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DESTRUCTIBILITY OF THE TREE PROPERTY AT R,

YAIR HAYUT AND MENACHEM MAGIDOR

Abstract. We construct a model in which the tree property holds in R, and it is destructible under
Col(w, ). On the other hand we discuss some cases in which the tree property is indestructible under
small or closed forcings.

§1. Introduction. A partial order (7, <r) is called a tree, if it has a minimal
element and for every ¢+ € T, theset {s € T | s <7 t} is well ordered by <7.
The order type of the chain of elements that lie below 7 in the tree order is called
the level of t and denoted by Levr(¢). For a cardinal «, T is called a x-tree if
sup,cr(Levy(t) + 1) = & and the cardinality of each level of T is strictly below «.

By a theorem of KOnig, every w-tree has a cofinal branch (namely, a cofinal
chain). On the other hand, a theorem of Aronszajn states that there is an w,-tree
that has no cofinal branches. Such a tree is called Aronszajn tree. For any larger
successor cardinal, k > @y, it is independent of ZFC whether there is a k-tree with
no cofinal branches. This question is related to other combinatorial topics and in
order to get the consistency of the nonexistence of k-Aronszajn trees, one must
assume the consistency of some large cardinals. If every & tree has a cofinal branch,
we say that k has the tree property.

By a theorem of Silver, if uncountable cardinal x has the tree property then &
is weakly compact in L. On the other end, Mitchell proved that if x is weakly
compact and u < k is regular then there is a generic extension in which Kk = u*
and the tree property holds at ., thus showing that the tree property at the double
successor of a regular cardinal is equiconsistent with the existence of a weakly
compact cardinal. Where « is a successor of a singular cardinal, the situation is
more complicated. In [4]. Magidor and Shelah showed that it is consistent, relative
to some large cardinals, that the tree property holds at N, ;. The large cardinal
assumption was later reduced by Sinapova and Neeman to the existence of an w-
sequence of supercompact cardinals (see. e.g.. [5] for the Prikry-free version). In
both constructions, X; plays a special role. It reflects, in some sense, the properties
of Nw+1.

In Section 3 we will show that it is consistent to have a model in which the tree
property holds at X, |, but after collapsing ¥y, it fails. This extends a work by
Cummings, Foreman and the second author [2, Theorem 14]. In this article they
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show that it is possible that a weak square is added by a small forcing. Our arguments
are very similar to the arguments there. In [6], Rinot shows that it is consistent that
there is no special Aronszajn tree on N, +; and a o-closed N,-Knaster forcing of
cardinality N3 introduces one. We note that we do not know how to apply a similar
argument for this case.

In Section 4 we discuss three cases in which the tree property at a successor of a
singular cardinal is somewhat indestructible. In 4.1 we will show that it is consistent
that the tree property holds at X., | and it is indestructible under any forcing of
cardinality <®,.. In 4.2 we will show that the tree property at 8, can be made
indestructible under small o-closed forcings.

§2. Preliminaries. The following notation, due to Magidor and Shelah [4], plays
an important role in the investigation of the tree property at successors of singular
cardinals. For more information about narrow systems and their connections to
squares we refer to [3].

DeriNITION 2.1, Let A be a regular cardinal. A system is a triplet S = (. k., R)
such that:

(1) I C J unbounded. k < 4.

(2) R is a collection of partial order relations on I x .

(3) Each R € R is a tree like partial order. R respects the lexicographic order
on I x k. Namely, (o, ()R(f. &) implies o < f and if & = f then { = £&.
Moreover, if {(f, &), (y. p)R{(a.{) and f <y then (B, E)R(y, p).

(4) Forevery a < fin I there are {.¢ < k and R € R such that (o, {)R(p. &).

A branch through S is a set of elements on / x x which is a chain relative to some
R € R. We say that a branch b meets the a-th level of Sif b N {a} x & # 0. A
branch is cofinal if it meets cofinally many levels.

A system S is narrow if max(k™, |R|T) < 4.

DEerFINITION 2.2, Let 4 be a regular cardinal. We say that the narrow system
property holds at A if every narrow system of height 4 has a cofinal branch.

Unlike the tree property, the narrow system property is indestructible by any
small forcing. Let IP be a forcing notion with |P|* < 4 and let S be a name for a
narrow system. Let R be the collection of names of relations in S and let I be the
set of all ordinals that can be levels of the P. Let us define the narrow system S in
the natural way: the relations of S are indexed by P x R. and let (cv. £)(p. R)(y.6) iff
pIF (. BYR(y.9) for R € R. A branch in the system S corresponds to a condition
p € P and a set of element in S which are forced to be a branch in the generic
extension by p.

83. Destructible tree property.

THEOREM 3.1. Let k = ko < K| < --- be an w-sequence of supercompact cardi-
nals. Then there is a forcing extension in which the tree property holds at X, | and the
forcing Col(w, w,) adds a special R, 1-Aronszajn tree.

We will prove something slightly stronger. We will define a forcing poset that
forces that in the generic extension there is a partial weak square on N} whose
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domain contains all ordinals with cofinality above w;, while the tree property holds
at N, 1. If we further extend the universe and collapse w; to be countable, then
we can complete all the missing places in this square sequence by just adding w
sequences. By a theorem of Shelah and Ben-David [1, Theorem 3], without violating
the continuum hypothesis at X,,. we cannot hope to have this kind of partial square
with only one club at each ordinal, while having the tree property.

Let u = supk, andlet A = u™.

We begin with some definitions:

DEerINITION 3.2, A partial square on a set S C A with width < # is a sequence
C = (C, | @ < /) such that:
(1) Forevery a < A. C, is a set of cardinality < 5. If & € S then C,, # 0.

(2) Every D € C, is a closed and unbounded subset of @ and otp D < a.
(3) If p e accD. D € C, then D N f € Cp.

When / = u*, we may assume that otp D < u for every D € C,.

Since successor ordinals are never accumulation points of a club, the values of the
square sequence at successor points are irrelevant. We will assume that C,11 = {a}
for every . for consistency.

We want to force a partial square for the set S, with width < .

DEerINITION 3.3. Let S be the following forcing notion. A condition s € Sis a
sequence s = (¢; | i < y) for some ordinal y < u* such that all three requirements
for the partial square sequence hold for every a < y. Namely,

(1) Va < y. ¢y is a set of less than u sets. If cf o > k. then ¢, # 0.
(2) Forevery D € c,. otpD < u and D is a closed and unbounded subset of a.
(3) If peaccD. D € ¢othen DN P € cp.

We order S by end extension.

We will think of the conditions s € S as functions, so for s = {(¢; | i < y) we will
write doms =y + 1 and s(i) = ¢, fori € doms.

LemmA 3.4. S is k-directed closed.

Given a partial square C, we will define a threading forcing, T,. This forcing will
add a club at 4 with order type # such that all its initial segments are from C.

DEerFINITION 3.5, Let T, = {D | 3a. D € C,. 1 < otpD < 5}, ordered by end
extension.

The following lemma is standard:

LemMa 3.6. Let S. T, be as above. Then:

(1) Sis A-distributive.

(2) Let C be the generic partial square added by S, and let n be a regular cardinal.
S T, is equivalent to an n-directed closed forcing. Moreover, for every p < u,
S * T)) (where we use full support power in V) contains an n-directed closed
dense subset.

ProOOF. Let us show that S is A-distributive. We will show that it is #-strategically

closed for every regular 7 < A. We will do this by showing the second part of the
lemma—that S * T, contains a #-closed dense set.
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Let us observe first that the set of conditions (s.7) € S * T,, dom(s) =y + 1,
t € s(y) is dense. For every condition (s, 7),

s Ik “f is a member of some set in the square sequence”,

and therefore 7 is forced to be a member of the ground model.

Thus. there is an extension of s, s’, which decides the value of 7 to be equal to an
element in V', that we will denote by 7. The closed set # might have no extension in
s'(max dom s’) but we can extend s’ to s where doms” = doms’ +w + 1, and ¢
has an extension in the top element of s”. Let call this extension #’. Thus we have a
condition (s”,¢') < (s,¢) and (s”,¢') has the desired form.

The set

D ={(s.i) € S*T, | maxs = maxdom s}
is n-directed closed. Let p < nand let {{s;.7;) | i < p} C D be a directed set. Let us
assume that sup dom s; is a limit ordinal (otherwise, the sequence is fixed on a tail).
The condition (s, t,), where 7, = |J#; and s, = (U ;)" ({¢,}) is a condition in D,
stronger than s; for all 7.

The claim that S * T/ contains a 5-closed dense subset (for all p < u), is proved
by the same method. For this case, we consider

D ={(s,{ty | @ < p)) | Vo < p, maxt, = maxdoms}.

By the same argument, using the fact that the bound on the cardinality of the
set s(maxdoms), for s € S, is greater than p. we conclude that D is dense and
n-directed closed in S = T},. 8

Let us move now toward the proof of 3.1. Let kg < k] < -+- < K, < --- be
supercompact cardinals. By using Laver’s preparation, we may assume that they are
Laver-indestructible, i.e., that for every n < w and every «,-directed closed forcing
P, Ikp £, is supercompact. Let Ml = [],_, Col(x;, < ;+1) a full support product of
Levy collapses.

i<w

LEmMMA 3.7. After forcing with S x M, the narrow system property holds at A.

Proor. Let Hg C S, Hy; € M be mutually generic filters. Let G = Hg x Hy,. Let
us denote by H; C Col(k;_1.<&k;) be the i-th coordinate of the generic filter Hy,
(i > 0). Let H' be the generic filters for all the parts of M except the i-th coordinate,
namely H' = (H,, | m # i).

Let S € V[G] be a narrow system on I x 7, with relations R. Let us assume,
towards a contradiction, that S has no cofinal branch in V'[G]. Since the set I will
play no role later in the proof, we will restrict ourselves to the notation-wise simpler
case in which 7 = J. Let n > 2 be large enough such that &, _» > |7 x R|"in V5*M,

Let W, = V[Hs][H"]. Let us force over W, with Ty’ >. Let K = (K; | i < k,_2)
be the sequence of pairwise mutually generic filters. We stress that the product,
Tw'—2. is taken over V[G] and not over W,,.

Fix & < ky_2. W,[K:] = K, 1s supercompact since:

(1) Sx Tﬁ:‘z contains a dense k,-directed closed subset,

(2) Tl,<ice, Col(ki. < Kit1) is K,-directed closed.

(3) Tl;c,_ Col(ki. < ki41) has cardinality x,_; which is < .

We are using the indestructibility in the two first items and Lévy-Solovay Theorem
in the last one.
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Let j: W,[K:] — M be a A-supercompact embedding with crit j = &,. Since
Col(k,_1. < Ky) 1S Ky-c.c.. after forcing with

CO](Kn_l, < ]("in)) = CO](“n—l: < Kn) X CO](”n—l: [K/n:j(ﬁn)))

we may extend the elementary embedding j to a A-supercompact elementary embed-
ding j: W,[H,[K:] — M[j(H,)]. Since W,[H,] = V[G]. S € W,[H,]. so j(S) is
defined.

Let L = (L; | i < Kk,_2) be a generic filter for Col(k,_1, [kn, j(k,)))™—2. Note
that the forcing that adds L is k,,_-closed over V', the ground model.

Letd =sup j”/4 < j(4). Let <;€ R and let
bie = {{a. ) | (j(@). B) <i (6.€) in j(S)}.

Since |R|.n < ky_2 < crit j, for some i€, b;. is a cofinal branch and moreover
Uida | 3B. (a. p) € bic} = A

We say that forcing with Col(k,_1., [k, j(k,))) X T,, adds a system of branches
for S. Without loss of generality, all branches are new (and thus, cofinal).

In particular the forcing Col(k,_1.[kn. < j(kn)))"™ =2 x Ta'~? introduces x,_»
many distinct realizations for the system of branches {b; | i € J}. Note that in
order to claim that there is no pair of system of branches which are equal we only
used the pairwise mutual genericity.

We conclude that in V[G][H][K][L] there are «,_; different systems of branches,
{b{ | @ < ky—2, i € J}. Inthis model k,_» > |7 x R|t is regular and c¢f 1 > k,,_;.
Since for every a < f§ < k,_». and every relation <;e R, b{*, b,ﬁ split at some point
below /, and since there are only k,_ realizations and only |R| relations in R, there
is py < A such that for every ¢ > p,, and for every a. f. b*(&) # biﬁ(f) (where
it is possible that only one of them is defined). By the Pigeonhole Principle there
are o, f < k,_» such that (p,. &) € b, bf for the same &, i, because there are only
|R| x n many possibilities for this pair. This is a contradiction to the choice of p,. We
conclude that it is impossible that there was not cofinal branch in S in the ground
model, as wanted. -

Let W = VS*M Note that & is supercompact in W, by the Laver indestructibility
of k.

THEOREM 3.8. There is p < k such that forcing with Col(w, p*®) x Col(p*®*!,
< k) over W forces the tree property at X, 1. Further collapsing the new Xy introduces
a weak square at N, 1.

PrOOF. Assume otherwise. Let L, = Col(w, p**) x Col(p™@*!, < k). For every
p < k., let T,, be a lL,-name for an Aronszajn tree at A. Since & is supercompact,
there is j: W — M such that *M C M. By our assumption, M models that
Iy, “J(T)x is an Aronszajn tree”. Let 6 = sup j“A < j(4). and let 1 = (3.0).
Work in M. For every a < A, pick a condition p, = (¢a, ¢») such that

< (&), palkjw, (l@).0) <, 1.

K

Let us denote this { by {,. We may pick the conditions p, in a way that g, is
a decreasing sequence. Since 4 is regular and | Col(w, k™) = k™ < A, there is a
cofinal set I C 4. n < w and ¢, € Col(w. k™) such that for every o € I, ¢, = ¢4
and {, < j(k*m).
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By elementarity, for every a. f € I. there are y.y’ < k™. p < k and p € L, such
that p Iby, (a.7) < (B.7').

This defines a narrow system in W: The domain of the system is 7 x x*". The
indices setis ., Ly x {p}. (. &) <, (B.0) T p b, (. &) <5, (B.0).

By the narrow system property there is a cofinal branch in . Namely there are
p<k.p€l, andy < k™" such that forevery a. f € I. p I, (a.y) < (B.7).

This proves that the tree property holds at ¥, in the generic extension.

For the last claim, note that after collapsing N, forevery y < X4, eithercfy =
or C, # (). Thus, one can complete the partial square to a full Oy, <y, by adding
cofinal w-sequences. -

84. Indestructible tree property. In this section we will build three models in
which the tree property at a successor of singular cardinal is indestructible under
certain class of forcing notions. We start by building a model in which the tree
property holds at X., | and it is indestructible under any forcing P of cardinality
less than N,.. Similarly, we will construct a model for the tree property at X, in
which the tree property still holds after any o-closed forcing of cardinality < X,,.

We remark that we do not know whether it is possible to force the tree property
at N, 1 to be indestructible under any N, ;-closed forcing notions.

4.1. Indestructible tree property for X . . In this subsection, we will show that
in Sinapova’s model for the tree property at R, ; [7] (without the failure of SCH),
the tree property is indestructible under small forcings. We start with some simple
observations:

LEMMA 4.1. Let A be a cardinal such that the tree property holds at A* and it is
indestructible by any forcing of the form Col(w. p) for p < A. Then the tree property
at A% is indestructible by any forcing of size < A. Moreover, it is enough to assume
that for every p < A thereis p < p' < J such that Col(w, p’) forces the tree property
at i°.

ProOF. Let P be a forcing notion of cardinality < 4. Let u = |P|. Col(w, p) adds a
generic filter for P. Let G C P be a generic filter. The quotient forcing Col(w, p)/G
has cardinality at most p and therefore it does not add a cofinal branch to any
AT-Aronszajn tree. Since the tree property holds after forcing with Col(w. p) and
the forcing Col(w, p)/G does not add a branch to Aronszajn tree — the tree property
holds in V[G] as well. -

THEOREM 4.2. Let k = ko < k1 < --- be a sequence of w supercompact cardinals.
Let 1 = sup ky, and 2 = u*. There is a generic extension in which k = R 2, A = R o
and for every p < u, the tree property holds after forcing with Col(w, p).

In order to prove this theorem, we will work with Sinapova’s model for the tree
property at X2, from [7]. We will not need to violate SCH at this point, so the
proof is somewhat simpler at some points.

The main idea behind the indestructibility is that one can define a projection
f: P x Col(w, p) — IP, that shifts the Prikry sequence by # steps to the left, where
P, is a “shifted” version of the forcing P which forces the tree property as well. This
way, we can analyze the sets that were added by a forcing of the form Col(w. p)
simply by shifting the first element of the Prikry sequence to be above p.
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‘We start with a well known fact:

LemMA 4.3. Let M = [],., Col(k,.< Kyi1)—a full support product of Levy
collapses. In V™ the narrow branch property holds at 3.

The proof is similar to the proof of Lemma 3.7 and appears in [5].

Work in V™. The cardinal & = ky is still supercompact. by the Laver indestruc-
tibility. Let & be a normal measure on P,/ in V'™, Let U, be the projection of U to
Pk, forn < w.

Let j,: W — N, = Ult(W.U,) be the elementary embedding derived from U,.
Let us construct an N,-generic filter H,, for the forcing Col(k ™2, < j(x))™. This
is possible by the standard arguments: the forcing notion Col(k %2, < j(k))V is
k"1 closed in W and has only x*"*!-dense subsets in N,, (as counted by V™).

Let us define the main forcing notion P:

A condition p € PP has the following form

p=<do,ao,6() ..... an_l,cn_l,A,,,C,,,...)
where,

(1) a; € Pertand 4; € U;. Let p; = a; Nk if i < nand p; = k otherwise.

(2) do € Col(w. pg®) if po < k and otherwise dy € Col(w, ).

(3) ¢ € Col(p ™. < pit1).

(4) C;: A; — W such that C;(a) € Col((a N k)™, < k) forevery a € A; and

[Cily, € Hi.

n is called the length of p and we denote len(p) = n.

A condition p is stronger than ¢ (p < g) if:

(1) len(p) > len(q).
) d" < d"
) a’ = af and ¢! < ¢! forevery i < len(q).
) a € Aq and c” < Cq(al) forlen(q) < i < len(p).
) Ap CAqfOI’l >1en( ).
) CP(a )SC‘I( ) for every a € A”.

For the proof of Theorem 4.2, we will also need to consider the following shifted
version of P. For every s < w, we define the forcing P;.

A condition p € P, has the following form

(2

3
(4
(5
(6

p = {do.ap,co.....an—1,¢cn—1.4,,Cp,...)
where,
(1) a; € Per™™ and A; € Uiyy. Let p; = a; Nk if i < nand p; = k otherwise.
) dy € Col(w. p®) if py < k and otherwise dy € Col(w, ).
YRS CO](P?(‘HZa < pit1).
) C;: Per™™* — W suchthat Ci(a) € Col((ank)*®+?, < k) foreverya € A,
and [Ci]Z/{,-ﬂ S HiJrs.
We order the conditions in the same way as we did for P. Note that Py = P.

THEOREM 4.4 (Sinapova). For every s < w, Py forces that . = R, | and the tree
property holds in /.

Proor. We will give a sketch of the proof. We will show that the claim holds for
s = 0. The argument for general s is the same, notation wise more complicated.
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Let p € P be a condition and let 7" be a name for a A-Aronszajn tree. Let n be the
length of p. Let j: V' — M be a A-supercompact embedding, with a critical point
% which is compatible with ¢/, (namely U, is the P.x*" measure which is derived
from j).

In M. let us look at the forcing j(P) below a condition ¢ < j(p) of length n + 1
such that @ = j”x*". In other words, ¢ is an extension of j(p) that forces that
the n + 1-th element of the diagonal Prikry sequence is j”x*". The forcing j(P)/q
preserves / as a regular cardinal and realizes j(7") to be a j(4)-Aronszajn tree.

T3]

Let us denote d = sup j“4 < j(4) and let us look at the name of a partial branch
{(j(@).Ca) | MI®) = (j(a).Ca) <) (0.0))-

Using the Prikry property, we may find a direct extension of ¢. ¢*, such that for
every a < A the value of k < w such that {, < j(k*¥) is determined by ¢* up to
forcing with the first #n lower parts of j(IP). Since there are less than A many possible
values for the first n coordinates of the conditions below ¢*, there is a cofinal subset
of 4, I, a natural number n, < o large enough and a fixed lower part a, of length
n + 1 such that

I ={a<i|3r<qgtstem(r) = aeri- 3 < j(&™), (jla).) <5,0)}.

In particular, forevery o, f € I. M thinks that there is an extension of j(p), ¢** of
length 7 + 1 and ordinals {,{" < j(x™") such that ¢** IF (j(@).{) <7 (F(B). ).
Reflecting this to V' we conclude that for every «, f € I there is a condition ¢’ < p
with stem of length n + 1 and (. {’ < ™ such that ¢’ I+ (e () <; (B.').

This defines a narrow system on / x k", indexed by the stems of length n + 1
which are stems of some condition which is stronger than p. By the narrow system
property, there is a cofinal branch. So there is I’ C I, a stem s, and an ordinal
{, < k™ such that for every o < 8 in I’ there is a condition ¢ with stem s, forcing
(. ly) <7 (B.Cs)-

Next we will build inductively a sequence of conditions (p, | @ € I\ p) (for
some p < 1), such that for every a < S,

Do N\ Pp - (o &) <i (B.Lx)-

The construction is done by induction on m < ®, where at each step we define
Do | m in a way that for all a. 8 (except a bounded segment) there is a condition ¢
with g [ m = po [ m A pg | m such that

q I+ <Oj, C*> ST <ﬂa C*>

Extending p, | mto p, | (m+1)is done by defining a narrow system corresponding
to the possible extension and using the branch in order to define the relevant value
for all @ € I’ above the first level that the branch meets.

Eventually, we obtain a sequence of conditions { p, | @ € I’ \ p}. for some p < 4,
Pa < p. Using the chain condition of the forcing P we conclude that there is an
extension of p that forces that for unbounded many ordinals a < 4, p, will be in
the generic filter. But then {(.(,) | po € G} is a cofinal branch in 7' (where G is
the generic filter for P). =

In order to show the indestructibility, we need to show that there is a simple
connection between the different shifts of the forcing:
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LemMA 4.5. Let p € P, len(p) = n+ 1, n > 1 and let f € Col(w, p,/®).
There is a condition q € P,, of length one such that p{ = p}. such that P,/q =
(P/p) x (Col(w, pi)/ f)-

ProOF. Let = (pf)™.

The forcing P/ p is the product C/p<" x P="/p=" where
C = Col(w. (p§) ") x J[ Col((p?)*** . < pL.)
i<n
and P=" is the set of the n-upper part of the conditions of P. More precisely. a
condition s € P=" is an w-sequence of the form

s={(ay.cy.....aj_j.c]_1.A].C/ ... 0).
where / > n and a, ¢!, A}. C; are as in the definition of PP (in particular, af €
P xt).
The conditions p=" € P2", p<" € C are defined as follows:
P = D)
p=r=(al.ch. A0 |.Cl ... A7.C]....)
Clearly, |C| < # and thus (C/p~") x (Col(w.n)/f) = Col(w.n). Let us fix

an isomorphism 7g: Col(w.n) — (C/p=") x (Col(w.n)/f). Note that ny() =
(p=". f).

Let ¢ € P, be the condition ((})~ p=".

By the definition of P, and P=",

P,/q = Col(w.n) x (P="/p=").
Combining this with the isomorphism 7y, we obtain the isomorphism:

P./q = (P/p) x (Col(w.n)/f). -

THEOREM 4.6. [P forces the tree property at X, ,» 1 to be indestructible by any forcing
of size < N,..

PrOOF. Is it enough to show that it is the case for Col(w.R,,.,). Recall that
N,.n = pF® so we are in the situation of Lemma 4.5. This means that after forcing
with Col(w. N,,.,) the tree property holds, as the iteration is isomorphic to the
forcing notion PP, below some condition. -

4.2. Indestructible tree property for X, under small o-closed forcings. Let us
construct a model very similar to Section 4.1, in which we have the tree property at
N,,+1 and it will be indestructible under any o -closed forcing of cardinality < ®,,. The
additional restriction on the forcing notions (namely that the forcing is o-closed).
implies that those forcing notions cannot collapse w.

THEOREM 4.7. It is consistent, relative to the existence of @ many supercompact
cardinals, that the tree property holds at X, . | and it is indestructible under any o -closed
Jorcing of cardinality < R,.

PrOOF. We will start with a model of the narrow system property at ks **! for x a
supercompact cardinal. This can be obtained, for example, by forcing with the prod-
uct of the Levy collapses between the supercompact cardinals as in Lemma 4.3. Let
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Uy be a normal ultrafilter on x generated from a x***!-supercompact elementary
embedding, j: V — M.

Let us show that for every n < w, there is a large set 4,, € Uy such that for every
p € Ay. forcing with L, = Col(w. p™) x Col(pT@+!, ") forces the tree property
at Kl+w+l .

Assume that this is not the case and let Tp be a counter example for every bad
choice of p, for a fixed n < w. Since the set of bad choices is in Uy, « is a bad choice
of ordinal in M. Let us force with j(IL).. and let M[H] be the generic extension.
Let T = j(T)Y be an Aronszajn tree at j(k™“*!). Let 6 = sup j“~k®*! and for
every a < kTt et B, < j(k*) be the element in the level j(a) below (5, 0).

Using the same arguments as in the proof of Theorem 3.8, there is a cofinal
set I C k%! a decreasing sequence of conditions ¢, € Col(k***!, j(k)™"), a
condition p € Col(w, k™) and a natural number N < w such that for every o € [
there is B < j (k™) such that (p., ga) IF (j (). B) <7 (5.0).

Reflecting this back to V', we conclude that for every a. o’ € I:

I <™. p<k . pe L, such that p Ik, (a. f) <7, (&', p').

This gives us a narrow system, similar to the one in the proof of Theorem 3.8.
A branch through this system provides us an ordinal p which was a bad choice, a
condition r € L. a cofinal set J C [ and for all & € J an ordinal 8, < ™" such
that forall a,a’ € J,

rlFL, (o fa). (@, for) are compatible.

This is a contradiction to the fact that this 7, was a name for an A-Aronszajn tree.

Let A = (., 4s and let p € A. Forcing with Col(w. p™) x Col(p™*! k)
forces the tree property. For every small o-closed forcing notion Q there is # such
that Col(p™@*+! k) x Q is a regular subforcing of Col(p™®*!, k") and since the tree
property holds after this forcing and since the quotient is small and thus cannot add
branches to Aronszajn trees - we are done. -

§5. Open questions. In Section 4.1 we proved that the tree property at X | can
be made indestructible under any small forcing poset.

QUESTION 5.1. Is it consistent that the tree property at X, 1 is indestructible under
any forcing of cardinality < X,,?

On the other hand, one can ask whether it is possible to extend the results of
Theorem 3.1.

QUESTION 5.2. Is it consistent that the tree property holds at N, but there is
a small forcing (of cardinality < N,), that does not collapse cardinals and adds an
N, +1-Aronszajn tree?

Note that in all the currently known models for the tree property at 8,1, adding
a single Cohen real does not add an Aronszajn tree at X, 1. So we ask the following
stronger version of Question 5.2:

QUESTION 5.3. Is it consistent that the tree property holds at W, | but adding a
Cohen real adds an X, -Aronszajn tree?
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This question is particularly interesting when we assume that R, is strong limit
since then adding a Cohen real cannot add a weak square for X, assuming that
there is no weak square in the ground model.
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