DESTRUCTIBILITY OF THE TREE PROPERTY AT $\aleph_{\omega+1}$

YAIR HAYUT AND MENACHEM MAGIDOR

Abstract. We construct a model in which the tree property holds in $\aleph_{\omega+1}$ and it is destructible under $\operatorname{Col}(\omega, \omega_1)$. On the other hand we discuss some cases in which the tree property is indestructible under small or closed forcings.

§1. Introduction. A partial order $\langle T, \leq_T \rangle$ is called a *tree*, if it has a minimal element and for every $t \in T$, the set $\{s \in T \mid s \leq_T t\}$ is well ordered by \leq_T . The order type of the chain of elements that lie below t in the tree order is called the *level* of t and denoted by $\text{Lev}_T(t)$. For a cardinal κ , T is called a κ -tree if $\sup_{t \in T} (\text{Lev}_T(t) + 1) = \kappa$ and the cardinality of each level of T is strictly below κ .

By a theorem of König, every ω -tree has a cofinal branch (namely, a cofinal chain). On the other hand, a theorem of Aronszajn states that there is an ω_1 -tree that has no cofinal branches. Such a tree is called *Aronszajn tree*. For any larger successor cardinal, $\kappa > \omega_1$, it is independent of ZFC whether there is a κ -tree with no cofinal branches. This question is related to other combinatorial topics and in order to get the consistency of the nonexistence of κ -Aronszajn trees, one must assume the consistency of some large cardinals. If every κ tree has a cofinal branch, we say that κ has the *tree property*.

By a theorem of Silver, if uncountable cardinal κ has the tree property then κ is weakly compact in L. On the other end, Mitchell proved that if κ is weakly compact and $\mu < \kappa$ is regular then there is a generic extension in which $\kappa = \mu^{++}$ and the tree property holds at κ , thus showing that the tree property at the double successor of a regular cardinal is equiconsistent with the existence of a weakly compact cardinal. Where κ is a successor of a singular cardinal, the situation is more complicated. In [4], Magidor and Shelah showed that it is consistent, relative to some large cardinals, that the tree property holds at $\aleph_{\omega+1}$. The large cardinal assumption was later reduced by Sinapova and Neeman to the existence of an ω -sequence of supercompact cardinals (see, e.g., [5] for the Prikry-free version). In both constructions, \aleph_1 plays a special role. It reflects, in some sense, the properties of $\aleph_{\omega+1}$.

In Section 3 we will show that it is consistent to have a model in which the tree property holds at $\aleph_{\omega+1}$, but after collapsing \aleph_1 , it fails. This extends a work by Cummings, Foreman and the second author [2, Theorem 14]. In this article they

2010 Mathematics Subject Classification. 03E35, 03E55.

© 2019, Association for Symbolic Logic 0022-4812/19/8402-0008 DOI:10.1017/jsl.2019.4

Received October 4, 2017.

Key words and phrases. tree property, successors of singulars, forcing.

show that it is possible that a weak square is added by a small forcing. Our arguments are very similar to the arguments there. In [6], Rinot shows that it is consistent that there is no special Aronszajn tree on \aleph_{ω_1+1} and a σ -closed \aleph_2 -Knaster forcing of cardinality \aleph_3 introduces one. We note that we do not know how to apply a similar argument for this case.

In Section 4 we discuss three cases in which the tree property at a successor of a singular cardinal is somewhat indestructible. In 4.1 we will show that it is consistent that the tree property holds at \aleph_{ω^2+1} and it is indestructible under any forcing of cardinality $< \aleph_{\omega^2}$. In 4.2 we will show that the tree property at $\aleph_{\omega+1}$ can be made indestructible under small σ -closed forcings.

§2. Preliminaries. The following notation, due to Magidor and Shelah [4], plays an important role in the investigation of the tree property at successors of singular cardinals. For more information about narrow systems and their connections to squares we refer to [3].

DEFINITION 2.1. Let λ be a regular cardinal. A *system* is a triplet $S = \langle I, \kappa, \mathcal{R} \rangle$ such that:

- (1) $I \subseteq \lambda$ unbounded. $\kappa < \lambda$.
- (2) \mathcal{R} is a collection of partial order relations on $I \times \kappa$.
- (3) Each R ∈ R is a tree like partial order. R respects the lexicographic order on I × κ. Namely, ⟨α, ζ⟩R⟨β, ξ⟩ implies α ≤ β and if α = β then ζ = ξ. Moreover, if ⟨β, ξ⟩, ⟨γ, ρ⟩R⟨α, ζ⟩ and β ≤ γ then ⟨β, ξ⟩R⟨γ, ρ⟩.
- (4) For every $\alpha < \beta$ in *I* there are $\zeta, \xi < \kappa$ and $R \in \mathcal{R}$ such that $\langle \alpha, \zeta \rangle R \langle \beta, \xi \rangle$.

A *branch* through S is a set of elements on $I \times \kappa$ which is a chain relative to some $R \in \mathcal{R}$. We say that a branch b meets the α -th level of S if $b \cap \{\alpha\} \times \kappa \neq \emptyset$. A branch is *cofinal* if it meets cofinally many levels.

A system S is *narrow* if $\max(\kappa^+, |\mathcal{R}|^+) < \lambda$.

DEFINITION 2.2. Let λ be a regular cardinal. We say that the *narrow system* property holds at λ if every narrow system of height λ has a cofinal branch.

Unlike the tree property, the narrow system property is indestructible by any small forcing. Let \mathbb{P} be a forcing notion with $|\mathbb{P}|^+ < \lambda$ and let \dot{S} be a name for a narrow system. Let $\dot{\mathcal{R}}$ be the collection of names of relations in S and let I be the set of all ordinals that can be levels of the \mathbb{P} . Let us define the narrow system \hat{S} in the natural way: the relations of \hat{S} are indexed by $\mathbb{P} \times \dot{\mathcal{R}}$, and let $\langle \alpha, \beta \rangle (p, R) \langle \gamma, \delta \rangle$ iff $p \Vdash \langle \alpha, \beta \rangle R \langle \gamma, \delta \rangle$ for $R \in \dot{\mathcal{R}}$. A branch in the system \hat{S} corresponds to a condition $p \in \mathbb{P}$ and a set of element in S which are forced to be a branch in the generic extension by p.

§3. Destructible tree property.

THEOREM 3.1. Let $\kappa = \kappa_0 < \kappa_1 < \cdots$ be an ω -sequence of supercompact cardinals. Then there is a forcing extension in which the tree property holds at $\aleph_{\omega+1}$ and the forcing $\operatorname{Col}(\omega, \omega_1)$ adds a special $\aleph_{\omega+1}$ -Aronszajn tree.

We will prove something slightly stronger. We will define a forcing poset that forces that in the generic extension there is a partial weak square on $\aleph_{\omega+1}$ whose

domain contains all ordinals with cofinality above ω_1 , while the tree property holds at $\aleph_{\omega+1}$. If we further extend the universe and collapse ω_1 to be countable, then we can complete all the missing places in this square sequence by just adding ω sequences. By a theorem of Shelah and Ben-David [1, Theorem 3], without violating the continuum hypothesis at \aleph_{ω} , we cannot hope to have this kind of partial square with only one club at each ordinal, while having the tree property.

Let $\mu = \sup \kappa_n$ and let $\lambda = \mu^+$.

We begin with some definitions:

DEFINITION 3.2. A partial square on a set $S \subseteq \lambda$ with width $< \eta$ is a sequence $C = \langle C_{\alpha} \mid \alpha < \lambda \rangle$ such that:

- (1) For every $\alpha < \lambda$, C_{α} is a set of cardinality $< \eta$. If $\alpha \in S$ then $C_{\alpha} \neq \emptyset$.
- (2) Every $D \in C_{\alpha}$ is a closed and unbounded subset of α and $\operatorname{otp} D < \alpha$.
- (3) If $\beta \in \operatorname{acc} D$, $D \in C_{\alpha}$ then $D \cap \beta \in C_{\beta}$.

When $\lambda = \mu^+$, we may assume that $\operatorname{otp} D \leq \mu$ for every $D \in \mathcal{C}_{\alpha}$.

Since successor ordinals are never accumulation points of a club, the values of the square sequence at successor points are irrelevant. We will assume that $C_{\alpha+1} = \{\alpha\}$ for every α , for consistency.

We want to force a partial square for the set $S^{\lambda}_{>\kappa}$ with width $< \mu$.

DEFINITION 3.3. Let S be the following forcing notion. A condition $s \in S$ is a sequence $s = \langle c_i | i \leq \gamma \rangle$ for some ordinal $\gamma < \mu^+$ such that all three requirements for the partial square sequence hold for every $\alpha \leq \gamma$. Namely,

- (1) $\forall \alpha \leq \gamma, c_{\alpha} \text{ is a set of less than } \mu \text{ sets. If } cf \alpha \geq \kappa, \text{ then } c_{\alpha} \neq \emptyset.$
- (2) For every $D \in c_{\alpha}$, $\operatorname{otp} D \leq \mu$ and D is a closed and unbounded subset of α .
- (3) If $\beta \in \operatorname{acc} D$, $D \in c_{\alpha}$ then $D \cap \beta \in c_{\beta}$.

We order \mathbb{S} by end extension.

We will think of the conditions $s \in S$ as functions, so for $s = \langle c_i | i \leq \gamma \rangle$ we will write dom $s = \gamma + 1$ and $s(i) = c_i$ for $i \in \text{dom } s$.

LEMMA 3.4. S is κ -directed closed.

Given a partial square C, we will define a threading forcing, \mathbb{T}_{η} . This forcing will add a club at λ with order type η such that all its initial segments are from C.

DEFINITION 3.5. Let $\mathbb{T}_{\eta} = \{D \mid \exists \alpha, D \in \mathcal{C}_{\alpha}, 1 < \operatorname{otp} D < \eta\}$, ordered by end extension.

The following lemma is standard:

LEMMA 3.6. Let \mathbb{S} , \mathbb{T}_{η} be as above. Then:

- (1) \mathbb{S} is λ -distributive.
- (2) Let C be the generic partial square added by S, and let η be a regular cardinal. S * T_η is equivalent to an η-directed closed forcing. Moreover, for every ρ < μ, S * T^ρ_η (where we use full support power in V^S) contains an η-directed closed dense subset.

PROOF. Let us show that S is λ -distributive. We will show that it is η -strategically closed for every regular $\eta < \lambda$. We will do this by showing the second part of the lemma—that $S * \mathbb{T}_{\eta}$ contains a η -closed dense set.

Let us observe first that the set of conditions $\langle s, \check{t} \rangle \in \mathbb{S} * \mathbb{T}_{\eta}$, dom $(s) = \gamma + 1$, $t \in s(\gamma)$ is dense. For every condition $\langle s, \dot{t} \rangle$,

$$s \Vdash$$
 "*t* is a member of some set in the square sequence",

and therefore i is forced to be a member of the ground model.

Thus, there is an extension of s, s', which decides the value of \dot{t} to be equal to an element in V, that we will denote by t. The closed set t might have no extension in $s'(\max \operatorname{dom} s')$ but we can extend s' to s'' where dom $s'' = \operatorname{dom} s' + \omega + 1$, and t has an extension in the top element of s''. Let call this extension t'. Thus we have a condition $\langle s'', t' \rangle \leq \langle s, t \rangle$ and $\langle s'', t' \rangle$ has the desired form.

The set

$$D = \{ \langle s, \check{t} \rangle \in \mathbb{S} * \mathbb{T}_n \mid \max t = \max \operatorname{dom} s \}$$

is η -directed closed. Let $\rho < \eta$ and let $\{\langle s_i, \check{t}_i \rangle \mid i < \rho\} \subset D$ be a directed set. Let us assume that sup dom s_i is a limit ordinal (otherwise, the sequence is fixed on a tail). The condition $\langle s_{\star}, t_{\star} \rangle$, where $t_{\star} = \bigcup t_i$ and $s_{\star} = (\bigcup s_i)^{\frown} \langle \{t_{\star}\} \rangle$ is a condition in D, stronger than s_i for all i.

The claim that $\mathbb{S} * \mathbb{T}_{n}^{\rho}$ contains a η -closed dense subset (for all $\rho < \mu$), is proved by the same method. For this case, we consider

$$D = \{ \langle s, \langle t_{\alpha} \mid \alpha < \rho \rangle \rangle \mid \forall \alpha < \rho, \max t_{\alpha} = \max \operatorname{dom} s \}.$$

By the same argument, using the fact that the bound on the cardinality of the set $s(\max \operatorname{dom} s)$, for $s \in \mathbb{S}$, is greater than ρ , we conclude that D is dense and η -directed closed in $\mathbb{S} * \mathbb{T}_{\eta}^{\rho}$. \dashv

Let us move now toward the proof of 3.1. Let $\kappa_0 < \kappa_1 < \cdots < \kappa_n < \cdots$ be supercompact cardinals. By using Laver's preparation, we may assume that they are Laver-indestructible, i.e., that for every $n < \omega$ and every κ_n -directed closed forcing \mathbb{P} , $\Vdash_{\mathbb{P}} \check{\kappa}_n$ is supercompact. Let $\mathbb{M} = \prod_{i < \omega} \operatorname{Col}(\kappa_i, < \kappa_{i+1})$ a full support product of Levy collapses.

LEMMA 3.7. After forcing with $\mathbb{S} \times \mathbb{M}$, the narrow system property holds at λ .

PROOF. Let $H_S \subseteq \mathbb{S}$, $H_M \subseteq \mathbb{M}$ be mutually generic filters. Let $G = H_S \times H_M$. Let us denote by $H_i \subseteq \operatorname{Col}(\kappa_{i-1}, <\kappa_i)$ be the *i*-th coordinate of the generic filter H_M (i > 0). Let H^i be the generic filters for all the parts of M except the *i*-th coordinate, namely $H^i = \langle H_m \mid m \neq i \rangle$.

Let $S \in V[G]$ be a narrow system on $I \times \eta$, with relations \mathcal{R} . Let us assume, towards a contradiction, that S has no cofinal branch in V[G]. Since the set I will play no role later in the proof, we will restrict ourselves to the notation-wise simpler case in which $I = \lambda$. Let $n \ge 2$ be large enough such that $\kappa_{n-2} \ge |\eta \times \mathcal{R}|^+$ in $V^{\mathbb{S} \times \mathbb{M}}$.

Let $W_n = V[H_S][H^n]$. Let us force over W_n with $\mathbb{T}_{\kappa_n}^{\kappa_{n-2}}$. Let $K = \langle K_i \mid i < \kappa_{n-2} \rangle$ be the sequence of pairwise mutually generic filters. We stress that the product, $\mathbb{T}_{\kappa_n}^{\kappa_{n-2}}$, is taken over V[G] and not over W_n .

Fix $\xi < \kappa_{n-2}$. $W_n[K_{\xi}] \models \kappa_n$ is supercompact since:

(1) $\mathbb{S} * \mathbb{T}_{\kappa_n}^{\kappa_{n-2}}$ contains a dense κ_n -directed closed subset, (2) $\prod_{n \le i < \omega} \operatorname{Col}(\kappa_i, < \kappa_{i+1})$ is κ_n -directed closed.

(3) $\prod_{i \le n-1}^{-1} \operatorname{Col}(\kappa_i, < \kappa_{i+1})$ has cardinality κ_{n-1} which is $< \kappa_n$.

We are using the indestructibility in the two first items and Lévy-Solovay Theorem in the last one.

Let $j: W_n[K_{\xi}] \to M$ be a λ -supercompact embedding with crit $j = \kappa_n$. Since $\operatorname{Col}(\kappa_{n-1}, < \kappa_n)$ is κ_n -c.c., after forcing with

$$\operatorname{Col}(\kappa_{n-1}, < j(\kappa_n)) = \operatorname{Col}(\kappa_{n-1}, < \kappa_n) \times \operatorname{Col}(\kappa_{n-1}, [\kappa_n, j(\kappa_n)))$$

we may extend the elementary embedding j to a λ -supercompact elementary embedding \tilde{j} : $W_n[H_n][K_{\xi}] \to M[\tilde{j}(H_n)]$. Since $W_n[H_n] = V[G]$, $S \in W_n[H_n]$, so $\tilde{j}(S)$ is defined.

Let $L = \langle L_i | i < \kappa_{n-2} \rangle$ be a generic filter for $\operatorname{Col}(\kappa_{n-1}, [\kappa_n, j(\kappa_n)])^{\kappa_{n-2}}$. Note that the forcing that adds L is κ_{n-1} -closed over V, the ground model.

Let $\delta = \sup \tilde{j}'' \lambda < \tilde{j}(\lambda)$. Let $\leq_i \in \mathcal{R}$ and let

$$b_{i,\epsilon} = \{ \langle \alpha, \beta \rangle \mid \langle j(\alpha), \beta \rangle \leq_i \langle \delta, \epsilon \rangle \text{ in } \tilde{j}(\mathcal{S}) \}.$$

Since $|\mathcal{R}|, \eta < \kappa_{n-2} < \operatorname{crit} \tilde{j}$, for some $i, \epsilon, b_{i,\epsilon}$ is a cofinal branch and moreover $\bigcup_{i \in \{\alpha \mid \exists \beta, \langle \alpha, \beta \rangle \in b_{i,\epsilon}\} = \lambda}$.

We say that forcing with $\operatorname{Col}(\kappa_{n-1}, [\kappa_n, j(\kappa_n)]) \times \mathbb{T}_{\kappa_n}$ adds a *system of branches* for S. Without loss of generality, all branches are new (and thus, cofinal).

In particular the forcing $\operatorname{Col}(\kappa_{n-1}, [\kappa_n, < j(\kappa_n)))^{\kappa_{n-2}} \times \mathbb{T}_{\kappa_n}^{\kappa_{n-2}}$ introduces κ_{n-2} many distinct realizations for the system of branches $\{b_i \mid i \in J\}$. Note that in order to claim that there is no pair of system of branches which are equal we only used the pairwise mutual genericity.

We conclude that in V[G][H][K][L] there are κ_{n-2} different systems of branches, $\{b_i^{\alpha} \mid \alpha < \kappa_{n-2}, i \in J\}$. In this model $\kappa_{n-2} \ge |\eta \times \mathcal{R}|^+$ is regular and cf $\lambda \ge \kappa_{n-1}$. Since for every $\alpha < \beta < \kappa_{n-2}$, and every relation $\le_i \in \mathcal{R}$, b_i^{α} , b_i^{β} split at some point below λ , and since there are only κ_{n-2} realizations and only $|\mathcal{R}|$ relations in \mathcal{R} , there is $\rho_* < \lambda$ such that for every $\xi \ge \rho_*$, and for every $\alpha, \beta, b_i^{\alpha}(\xi) \ne b_i^{\beta}(\xi)$ (where it is possible that only one of them is defined). By the Pigeonhole Principle there are $\alpha, \beta < \kappa_{n-2}$ such that $\langle \rho_*, \xi \rangle \in b_i^{\alpha}, b_i^{\beta}$ for the same ξ, i , because there are only $|\mathcal{R}| \times \eta$ many possibilities for this pair. This is a contradiction to the choice of ρ_* . We conclude that it is impossible that there was not cofinal branch in S in the ground model, as wanted.

Let $W = V^{\mathbb{S} \times \mathbb{M}}$. Note that κ is supercompact in W, by the Laver indestructibility of κ .

THEOREM 3.8. There is $\rho < \kappa$ such that forcing with $\operatorname{Col}(\omega, \rho^{+\omega}) \times \operatorname{Col}(\rho^{+\omega+1}, < \kappa)$ over W forces the tree property at $\aleph_{\omega+1}$. Further collapsing the new \aleph_1 introduces a weak square at $\aleph_{\omega+1}$.

PROOF. Assume otherwise. Let $\mathbb{L}_{\rho} = \operatorname{Col}(\omega, \rho^{+\omega}) \times \operatorname{Col}(\rho^{+\omega+1}, < \kappa)$. For every $\rho < \kappa$, let \dot{T}_{ρ} , be a \mathbb{L}_{ρ} -name for an Aronszajn tree at λ . Since κ is supercompact, there is $j: W \to M$ such that ${}^{\lambda}M \subseteq M$. By our assumption, M models that $\Vdash_{j(\mathbb{L})_{\kappa}} "j(\dot{T})_{\kappa}$ is an Aronszajn tree". Let $\delta = \sup j"\lambda < j(\lambda)$, and let $t = \langle \delta, 0 \rangle$.

Work in *M*. For every $\alpha < \lambda$, pick a condition $p_{\alpha} = \langle c_{\alpha}, q_{\alpha} \rangle$ such that

$$\exists \zeta < j(\kappa^{+\omega}), \ p_{\alpha} \Vdash_{j(\mathbb{L}_{\kappa})} \langle j(\alpha), \zeta \rangle \leq_{j(\dot{T})_{\kappa}} \check{t}.$$

Let us denote this ζ by ζ_{α} . We may pick the conditions p_{α} in a way that q_{α} is a decreasing sequence. Since λ is regular and $|\operatorname{Col}(\omega, \kappa^{+\omega})| = \kappa^{+\omega} < \lambda$, there is a cofinal set $I \subseteq \lambda$, $n < \omega$ and $c_{\star} \in \operatorname{Col}(\omega, \kappa^{+\omega})$ such that for every $\alpha \in I$, $c_{\alpha} = c_{\star}$ and $\zeta_{\alpha} < j(\kappa^{+n})$. By elementarity, for every $\alpha, \beta \in I$, there are $\gamma, \gamma' < \kappa^{+n}$, $\rho < \kappa$ and $p \in \mathbb{L}_{\rho}$ such that $p \Vdash_{\mathbb{L}_{\rho}} \langle \alpha, \gamma \rangle \leq_{\dot{T}_{\rho}} \langle \beta, \gamma' \rangle$.

This defines a narrow system in W: The domain of the system is $I \times \kappa^{+n}$. The indices set is $\bigcup_{\rho < \kappa} \mathbb{L}_{\rho} \times \{\rho\}$. $\langle \alpha, \xi \rangle \leq_{p,\rho} \langle \beta, \zeta \rangle$ iff $p \Vdash_{\mathbb{L}_{\rho}} \langle \alpha, \xi \rangle \leq_{\dot{T}_{\rho}} \langle \beta, \zeta \rangle$.

By the narrow system property there is a cofinal branch in W. Namely there are $\rho < \kappa$, $p \in \mathbb{L}_{\rho}$, and $\gamma < \kappa^{+n}$ such that for every $\alpha, \beta \in I$, $p \Vdash_{\mathbb{L}_{\rho}} \langle \alpha, \gamma \rangle \leq \langle \beta, \gamma \rangle$.

This proves that the tree property holds at $\aleph_{\omega+1}$ in the generic extension.

For the last claim, note that after collapsing \aleph_1 , for every $\gamma < \aleph_{\omega+1}$ either of $\gamma = \omega$ or $C_{\gamma} \neq \emptyset$. Thus, one can complete the partial square to a full $\Box_{\aleph_{\omega},<\aleph_{\omega}}$ by adding cofinal ω -sequences.

§4. Indestructible tree property. In this section we will build three models in which the tree property at a successor of singular cardinal is indestructible under certain class of forcing notions. We start by building a model in which the tree property holds at \aleph_{ω^2+1} and it is indestructible under any forcing \mathbb{P} of cardinality less than \aleph_{ω^2} . Similarly, we will construct a model for the tree property at $\aleph_{\omega+1}$ in which the tree property still holds after any σ -closed forcing of cardinality $< \aleph_{\omega}$.

We remark that we do not know whether it is possible to force the tree property at $\aleph_{\omega+1}$ to be indestructible under any $\aleph_{\omega+1}$ -closed forcing notions.

4.1. Indestructible tree property for \aleph_{ω^2+1} . In this subsection, we will show that in Sinapova's model for the tree property at \aleph_{ω^2+1} [7] (without the failure of SCH), the tree property is indestructible under small forcings. We start with some simple observations:

LEMMA 4.1. Let λ be a cardinal such that the tree property holds at λ^+ and it is indestructible by any forcing of the form $\operatorname{Col}(\omega, \rho)$ for $\rho < \lambda$. Then the tree property at λ^+ is indestructible by any forcing of size $< \lambda$. Moreover, it is enough to assume that for every $\rho < \lambda$ there is $\rho \leq \rho' < \lambda$ such that $\operatorname{Col}(\omega, \rho')$ forces the tree property at λ^+ .

PROOF. Let \mathbb{P} be a forcing notion of cardinality $< \lambda$. Let $\mu = |\mathbb{P}|$. $\operatorname{Col}(\omega, \rho)$ adds a generic filter for \mathbb{P} . Let $G \subseteq \mathbb{P}$ be a generic filter. The quotient forcing $\operatorname{Col}(\omega, \rho)/G$ has cardinality at most ρ and therefore it does not add a cofinal branch to any λ^+ -Aronszajn tree. Since the tree property holds after forcing with $\operatorname{Col}(\omega, \rho)$ and the forcing $\operatorname{Col}(\omega, \rho)/G$ does not add a branch to Aronszajn tree – the tree property holds in V[G] as well.

THEOREM 4.2. Let $\kappa = \kappa_0 < \kappa_1 < \cdots$ be a sequence of ω supercompact cardinals. Let $\mu = \sup \kappa_n$ and $\lambda = \mu^+$. There is a generic extension in which $\kappa = \aleph_{\omega^2}, \lambda = \aleph_{\omega^2+1}$ and for every $\rho < \mu$, the tree property holds after forcing with $\operatorname{Col}(\omega, \rho)$.

In order to prove this theorem, we will work with Sinapova's model for the tree property at \aleph_{ω^2+1} from [7]. We will not need to violate SCH at this point, so the proof is somewhat simpler at some points.

The main idea behind the indestructibility is that one can define a projection $f : \mathbb{P} \times \operatorname{Col}(\omega, \rho) \to \mathbb{P}_n$ that shifts the Prikry sequence by *n* steps to the left, where \mathbb{P}_n is a "shifted" version of the forcing \mathbb{P} which forces the tree property as well. This way, we can analyze the sets that were added by a forcing of the form $\operatorname{Col}(\omega, \rho)$ simply by shifting the first element of the Prikry sequence to be above ρ .

We start with a well known fact:

LEMMA 4.3. Let $\mathbb{M} = \prod_{n < \omega} \operatorname{Col}(\kappa_n, < \kappa_{n+1})$ —a full support product of Levy collapses. In $V^{\mathbb{M}}$ the narrow branch property holds at λ^+ .

The proof is similar to the proof of Lemma 3.7 and appears in [5].

Work in $V^{\mathbb{M}}$. The cardinal $\kappa = \kappa_0$ is still supercompact, by the Laver indestructibility. Let \mathcal{U} be a normal measure on $P_{\kappa}\lambda$ in $V^{\mathbb{M}}$. Let \mathcal{U}_n be the projection of \mathcal{U} to $P_{\kappa}\kappa_n$ for $n < \omega$.

Let $j_n: W \to N_n \cong \text{Ult}(W, \mathcal{U}_n)$ be the elementary embedding derived from \mathcal{U}_n . Let us construct an N_n -generic filter H_n for the forcing $\operatorname{Col}(\kappa^{+\omega+2}, < j(\kappa))^{N_n}$. This is possible by the standard arguments: the forcing notion $\operatorname{Col}(\kappa^{+\omega+2}, < i(\kappa))^{N_n}$ is κ^{+n+1} -closed in W and has only κ^{+n+1} -dense subsets in N_n (as counted by $V^{\mathbb{M}}$).

Let us define the main forcing notion \mathbb{P} :

A condition $p \in \mathbb{P}$ has the following form

$$p = \langle d_0, a_0, c_0, \dots, a_{n-1}, c_{n-1}, A_n, C_n, \dots \rangle$$

where.

- (1) $a_i \in P_{\kappa} \kappa^{+i}$ and $A_i \in U_i$. Let $\rho_i = a_i \cap \kappa$ if i < n and $\rho_i = \kappa$ otherwise.
- (2) $d_0 \in \operatorname{Col}(\omega, \rho_0^{+\omega})$ if $\rho_0 < \kappa$ and otherwise $d_0 \in \operatorname{Col}(\omega, \kappa)$. (3) $c_i \in \operatorname{Col}(\rho_i^{+\omega+2}, < \rho_{i+1})$.
- (4) $C_i: A_i \to W$ such that $C_i(a) \in \operatorname{Col}((a \cap \kappa)^{+\omega+2}, <\kappa)$ for every $a \in A_i$ and $[C_i]_{\mathcal{U}_i} \in H_i.$

n is called the length of *p* and we denote len(p) = n. A condition p is stronger than q ($p \le q$) if:

- (1) $\operatorname{len}(p) \ge \operatorname{len}(q)$.

- (1) $\operatorname{len}(p) \leq \operatorname{len}(q)$. (2) $d_0^p \leq d_0^q$. (3) $a_i^p = a_i^q$ and $c_i^p \leq c_i^q$ for every $i < \operatorname{len}(q)$. (4) $a_i^p \in A_i^q$ and $c_i^p \leq C_i^q(a_i)$ for $\operatorname{len}(q) \leq i < \operatorname{len}(p)$. (5) $A_i^p \subseteq A_i^q$ for $i \geq \operatorname{len}(p)$.
- (6) $C_i^p(a) \leq C_i^q(a)$ for every $a \in A_i^p$.

For the proof of Theorem 4.2, we will also need to consider the following shifted version of \mathbb{P} . For every $s < \omega$, we define the forcing \mathbb{P}_s .

A condition $p \in \mathbb{P}_s$ has the following form

$$p = \langle d_0, a_0, c_0, \dots, a_{n-1}, c_{n-1}, A_n, C_n, \dots \rangle$$

where.

- (1) $a_i \in P_{\kappa} \kappa^{+i+s}$ and $A_i \in U_{i+s}$. Let $\rho_i = a_i \cap \kappa$ if i < n and $\rho_i = \kappa$ otherwise.
- (2) d₀ ∈ Col(ω, ρ₀^{+ω}) if ρ₀ < κ and otherwise d₀ ∈ Col(ω, κ).
 (3) c_i ∈ Col(ρ_i^{+ω+2}, < ρ_{i+1}).
- (4) $C_i: P_{\kappa}\kappa^{+i+s} \to W$ such that $C_i(a) \in \operatorname{Col}((a \cap \kappa)^{+\omega+2}, <\kappa)$ for every $a \in A_i$ and $[C_i]_{\mathcal{U}_{i+s}} \in H_{i+s}$.

We order the conditions in the same way as we did for \mathbb{P} . Note that $\mathbb{P}_0 = \mathbb{P}$.

THEOREM 4.4 (Sinapova). For every $s < \omega$, \mathbb{P}_s forces that $\lambda = \aleph_{\omega^2+1}$ and the tree property holds in λ .

PROOF. We will give a sketch of the proof. We will show that the claim holds for s = 0. The argument for general s is the same, notation wise more complicated.

Let $p \in \mathbb{P}$ be a condition and let \dot{T} be a name for a λ -Aronszajn tree. Let n be the length of p. Let $j: V \to M$ be a λ -supercompact embedding, with a critical point κ which is compatible with \mathcal{U}_n (namely \mathcal{U}_n is the $P_{\kappa}\kappa^{+n}$ measure which is derived from j).

In *M*, let us look at the forcing $j(\mathbb{P})$ below a condition $q \leq j(p)$ of length n + 1 such that $a_n^q = j'' \kappa^{+n}$. In other words, *q* is an extension of j(p) that forces that the n + 1-th element of the diagonal Prikry sequence is $j'' \kappa^{+n}$. The forcing $j(\mathbb{P})/q$ preserves λ as a regular cardinal and realizes $j(\dot{T})$ to be a $j(\lambda)$ -Aronszajn tree.

Let us denote $\delta = \sup j^{*}\lambda < j(\lambda)$ and let us look at the name of a partial branch $\{\langle j(\alpha), \zeta_{\alpha} \rangle \mid M^{j(\mathbb{P})} \models \langle j(\alpha), \zeta_{\alpha} \rangle \leq_{j(\dot{T})} \langle \delta, 0 \rangle\}.$

Using the Prikry property, we may find a direct extension of q, q^* , such that for every $\alpha < \lambda$ the value of $k < \omega$ such that $\zeta_{\alpha} < j(\kappa^{+k})$ is determined by q^* up to forcing with the first *n* lower parts of $j(\mathbb{P})$. Since there are less than λ many possible values for the first *n* coordinates of the conditions below q^* , there is a cofinal subset of λ , *I*, a natural number $n_* < \omega$ large enough and a fixed lower part a_* of length n + 1 such that

$$I = \{ \alpha < \lambda \mid \exists r \le q^{\star}, \operatorname{stem}(r) = a_{\star}, r \Vdash \exists \zeta < j(\kappa^{+n_{\star}}), \langle j(\alpha), \zeta \rangle \le \langle \delta, 0 \rangle \}.$$

In particular, for every $\alpha, \beta \in I$, M thinks that there is an extension of $j(p), q^{\star\star}$ of length n + 1 and ordinals $\zeta, \zeta' < j(\kappa^{+n_{\star}})$ such that $q^{\star\star} \Vdash \langle j(\alpha), \zeta \rangle \leq_{j(\dot{T})} \langle j(\beta), \zeta' \rangle$. Reflecting this to V we conclude that for every $\alpha, \beta \in I$ there is a condition $q' \leq p$ with stem of length n + 1 and $\zeta, \zeta' < \kappa^{+n_{\star}}$ such that $q' \Vdash \langle \alpha, \zeta \rangle \leq_{\dot{T}} \langle \beta, \zeta' \rangle$.

This defines a narrow system on $I \times \kappa^{+n_*}$, indexed by the stems of length n + 1 which are stems of some condition which is stronger than p. By the narrow system property, there is a cofinal branch. So there is $I' \subseteq I$, a stem s_* and an ordinal $\zeta_* < \kappa^{+n_*}$ such that for every $\alpha < \beta$ in I' there is a condition q with stem s_* forcing $\langle \alpha, \zeta_* \rangle \leq_{\dot{T}} \langle \beta, \zeta_* \rangle$.

Next we will build inductively a sequence of conditions $\langle p_{\alpha} | \alpha \in I' \setminus \rho \rangle$ (for some $\rho < \lambda$), such that for every $\alpha < \beta$,

$$p_{\alpha} \wedge p_{\beta} \Vdash \langle \alpha, \zeta_{\star} \rangle \leq_{\dot{T}} \langle \beta, \zeta_{\star} \rangle.$$

The construction is done by induction on $m < \omega$, where at each step we define $p_{\alpha} \upharpoonright m$ in a way that for all α, β (except a bounded segment) there is a condition q with $q \upharpoonright m = p_{\alpha} \upharpoonright m \land p_{\beta} \upharpoonright m$ such that

$$q \Vdash \langle \alpha, \zeta_{\star} \rangle \leq_{\dot{T}} \langle \beta, \zeta_{\star} \rangle.$$

Extending $p_{\alpha} \upharpoonright m$ to $p_{\alpha} \upharpoonright (m+1)$ is done by defining a narrow system corresponding to the possible extension and using the branch in order to define the relevant value for all $\alpha \in I'$ above the first level that the branch meets.

Eventually, we obtain a sequence of conditions $\{p_{\alpha} \mid \alpha \in I' \setminus \rho\}$, for some $\rho < \lambda$, $p_{\alpha} \leq p$. Using the chain condition of the forcing \mathbb{P} we conclude that there is an extension of p that forces that for unbounded many ordinals $\alpha < \lambda$, p_{α} will be in the generic filter. But then $\{\langle \alpha, \zeta_* \rangle \mid p_{\alpha} \in G\}$ is a cofinal branch in \dot{T} (where G is the generic filter for \mathbb{P}).

In order to show the indestructibility, we need to show that there is a simple connection between the different shifts of the forcing:

LEMMA 4.5. Let $p \in \mathbb{P}$, $\operatorname{len}(p) = n + 1$, $n \geq 1$ and let $f \in \operatorname{Col}(\omega, \rho_n^{+\omega})$. There is a condition $q \in \mathbb{P}_n$, of length one such that $\rho_0^q = \rho_n^p$, such that $\mathbb{P}_n/q \cong (\mathbb{P}/p) \times (\operatorname{Col}(\omega, \rho_n^{+\omega})/f)$.

PROOF. Let $\eta = (\rho_n^p)^{+\omega}$.

The forcing \mathbb{P}/p is the product $\mathbb{C}/p^{\leq n} \times \mathbb{P}^{\geq n}/p^{\geq n}$ where

$$\mathbb{C} = \operatorname{Col}(\omega, (\rho_0^p)^{+\omega}) \times \prod_{i < n} \operatorname{Col}((\rho_i^p)^{+\omega+2}, < \rho_{i+1}^p)$$

and $\mathbb{P}^{\geq n}$ is the set of the *n*-upper part of the conditions of \mathbb{P} . More precisely, a condition $s \in \mathbb{P}^{\geq n}$ is an ω -sequence of the form

$$s = \langle a_n^s, c_n^s, \dots, a_{l-1}^s, c_{l-1}^s, A_l^s, C_l^s, \dots \rangle,$$

where $l \ge n$ and $a_i^s, c_i^s, A_i^s, C_i^s$ are as in the definition of \mathbb{P} (in particular, $a_i^s \in P_{\kappa} \kappa^{+i}$).

The conditions $p^{\geq n} \in \mathbb{P}^{\geq n}$, $p^{< n} \in \mathbb{C}$ are defined as follows:

$$p^{
$$p^{\geq n} = \langle a_n^p, c_n^p, A_{n+1}^p, C_{n+1}^p, \dots, A_l^p, C_l^p, \dots \rangle.$$$$

Clearly, $|\mathbb{C}| \leq \eta$ and thus $(\mathbb{C}/p^{\leq n}) \times (\operatorname{Col}(\omega,\eta)/f) \cong \operatorname{Col}(\omega,\eta)$. Let us fix an isomorphism π_0 : $\operatorname{Col}(\omega,\eta) \to (\mathbb{C}/p^{\leq n}) \times (\operatorname{Col}(\omega,\eta)/f)$. Note that $\pi_0(\emptyset) = (p^{\leq n}, f)$.

Let $q \in \mathbb{P}_n$ be the condition $\langle \emptyset \rangle^{\frown} p^{\geq n}$.

By the definition of \mathbb{P}_n and $\mathbb{P}^{\geq n}$,

$$\mathbb{P}_n/q \cong \operatorname{Col}(\omega,\eta) \times \left(\mathbb{P}^{\geq n}/p^{\geq n}\right).$$

Combining this with the isomorphism π_0 , we obtain the isomorphism:

$$\mathbb{P}_n/q \cong (\mathbb{P}/p) \times (\operatorname{Col}(\omega, \eta)/f). \quad \dashv$$

THEOREM 4.6. \mathbb{P} forces the tree property at \aleph_{ω^2+1} to be indestructible by any forcing of size $\langle \aleph_{\omega^2}$.

PROOF. Is it enough to show that it is the case for $\operatorname{Col}(\omega, \aleph_{\omega \cdot n})$. Recall that $\aleph_{\omega \cdot n} = \rho_n^{+\omega}$ so we are in the situation of Lemma 4.5. This means that after forcing with $\operatorname{Col}(\omega, \aleph_{\omega \cdot n})$ the tree property holds, as the iteration is isomorphic to the forcing notion \mathbb{P}_n below some condition.

4.2. Indestructible tree property for $\aleph_{\omega+1}$ **under small** σ -closed forcings. Let us construct a model very similar to Section 4.1, in which we have the tree property at $\aleph_{\omega+1}$ and it will be indestructible under any σ -closed forcing of cardinality $< \aleph_{\omega}$. The additional restriction on the forcing notions (namely that the forcing is σ -closed), implies that those forcing notions cannot collapse ω_1 .

THEOREM 4.7. It is consistent, relative to the existence of ω many supercompact cardinals, that the tree property holds at $\aleph_{\omega+1}$ and it is indestructible under any σ -closed forcing of cardinality $< \aleph_{\omega}$.

PROOF. We will start with a model of the narrow system property at $\kappa^{+\omega+1}$ for κ a supercompact cardinal. This can be obtained, for example, by forcing with the product of the Levy collapses between the supercompact cardinals as in Lemma 4.3. Let

 \mathcal{U}_0 be a normal ultrafilter on κ generated from a $\kappa^{+\omega+1}$ -supercompact elementary embedding, $j: V \to M$.

Let us show that for every $n < \omega$, there is a large set $A_n \in \mathcal{U}_0$ such that for every $\rho \in A_n$, forcing with $\mathbb{L}_{\rho} = \operatorname{Col}(\omega, \rho^{+\omega}) \times \operatorname{Col}(\rho^{+\omega+1}, \kappa^{+n})$ forces the tree property at $\kappa^{+\omega+1}$.

Assume that this is not the case and let \dot{T}_{ρ} be a counter example for every bad choice of ρ , for a fixed $n < \omega$. Since the set of bad choices is in \mathcal{U}_0 , κ is a bad choice of ordinal in M. Let us force with $j(\mathbb{L})_{\kappa}$, and let M[H] be the generic extension. Let $T = j(\dot{T})^H_{\kappa}$ be an Aronszajn tree at $j(\kappa^{+\omega+1})$. Let $\delta = \sup j'' \kappa^{+\omega+1}$ and for every $\alpha < \kappa^{+\omega+1}$ let $\beta_{\alpha} < j(\kappa^{+\omega})$ be the element in the level $j(\alpha)$ below $\langle \delta, 0 \rangle$.

Using the same arguments as in the proof of Theorem 3.8, there is a cofinal set $I \subseteq \kappa^{+\omega+1}$, a decreasing sequence of conditions $q_{\alpha} \in \operatorname{Col}(\kappa^{+\omega+1}, j(\kappa)^{+n})$, a condition $p \in \operatorname{Col}(\omega, \kappa^{+\omega})$ and a natural number $N < \omega$ such that for every $\alpha \in I$ there is $\beta < j(\kappa^{+N})$ such that $(p, q_{\alpha}) \Vdash \langle j(\alpha), \beta \rangle \leq_T \langle \delta, 0 \rangle$.

Reflecting this back to V, we conclude that for every $\alpha, \alpha' \in I$:

$$\exists \beta, \beta' < \kappa^{+N}, \ \rho < \kappa, \ p \in \mathbb{L}_{\rho} \text{ such that } p \Vdash_{\mathbb{L}_{\rho}} \langle \alpha, \beta \rangle \leq_{T_{\rho}} \langle \alpha', \beta' \rangle.$$

This gives us a narrow system, similar to the one in the proof of Theorem 3.8. A branch through this system provides us an ordinal ρ which was a bad choice, a condition $r \in \mathbb{L}_{\rho}$, a cofinal set $J \subseteq I$ and for all $\alpha \in J$ an ordinal $\beta_{\alpha} < \kappa^{+N}$ such that for all $\alpha, \alpha' \in J$,

$$r \Vdash_{\mathbb{L}_{\varrho}} \langle \alpha, \beta_{\alpha} \rangle, \langle \alpha', \beta_{\alpha'} \rangle$$
 are compatible.

This is a contradiction to the fact that this T_{ρ} was a name for an λ -Aronszajn tree.

Let $A = \bigcap_{n < \omega} A_n$ and let $\rho \in A$. Forcing with $\operatorname{Col}(\omega, \rho^{+\omega}) \times \operatorname{Col}(\rho^{+\omega+1}, \kappa)$ forces the tree property. For every small σ -closed forcing notion \mathbb{Q} there is *n* such that $\operatorname{Col}(\rho^{+\omega+1}, \kappa) * \mathbb{Q}$ is a regular subforcing of $\operatorname{Col}(\rho^{+\omega+1}, \kappa^{+n})$ and since the tree property holds after this forcing and since the quotient is small and thus cannot add branches to Aronszajn trees - we are done.

§5. Open questions. In Section 4.1 we proved that the tree property at \aleph_{ω^2+1} can be made indestructible under any small forcing poset.

QUESTION 5.1. Is it consistent that the tree property at $\aleph_{\omega+1}$ is indestructible under any forcing of cardinality $< \aleph_{\omega}$?

On the other hand, one can ask whether it is possible to extend the results of Theorem 3.1.

QUESTION 5.2. Is it consistent that the tree property holds at $\aleph_{\omega+1}$ but there is a small forcing (of cardinality $< \aleph_{\omega}$), that does not collapse cardinals and adds an $\aleph_{\omega+1}$ -Aronszajn tree?

Note that in all the currently known models for the tree property at $\aleph_{\omega+1}$, adding a single Cohen real does not add an Aronszajn tree at $\aleph_{\omega+1}$. So we ask the following stronger version of Question 5.2:

QUESTION 5.3. Is it consistent that the tree property holds at $\aleph_{\omega+1}$ but adding a Cohen real adds an $\aleph_{\omega+1}$ -Aronszajn tree?

This question is particularly interesting when we assume that \aleph_{ω} is strong limit since then adding a Cohen real cannot add a weak square for \aleph_{ω} , assuming that there is no weak square in the ground model.

Acknowledgments. We would like to thank the anonymous referee for improving the readability and accuracy of this article.

REFERENCES

[1] S. BEN-DAVID and S. SHELAH, Souslin trees and successors of singular cardinals. Annals of Pure and Applied Logic, vol. 30 (1986), no. 3, pp. 207–217.

[2] J. CUMMINGS, M. FOREMAN, and M. MAGIDOR, Squares, scales and stationary reflection. Journal of Mathematical Logic, vol. 1 (2001), no. 1, pp. 35–98.

[3] C. LAMBIE-HANSON, Squares and narrow systems, this JOURNAL, vol. 82 (2017), no. 3, pp. 834–859.

[4] M. MAGIDOR and S. SHELAH, *The tree property at successors of singular cardinals.* Archive for *Mathematical Logic*, vol. 35 (1996), no. 5–6, pp. 385–404.

[5] I. NEEMAN, The tree property up to $\aleph_{\omega+1}$, this JOURNAL, vol. 79 (2014), no. 2, pp. 429–459.

[6] A. RINOT, A cofinality-preserving small forcing may introduce a special Aronszajn tree, Archive for Mathematical Logic. vol. 48 (2009), no. 8, pp. 817–823.

[7] D. SINAPOVA, The tree property and the failure of the singular cardinal hypothesis at \aleph_{ω^2} , this JOURNAL, vol. 77 (2012), no. 3, pp. 934–946.

EINSTEIN INSTITUTE OF MATHEMATICS EDMOND J. SAFRA CAMPUS THE HEBREW UNIVERSITY OF JERUSALEM GIVAT RAM. JERUSALEM 9190401, ISRAEL

E-mail: yair.hayut@mail.huji.ac.il *E-mail*: mensara@savion.huji.ac.il