a) ∈ Col((a ∩ κ)+�+2, < κ) for every a ∈ Ai and
[Ci ]Ui ∈ Hi .

n is called the length of p and we denote len(p) = n.
A condition p is stronger than q (p ≤ q) if:
(1) len(p) ≥ len(q).
(2) dp0 ≤ dq0 .
(3) api = a

q
i and c

p
i ≤ cqi for every i < len(q).

(4) api ∈ Aqi and cpi ≤ Cqi (ai) for len(q) ≤ i < len(p).
(5) Api ⊆ Aqi for i ≥ len(p).
(6) Cpi (a) ≤ Cqi (a) for every a ∈ Api .
For the proof of Theorem 4.2, we will also need to consider the following shifted
version of P. For every s < �, we define the forcing Ps .
A condition p ∈ Ps has the following form

p = 〈d0, a0, c0, . . . , an−1, cn−1, An, Cn, . . . 〉
where,

(1) ai ∈ Pκκ+i+s and Ai ∈ Ui+s . Let �i = ai ∩ κ if i < n and �i = κ otherwise.
(2) d0 ∈ Col(�, �+�0 ) if �0 < κ and otherwise d0 ∈ Col(�, κ).
(3) ci ∈ Col(�+�+2i , < �i+1).
(4) Ci : Pκκ+i+s →W such thatCi(a) ∈ Col((a∩κ)+�+2, < κ) for every a ∈ Ai
and [Ci ]Ui+s ∈ Hi+s .

We order the conditions in the same way as we did for P. Note that P0 = P.

Theorem 4.4 (Sinapova). For every s < �, Ps forces that � = ℵ�2+1 and the tree
property holds in �.
Proof. We will give a sketch of the proof. We will show that the claim holds for
s = 0. The argument for general s is the same, notation wise more complicated.
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Let p ∈ P be a condition and let Ṫ be a name for a �-Aronszajn tree. Let n be the
length of p. Let j : V → M be a �-supercompact embedding, with a critical point
κ which is compatible with Un (namely Un is the Pκκ+n measure which is derived
from j).
InM , let us look at the forcing j(P) below a condition q ≤ j(p) of length n + 1
such that aqn = j′′κ+n . In other words, q is an extension of j(p) that forces that
the n + 1-th element of the diagonal Prikry sequence is j′′κ+n . The forcing j(P)/q
preserves � as a regular cardinal and realizes j(Ṫ ) to be a j(�)-Aronszajn tree.
Let us denote  = sup j“� < j(�) and let us look at the name of a partial branch

{〈j(α), �α〉 |Mj(P) |= 〈j(α), �α〉 ≤j(Ṫ ) 〈, 0〉}.
Using the Prikry property, we may find a direct extension of q, q�, such that for
every α < � the value of k < � such that �α < j(κ+k) is determined by q� up to
forcing with the first n lower parts of j(P). Since there are less than �many possible
values for the first n coordinates of the conditions below q�, there is a cofinal subset
of �, I , a natural number n� < � large enough and a fixed lower part a� of length
n + 1 such that

I = {α < � | ∃r ≤ q�, stem(r) = a�, r � ∃� < j(κ+n�), 〈j(α), �〉 ≤ 〈, 0〉}.
In particular, for everyα, 	 ∈ I ,M thinks that there is an extension of j(p), q�� of
length n+1 and ordinals �, � ′ < j(κ+n�) such that q�� � 〈j(α), �〉 ≤j(Ṫ ) 〈j(	), � ′〉.
Reflecting this to V we conclude that for every α, 	 ∈ I there is a condition q′ ≤ p
with stem of length n + 1 and �, � ′ < κ+n� such that q′ � 〈α, �〉 ≤Ṫ 〈	, � ′〉.
This defines a narrow system on I × κ+n� , indexed by the stems of length n + 1
which are stems of some condition which is stronger than p. By the narrow system
property, there is a cofinal branch. So there is I ′ ⊆ I , a stem s� and an ordinal
�� < κ

+n� such that for every α < 	 in I ′ there is a condition q with stem s� forcing
〈α, ��〉 ≤Ṫ 〈	, ��〉.
Next we will build inductively a sequence of conditions 〈pα | α ∈ I ′ \ �〉 (for
some � < �), such that for every α < 	 ,

pα ∧ p	 � 〈α, ��〉 ≤Ṫ 〈	, ��〉.
The construction is done by induction on m < �, where at each step we define
pα � m in a way that for all α, 	 (except a bounded segment) there is a condition q
with q � m = pα � m ∧ p	 � m such that

q � 〈α, ��〉 ≤Ṫ 〈	, ��〉.
Extendingpα � m topα � (m+1) is done by defining a narrow system corresponding
to the possible extension and using the branch in order to define the relevant value
for all α ∈ I ′ above the first level that the branch meets.
Eventually, we obtain a sequence of conditions {pα | α ∈ I ′ \�}, for some � < �,
pα ≤ p. Using the chain condition of the forcing P we conclude that there is an
extension of p that forces that for unbounded many ordinals α < �, pα will be in
the generic filter. But then {〈α, ��〉 | pα ∈ G} is a cofinal branch in Ṫ (where G is
the generic filter for P). �
In order to show the indestructibility, we need to show that there is a simple
connection between the different shifts of the forcing:
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Lemma 4.5. Let p ∈ P, len(p) = n + 1, n ≥ 1 and let f ∈ Col(�, �+�n ).
There is a condition q ∈ Pn, of length one such that �

q
0 = �

p
n , such that Pn/q ∼=

(P/p)× (
Col(�, �+�n )/f).

Proof. Let � =
(
�pn

)+�
.

The forcing P/p is the product C/p<n × P≥n/p≥n where

C = Col(�,
(
�p0

)+�
)×

∏

i<n

Col(
(
�pi

)+�+2
, < �pi+1)

and P≥n is the set of the n-upper part of the conditions of P. More precisely, a
condition s ∈ P≥n is an �-sequence of the form

s = 〈asn , csn , . . . , asl−1, csl−1, Asl , C sl , . . . 〉,
where l ≥ n and asi , csi , Asi , C si are as in the definition of P (in particular, asi ∈
Pκκ

+i).
The conditions p≥n ∈ P≥n, p<n ∈ C are defined as follows:

p<n = 〈dp0 , cp0 , . . . , cpn−1〉,
p≥n = 〈apn , cpn , Apn+1, C pn+1, . . . , Apl , C pl , . . . 〉.

Clearly, |C| ≤ � and thus (C/p<n) × (
Col(�, �)/f) ∼= Col(�, �). Let us fix

an isomorphism �0 : Col(�, �) → (C/p<n) × (
Col(�, �)/f). Note that �0(∅) =

(p<n, f).
Let q ∈ Pn be the condition 〈∅〉�p≥n.
By the definition of Pn and P≥n,

Pn/q ∼= Col(�, �)×
(
P≥n/p≥n

)
.

Combining this with the isomorphism �0, we obtain the isomorphism:

Pn/q ∼= (P/p)×
(
Col(�, �)/f) . �

Theorem 4.6. P forces the tree property at ℵ�2+1 to be indestructible by any forcing
of size < ℵ�2 .
Proof. Is it enough to show that it is the case for Col(�,ℵ�·n). Recall that

ℵ�·n = �+�n so we are in the situation of Lemma 4.5. This means that after forcing
with Col(�,ℵ�·n) the tree property holds, as the iteration is isomorphic to the
forcing notion Pn below some condition. �
4.2. Indestructible tree property for ℵ�+1 under small �-closed forcings. Let us
construct a model very similar to Section 4.1, in which we have the tree property at
ℵ�+1 and itwill be indestructible under any�-closed forcing of cardinality< ℵ�. The
additional restriction on the forcing notions (namely that the forcing is �-closed),
implies that those forcing notions cannot collapse �1.

Theorem 4.7. It is consistent, relative to the existence of � many supercompact
cardinals, that the tree property holds atℵ�+1 and it is indestructible under any�-closed
forcing of cardinality < ℵ�.
Proof. Wewill start with a model of the narrow system property at κ+�+1 for κ a
supercompact cardinal. This can be obtained, for example, by forcing with the prod-
uct of the Levy collapses between the supercompact cardinals as in Lemma 4.3. Let
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U0 be a normal ultrafilter on κ generated from a κ+�+1-supercompact elementary
embedding, j : V →M .
Let us show that for every n < �, there is a large set An ∈ U0 such that for every
� ∈ An, forcing with L� = Col(�, �+�)× Col(�+�+1, κ+n) forces the tree property
at κ+�+1.
Assume that this is not the case and let Ṫ� be a counter example for every bad
choice of �, for a fixed n < �. Since the set of bad choices is in U0, κ is a bad choice
of ordinal in M . Let us force with j(L)κ , and let M [H ] be the generic extension.
Let T = j(Ṫ )Hκ be an Aronszajn tree at j(κ

+�+1). Let  = sup j“κ+�+1 and for
every α < κ+�+1 let 	α < j(κ+�) be the element in the level j(α) below 〈, 0〉.
Using the same arguments as in the proof of Theorem 3.8, there is a cofinal
set I ⊆ κ+�+1, a decreasing sequence of conditions qα ∈ Col(κ+�+1, j(κ)+n), a
condition p ∈ Col(�, κ+�) and a natural number N < � such that for every α ∈ I
there is 	 < j(κ+N ) such that (p, qα) � 〈j(α), 	〉 ≤T 〈, 0〉.
Reflecting this back to V , we conclude that for every α,α′ ∈ I :

∃	, 	 ′ < κ+N , � < κ, p ∈ L� such that p �L� 〈α, 	〉 ≤T� 〈α′, 	 ′〉.
This gives us a narrow system, similar to the one in the proof of Theorem 3.8.
A branch through this system provides us an ordinal � which was a bad choice, a
condition r ∈ L�, a cofinal set J ⊆ I and for all α ∈ J an ordinal 	α < κ+N such
that for all α,α′ ∈ J ,

r �L� 〈α, 	α〉, 〈α′, 	α′〉 are compatible.

This is a contradiction to the fact that this Ṫ� was a name for an �-Aronszajn tree.
Let A =

⋂
n<� An and let � ∈ A. Forcing with Col(�, �+�) × Col(�+�+1, κ)

forces the tree property. For every small �-closed forcing notion Q there is n such
that Col(�+�+1, κ) ∗Q is a regular subforcing of Col(�+�+1, κ+n) and since the tree
property holds after this forcing and since the quotient is small and thus cannot add
branches to Aronszajn trees - we are done. �

§5. Open questions. In Section 4.1 we proved that the tree property at ℵ�2+1 can
be made indestructible under any small forcing poset.

Question 5.1. Is it consistent that the tree property at ℵ�+1 is indestructible under
any forcing of cardinality < ℵ�?
On the other hand, one can ask whether it is possible to extend the results of
Theorem 3.1.

Question 5.2. Is it consistent that the tree property holds at ℵ�+1 but there is
a small forcing (of cardinality < ℵ�), that does not collapse cardinals and adds an
ℵ�+1-Aronszajn tree?
Note that in all the currently knownmodels for the tree property at ℵ�+1, adding
a single Cohen real does not add an Aronszajn tree at ℵ�+1. So we ask the following
stronger version of Question 5.2:

Question 5.3. Is it consistent that the tree property holds at ℵ�+1 but adding a
Cohen real adds an ℵ�+1-Aronszajn tree?
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This question is particularly interesting when we assume that ℵ� is strong limit
since then adding a Cohen real cannot add a weak square for ℵ� , assuming that
there is no weak square in the ground model.
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