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It is known that the condition èither @L(F ) 6= ; or there exist v1 ; : : : ; vq 2 Rn such
that F 2 int cofv1 ; : : : ; vq g and \ q

i = 1@L(vi ) 6= ;’ characterizes solvability of the
problem

J(u) =

Z

«
L(Du) dx ! min; u 2 W 1;1 ( « ); uj@ « = f;

with f (¢) = hF; ¢i.
We extend this result to the case of lower semicontinuous integrands L : Rn ! R.
We also show that validity of this condition for all F 2 Rn is both a necessary and

su± cient requirement for solvability of all minimization problems with su± ciently
regular « and f . Moreover, the assumptions on « and f can be completely dropped
if L has su± ciently fast growth at in¯nity.

1. Introduction

In this paper we deal with minimization problems

J(u) ! min; uj@« = f; u 2 W 1;1( « ) (1.1)

for integral functionals of the form

J(u) =

Z

«

L(Du(x)) dx;

where « is an open bounded subset of Rn with Lipschitz boundary, and L : Rn ! R
is a lower semicontinuous function.

A function u 2 W 1;1( « ) is called an admissible function for the problem (1.1) if
uj@« = f and the negative part of the function L(Du) is integrable. In this case,
J(u) is well de ned but equals +1 if the positive part of L(Du) is not summable.

We accept the following notations: for a subset A of Rn, the sets int A, re int A,
co A, and extr A are, respectively, the interior, the relative interior, the convex hull,
and the set of extremum points of A (a 2 extr A if it can not be represented as a
convex combination of other points of A). B(a; ° ) denotes a ball of radius ° centred
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at the point a 2 Rn, la is a linear function with the gradient equal to a everywhere.
@L(F ) denotes the subgradient of L at a point F ,

@L(F ) := fl 2 Rn : L(v) L(F ) hl; v F i > 0; 8v 2 Rng:

L ¤ ¤ is the convexi cation of L: the epigraph of L ¤ ¤ is the convexi cation of the
epigraph of L, that is

L ¤ ¤ (v0) := inf

» qX

i = 1

ciL(vi) : q 2 N; ci > 0; vi 2 Rn;

qX

i = 1

ci = 1;

qX

i = 1

civi = v0

¼
:

Note that L ¤ ¤ exists as a function from Rn to R if and only if L exceeds an a¯ ne
function everywhere (see lemma 2.1).

Weak and strong convergences of sequences are denoted by * and !, respec-
tively.

We will frequently use the following version of the Vitaly covering theorem.
A family G of closed subsets of Rn is said to be a Vitaly cover of a bounded set

A if for each x 2 A there exists a positive number r(x) > 0, a sequence of balls
B(x; ° k) with ° k ! 0, and a sequence Ck 2 G such that x 2 Ck, Ck » B(x; ° k), and
(meas Ck= meas B(x; ° k)) > r(x) for all k 2 N .

The version of the Vitaly covering theorem from [23, p. 109] says that each
Vitaly cover of A contains at most a countable subfamily of disjoint sets Ck such
that meas(A n [kCk) = 0.

Problems (1.1) were studied recently in the framework of the existence theory in
elasticity: when dealing with homogeneous materials undergoing anti-plane shear
deformations

(x; y; z) 2 R3 ! (x; y; z + u(x; y)) 2 R3;

the problem of minimization of the free energy is of the form (1.1). While the
existence results are well known for problems (1.1) with convex integrands (see,
for example, [13]), the situation is poorly understood in the case of non-convex
problems. Note that active research in the area of non-convex variational problems
started since the work of [1], where the  rst existence results for realistic problems
in elasticity were established in the general case (without restrictions on the class
of admissible deformations).

Some recent e¬orts were devoted to the question of the solvability of prob-
lems (1.1) under restrictions on integrands motivated by physical reasons (see
[2, 19, 22, 24]). In these papers, the solvability problem was treated for particular
boundary data. Moreover, the papers [7, 8, 15] indicated conditions on integrands
both necessary and su¯ cient for the problem (1.1) with linear boundary conditions
f = lF , F 2 Rn, to have a solution.

The answer is given by the following theorem.

Theorem 1.1. The problem (1.1) with a linear boundary condition f = lF is solv-
able if and only if

(C) either @L(F ) 6= ;, or there exist v1; : : : ; vq 2 Rn (q 2 N ) such that
F 2 int cofv1; : : : ; vqg and \q

i = 1@L(vi) 6= ;.

https://doi.org/10.1017/S0308210500000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000330


Homogeneous scalar variational problems 613

Here we state a slightly more general result, since theorem 1.1 was proved in
[7, 8, 15] for integrands with superlinear growth at in nity. In [15], the su¯ cient
part was also proved for continuous integrands bounded from below. We also use
di¬erent terminology in order to formulate the result in terms of L only.

However, a crucial ingredient of the proofs (more precisely of their su¯ cient
parts) is the use of special functions proposed in [7,8,15]. The same functions were
in fact used much earlier in [20,21] with the purpose of giving simpli ed proofs of
the relaxation theorems.

If v1; : : : ; vq are extremum points of a convex compact subset of Rn, and if
F 2 int cofv1; : : : ; vqg, then the function

ws(x) = max
16i6q

hvi F; xi s (1.2)

is Lipschitz, Dws(x) 2 fvi F : i = 1; : : : ; qg a.e., and wsj@Ps = 0, where

Ps = fx : max
16i6q

hvi F; xi 6 sg

is a compact set with Lipschitz boundary and non-empty interior.
Note that Ps = sP1.
Since Vitaly covering arguments let us decompose « into disjoint sets of the form

yi + siP1 and a set of zero measure, we can de ne u0 as

hF; xi + wsi (x yi) for x 2 yi + siP1:

Then u0j@« = lF on @« , u0 2 W 1;1 ( « ). To prove that u0 is a solution of prob-
lem (1.1), note that if l 2 \q

i = 1@L(vi), then for any admissible function u 2 W 1;1( « ),
we have

J(u) J(u0) =

Z

«

fL(Du) L(Du0) hl; Du Du0ig dx

=

Z

«

fL(Du) L(v1) hl; Du v1ig dx

Z

«

fL(Du0) L(v1) hl; Du0 v1ig dx:

It is easy to see that all the functions L(vi) + hl; v vii, i = 1; : : : ; q, coincide. Then
L(v) L(v1) hl; v v1i > 0 everywhere, with equality in the case v 2 fv1; : : : ; vqg.
Hence the  rst term is non-negative while the second one equals zero. Therefore,
J(u) J(u0) > 0.

This proves that the condition \q
i = 1@L(vi) 6= ;, with F 2 int cofv1; : : : ; vqg,

implies solvability of the problem, since we can always  nd a subset of the set
fv1; : : : ; vqg consisting of extremum points of this set. If @L(F ) 6= ;, then the
function lF is a solution. Therefore, each of these two conditions imply solvability
of the problem.

These arguments prove the `su¯ cient’ part of theorem 1.1. The converse will be
proved in x 2.

Before explaining what kind of in®uence these simple arguments had on further
developments of solvability theory, let us state the results of this paper.
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Theorem 1.2. Let L : Rn ! R be a lower semicontinuous function such that
L > ³ , where ³ (v)=jvj ! 1 as jvj ! 1.

Then all problems of the form (1.1), with @« 2 C2 of positive curvature and
f 2 C2(@« ), are solvable if and only if, for each F 2 Rn, condition C holds, where

(C) either @L(F ) 6= ;, or there exist v1; : : : ; vq 2 Rn (q 2 N ) such that
\q

i= 1@L(vi) 6= ; and F 2 int cofv1; : : : ; vqg.

Moreover, there exists M = M (f; « ) > 0 such that each solution u0 is bounded
in W 1; 1 norm by M and satis¯es the Euler{Lagrange equation

Z

«

hl(x); D¿ (x)i dx = 0 8 ¿ 2 W 1;1
0 ( « );

with l 2 L 1 ( « ) such that l(x) 2 @L(Du0(x)) a.e. in « .

Remark 1.3. Condition C still characterizes solvability of all problems (1.1) with
f 2 C2(@« ) and @« 2 C2 of positive curvature, provided the lower semicontinuous
integrand L : Rn ! R has at least linear growth at in¯nity: L > ¬ j ¢ j +  , ¬ > 0,
 2 R (see x 5 for the proof). The requirements on « and f are optimal in this
class of integrands (cf. [18]).

We did not check whether assumptions on growth can be completely dropped,
like in theorem 1.1. At least in the case n = 2, this is so.

In the case when the growth of L provides certain a priori regularity of min-
imizers, an analogous result holds for arbitrary « and f , for which at least one
admissible function u 2 W 1;1( « ), with J(u) < 1, exists. However, in this case, we
cannot state Lipschitz regularity of solutions.

Theorem 1.4. Let L : Rn ! R be a lower semicontinuous function such that
L > ¬ j ¢ jp + b, ¬ > 0, p > n.

Then each problem of the form (1.1), for which at least one admissible function
u 2 W 1;1( « ) with J(u) < 1 exists, has a solution if and only if, for each F 2 Rn,
condition C holds, where

(C) either @L(F ) 6= ;, or there exist v1; : : : ; vq 2 Rn (q 2 N ) such that
\q

i= 1@L(vi) 6= ; and F 2 int cofv1; : : : ; vqg.

Remark 1.5. Note that the only role of the growth condition L > ¬ j ¢ jp +b, ¬ > 0,
p > n, is to provide almost everywhere classical di¬erentiability of solutions to the
relaxed problem. Hence the result of the theorem holds under any other assumptions
on lower semicontinuous integrands L : Rn ! R with superlinear growth, which
imply this property of solutions to the relaxed problems.

Note that regularity in minimization problems was studied typically in the con-
text of continuity of solutions and their derivatives (everywhere or on an open set
of full measure). However, here we need an intermediate property, which is almost
everywhere di¬erentiability in the classical sense. It seems that not too much was
known in this direction. In fact, results on continuity of solutions are not su¯ cient
in our situation. Simultaneously, partial regularity of derivatives, which is more
than enough for our purposes, was usually treated for elliptic integrands (see, for
example, [16]).
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Proofs of theorems 1.2 and 1.4 are further re nements of the above discussed
arguments, which were also developed recently in a deeper way in the context of
the theory of di¬erential inclusions.

Note that the su¯ cient part of theorem 1.1 is equivalent to a particular di¬erential
inclusion Du(x) 2 fv1; : : : ; vqg a.e. in « , u = lF on @« . When one deals with
nonlinear boundary conditions, more complicated di¬erential inclusions should be
considered. The typical one is Du(x) 2 extr U for a.e. x 2 « , u = f on @« , where
f 2 W 1; 1 ( « ) and Df(x) 2 U for a.e. x 2 « (here, U is a compact convex subset
of Rn with non-empty interior).

It was observed in [12] that the same functions ws with F = Df(x0) (see (1.2))
can be used to perturb a Lipschitz function f by

¿ s(¢) := ws(¢ x0) + f (x0) + hDf (x0); ¢ x0i

in such a way that D¿ s 2 extr U for a.e. x in an open subset ~« of « such that
x0 + Ps=2 » ~« » x0 + P2s and ¿ s = f on @ ~« . Re ning arguments from [12], one
can show that for each x0 2 « , where Df(x0) exists in the classical sense and
Df (x0) 2 int U , such a perturbation exists for all s > 0 su¯ ciently small (see
lemma 3.2). Applying Vitaly covering arguments, we can solve the inclusion.

In the case of the paper [12], the authors were dealing with the set-valued function
x ! U(x) and solved the inclusion by Baire category arguments following [3].

Note that if U is an n-dimensional proper face of L ¤ ¤ , f is a Lipschitz solution
of the relaxed problem, and the perturbation ¿ s is applicable at the point x0 with
Df (x0) 2 int U , then the gradient of the perturbed function stays in the set fv :
L = L ¤ ¤ g on the set of perturbation ~« (recall that L = L ¤ ¤ on the set of extremal
points of U , cf. lemma 3.1). Since L ¤ ¤ jU is a¯ ne, the perturbed function is still a
solution of the relaxed problem.

This argument was used in [28] in order to apply the construction from [12] and to
show that the a priori assumption of Lipschitz regularity of solutions of the relaxed
problems implies solvability of problems (1.1) with integrands L, which coincide
with L ¤ ¤ everywhere with exception of a  nite collection of distinct n-dimensional
proper faces of L ¤ ¤ and has superlinear growth at in nity. Being more precise, the
result was proved under slightly weaker a priori assumptions on solutions f of the
relaxed problem. It was assumed that for each k 2 N , the function f j« k

is Lipschitz,
where « k, k 2 N , is a sequence of open sets such that [k « k = « .

As already mentioned above, the perturbations ¿ s can be, in fact, applied at the
points of classical di¬erentiability of solutions of the relaxed problems. Thus our ob-
servation and Vitaly covering arguments are enough to prove theorem 1.4, which is
a characterization result. It is also helpful here to use simple direct arguments con-
structing a sequence of solutions to the relaxed problem, which converges strongly
to a solution of the original problem, instead of Baire category arguments and other
techniques from [28] traditionally used for theory of di¬erential inclusions.

Proof of theorem 1.2 needs more subtle arguments, since growth of L does not
guarantee almost everywhere classical di¬erentiability of functions, which give  nite
values to the integral functional. It seems to be a good open problem to clarify
whether this property holds for solutions of problems (1.1) with convex integrands
of superlinear growth in the case of general boundary data.

https://doi.org/10.1017/S0308210500000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000330


616 M. A. Sychev

In case of theorem 1.2, we  rst prove solvability of the relaxed problem in the
class of Lipschitz continuous functions, following arguments introduced  rst in the
context of solvability theory for the Plateau problem (see [18]). Then, careful con-
struction of special perturbations of this solution gives a solution to the original
problem in the class of Lipschitz functions. Next, we use a non-smooth analogue
of the Euler{Lagrange equation to prove that these solutions are automatically
solutions of the boundary value problem (1.1).

We prove theorems 1.1 and 1.4 in xx 2 and 3, respectively. In x 4 we recall some
facts on solvability of problems of the form (1.1) in the class of Lipschitz continuous
functions, provided certain regularity on @« and f is assumed and L is convex. Here
we also prove a non-smooth analogue of the Euler{Lagrange equation. Theorem 1.2,
and the result stated in the remark to it, will be proved in x 5.

Note that the situation is much less clear in the case of vectorial (m > 1) prob-
lems, where recent e¬orts were focused on problems with quasia¯ ne quasiconvex-
i cations (see [9, 11, 27]). A number of existence and non-existence results were
obtained in [10].

2. Proof of theorem 1.1 and some auxiliary propositions

Recall  rst some basic facts about convex functions. By the Caratheodory theorem,
for each subset A of Rn, we have

co A =

» n + 1X

i= 1

civi : ci > 0; vi 2 A;

n + 1X

i = 1

ci = 1

¼
:

Since the dimension of the epigraph of any lower semicontinuous function L : Rn !
R does not exceed n + 1, for each v0 2 Rn, we have

L ¤ ¤ (v0) := inf

» qX

i = 1

ciL(vi) : q 2 N; ci > 0; vi 2 Rn;

qX

i = 1

ci = 1;

qX

i = 1

civi = v0

¼

= inf

» n+ 2X

i = 1

ciL(vi) : ci > 0; vi 2 Rn;

n+ 2X

i = 1

ci = 1;

n+ 2X

i = 1

civi = v0

¼
:

It is also well known that if L : Rn ! R [ f1g is a lower semicontinuous convex
function, which is bounded in a neighbourhood of v0, then L is Lipschitz in a smaller
neighbourhood. Moreover, @L(v0) 6= ;.

Recall also a version of the Hahn{Banach theorem. If U is a closed convex subset
of Rn and v0 62 int U , then there exists l 2 Rn such that

hl; v0i > hl; vi 8 v 2 U:

All these facts can be found in any textbook containing chapters on convex
analysis (see, for example, [13]).

Before proving theorem 1.1, we state and prove two auxiliary propositions which
will be used frequently later on.

Lemma 2.1. Let L : Rn ! R be a lower semicontinuous function. Then the fol-
lowing assertions are equivalent.
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(1)

L ¤ ¤ (¢) := inf

» qX

i = 1

ciL(vi) : q 2 N; ci > 0;

qX

i = 1

ci = 1;

qX

i = 1

civi = ¢
¼

is a convex continuous function.

(2) There exist l 2 Rn and c 2 R such that

L(v) > hl; vi + c 8 v 2 Rn:

(3) There exists a point F 2 Rn such that

inf

» qX

i= 1

ciL(vi) : q 2 N; ci > 0; vi 2 Rn;

qX

i= 1

ci = 1;

qX

i = 1

civi = F

¼
> 1:

Proof. If L ¤ ¤ : Rn ! R is a convex continuous function, then @L ¤ ¤ (0) 6= ;, and, as
a consequence, for l 2 @L ¤ ¤ (0), we have

L(v) L ¤ ¤ (0) > L ¤ ¤ (v) L ¤ ¤ (0) > hl; vi:

Hence, (1) implies (2). The implication (2) ) (3) is obvious.
Let us prove the last assertion of the lemma, (3) ) (1). Without loss of generality,

we can assume that F = 0. Consider auxiliary functions Lk : Rn ! R[f1g de ned
as follows: Lk = L in ·B(0; k), Lk = 1 otherwise. Let also L ¤ ¤

k be convexi cation of
Lk.

Then, for each k, the function L ¤ ¤
k j ·B(0;k) is a lower semicontinuous convex func-

tion, which is continuous in B(0; k). Note also that L ¤ ¤
k (v) is a non-increasing

sequence for each v 2 Rn. Moreover, the sequence L ¤ ¤
k (0) is bounded from be-

low. Hence, if lk 2 @L ¤ ¤
k (0), then supk jlkj < 1, and for each limit point l0 of lk

(l0 = limj ! 1 lkj ) and each v 2 Rn, we have

lim
k ! 1

fL ¤ ¤
k (v) L ¤ ¤

k (0)g hl0; vi = lim
j ! 1

fL ¤ ¤
kj

(v) L ¤ ¤
kj

(0) hlkj ; vig > 0:

Since L ¤ ¤
k (0) is bounded from below, the function L ¤ ¤ := limk ! 1 L ¤ ¤

k is well
de ned and majorizes L ¤ ¤ (0) + hl0; vi everywhere. Note that L ¤ ¤ : Rn ! R is
convex as a pointwise limit of a non-increasing sequence of convex functions. Since
it is also locally bounded, it is continuous.

The proof of lemma 2.1 is complete.

Corollary 2.2. The lower semicontinuous function L : Rn ! R has non-empty
subgradient at F 2 Rn if and only if

qX

i = 1

ciL(vi) > L(F )

for every q 2 N , vi 2 Rn, ci > 0 (i = 1; : : : ; q) such that

qX

i = 1

ci = 1;

qX

i = 1

civi = F:
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Proof. Let l 2 @L(F ). Then for all ci > 0, vi 2 Rn such that

qX

i = 1

ci = 1;

qX

i = 1

civi = F; q 2 N;

we obtain

qX

i= 1

ciL(vi) L(F ) =

qX

i = 1

ciL(vi) L(F )

qX

i = 1

cihl; vi F i

=

qX

i = 1

cifL(vi) L(F ) hl; vi F ig > 0:

To prove the converse, note that, by lemma 2.1, L ¤ ¤ is a convex continuous
function. Since L(F ) = L ¤ ¤ (F ), @L ¤ ¤ (F ) 6= ; and L > L ¤ ¤ everywhere, we infer
that @L(F ) 6= 0.

The proof is complete.

Lemma 2.3. Let L : Rn ! R be a lower semicontinuous function. Let v1; : : : ; vq be
such points in Rn that

qX

i = 1

civi = F for some ci > 0;

with
qX

i = 1

ci = 1:

Then, there exists a bounded in W 1; 1 ( « ) sequence uk such that ukj@« = lF and

J(uk) !
qX

i = 1

ciL(vi) meas « :

This lemma is a version of well-known arguments used in relaxation theorems
(see [13, ch. 10]). The main di¬erence is that here we have a lower than usual
regularity of integrands that forces us to precise construction of the sequence uk.

Proof. Without loss of generality, we can assume that ci > 0 for all i 2 f1; : : : ; qg.
Consider  rst the case when F has unique representation as a convex combination

of fv1; : : : ; vqg. In this case, v1; : : : ; vq are extremum points of a compact convex set.
In case F 2 int cofv1; : : : ; vqg, the claim was proved in x 1, since there we proved
the existence of a function u0 such that Du0 2 fv1; : : : ; vqg, u0j@« = lF . In fact, in
this case, we have

Z

«

Du(x) dx =

qX

i = 1

(·ci meas « )vi = F meas « ;

qX

i = 1

·ci = 1; ·ci > 0:

Since the representation of F in the form of a convex combination of v1; : : : ; vq is
unique, we obtain that ·ci = ci for each i. Hence, de ning uk as u for all k 2 N , we
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obtain that

J(uk) =

qX

i= 1

ciL(vi) meas « :

Let us now consider the case when F 62 int cofv1; : : : ; vqg. In any case,

F 2 re int cofv1; : : : ; vqg:

Let P be the largest subspace of Rn perpendicular to all vectors vi F , i 2
f1; : : : ; qg. Assume that dim P = m and vq + 1; : : : ; vq + 1+ m are such points in P
that cofvq + 1; : : : ; vq + 1+ mg has non-empty interior in P and 0 belongs to this inte-
rior.

For each ¯ > 0, consider the function

¿ s;¯ (¢) = max
16i6q + 1+ m

h~vi; ¢i s;

where

~vi = vi F for i 2 f1; : : : ; qg;

~vi 2 B(v1; ¯ ) \ int cof~v1; : : : ; ~vq; vq + 1; : : : ; vq + 1+ mg for i 2 fq + 1; : : : ; q + 1 + mg;

and the inclusion

0 2 f~v1; : : : ; ~vq ; vq + 1; : : : ; vq + 1+ mg

holds. Note that ~v1; : : : ; ~vq + 1+ m are extremum points of a compact convex set. In
the set, where D¿ s;¯ 2 f~vq + 1; : : : ; ~vq + 1+ mg, we can perturb ¿ s;¯ in such a way that
the gradient of the perturbation ws;¯ stays in the set f~v1; : : : ; ~vq ; vq + 1; : : : ; vq + 1+ mg.
Then ws;¯ 2 W 1; 1

0 (Ps). Moreover,

measfx 2 Ps : Dws;¯ 62 fv1 F; : : : ; vq Fgg
measfx 2 Ps : Dws;¯ 2 fv1 F; : : : ; vq Fgg

! 0

as ¯ ! 0 uniformly with respect to s.
For a k 2 N , consider the Vitaly covering of « by the supports « i := xi + Psi

of the functions minf0; wsi;1=k(¢ xi)g and de ne ~uk = lF + wsi;1=k(¢ xi) in « i

(i 2 N ), ~uk = lF otherwise. In this case,

measfx 2 « : D~uk 62 fv1; : : : ; vqgg ! 0

as k ! 1. Therefore, if, for a subsequence of ~uk (not relabelled),

ck
i :=

measfx 2 « : D~uk = vig
meas «

! ~ci; i 2 f1; : : : ; qg;

then
P

~ci = 1,
P

~civi = F , and, because of the uniqueness of the representation of
F in the form of a convex combination of vi (i = 1; : : : ; q), we infer that ~ci = ci.
Hence ck

i ! ci as k ! 1 for the original sequence ck
i .

However, we cannot yet assert that

J(~uk) !
qX

i = 1

ciL(vi);
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since L can be unbounded in the set fF + ¯ vq + 1; : : : ; F + ¯ vq + m + 1; ¯ 2 [0; 1]g. In order
to overcome this di¯ culty, notice that, for all ¯ > 0 su¯ ciently small, the vectors
~vi := ¯ vi+F (i = q+1; : : : ; m+q+1) lie in the interior of the set cofv1; : : : ; vq + m+ 1g.
Hence, for all su¯ ciently large k, the function ~uk can be rede ned by the procedure
described above in each set fx 2 « : D~uk = ~vig, i 2 fq + 1; : : : ; m + q + 1g (we
denote the new function as uk) in such a way that Duk 2 fv1; : : : ; vq + m+ 1g a.e.
on this set and uk = ~uk in the boundary of this set. Since uk = ~uk a.e. on the set
fx 2 « : D~uk(x) 2 fv1; : : : ; vqgg and jL(Duk)j 6 c < 1, we infer that

J(uk) !
qX

i = 1

ciL(vi):

The general case can be reduced to the one discussed above (which is the case
when F has unique representation in the form of a convex combination of v1; : : : ; vq).
We can assume, without loss of generality, that vi 6= F , ci > 0, for all i 2 f1; : : : ; qg.

For q = 2, we can assert that there exists a sequence of piecewise a¯ ne functions
uk such that ukj@« = lF , measfx 2 « : Duk = vig ! ci meas « (i = 1; 2), and
J(uk) !

P
ciL(vi) meas « , since F has unique representation in the form of a

convex combination of v1, v2.
Let this claim be valid for q = s. To prove it for q = s + 1, consider vectors

~v1; : : : ; ~vs such that ~vi = vi for i 6 s 1, ~vs = (csvs + cs+ 1vs + 1)=(cs + cs + 1). Then

F =

sX

i = 1

~ci~vi;

where ~ci = ci for i 6 s 1 and ~cs = cs + cs+ 1. By the induction assumption, there
exists a sequence of piecewise a¯ ne functions uk such that

ukj@« = lF ;

measfx 2 « : Duk(x) = ~vig ! ~ci meas « (i = 1; : : : ; s);

J(uk) !
X

~ciL(~vi) meas « :

For each k 2 N , assume « k := intfx 2 « : Duk(x) = vsg. We can  nd a sequence
uk

j 2 W 1; 1 ( « ) such that uk
j = uk in « n « k, kuk

j kW 1; 1 ( « ) 6 c < 1, and

measfx 2 « k : Duk
j = vig ! ci

~cs
meas « k; i = s; s + 1; j ! 1;

J(uk
j ; « k) !

s+ 1X

i = s

ci

~cs
L(vi) meas « k =

s + 1X

i = s

ciL(vi) meas « ; j ! 1:

Then, for an appropriate subsequence wk := uk
j(k) (k ! 1), we obtain

J(wk) !
s + 1X

i = 1

ciL(vi) meas « :

Proof of the lemma is complete.
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Proof of theorem 1.1. Su¯ ciency of the condition either @L(F ) 6= ;, or there exist
v1; : : : ; vq 2 Rn such that F 2 int cofv1; : : : ; vqg and \q

i= 1@L(vi) = ; for solvability
of the problem

Z

«

L(Du) dx ! min; uj@« = lF ; u 2 W 1;1( « )

has been proved in x 1.
In order to prove its necessity,  rst note that

inf

» qX

i = 1

ciL(vi) : q 2 N; ci > 0; vi 2 Rn;

qX

i = 1

ci = 1;

qX

i = 1

civi = F

¼
> 1: (2.1)

In fact, lemma 2.3 implies that, for each collection ci, vi, i = 1; : : : ; q; from (2.1),

inffJ(u) : uj@« = lF ; u 2 W 1; 1 g 6
qX

i= 1

ciL(vi): (2.2)

Since solvability of problem (1.1) implies the inequality

inffJ(u) : uj@« = lF ; u 2 W 1; 1 g > 1;

we infer that (2.1) holds.
By lemma 2.1, we infer that L ¤ ¤ is a convex continuous function. Moreover, if u0

is a solution of problem (1.1), then (2.1), (2.2) imply that J(u0) 6 L ¤ ¤ (F ) meas « .
Let l 2 @L ¤ ¤ (F ). For each admissible u, we have

Z

«

hl; Du F i dx = 0:

Then

J(u) L ¤ ¤ (F ) meas « =

Z

«

fL(Du) L ¤ ¤ (F ) hl; Du F ig dx > 0:

Hence J(u0) = L ¤ ¤ (F ) meas « .
Let

Pl := fv 2 Rn : L(v) L ¤ ¤ (F ) hl; v F i = 0g:

Since J(u0) = L ¤ ¤ (F ) meas « , and the expression de ning Pl is non-negative ev-
erywhere, we infer that Du0(x) 2 Pl for a.a. x 2 « .

It is obvious that Pl is a closed set. Moreover, we claim that F 2 int co Pl if
L(F ) 6= L ¤ ¤ (F ). Otherwise, by the Hahn{Banach theorem, there exists a 2 Rn

such that hF; ai > hv; ai for all v 2 co Pl. Then hF; ai > hDu0; ai a.e. on « . Since
Z

«

hDu0; ai dx = hF; ai meas « ;

we infer that Du0 2 fv 2 Rn : hv F; ai = 0g a.e. on « . As a consequence,

@(u0 lF )

@a
= hDu0 F; ai = 0
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a.e. on « . Since u0 = lF in @« , we infer that u0 = lF a.e. on « . Hence F 2 Pl,
and, as a consequence, L(F ) = L ¤ ¤ (F ). This is a contradiction.

We have proved that either F 2 int co Pl or L(F ) = L ¤ ¤ (F ). In the  rst case,
there exist v1; : : : ; vq 2 Pl such that F 2 int cofv1; : : : ; vqg. It is obvious that in this
case l 2 @L(vi) for every i 2 f1; : : : ; qg. Hence \q

i = 1@L(vi) 6= ;. This completes the
proof of theorem 1.1.

3. Proof of theorem 1.4

In x 1 we already mentioned the following standard fact, a short proof of which we
include for convenience of a reader.

Lemma 3.1. Let L : Rn ! R be a lower semicontinuous function such that
L(v) > ³ (v), where ³ (v)=jvj ! 1 as jvj ! 1. Let F 2 Rn and l 2 @L ¤ ¤ (F ).
Also let

Pl := fv 2 Rn : L ¤ ¤ (v) L ¤ ¤ (F ) hl; v F i = 0g:

Then L = L ¤ ¤ in the set of extremum points of Pl.

Proof. Assume that v0 2 extr Pl. By the Caratheodory theorem, there exists ck
i > 0,

vk
i 2 Rn (i = 1; : : : ; n + 2) such that

n + 2X

i = 1

ck
i = 1;

n + 2X

i= 1

ck
i vk

i = v0 and

n + 2X

i= 1

ck
i L(vk

i ) ! L ¤ ¤ (v0) as k ! 1:

We can assume also that ck
i ! ci and either vk

i ! vi or jvk
i j ! 1 as k ! 1. Since

ck
i jvk

i j ! 0 in the case jvk
i j ! 1 (recall that ³ (v)=jvj ! 1 as jvj ! 1), we obtain

that for all i 2 f1; : : : ; n + 2g such that ci > 0, the convergence vk
i ! vi holds andP

civi = v0. Because of lower semicontinuity of L, we have
X

ciL(vi) = L ¤ ¤ (v0):

Since L(v) L ¤ ¤ (v0) hl; v v0i > 0 everywhere, we infer that L(vi) L ¤ ¤ (v0)
hl; vi v0i = 0 for each vi. Then vi 2 Pl for each i. Because v0 2 extr Pl, we obtain
that vi = v0 for all i under consideration. Hence L(v0) = L ¤ ¤ (v0).

The proof is complete.

Lemma 3.2. Let u0 2 C(B(x0; r)) be di® erentiable at x0 in the classical sense. Let
U be a convex compact subset in Rn, and let v1; : : : ; vq 2 extr U be such that

Du0(x0) 2 int cofv1; : : : ; vqg:

Then, for all s > 0 su± ciently small, the function

¿ s(¢) := ws(¢ x0) + u0(x0) + hDu0(x0); ¢ x0i;

where ws(x) := max16i6qhvi Du0(x0); xi s, has the properties

¿ s < u0; x 2 x0 + Ps=2;

¿ s > u0; x 2 x0 + @P2s;
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where
Ps = fx 2 Rn : max

16i6q
hvi Du0(x0); xi 6 sg:

Proof. The proof is straightforward. We have

u0(x) ¿ s(x) = u0(x) hDu0(x0); x x0i u0(x0) ws(x x0)

= o(jx x0j) w0(x x0) + s:

Since jw0(¢ x0)j 6 1
2
s inside x0 + Ps=2, we obtain that u0 ¿ s > 0 inside

x0 + Ps=2 if s > 0 is su¯ ciently small.
Since w0(x x0) = 2s for x 2 x0 + P2s, we infer that u0 ¿ s < 0 in @P2s if s > 0

is su¯ ciently small.
The proof is complete.

Proof of theorem 1.4. By theorem 1.1, solvability of all problems (1.1) with linear
boundary data implies that for each F 2 Rn, either @L(F ) 6= ; or there exist
v1; : : : ; vq 2 Rn such that \q

i = 1@L(vi) 6= ; and F 2 int cofv1; : : : ; vqg. We need to
prove that this condition su¯ ces for solvability of all problems (1.1) with boundary
data f admitting at least one function u 2 W 1;1( « ) such that J(u) < 1.

First note that the function L ¤ ¤ : Rn ! R is a continuous convex function
satisfying the growth condition L ¤ ¤ > ¬ j ¢ jp + b, ¬ > 0, p > n (cf. lemma 2.1).

Let « and f be of the type described above. Let u0 be a solution of the problem
Z

«

L ¤ ¤ (Du(x)) dx ! min; uj@« = f; u 2 W 1;1( « ): (3.1)

We will construct a solution ~u of problem (3.1), for which the inclusion D~u(x) 2
fv : L(v) = L ¤ ¤ (v)g holds almost everywhere in « , as a limit in W 1;1 norm of a
sequence of perturbations of u0, each of which is also a solution of problem (3.1).
Note that in this case ~u is automatically a solution to the original problem (1.1).

Let ~« be the set of those points x 2 « , where u0 is di¬erentiable in the classical
sense and L(Du0(x)) 6= L ¤ ¤ (Du0(x)). Note that u is di¬erentiable in the classical
sense almost everywhere in « , since u 2 W 1;p( « ) with p > n (cf. [14, p. 234]).

Let x0 2 ~« . There exist v1; : : : ; vq, which are extremum points of a compact
convex set, and l 2 Rn such that Du0(x0) 2 int cofv1; : : : ; vqg, l 2 \i@L(vi). Note
that L ¤ ¤ (¢) = L(v1) + hl; ¢ v1i in cofv1; : : : ; vqg.

Since problems (3.1) with the integrands L ¤ ¤ and L ¤ ¤ +hl; ¢i+c have the same solu-
tions, we can assume, without loss of generality, that L ¤ ¤ = 0 in U := cofv1; : : : ; vqg
and L ¤ ¤ > 0 otherwise.

By lemma 3.2, for all su¯ ciently small s > 0, the function

¿ s := hDu0(x0); ¢ x0i + u0(x0) + ws(¢ x0);

where ws(x) = max
16i6q

hvi Du0(x0); xi s;

satis es the inequalities
¿ s < u0; x2 x0 + Ps=2;

¿ s > u0; x 2 x0 + @P2s

)

(3.2)

with P ¼ := fx 2 Rn : max16i6qhvi Du0(x0); xi 6 ¼ g.
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Hence the function u1, which is equal to u0 outside the set x0 + P2s and to
minf ¿ s; u0g inside this set, is de ned as an element of W 1;p( « ).

At the same time, if « 0 := fx 2 « : u1 6= u0g, then Du1 2 extr U a.e. in ·« 0 and,
as a consequence, we have L ¤ ¤ (Du1) = 0 a.e. in ·« 0. Hence

Z

·« 0
L ¤ ¤ (Du1) dx =

Z

·« 0
L ¤ ¤ (Du0) dx:

Since sets of the form ·« 0 gives a Vitaly cover of ~« (cf. (3.2)), by the Vitaly
covering theorem we can cover ~« by disjoint closed sets ·« j, j 2 N , and a set of
zero measure such that, for each j 2 N , there exists a function ã j 2 W 1; 1

0 ( « j)
such that Du0 + Dã j 2 fv 2 Rn : L(v) = L ¤ ¤ (v)g a.e. in ·« j , and

Z

·« j

L ¤ ¤ (Du0) dx =

Z

·« j

L ¤ ¤ (Du0 + Dã j) dx:

De ne ui as u0 + ã j in ·« j, j 6 i, and as u0 otherwise. Then ui is a sequence of
solutions of problem (3.1). Note that this sequence converges strongly in W 1;1( « ).
Indeed, in view of the growth conditions on L, we have

kDuk DulkL1 = kDuk DulkL1( [ k6 j6 l
·« j )

6 2

Z

[ k6 j6 l
·« j

(c1L ¤ ¤ (Du0) + c2) dx ! 0 as k; l ! 1:

Therefore, the function ~u, which is the limit of ui in W 1;1( « ), is also a solution
of problem (3.1). We also have measfx 2 « : L(Dui) 6= L ¤ ¤ (Dui)g ! 0 and, as
a consequence, D~u 2 fv : L(v) = L ¤ ¤ (v)g a.e. in « . Hence ~u is a solution of the
original problem (1.1).

The proof of the theorem is complete.

4. Some auxiliary facts related to solvability of boundary value
minimization problems with convex integrands and validity of the
Euler{Lagrange equation for their solutions

In this section we recall some standard facts about solvability of problems (1.1) with
convex integrands. These facts have been established in the context of solvability
theory for the Plateau problem (see [18]). We also prove a version of the Euler{
Lagrange equation, which is valid for all Lipschitz minimizers of problems (1.1)
with convex integrands.

Recall that boundary data f is said to satisfy the bounded slope condition if there
exists M > 0 such that, for each point x0 2 @« , we can  nd l1, l2 2 Rn such that
jl1j, jl2j 6 M and

hl1; x x0i + f (x0) 6 f (x) 6 hl2; x x0i + f(x0) 8 x 2 @« :

For the proof of the following theorem, see, for example, [18].

Theorem 4.1. Let L : Rn ! R be a convex continuous function. Let boundary data
f satisfy the bounded slope condition with M > 0. Then there exists a solution u0

of the problem J(u) ! min, uj@« = f in the class of Lipschitz functions. Moreover,
u0 can be chosen satisfying the inequality kDu0kL1 6 M .
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Remark 4.2. Let « be a convex domain with @« 2 C2 of positive curvature and
let f 2 C2(@« ). Then f satis es the bounded slope condition with certain M > 0.

Lipschitz minimizers always satisfy a non-smooth version of the Euler{Lagrange
equation.

Theorem 4.3. Let L : Rn ! R be a continuous convex function. Let u0 2 W 1; 1 ( « )
be a local minimizer of the functional J : J(u0) 6 J(u0 + ¿ ) for all ¿ 2 C1

0( « ) with
k ¿ kC1 6 ° , ° > 0.

Then there exists a function l 2 L 1 ( « ) such that l(x) 2 @L(Du0(x)) a.e. in «
and Z

«

hl(x); D¿ (x)i dx = 0 8 ¿ 2 W 1;1
0 ( « ):

Moreover, u0 is a solution of problem (1.1) with f = u0j@« .

Proof. Let M > ku0kW 1; 1 ( « ). De ne LM to be equal to L for jvj 6 M + 1 and to
1 for jvj > M + 1.

Let

K := supfjlj : l 2 @LM (v); jvj 6 Mg + supfjLM(v)j : jvj 6 Mg:

Consider convexi cation G ¤ ¤ of the function G := minfLM ; Kjvj + K(M + 1)g.
Because of lower semicontinuity of G, by lemma 2.1, we infer continuity and

convexity of G¤ ¤ . Note that G¤ ¤ = L for jvj < M . Indeed, for these v we have
jL(v)j 6 K 6 Kjvj + K(M + 1). Then G = L for jvj < M . Moreover, for each
v0 2 B(0; M) and each l 2 @LM (v0), we have

L(v0) + hl; v v0i 6 LM (v);

jL(v0) + hl; v v0ij 6 K + KM + K jvj:

Hence l 2 @G(v0) and, as a consequence, @G(v0) = @LM (v0) 6= ;. Then, by corol-
lary 2.2, we get L = G = G ¤ ¤ in B(0; M ).

Since G¤ ¤ = L in B(0; M ), the function u0 is a local minimizer for the integral
functional with the integrand F , where F (x; v) := G ¤ ¤ (v) + jv Du0(x)j2. In this
case, u0 is automatically a solution of the minimization problem. To prove this,
note that for each non-trivial ¿ 2 W 1;2

0 ( « ), the function

I( ° ) :=

Z

«

fG¤ ¤ (Du0(x) + ° D¿ (x)) + 1
2 ( ° D¿ (x))2 G ¤ ¤ (Du0(x))g dx

is a convex function of ° and I(0) = 0. Moreover, for ° > 0 su¯ ciently small, we
have I( ° ) > I(0) = 0, since u0 is a local minimizer. Because of strict convexity of I,
we infer that I( ° ) > 0 everywhere. Since ¿ 2 W 1;2

0 ( « ) is arbitrary, we obtain that
u0 is unique global minimizer in W 1;2( « ).

The proof reduces to  nding a function lM 2 L 1 ( « ; Rn) such that lM (x) 2
@vF (x; Du0(x)) for a.e. x 2 « and

Z

«

hlM (x); D¿ (x)i dx = 0 8 ¿ 2 C1
0 ( « ): (4.1)

https://doi.org/10.1017/S0308210500000330 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000330


626 M. A. Sychev

In fact, since for a.e. x 2 « , the identity @vF (x; Du0(x)) = @LM (Du0(x)) holds,
we obtain that lM (x) 2 @LM (Du0(x)) a.e. in « . Note that, for each v 2 Rn, the
identity @L(v) = \M @LM (v) holds. Note also that, since [x 2 « @LM (Du0(x)) is a
non-increasing sequence of bounded sets, we infer that all functions lM are equi-
bounded in L 1 . Then, by the Banach{Mazur theorem (see, for example, [13, ch. 1,
x 1]), there exists a sequence

~lk :=

Mk+1X

i= Mk + 1

cili;

with Mk ! 1, ci > 0 such that

Mk+1X

i= Mk + 1

ci = 1

and ~lk ! l0 in L1. Since ~lk(x) 2 @LMk+1 (Du0(x)) for a.a. x 2 « , we obtain that
l0(x) 2 \M @LM (Du0(x)) = @L(Du0(x)) a.e. in « . It is also clear that (4.1) holds
with l0 instead of lM . This proves that (4.1) implies the  rst claim of theorem 4.3.
The second claim is an immediate consequence of the  rst one.

In order to prove (4.1), notice that in the case F (x; ¢) 2 C1 for a.e. x 2 « , the
identity (4.1) holds with lM (x) = Fv(x; Du0(x)). The general case can be reduced
to this one by approximation arguments.

Consider functions F ° : « £ Rn ! R such that, for each x0 2 « , v0 2 Rn,

F ° (x0; v0) =

Z

Rn

F (x0; v) ¤ » ° (v v0) dv;

where » > 0 is a usual mollifying kernel, i.e. » is smooth with the support in the
unit ball,

R
Rn » = 1, and » ° = ° n » (x=° ).

It is easy to see that F ° is convex in v and F ° (x; ¢) 2 C 1 for a.e. x 2 « . Moreover,

A1jvj2 + B1 6 F ° (x; v) 6 A2jvj2 + B2; ° 2 ]0; 1]; A2 > A1 > 0;

and, for a.e. x 2 « , the family F ° (x; ¢) converges to F (x; ¢) uniformly in each
compact set.

Since each problem J ° ! min, uj@« = f , u 2 W 1;2 has a solution u ° , we infer
that u ° , ° 2 ]0; 1], form a relatively compact set in the weak topology of W 1;2. It is
obvious also that J ° (u ° ) ! J(u0). Then, because of lower semicontinuity of convex
functionals with respect to weak convergence in W 1;2, we infer that

J(u0) = lim
° ! 0

J ° (u° ) > J(~u)

for each limit function ~u of u ° (u ° k ! ~u in L2 for some ° k ! 0), see, for example, [25].
Since u0 is the unique solution of the original problem, we infer that u° ! u0 in

L2. Then u ° * u0 in W 1;2, where * denotes the weak convergence. For strictly
convex functionals, convergences u ° * u0 in W 1;2, J ° (u ° ) ! J(u0) imply strong
convergence of u ° to u0 in W 1;2 (see [25] for a simple proof, and [26] for the char-
acterization of this property of integral functionals in terms of integrands).
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For each ° > 0, we have
Z

«

hF °
v (x; Du ° (x)); D¿ (x)i dx = 0 8 ¿ 2 C1

0( « ): (4.2)

Locally, uniform convergence of F ° k (x; ¢) to F (x; ¢) for an x 2 « implies that, for
each sequence vk 2 Rn such that ° k ! 0, vk ! v0, F ° k

v (x; vk) ! ~l, the inclusion
~l 2 @vF (x; v0) holds (see, for example, [25]).

In view of the convergence ku ° u0kW 1;2 ! 0, ° ! 0, we obtain strong in L1 norm
convergence of F ° k

v (¢; Du ° k (¢)) to l 2 L1 such that l(x) 2 @vF (x; Du0(x)) a.e. in « .
Being the L1 limit of F ° k

v (¢; Du ° k (¢)), the function l(¢) automatically satis es (4.1)
(cf. (4.2)).

The proof is complete.

5. Proof of theorem 1.2

In this section we give proof to the last result of this paper, theorem 1.2.

Proof of theorem 1.2. Due to theorem 1.1, solvability of all problems (1.1) with
linear boundary conditions and a  xed « already implies that for each F 2 Rn,
either @L(F ) 6= ; or there exist v1; : : : ; vq 2 Rn such that \q

i = 1@L(vi) 6= ; and
F 2 int cofv1; : : : ; vqg

To prove the converse assertion of the theorem,  x « with @« 2 C2 of positive
curvature and f 2 C2(@« ).

By lemma 2.1, L ¤ ¤ : Rn ! R is a continuous convex function. It is clear also that
L ¤ ¤ > ³ , where ³ (v)=jvj ! 1 as jvj ! 1.

By theorem 4.1 and the remark to it, there is a solution u0 2 W 1; 1 ( « ) of the
relaxed problem

J ¤ ¤ (u) ! min; uj@« = f (5.1)

in the class u 2 W 1;1 ( « ).
We can also prove that u0 is a solution of problem (5.1) in W 1;1( « ). In fact, by

theorem 4.3, there exists l 2 L 1 ( « ) such that l(x) 2 @L ¤ ¤ (Du0(x)) for a.e. x 2 «
and Z

«

hl(x); D¿ (x)i dx = 0 8 ¿ 2 W 1;1
0 ( « ):

If uj@« = u0j@« = f , then we obtain

J ¤ ¤ (u) J ¤ ¤ (u0) =

Z

«

fL ¤ ¤ (Du) L ¤ ¤ (Du0) hl(x); Du Du0ig dx:

Since the expression in the brackets is non-negative almost everywhere in « , we
obtain that u0 is a solution in W 1;1. Note also that in the case where ess sup jDuj
is su¯ ciently large, the expression in the brackets is positive in a set of positive
measure since L ¤ ¤ has superlinear growth at in nity, and, as a consequence, J ¤ ¤ (u)
J ¤ ¤ (u0) > 0. Therefore, all solutions to problem (5.1) in W 1;1( « ) are bounded in
W 1; 1 ( « ) by M = M (f; « ) > 0.

Let u0 be such a solution. By Rademacher’s theorem (cf. [14, p. 81]), u0 has a clas-
sical derivative almost everywhere in « . Let ~« be the set, where Du0 exists in the
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classical sense and L(Du0(x0)) 6= L ¤ ¤ (Du0(x0)). There exists M1 > 0 such that, for
each point x 2 ~« , there exist v1; : : : ; vq 2 B(0; M1) with Du0(x) 2 int cofv1; : : : ; vqg
and \q

i = 1@L(vi) 6= ; (as a consequence, L ¤ ¤ is a¯ ne on cofv1; : : : ; vqg). Indeed, be-
cause of superlinear growth of L ¤ ¤ at in nity, the union of those compact convex
sets intersecting B(0; M ), where L ¤ ¤ is a¯ ne, is a bounded set.

Therefore, for each x0 2 ~« , we can isolate extremum points vi, i 2 f1; : : : ; qg, of a
compact convex set such that v1; : : : ; vq 2 B(0; M1), Du0(x0) 2 int cofv1; : : : ; vqg,
and \i@L(vi) 6= ;. Let ws be functions from (1.2), with F = Du0(x0). By lemma 3.2,
we have that, for all su¯ ciently small s > 0, the function

¿ s := u0(x0) + hDu0(x0); ¢ x0i + ws(¢ x0)

has properties

¿ s < u0; x 2 x0 + Ps=2;

¿ > u0; x 2 x0 + @P2s;

where P ¼ = fx 2 Rn : max16i6qhvi Du0(x0); xi 6 ¼ g.
Hence, we can de ne a perturbation u1 of u0 as follows:

u1 =

(
u0 for x 2 ( « n fx0 + P2sg);

minf ¿ s; u0g otherwise:

Let « 0 := fx 2 « : u1 < u0g. Then « 0 is a proper open subset of « , x0 2 « 0,
and Du1(x) 2 fv1; : : : ; vqg a.e. in ·« 0.

We can repeat arguments from the proof to theorem 1.4 in order to obtain
Z

·« 0
L ¤ ¤ (Du1) dx =

Z

·« 0
L ¤ ¤ (Du0) dx: (5.2)

In fact, if l 2 \i@L(vi), then

Z

·« 0
fL ¤ ¤ (Du1) L ¤ ¤ (Du0)g dx =

Z

·« 0
fL ¤ ¤ (Du1) hl; Du1i L(v1)g dx

Z

·« 0
fL ¤ ¤ (Du0) hl; Du0i L(v1)g dx; (5.3)

where the  rst integral vanishes and the second one is non-negative. Hence the left-
hand side in (5.3) does not exceed zero. The converse inequality is obvious, since
u0 is a solution to (5.1).

Since (5.2) is established, by Vitaly covering arguments, we can isolate at most
a countable family of disjoint closed sets ·« i and corresponding functions ã i 2
W 1; 1

0 ( « i) such that meas( ~« n [i
·« i) = 0 ,(Dã i + Du0) 2 fv : L = L ¤ ¤ g a.e. in ·« i,

kDã i + Du0kL1 ( ·« i) 6 M1, and
Z

·« i

L ¤ ¤ (Du0) dx =

Z

·« i

L ¤ ¤ (Du1) dx

for each i 2 N .
Therefore, if ~u = u0 + ã i in ·« i, and ~u = u0 in « n [ ·« i, then ~u 2 W 1; 1 ( « ),

kD~ukL1 6 M1, and J ¤ ¤ (~u) = J ¤ ¤ (u0). In particular, ~u is also a solution of the
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relaxed problem. Since D~u 2 fv : L = L ¤ ¤ g a.e., we infer that ~u is a solution of the
problem

J(u) ! min; uj@« = f; u 2 W 1;1( « ):

Since J(~u) = J ¤ ¤ (~u), J ¤ ¤ (u) > J ¤ ¤ (~u) for all admissible for problem (5.1), functions
u 2 W 1;1( « ) with su¯ ciently large W 1; 1 ( « ) norm and L > L ¤ ¤ everywhere, we
infer that all solutions to the original problem (1.1) are bounded in W 1; 1 norm.

The proof of the theorem is complete.

Proof of remark 1.3. By the assumptions, we have L > ¬ j ¢ j +  , with ¬ > 0
and  2 R. Then lemma 2.1 implies continuity and convexity of L ¤ ¤ . Moreover,
L ¤ ¤ > ¬ j ¢ j +  .

Fix « with @« 2 C2 of positive curvature and f 2 C2(@« ). To prove solvability
of problem (1.1), we can combine arguments from the proofs of theorems 1.2 and
1.4.

By theorems 4.1 and 4.3, the relaxed problem has a solution u0 2 W 1; 1
0 ( « ). Let ~«

be the set, where Du0 exists in the classical sense and L(Du0(x0)) 6= L ¤ ¤ (Du0(x0)).
Arguing as in the proof of the above theorem, we can isolate at most a countable

family of disjoint closed sets ·« i and corresponding functions ã i 2 W 1; 1
0 ( « i) such

that meas( ~« n [i
·« i) = 0, (Dã i + Du0) 2 fv : L = L ¤ ¤ g a.e. in ·« i, and

Z

·« i

L ¤ ¤ (Du0) dx =

Z

·« i

L ¤ ¤ (Du0 + Dã i) dx

for each i 2 N .
De ne ui := u0 + ¿ j in each « j, with j 6 i, ui = u0 otherwise. Then ui is a

sequence of solutions of the relaxed problem. Since j ¢ j 6 c1L ¤ ¤ (¢) + c2, with certain
c2, c1 > 0, we obtain

kD(u0 + ã j)kL1( ·« j) 6
Z

·« j

(c1L ¤ ¤ (D(u0 + ã j)) + c2) dx =

Z

·« j

(c1L ¤ ¤ (Du0) + c2) dx:

This estimate is enough to assert strong convergence of ui in W 1;1 norm. Then
the limit function ~u is still a solution of the relaxed problem and L(D~u) = L ¤ ¤ (D~u)
a.e. in « . Therefore, the function ~u is a solution of the original problem (1.1).

6. Note added in proof

While this paper was under review, I was informed by colleagues of several similar
and some new results in the  eld. The idea of using a.e. classical di¬erentiability
in order to perturb minimizers of the relaxed problem to obtain a solution of the
original problem was suggested independently by Zagatti in [28]. Moreover, he then
improved both the proofs and the results of his work (see [28]; S. Zagatti, personal
communication), again independently, the result of theorem 1.2 by the method
described in this paper. I thank Professor Del Maso for bringing the last reference
to my attention.

A year later, Celada and Perrota [6] again rediscovered, independently of all
other work in the  eld, that a.e. classical di¬erentiability of solutions of the relaxed
problems is key for establishing the attainment results in the original minimiza-
tion problem if applying the perturbations ws; see (1.2). They also independently
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proved theorem 1.2 by the same method as in this paper (S. Zagatti, personal com-
munication). Moreover, they proved a.e. classical di¬erentiability of minimizers in
problems with p-growth following some suggestions of µSver´ak and using the esti-
mates from [17]; see [6]. This result allowed them to extend the attainment results
to the case of integrands with p-growth. More recently, a number of integrands
with lower-order terms, which can be treated by the construction, were indicated
by them in [4{6].

Note also that all the authors of the papers [4{6, 28] developed the research
programme of their supervisor, Professor Cellina. In fact, the  rst version of the-
orem 1.1 is the content of the papers [7, 8] (the paper [15], theorem 2.12 of which
contains equivalent results, was submitted later). Another important observation
that the perturbations ws can be applied to Lipschitz functions was noticed by
Professor De Blasi and Professor Pianigiani in [12]. Lemma 3.2 of this work is only
an improvement towards the use of classical di¬erentiability. Note also that the
set where ³ s < u0 can be selected with the boundary having zero measure, which
reduces the situation considered in [12] to the one treated in [3].
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