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0 or there exist v1,...,vqy € R™ such
) s Yq

It is known that the condition ‘either OL(F) #
) # (7 characterizes solvability of the

that F € int co{v1,...,vq} and N_, 0L (v;
problem

J(u) :/ L(Dw) dz — min, w e Wwhi(9), ulon = f,
2

with £(-) = (F, ).
We extend this result to the case of lower semicontinuous integrands L : R™ — R.
We also show that validity of this condition for all F' € R™ is both a necessary and
sufficient requirement for solvability of all minimization problems with sufficiently
regular {2 and f. Moreover, the assumptions on {2 and f can be completely dropped
if L has sufficiently fast growth at infinity.

1. Introduction

In this paper we deal with minimization problems
J(u) — min, ulog = f, u € WHHR) (1.1)

for integral functionals of the form

J(u) = /Q L(Du(z)) dz,

where (2 is an open bounded subset of R™ with Lipschitz boundary, and L : R® — R
is a lower semicontinuous function.

A function u € W11(£2) is called an admissible function for the problem (1.1) if
u|pn = f and the negative part of the function L(Du) is integrable. In this case,
J(u) is well defined but equals 400 if the positive part of L(Duw) is not summable.

We accept the following notations: for a subset A of R™, the sets int A, reint A,
co A, and extr A are, respectively, the interior, the relative interior, the convex hull,
and the set of extremum points of A (a € extr A if it can not be represented as a
convex combination of other points of A). B(a, €) denotes a ball of radius € centred
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at the point a € R"™, [, is a linear function with the gradient equal to a everywhere.
OL(F) denotes the subgradient of L at a point F,

OL(F):={le R": L(v)— L(F)—(l,v—F) >0, Yv € R"}.

L** is the convexification of L: the epigraph of L** is the convexification of the
epigraph of L, that is

q q q
L** (vo) :—inf{ ZciL(vi) :q€ N, c¢; >0,v;, € R", Zci =1, Zcivi —UO}.
i=1

=1 =1

Note that L** exists as a function from R™ to R if and only if L exceeds an affine
function everywhere (see lemma 2.1).

Weak and strong convergences of sequences are denoted by — and —, respec-
tively.

We will frequently use the following version of the Vitaly covering theorem.

A family G of closed subsets of R™ is said to be a Vitaly cover of a bounded set
A if for each z € A there exists a positive number r(z) > 0, a sequence of balls
B(xz,€p) with ¢, — 0, and a sequence Cy € G such that x € Ci, C, C B(z,¢g), and
(meas Cf,/ meas B(z,€)) > r(x) for all k € N.

The version of the Vitaly covering theorem from [23, p. 109] says that each
Vitaly cover of A contains at most a countable subfamily of disjoint sets Cy such
that meas(A \ UyCy) = 0.

Problems (1.1) were studied recently in the framework of the existence theory in
elasticity: when dealing with homogeneous materials undergoing anti-plane shear
deformations

(z,y,2) € R* = (z,y,2z + u(z,y)) € R?,

the problem of minimization of the free energy is of the form (1.1). While the
existence results are well known for problems (1.1) with convex integrands (see,
for example, [13]), the situation is poorly understood in the case of non-convex
problems. Note that active research in the area of non-convex variational problems
started since the work of [1], where the first existence results for realistic problems
in elasticity were established in the general case (without restrictions on the class
of admissible deformations).

Some recent efforts were devoted to the question of the solvability of prob-
lems (1.1) under restrictions on integrands motivated by physical reasons (see
[2,19,22,24]). In these papers, the solvability problem was treated for particular
boundary data. Moreover, the papers [7,8, 15] indicated conditions on integrands
both necessary and sufficient for the problem (1.1) with linear boundary conditions
f=1p, FF € R", to have a solution.

The answer is given by the following theorem.

THEOREM 1.1. The problem (1.1) with a linear boundary condition f = lg is solv-
able if and only if

(C) either OL(F) # 0, or there exist vi,...,v, € R™ (¢ € N) such that
F € intco{vy,...,v} and NI_,0L(v;) # 0.
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Here we state a slightly more general result, since theorem 1.1 was proved in
[7,8,15] for integrands with superlinear growth at infinity. In [15], the sufficient
part was also proved for continuous integrands bounded from below. We also use
different terminology in order to formulate the result in terms of L only.

However, a crucial ingredient of the proofs (more precisely of their sufficient
parts) is the use of special functions proposed in [7,8,15]. The same functions were
in fact used much earlier in [20,21] with the purpose of giving simplified proofs of
the relaxation theorems.

If v1,...,v, are extremum points of a convex compact subset of R", and if
F € intco{v1,...,vg}, then the function

— _F o) — 1.2

w(z) = max (v — F.2) =5 (1.2)

is Lipschitz, Dws(z) € {v; — F :i=1,...,q} a.e., and ws|gp, = 0, where

P, = : i — F <
s ={x 112?«<)(q<vz ,x) < s}
is a compact set with Lipschitz boundary and non-empty interior.
Note that P, = sP;.
Since Vitaly covering arguments let us decompose (2 into disjoint sets of the form
y; + s;P1 and a set of zero measure, we can define ug as

(F,x) + wg, (x —y;) for x € y; + s, Pr.

Then uglape = lr on 982, ug € W1°(2). To prove that ug is a solution of prob-
lem (1.1), note that if{ € NY_, OL(v;), then for any admissible function u € Wh1(£2),
we have

J(u) = J(ug) = /Q{L(Du) — L(Dug) — (I, Du — Dug)} dz
= /Q{L(Du) —L(v1) = ([, Du—vy)}dx
- /Q{L(Duo) — L(v1) = (I, Dug — v1)} dz.

It is easy to see that all the functions L(v;) + (l,v —v;), i =1, ..., q, coincide. Then
L(v) = L(v1) = (l,v—v1) = 0 everywhere, with equality in the case v € {v1,...,v4}.
Hence the first term is non-negative while the second one equals zero. Therefore,
J(u) = J(ug) = 0.

This proves that the condition N{_,;0L(v;) # 0, with F € intco{vy,..., v},
implies solvability of the problem, since we can always find a subset of the set
{v1,...,v4} consisting of extremum points of this set. If L(F) # 0, then the
function [r is a solution. Therefore, each of these two conditions imply solvability
of the problem.

These arguments prove the ‘sufficient’ part of theorem 1.1. The converse will be
proved in §2.

Before explaining what kind of influence these simple arguments had on further
developments of solvability theory, let us state the results of this paper.
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THEOREM 1.2. Let L : R™ — R be a lower semicontinuous function such that
L > 0, where 6(v)/|v] — o0 as |v]| — 0.

Then all problems of the form (1.1), with 982 € C? of positive curvature and
f € C%09), are solvable if and only if, for each F € R™, condition C holds, where

(C) either OL(F) # 0, or there exist v1,...,u;, € R"™ (¢ € N) such that
N ,0L(v;) # 0 and F € intco{vr, ..., vg}.

Moreover, there exists M = M (f,§2) > 0 such that each solution ugy is bounded
in WH>° norm by M and satisfies the Euler-Lagrange equation

fn<l<x>, Do) dr =0 Ve Wi (),

with 1 € L*(£2) such that l(z) € OL(Dug(x)) a.e. in 2.

REMARK 1.3. Condition C still characterizes solvability of all problems (1.1) with
f € C%(09) and 812 € C? of positive curvature, provided the lower semicontinuous
integrand L : R™ — R has at least linear growth at infinity: L > o| - |+ 8, a > 0,
B € R (see §5 for the proof). The requirements on {2 and f are optimal in this
class of integrands (cf. [18]).

We did not check whether assumptions on growth can be completely dropped,
like in theorem 1.1. At least in the case n = 2, this is so.

In the case when the growth of L provides certain a priori regularity of min-
imizers, an analogous result holds for arbitrary {2 and f, for which at least one
admissible function u € W1(£2), with J(u) < oo, exists. However, in this case, we
cannot state Lipschitz regularity of solutions.

THEOREM 1.4. Let L : R™ — R be a lower semicontinuous function such that
Lzal-|P+ba>0,p>n.

Then each problem of the form (1.1), for which at least one admissible function
u € WhHH(2) with J(u) < oo exists, has a solution if and only if, for each F € R",
condition C holds, where

(C) either OL(F) # 0, or there exist v1,...,u;, € R™ (¢ € N) such that
NL_,0L(v;) # 0 and F € intco{vy, ..., v,}.

REMARK 1.5. Note that the only role of the growth condition L > a|-|P +b, a > 0,
p > n, is to provide almost everywhere classical differentiability of solutions to the
relaxed problem. Hence the result of the theorem holds under any other assumptions
on lower semicontinuous integrands L : R — R with superlinear growth, which
imply this property of solutions to the relaxed problems.

Note that regularity in minimization problems was studied typically in the con-
text of continuity of solutions and their derivatives (everywhere or on an open set
of full measure). However, here we need an intermediate property, which is almost
everywhere differentiability in the classical sense. It seems that not too much was
known in this direction. In fact, results on continuity of solutions are not sufficient
in our situation. Simultaneously, partial regularity of derivatives, which is more
than enough for our purposes, was usually treated for elliptic integrands (see, for
example, [16]).
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Proofs of theorems 1.2 and 1.4 are further refinements of the above discussed
arguments, which were also developed recently in a deeper way in the context of
the theory of differential inclusions.

Note that the sufficient part of theorem 1.1 is equivalent to a particular differential
inclusion Du(z) € {v1,...,v4} ae. in 2, u = lp on J2. When one deals with
nonlinear boundary conditions, more complicated differential inclusions should be
considered. The typical one is Du(x) € extrU for a.e. z € 2, u = f on 92, where
fewh>(02) and Df(x) € U for a.e. z € 2 (here, U is a compact convex subset
of R™ with non-empty interior).

It was observed in [12] that the same functions ws with F = D f(x¢) (see (1.2))
can be used to perturb a Lipschitz function f by

¢s() == ws (- = xo) + f(0) + (Df(20),- = o)

in such a way that D¢s € extrU for a.e. x in an open subset 2 of £ such that
2o + Pyp C Q2 C 2o+ Pss and ¢s = f on 090. Refining arguments from [12], one
can show that for each x9 € (2, where D f(xo) exists in the classical sense and
Df(zg) € intU, such a perturbation exists for all s > 0 sufficiently small (see
lemma 3.2). Applying Vitaly covering arguments, we can solve the inclusion.

In the case of the paper [12], the authors were dealing with the set-valued function
x — U(x) and solved the inclusion by Baire category arguments following [3].

Note that if U is an n-dimensional proper face of L**, f is a Lipschitz solution
of the relaxed problem, and the perturbation ¢; is applicable at the point zy with
Df(zg) € intU, then the gradient of the perturbed function stays in the set {v :
L = L**} on the set of perturbation (2 (recall that L = L** on the set of extremal
points of U, cf. lemma 3.1). Since L**|y is affine, the perturbed function is still a
solution of the relaxed problem.

This argument was used in [28] in order to apply the construction from [12] and to
show that the a priori assumption of Lipschitz regularity of solutions of the relaxed
problems implies solvability of problems (1.1) with integrands L, which coincide
with L** everywhere with exception of a finite collection of distinct n-dimensional
proper faces of L** and has superlinear growth at infinity. Being more precise, the
result was proved under slightly weaker a priori assumptions on solutions f of the
relaxed problem. It was assumed that for each k € N, the function f|p, is Lipschitz,
where (25, k € N, is a sequence of open sets such that Ug(2, = (2.

As already mentioned above, the perturbations ¢, can be, in fact, applied at the
points of classical differentiability of solutions of the relaxed problems. Thus our ob-
servation and Vitaly covering arguments are enough to prove theorem 1.4, which is
a characterization result. It is also helpful here to use simple direct arguments con-
structing a sequence of solutions to the relaxed problem, which converges strongly
to a solution of the original problem, instead of Baire category arguments and other
techniques from [28] traditionally used for theory of differential inclusions.

Proof of theorem 1.2 needs more subtle arguments, since growth of L does not
guarantee almost everywhere classical differentiability of functions, which give finite
values to the integral functional. It seems to be a good open problem to clarify
whether this property holds for solutions of problems (1.1) with convex integrands
of superlinear growth in the case of general boundary data.
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In case of theorem 1.2, we first prove solvability of the relaxed problem in the
class of Lipschitz continuous functions, following arguments introduced first in the
context of solvability theory for the Plateau problem (see [18]). Then, careful con-
struction of special perturbations of this solution gives a solution to the original
problem in the class of Lipschitz functions. Next, we use a non-smooth analogue
of the Euler-Lagrange equation to prove that these solutions are automatically
solutions of the boundary value problem (1.1).

We prove theorems 1.1 and 1.4 in §§2 and 3, respectively. In §4 we recall some
facts on solvability of problems of the form (1.1) in the class of Lipschitz continuous
functions, provided certain regularity on 92 and f is assumed and L is convex. Here
we also prove a non-smooth analogue of the Euler-Lagrange equation. Theorem 1.2,
and the result stated in the remark to it, will be proved in §5.

Note that the situation is much less clear in the case of vectorial (m > 1) prob-
lems, where recent efforts were focused on problems with quasiaffine quasiconvex-
ifications (see [9,11,27]). A number of existence and non-existence results were
obtained in [10].

2. Proof of theorem 1.1 and some auxiliary propositions

Recall first some basic facts about convex functions. By the Caratheodory theorem,
for each subset A of R™, we have

n+1 n+1
COA—{ZCZ'UZ':CZ'2O, v; € A, Zci—l}.
i=1 i=1

Since the dimension of the epigraph of any lower semicontinuous function L : R™ —
R does not exceed n + 1, for each vy € R™, we have

q q q
L**(vg) := inf{ ZciL(vi) :q€N,c; >0, v, € R", Zci =1, Zcivi = UQ}
i=1 i=1

i=1
n+2 n+2 n+2

= inf{ ZciL(vi) :¢; = 0,v;, € R, Zci =1, chi = vo} .
i=1 i=1 i=1

It is also well known that if L : R™ — RU {00} is a lower semicontinuous convex
function, which is bounded in a neighbourhood of vg, then L is Lipschitz in a smaller
neighbourhood. Moreover, dL(vg) # 0.

Recall also a version of the Hahn—Banach theorem. If U is a closed convex subset
of R™ and vy ¢ int U, then there exists [ € R™ such that

(l,vo) = (l,v) Yvel.

All these facts can be found in any textbook containing chapters on convex
analysis (see, for example, [13]).

Before proving theorem 1.1, we state and prove two auxiliary propositions which
will be used frequently later on.

LEMMA 2.1. Let L : R® — R be a lower semicontinuous function. Then the fol-
lowing assertions are equivalent.
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(1)
L™ () := inf{ ZciL(vi) g€ N, ¢; 20, Zci =1, Zcivi = }
i=1 i=1 i=1

is a convex continuous function.
(2) There ezistl € R™ and ¢ € R such that

L(v) = (l,v)+¢ YveR"

(3) There exists a point F € R™ such that

q q
inf{ZciL(vi):qGN, ¢; =>0,v, € R", Zcizl, Zcivi—F} > —00.

=1 =1 =1

Proof. If L** : R* — R is a convex continuous function, then dL**(0) # 0, and, as
a consequence, for | € L**(0), we have

L(v) = L**(0) > L™ (v) — L**(0) > (1, v).

Hence, (1) implies (2). The implication (2) = (3) is obvious.

Let us prove the last assertion of the lemma, (3) = (1). Without loss of generality,
we can assume that F' = 0. Consider auxiliary functions L : R"” — RU{oo} defined
as follows: Ly = L in B(0, k), Ly = co otherwise. Let also L}* be convexification of
Ly,.

Then, for each k, the function Lj*| g k) is a lower semicontinuous convex func-
tion, which is continuous in B(0,k). Note also that Lj*(v) is a non-increasing
sequence for each v € R™. Moreover, the sequence L;*(0) is bounded from be-
low. Hence, if I, € OL;*(0), then supy, |[lx| < oo, and for each limit point ly of I
(lo = lim;j oo lx;) and each v € R™, we have

Jim (L7 (0) = L7 (0)} = (o, v) = i {L5(v) = Lif(0) = (I, v)} > 0.

Since L;*(0) is bounded from below, the function L** := limy_o L;* is well
defined and majorizes L**(0) + (ly,v) everywhere. Note that L** : R™ — R is
convex as a pointwise limit of a non-increasing sequence of convex functions. Since
it is also locally bounded, it is continuous.

The proof of lemma 2.1 is complete. O

COROLLARY 2.2. The lower semicontinuous function L : R™ — R has non-empty
subgradient at F' € R™ if and only if

> eiL(v;) > L(F)

=1

for everyq € N, v; € R", ¢; 20 (i=1,...,q) such that

Zcizl ZCiUiZF.

=1 =1
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Proof. Let | € OL(F). Then for all ¢; > 0, v; € R™ such that

q q
Zci =1, ZQ‘MZF, q€ N,
i=1 i=1
we obtain
q q a
Z c;L(v;) — L(F) = Z ciL(v;) — Z cil, vi =
i=1 i=1 i=1
q
i=1

To prove the converse, note that, by lemma 2.1, L** is a convex continuous
function. Since L(F) = L**(F), OL**(F) # 0 and L > L** everywhere, we infer
that OL(F) # 0.

The proof is complete. O

LEMMA 2.3. Let L : R™ — R be a lower semicontinuous function. Let vy, ...,vq be
such points in R™ that

q
E cv; = F  for some ¢; > 0,
i=1

with
q
e -
i=1

Then, there exists a bounded in Wl’OO(Q) sequence uy, such that uglso = lp and
q
— Z ¢;L(v;) meas 2.
i=1

This lemma is a version of well-known arguments used in relaxation theorems
(see [13, ch. 10]). The main difference is that here we have a lower than usual
regularity of integrands that forces us to precise construction of the sequence ug.

Proof. Without loss of generality, we can assume that ¢; > 0 for all 4 € {1,...,q}.

Consider first the case when F' has unique representation as a convex combination
of {v1,...,vg}. In this case, v1,. .. ,vq are extremum points of a compact convex set.
In case F' € intco{vy,...,vg}, the claim was proved in §1, since there we proved
the existence of a function wy such that Dug € {v1,...,v4}, uolon = lp. In fact, in
this case, we have

q
/ Du(z Zczmeas() v; = Fmeas (2, Zczfl ¢ = 0.
§2 i=1 i=1
Since the representation of F' in the form of a convex combination of vy,...,vq is

unique, we obtain that ¢; = ¢; for each i. Hence, defining ug as u for all k € N, we
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obtain that
J(ug) = Z ¢;L(v;) meas £2.

i=1
Let us now consider the case when F' ¢ int co{v1,...,v}. In any case,
F €reintco{vy,...,vq}.

Let P be the largest subspace of R™ perpendicular to all vectors v; — F, i €

{1,...,q}. Assume that dim P = m and vg41,...,Vg414m are such points in P
that co{vgt1,...,Vg414m ) has non-empty interior in P and 0 belongs to this inte-
rior.

For each 6 > 0, consider the function

¢S,5(') - 1<igli)§+m<via > — S,

where

v =v,—F forie{l,... q},
0; € B(vy,0) Nint co{1,...,0g,Vg41,---,Vgr14m} fori€{g+1,....,¢+1+m},

and the inclusion
0€{1,...,0g,Vg11,-Vg414m}

holds. Note that 91,...,7¢+14m are extremum points of a compact convex set. In
the set, where D¢ 5 € {Ug11, ..., Vgp14m ), We can perturb ¢ 5 in such a way that
the gradient of the perturbation wy 5 stays in the set {01, ..., 7q, Vg41,- - Vgt14m}-
Then ws,s € Wol’oo(PS). Moreover,

meas{x € Py : Dwgs € {vi —F,...,v,— F}} -0
meas{z € Py : Dw,s € {v1 —F,...,v4— F}}
as § — 0 uniformly with respect to s.
For a k € N, consider the Vitaly covering of {2 by the supports (2; := z; + Ps,
of the functions min{0, wy, 1/(- — x;)} and define @y, = lp 4+ wg, 1/5(- — ;) in
(i € N), Gy, = lr otherwise. In this case,

meas{z € 2 : Duy & {v1,...,v4}} — 0
as k — oco. Therefore, if, for a subsequence of 4y (not relabelled),

meas{x € (2 : Dy = v; - .
cf:: { Z}ch‘, ie{l,...,q},
meas {2

then Y & =1, Y &wv; = F, and, because of the uniqueness of the representation of
F in the form of a convex combination of v; (i = 1,...,q), we infer that ¢; = ¢;.
Hence c¥ — ¢; as k — oo for the original sequence c¥.

However, we cannot yet assert that

J(ig) — Y e L(vi),

=1
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since L can be unbounded in the set {F+0vgt1, ..., F4+0v44m11;0 € [0,1]}. In order
to overcome this difficulty, notice that, for all § > 0 sufficiently small, the vectors
0; :=0v;+F (i = q+1,...,m+q+1) lie in the interior of the set co{vy,. .., Vgrm41}-
Hence, for all sufficiently large k, the function %y can be redefined by the procedure
described above in each set {zx € 2 : Day = 0;},7i € {¢+1,...,m+q+ 1} (we
denote the new function as uy) in such a way that Duy € {v1,...,Vg1my1} a.c.
on this set and up = 4y in the boundary of this set. Since ux = 4y a.e. on the set
{z € 2: Dug(z) € {v1,...,v4}} and |L(Duy)| < ¢ < 00, we infer that

J(ug) — Z ciL(v;).

1=1

The general case can be reduced to the one discussed above (which is the case
when F has unique representation in the form of a convex combination of vy, .. ., vg).
We can assume, without loss of generality, that v; # F, ¢; > 0, for alli € {1,...,¢}.

For ¢ = 2, we can assert that there exists a sequence of piecewise affine functions
ug such that uglon = lp, meas{z € 2 : Dup = v;} — ¢;measf2 (i = 1,2), and
J(ug) — Y ciL(v;) meas 2, since F has unique representation in the form of a
convex combination of vy, vs.

Let this claim be valid for ¢ = s. To prove it for ¢ = s + 1, consider vectors
01,...,0s such that 9; = v; for i < s —1, 95 = (csvs + cs1Vs+1)/(cs + ¢s11). Then

S
F= E Ci;,
i=1

where ¢; = ¢; for ¢ < s —1 and ¢5 = ¢5 + ¢511. By the induction assumption, there
exists a sequence of piecewise affine functions wu; such that

uglon = lp,
meas{z € 2: Dug(z) =0;} — ¢ meas? (i=1,...,s),

J(ug) — Z ¢ L(0;) meas 2.

For each k € N, assume (2, := int{z € 2 : Duy(x) = vs}. We can find a sequence
ul € Whe () such that uf = uy in 2\ 2, ||[uf ||y < ¢ < oo, and

ci ) .
meas{sce_()k:Du?:vi}ﬂfzmeas()k, i=s, s+1, j— oo,

Cs
s+1 C' s+1
J(u?; ) — Z 6—:L(vi) meas (2, = Z ¢iL(v;) meas 2, j — oc.

Then, for an appropriate subsequence wy, := u?(k) (k — 00), we obtain

s+1
J(wg) — Z ¢iL(v;) meas £2.
i=1
Proof of the lemma is complete. O
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Proof of theorem 1.1. Sufficiency of the condition either OL(F) # 0, or there exist
v1,...,0g € R™ such that F € int co{vy,...,v4} and N{_0L(v;) = 0 for solvability
of the problem
f L(Du) dz — min, uloo =lp, uwe W Q)
2

has been proved in §1.
In order to prove its necessity, first note that

q q q
inf{ ZciL(vi) :q€N,c; >0, v, € R", Zci =1, chi = F} > —oo0. (2.1)
i=1 i=1

i=1
In fact, lemma 2.3 implies that, for each collection ¢;, v;, i = 1,...,¢q, from (2.1),
q
inf{J(u) : ulpo = lp, u € WH>®} < Z ciL(v;). (2.2)
i=1

Since solvability of problem (1.1) implies the inequality
inf{J(u) : ulpn = lp, u € WH*} > —c0,

we infer that (2.1) holds.
By lemma 2.1, we infer that L** is a convex continuous function. Moreover, if ug
is a solution of problem (1.1), then (2.1), (2.2) imply that J(ug) < L™ (F) meas {2.
Let [ € OL**(F). For each admissible u, we have

/(l,Du—F)dx:O.
o}
Then
J(u)—L**(F)measQ:/{L(Du)—L**(F)—(l,Du—F)}dx}O.
o}

Hence J(ug) = L**(F) meas {2.
Let
P :={veR":L(v)— L™(F)—(l,v— F) =0}.

Since J(up) = L**(F) meas {2, and the expression defining P; is non-negative ev-
erywhere, we infer that Dug(x) € P, for a.a. z € {2.

It is obvious that P, is a closed set. Moreover, we claim that F' € intco P if
L(F) # L**(F). Otherwise, by the Hahn-Banach theorem, there exists a € R"
such that (F,a) > (v, a) for all v € co P. Then (F,a) > (Dug,a) a.e. on {2. Since

/ (Dug,a)dz = (F, a) meas £2,
2

we infer that Dug € {v € R™: (v — F,a) = 0} a.e. on {2. As a consequence,

8(’LL0 - lF)

5 = (Dug— F,a) =0
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a.e. on {2. Since uy = lp in 912, we infer that ug = I a.e. on 2. Hence F' € P,
and, as a consequence, L(F') = L**(F). This is a contradiction.
We have proved that either F' € intco P, or L(F) = L**(F). In the first case,

there exist vy, ...,vy € P, such that F' € int co{vy, ..., vg}. It is obvious that in this
case | € OL(v;) for every i € {1,...,q}. Hence N!_;0L(v;) # 0. This completes the
proof of theorem 1.1. O

3. Proof of theorem 1.4

In §1 we already mentioned the following standard fact, a short proof of which we
include for convenience of a reader.

LEMMA 3.1. Let L : R® — R be a lower semicontinuous function such that
L(v) = 6(v), where 8(v)/|v] — oo as |v| — oo. Let F € R™ and | € JL**(F).
Also let

P :={veR":L"()— L"(F)—(l,v—F) =0}

Then L = L** in the set of extremum points of P;.

Proof. Assume that vy € extr P;. By the Caratheodory theorem, there exists ¢ > 0,
vF € R" (i=1,...,n+ 2) such that

n

+

2 n+2 n+2
=1, E cFof =y and E FL(F) — L**(vy) as k — oo.
i=1 i=1

I
—

K3
We can assume also that ¢¥ — ¢; and either v¥ — v; or [v¥| — 0o as k — co. Since
c¥lvk| — 0 in the case |vF| — oo (recall that (v)/|v| — oo as |v| — 00), we obtain
that for all i € {1,...,n + 2} such that ¢; > 0, the convergence v¥ — v; holds and
> c;v; = vg. Because of lower semicontinuity of L, we have

> eiL(vi) = L™ (vp).

Since L(v) — L**(vg) — (l,v — vg) > 0 everywhere, we infer that L(v;) — L**(vg) —
(I,v; —vg) = 0 for each v;. Then v; € P, for each i. Because vy € extr P, we obtain
that v; = vg for all ¢ under consideration. Hence L(vg) = L**(vp).

The proof is complete. O
LEMMA 3.2. Let ug € C(B(xo,7)) be differentiable at xo in the classical sense. Let
U be a convex compact subset in R™, and let vy,...,vq € extrU be such that

Dug(z0) € int co{v, ..., vq}.

Then, for all s > 0 sufficiently small, the function
¢s(+) == ws(- — 20) + uo(z0) + (Duo (o), - — To),
where ws(x) := maxi<i<q(v; — Dug(z0), ) — s, has the properties

¢5<’LL0, 5061'0+P5/23
¢s > ug, T € xo+ 0P,
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where

P, = {z € R": max (v; — Dug(zg),z) < s}.
1<i<q

Proof. The proof is straightforward. We have

ug(z) — ¢s(x) = uo(x) — (Duo(z0), 2 — o) — uo(wo) — ws(x — x0)
= o(|x — zg]) — wo(x — xo) + s.
Since |wo(- — xp)| < %s inside x¢ + P,/2, we obtain that ug — ¢s > 0 inside
xo + Psyg if s > 0 is sufficiently small.
Since wo(x — xg) = 2s for © € xo+ Pas, we infer that ug — o5 < 0in OPss if s > 0
is sufficiently small.
The proof is complete. O

Proof of theorem 1.4. By theorem 1.1, solvability of all problems (1.1) with linear
boundary data implies that for each F € R", either OL(F) # O or there exist
v1,...,0g € R"™ such that N_,0L(v;) # 0 and F € intco{vy,...,vs}. We need to
prove that this condition suffices for solvability of all problems (1.1) with boundary
data f admitting at least one function u € W11 () such that J(u) < co.

First note that the function L** : R™ — R is a continuous convex function
satisfying the growth condition L** > |- [P + b, a > 0, p > n (cf. lemma 2.1).

Let 2 and f be of the type described above. Let ug be a solution of the problem

/ L**(Du(x)) dx — min, ulpn = f, u e WhHi(0). (3.1)
o}

We will construct a solution @ of problem (3.1), for which the inclusion Da(zx) €
{v: L(v) = L**(v)} holds almost everywhere in (2, as a limit in W! norm of a
sequence of perturbations of ug, each of which is also a solution of problem (3.1).
Note that in this case @ is automatically a solution to the original problem (1.1).

Let 2 be the set of those points = € £2, where ug is differentiable in the classical
sense and L(Dug(x)) # L**(Dug(x)). Note that u is differentiable in the classical
sense almost everywhere in §2, since u € WP(2) with p > n (cf. [14, p. 234]).

Let zp € £2. There exist vy, .. ., Vg, Which are extremum points of a compact
convex set, and [ € R™ such that Dug(zo) € intco{vy,...,vg}, [ € M;OL(v;). Note
that L**(-) = L(v1) + (l,- —v1) in co{v,..., v}

Since problems (3.1) with the integrands L** and L**+(l, -)+c have the same solu-
tions, we can assume, without loss of generality, that L** = 0in U := co{vy, ..., v4}
and L** > 0 otherwise.

By lemma 3.2, for all sufficiently small s > 0, the function

¢s 1= (Duo(z0), — 20) + uo(20) + ws(- = z0),

where ws(x) = max (v; — Dug(zg), ) — s,
1<i<q

satisfies the inequalities

s <ug, xE€x9+ Pg/o,
o} 0 0 /2} (3.2)

¢s > ug, T E T+ OPsg
with P, := {z € R" : maxi<;<q(vi — Duo(zo),z) < o}.
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Hence the function wq, which is equal to ug outside the set zg + P and to
min{¢s, uo} inside this set, is defined as an element of W1P(£2).

At the same time, if 2’ := {z € 2 : u; # ug}, then Du, € extrU a.e. in 2’ and,
as a consequence, we have L**(Duj) = 0 a.e. in £2’. Hence

fﬁ L**(Dul)dx:/: L**(Duo) dz.

1] 1]

Since sets of the form 2’ gives a Vitaly cover of 0 (cf. (3.2)), by the Vitaly
covering theorem we can cover {2 by disjoint closed sets 2;, j € N, and a set of
zero measure such that, for each j € N, there exists a function ¥ ; € Wy ™ (£2;)

such that Dug + DY ; € {v € R" : L(v) = L**(v)} a.e. in {2;, and
/ L**(Dug) da = / L**(Dug + DY ;) dx.
2 2

Define u; as uo + ¥ in £2;, j <4, and as ug otherwise. Then wu; is a sequence of
solutions of problem (3.1). Note that this sequence converges strongly in Wh1(£2).
Indeed, in view of the growth conditions on L, we have

[Dug — Duil|, = [[Dur — Dwill 1, (Upe 46 0 2))

< 2/ (c1 L™ (Dug) + c2)de — 0 as k,l — oo.
Uké6 j6 zQJ

Therefore, the function @, which is the limit of u; in W1(£2), is also a solution
of problem (3.1). We also have meas{z € 2 : L(Du;) # L**(Du;)} — 0 and, as
a consequence, Du € {v : L(v) = L**(v)} a.e. in £2. Hence @ is a solution of the
original problem (1.1).

The proof of the theorem is complete. O

4. Some auxiliary facts related to solvability of boundary value
minimization problems with convex integrands and validity of the
Euler—Lagrange equation for their solutions

In this section we recall some standard facts about solvability of problems (1.1) with
convex integrands. These facts have been established in the context of solvability
theory for the Plateau problem (see [18]). We also prove a version of the Euler—
Lagrange equation, which is valid for all Lipschitz minimizers of problems (1.1)
with convex integrands.

Recall that boundary data f is said to satisfy the bounded slope condition if there
exists M > 0 such that, for each point zq € 912, we can find I, [ € R™ such that
|l1|, |l2| < M and

(i, ® = z0) + f(20) < f2) < (l2, 2 —20) + f(w0) V€0
For the proof of the following theorem, see, for example, [18].

THEOREM 4.1. Let L : R™ — R be a convex continuous function. Let boundary data
f satisfy the bounded slope condition with M > 0. Then there exists a solution wug
of the problem J(u) — min, u|gn = f in the class of Lipschitz functions. Moreover,
ug can be chosen satisfying the inequality || Dug||p~ < M.

https://doi.org/10.1017/5S0308210500000330 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210500000330

Homogeneous scalar variational problems 625

REMARK 4.2. Let {2 be a convex domain with 92 € C? of positive curvature and
let f € C%(02). Then f satisfies the bounded slope condition with certain M > 0.

Lipschitz minimizers always satisfy a non-smooth version of the Euler-Lagrange
equation.

THEOREM 4.3. Let L : R™ — R be a continuous convex function. Let ug € W10 (£2)
be a local minimizer of the functional J : J(up) < J(ug + @) for all ¢ € C(2) with
||¢||C1 <€ e>0.

Then there exists a function | € L*°(§2) such that l(xz) € OL(Dug(z)) a.e. in 2
and

[ @) oy ar=0 voewiio).
2
Moreover, ug is a solution of problem (1.1) with f = uglag-

Proof. Let M > |lug|lw1. (). Define L™ to be equal to L for [v] < M + 1 and to
oo for |v| > M + 1.
Let

K :=sup{|l| : 1 € OLM (v), |v| < M} + sup{|LM (v)| : |v| < M}.

Consider convexification G** of the function G := min{L™, K|v| + K(M + 1)}.

Because of lower semicontinuity of GG, by lemma 2.1, we infer continuity and
convexity of G**. Note that G** = L for |v| < M. Indeed, for these v we have
|L(v)] £ K < K|v| + K(M + 1). Then G = L for |v|] < M. Moreover, for each
vo € B(0, M) and each | € LM (vg), we have

L(vo) + (I,v = vo) < LM (v),
|L(vo) + (I, v —vo)| < K+ KM + K|v|.

Hence | € OG(vg) and, as a consequence, dG (vg) = LM (vg) # 0. Then, by corol-
lary 2.2, we get L = G = G** in B(0, M).

Since G** = L in B(0, M), the function ug is a local minimizer for the integral
functional with the integrand F', where F(z,v) := G**(v) + |v — Dug(x)[?. In this
case, ug is automatically a solution of the minimization problem. To prove this,
note that for each non-trivial ¢ € Wy *(£2), the function

I(e) := /Q{G**(DUO(SU) +eDg(x)) + 5(eDé(x))* — G (Duo(x))} dz

is a convex function of € and I(0) = 0. Moreover, for ¢ > 0 sufficiently small, we
have I(e) > I(0) = 0, since uy is a local minimizer. Because of strict convexity of I,
we infer that I(e) > 0 everywhere. Since ¢ € W, '?(£2) is arbitrary, we obtain that
up is unique global minimizer in W12(2).

The proof reduces to finding a function lpy € L*°(§2; R™) such that Iy (z) €
OpF (z, Dug(x)) for a.e. x € £2 and

| ). Dow)ar =0 voeci) (4.1)
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In fact, since for a.e. € (2, the identity 0,F (z, Dug(z)) = L™ (Dug(x)) holds,
we obtain that Iy/(x) € OLM (Dug(x)) a.e. in 2. Note that, for each v € R", the
identity OL(v) = NprOLM (v) holds. Note also that, since Uye 0dL™ (Dug(x)) is a
non-increasing sequence of bounded sets, we infer that all functions [, are equi-
bounded in L. Then, by the Banach-Mazur theorem (see, for example, [13, ch. 1,
§1]), there exists a sequence

My 41
lk = Z C'Ll’w
i=Mj+1
with M, — oo, ¢; = 0 such that
My 1
> e
=M +1

and I, — ly in L. Since [x(z) € LM+ (Dug(z)) for a.a. z € £, we obtain that
lo(x) € Ny OLM (Dug(z)) = OL(Dug(x)) a.e. in 2. It is also clear that (4.1) holds
with Iy instead of Ip;. This proves that (4.1) implies the first claim of theorem 4.3.
The second claim is an immediate consequence of the first one.

In order to prove (4.1), notice that in the case F(z,-) € C! for a.e. z € (2, the
identity (4.1) holds with s (z) = Fy(x, Dug(x)). The general case can be reduced
to this one by approximation arguments.

Consider functions F€: 2 X R™ — R such that, for each zy € {2, vy € R",

n

F(zg,v9) = / F(zg,v) * pe(v —vg) dv,

where p > 0 is a usual mollifying kernel, i.e. p is smooth with the support in the
unit ball, [, p=1, and p. = € "p(z/e).
It is easy to see that F*© is convex in v and F¢(z,-) € C* for a.e. x € {2. Moreover,

Arv)* + By < Fé(z,v) < Ag|v|* + Ba, €€]0,1], Ay > Ay >0,

and, for a.e. x € {2, the family F¢(x,-) converges to F(x,-) uniformly in each
compact set.

Since each problem J¢ — min, ulgo = f, u € W12 has a solution u¢, we infer
that u¢, € € ]0,1], form a relatively compact set in the weak topology of W12, Tt is
obvious also that J¢(u¢) — J(ug). Then, because of lower semicontinuity of convex
functionals with respect to weak convergence in W12, we infer that

J (o) = limy J*(u) > J (@)

for each limit function @ of u€ (u® — 4 in Ly for some €, — 0), see, for example, [25].
Since ug is the unique solution of the original problem, we infer that u® — ug in
L. Then u¢ — ug in W12, where — denotes the weak convergence. For strictly
convex functionals, convergences u¢ — ug in W2 J¢(u¢) — J(ug) imply strong
convergence of u€ to ug in W12 (see [25] for a simple proof, and [26] for the char-
acterization of this property of integral functionals in terms of integrands).
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For each € > 0, we have
[ Fote, Durta), Do) ar =0 6 e Chie), (4.2)
(%}

Locally, uniform convergence of F (z,-) to F(z,-) for an z € {2 implies that, for
each sequence vy € R™ such that e, — 0, vy — vo, Ff*(x,vr) — [, the inclusion
[ € 9,F(x,v0) holds (see, for example, [25]).

In view of the convergence ||u€—ugl|y1.2 — 0, € — 0, we obtain strong in L' norm
convergence of F¢* (-, Du (+)) to | € L' such that l(x) € 8, F(x, Dug(z)) a.e. in £2.
Being the L! limit of F (-, Du*(+)), the function [(-) automatically satisfies (4.1)
(cf. (4.2)).

The proof is complete. O

5. Proof of theorem 1.2
In this section we give proof to the last result of this paper, theorem 1.2.

Proof of theorem 1.2. Due to theorem 1.1, solvability of all problems (1.1) with
linear boundary conditions and a fixed {2 already implies that for each F € R",
either OL(F) # 0 or there exist v1,...,vy € R™ such that N]_0L(v;) # 0 and
F € intco{vy,...,vq}

To prove the converse assertion of the theorem, fix 2 with 92 € C? of positive
curvature and f € C?(912).

By lemma 2.1, L** : R™ — R is a continuous convex function. It is clear also that
L** > 6, where §(v)/|v| — o0 as |v]| — 0.

By theorem 4.1 and the remark to it, there is a solution ug € W1°°(£2) of the
relaxed problem

J**(u) — min, ulon = f (5.1)

in the class u € W10 ().

We can also prove that wug is a solution of problem (5.1) in W1(£2). In fact, by
theorem 4.3, there exists [ € L°°({2) such that I(z) € OL**(Dug(x)) for a.e. z € 2
and

| @) Do) az =0 voewi()

If u|sn = uglo = f, then we obtain
T (u) = T (ug) = / {L*™(Du) — L™ (Dug) — {I(z), Du — Dug)} dz.
2

Since the expression in the brackets is non-negative almost everywhere in {2, we
obtain that ug is a solution in W11, Note also that in the case where esssup | Dul
is sufficiently large, the expression in the brackets is positive in a set of positive
measure since L** has superlinear growth at infinity, and, as a consequence, J**(u)—
J**(up) > 0. Therefore, all solutions to problem (5.1) in Wh!(£2) are bounded in
Wheo(2) by M = M(f,2) > 0.

Let ug be such a solution. By Rademacher’s theorem (cf. [14, p. 81]), up has a clas-
sical derivative almost everywhere in 2. Let 2 be the set, where Dug exists in the
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classical sense and L(Dug(zg)) # L**(Dug(xg)). There exists M; > 0 such that, for
each point = € £, there exist vy, ..., v, € B(0, M;) with Dug(z) € int co{vy, ..., v,}
and N_,dL(v;) # 0 (as a consequence, L** is affine on co{vi, ..., v,}). Indeed, be-
cause of superlinear growth of L** at infinity, the union of those compact convex
sets intersecting B(0, M), where L** is affine, is a bounded set.

Therefore, for each zg € £2, we can isolate extremum points v;, i € {1,...,q}, of a
compact convex set such that vq,...,v, € B(0, M7), Dug(xg) € int co{vy,...,v,},
and N;OL(v;) # 0. Let wg be functions from (1.2), with F' = Dug(x). By lemma 3.2,
we have that, for all sufficiently small s > 0, the function

¢s = uO(l'O) + <Du0(1'0)3 T 1'0> + ws(' - 'TO)
has properties

¢5<’LL0, 5061‘0+P5/2,
¢ > ug, x€ o+ 0P,

where P, = {z € R" : maxi<;<q(v; — Dug(zo), x) < o}.
Hence, we can define a perturbation u; of ug as follows:

b Juo for z € (2\ {zo + Pas}),
' min{¢s, ug} otherwise.

Let 2 := {x € 2 : uy < up}. Then 2’ is a proper open subset of 2, zy € 2/,
and Duy(z) € {v1,...,vq} a.e. in 2.
We can repeat arguments from the proof to theorem 1.4 in order to obtain

fﬁ L**(Dul)dx:/: L**(Duo) dz. (5.2)

2 2
In fact, if I € N;0L(v;), then

AL (Duy) — L (Dug)}dz = | {L**(Duy) — (I, Duy) — L(v1) } dx
loZ loZ
— | {L™(Dug) — (I, Dug) — L(v1)} dz, (5.3)
Q/

where the first integral vanishes and the second one is non-negative. Hence the left-
hand side in (5.3) does not exceed zero. The converse inequality is obvious, since
up is a solution to (5.1).

Since (5.2) is established, by Vitaly covering arguments, we can isolate at most
a countable family of disjoint closed sets §2; and corresponding functions ¥; €
Wy >°(2;) such that meas(2\ U;2;) = 0 ,(D¥; + Dug) € {v : L = L**} a.e. in £2;,
||D1/]Z + DuOHLoo(Qi) < Ml, and

/ L**(Dug) dz :/ L**(Duq)dx
for each i € N.
Therefore, if 4 = ug + ¥, in §2;, and @ = ug in 2\ U, then @ € W1°(0),

| D)l pee < My, and J** (@) = J**(ug). In particular, @ is also a solution of the
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relaxed problem. Since Du € {v: L = L**} a.e., we infer that @ is a solution of the
problem
J(u) — min, ulon = f, u € WHH(92).

Since J(a) = J**(u), J**(u) > J**(4) for all admissible for problem (5.1), functions

u € Whi(02) with sufficiently large WH°°(£2) norm and L > L** everywhere, we

infer that all solutions to the original problem (1.1) are bounded in W1:° norm.
The proof of the theorem is complete. O

Proof of remark 1.3. By the assumptions, we have L > «af - | + 8, with o > 0
and 8 € R. Then lemma 2.1 implies continuity and convexity of L**. Moreover,
L* 2 a| |+ 8.

Fix 2 with 02 € C? of positive curvature and f € C?(9£2). To prove solvability
of problem (1.1), we can combine arguments from the proofs of theorems 1.2 and
1.4.

By theorems 4.1 and 4.3, the relaxed problem has a solution ug € Wy >°(£2). Let 2
be the set, where Dug exists in the classical sense and L(Dug(xzg)) # L**(Duo(zo))-

Arguing as in the proof of the above theorem, we can isolate at most a countable
family of disjoint closed sets {2; and corresponding functions ¥; € Woloo(.Qz) such
that meas(2\ U;2;) = 0, (D¥; + Dug) € {v: L = L**} a.e. in {2;, and

/ L**(Dug) dx = / L**(Dug + DY ;) dx
£2; £2;
for each ¢ € N.

Define u; := ug + ¢; in each (2;, with j < 4, u; = uo otherwise. Then u; is a
sequence of solutions of the relaxed problem. Since |- | < ¢; L**(-) + cg, with certain
ca, c1 > 0, we obtain

1D+ V)0 < [ @@L (Dluo+9,) +e)ds = [ (0L (Duo) +ca)

2; 2;

This estimate is enough to assert strong convergence of u; in W' norm. Then
the limit function @ is still a solution of the relaxed problem and L(Dw#) = L**(Da)
a.e. in (2. Therefore, the function @ is a solution of the original problem (1.1). O

6. Note added in proof

While this paper was under review, I was informed by colleagues of several similar
and some new results in the field. The idea of using a.e. classical differentiability
in order to perturb minimizers of the relaxed problem to obtain a solution of the
original problem was suggested independently by Zagatti in [28]. Moreover, he then
improved both the proofs and the results of his work (see [28]; S. Zagatti, personal
communication), again independently, the result of theorem 1.2 by the method
described in this paper. I thank Professor Del Maso for bringing the last reference
to my attention.

A year later, Celada and Perrota [6] again rediscovered, independently of all
other work in the field, that a.e. classical differentiability of solutions of the relaxed
problems is key for establishing the attainment results in the original minimiza-
tion problem if applying the perturbations wsg; see (1.2). They also independently
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proved theorem 1.2 by the same method as in this paper (S. Zagatti, personal com-
munication). Moreover, they proved a.e. classical differentiability of minimizers in
problems with p-growth following some suggestions of Sverak and using the esti-
mates from [17]; see [6]. This result allowed them to extend the attainment results
to the case of integrands with p-growth. More recently, a number of integrands
with lower-order terms, which can be treated by the construction, were indicated
by them in [4-6].

Note also that all the authors of the papers [4-6,28] developed the research
programme of their supervisor, Professor Cellina. In fact, the first version of the-
orem 1.1 is the content of the papers [7,8] (the paper [15], theorem 2.12 of which
contains equivalent results, was submitted later). Another important observation
that the perturbations ws can be applied to Lipschitz functions was noticed by
Professor De Blasi and Professor Pianigiani in [12]. Lemma 3.2 of this work is only
an improvement towards the use of classical differentiability. Note also that the
set where 65 < ug can be selected with the boundary having zero measure, which
reduces the situation considered in [12] to the one treated in [3].
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