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Linear water waves: the horizontal motion of a
structure in the time domain
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The framework of the linearized theory of water waves in the time domain is used
to examine the horizontal motion of an unrestrained floating structure. One of the
principal assumptions of the theory is that an infinitesimal disturbance of the rest
state will lead to an infinitesimal motion of the fluid and structure. It has been
known for some time that for some initial conditions the theory predicts an unbounded
horizontal motion of the structure that violates this assumption, but the possibility does
not appear to have been examined in detail. Here some circumstances that lead to
predictions of large motions are identified and, in addition, it is shown that not all
non-trivial initial conditions lead to violations of the assumptions. In particular, it is
shown that the horizontal motion of a floating structure remains bounded when it is
initiated by the start up of a separate wave maker. The general discussion is supported
by specific calculations for a vertical circular cylinder.

Key words: surface gravity waves, wave scattering, wave–structure interactions

1. Introduction
This paper is concerned with the linearized theory of water waves and structures in

the time domain, in which it is assumed that an infinitesimal disturbance of the rest
state leads to motions that remain infinitesimal for all time. This is true, for example,
for the purely vertical motion of an unrestrained floating structure that is given a small
vertical displacement and released from rest. In this case, the hydrostatic spring acts as
a natural restoring force and the structure ultimately returns to its equilibrium position
(Ursell 1964). However, for horizontal motion, and for yaw motion about a vertical
axis, there is no natural restoring force and there is the possibility that the linearized
theory will predict unbounded displacements of an unrestrained structure, in violation
of one of the initial assumptions of the theory. The possibility of unbounded motions
in modes without a natural restoring force has been alluded to in the literature, for
example by John (1949) and Cummins (1962), and more recently by Hazard & Loret
(2007) and Fitzgerald & Meylan (2011) in the context of generalized eigenfunction
expansions, but it does not appear to have been investigated in detail. This is done
in the present work, where attention is restricted to purely horizontal motions, and
conditions are identified under which the linear theory predicts that an infinitesimal
forcing results in the unbounded displacement of an unrestrained structure. Specifically,
the occurrence of an apparent steady translation at large times is investigated. Further,
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290 P. McIver

and perhaps more importantly, the conditions are discussed under which there is no
such steady translation so that the linearized theory remains valid for all time.

The approach used here is to take a Fourier transform in time and to examine the
equation of motion for the structure in the frequency domain. The key observation is
that a component of the solution for the large-time motion of the structure will be
a steady translation if the frequency-domain displacement x1(ω) has a double pole at
the origin, when viewed as a function of complex frequency ω (McIver & McIver
2011, § 5). The form of x1(ω) is fairly simple and identification of its pole structure at
ω = 0 proves to be straightforward. The possible motions of a structure are discussed
in general and calculations are presented for a vertical circular cylinder extending
throughout the depth of the fluid.

In § 2, consideration is given to an isolated, unrestrained structure that is set in
horizontal motion by an impulse applied directly to the structure, and/or a pressure
impulse applied to the free surface. The structure is assumed to be symmetric about
the vertical plane containing the direction of the impulse. When the motion is caused
solely by an impulse applied directly to the structure, which is equivalent to the
specification of a non-zero initial velocity as long as the impulse imparted to the
fluid is properly accounted for, the linear theory formally suggests that the structure
continues to move in the direction of the impulse and that at large times the structure
has a non-zero steady velocity, so that the assumptions of the linearized theory are
violated. The release from rest of a structure in an existing ambient wave field can be
interpreted as an initial-value problem in which the wave field is switched on at time
zero and an additional impulse is applied to the structure to give an initial velocity of
zero, and again there is an apparent non-zero steady velocity at large times. However,
when the structure is set in motion indirectly by a pressure impulse there is no such
non-zero asymptotic velocity and, even though the structure has a non-zero initial
velocity, the assumptions of the theory are not violated.

The application of a pressure impulse to the free surface is unlikely to be directly
relevant to problems of practical interest. Thus, in § 3, results are given for a structure
that is set in motion indirectly by the action of a separate wave maker starting up from
rest. This situation is mathematically similar to the application of a pressure impulse
to the free surface, and again it is found that there is no violation of the linearizing
assumptions.

This article is structured so that the principal points of the time-domain behaviour
are discussed in the main body, while the frequency-domain solutions required for
calculations are described in the appendices.

2. An isolated structure
2.1. Formulation

A structure with mass M floats in water of depth h above a horizontal bed Sbed . The
fluid is assumed to be inviscid and incompressible, the flow to be irrotational, and all
motions are assumed to be sufficiently small for the linearized theory of water waves
to be applicable. In particular, this means that the boundary condition on the structure
is applied on its initial wetted surface SB (it is possible to choose a different reference
position for the structure as long as its motion remains suitably small relative to that
position). Cartesian coordinates (x, y, z) are chosen with z directed vertically upwards
from the undisturbed free surface SF. For simplicity, the structure is assumed to be
symmetric about the vertical plane x= 0, and free to move in the x-direction only.
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Horizontal motion in the time domain 291

The fluid and structure are at rest for times t < 0, and the motion is initiated at
t = 0 by a prescribed distribution of potential and elevation on the free surface, and/or
a horizontal impulse I applied directly to the structure in the direction of the x-axis.
The subsequent motion of the fluid is described by a velocity potential Φ(x, z, t), and
the motion of the structure is described by its horizontal displacement and velocity that
are denoted by X1(t) and V1(t)(≡Ẋ1(t)), respectively. The initial-value problem for the
potential is as follows:

∇2Φ = 0 in D, (2.1)
∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 on SF, (2.2)

∂Φ

∂n
= V1(t)n1 on SB, (2.3)

∂Φ

∂n
= 0 on Sbed , (2.4)

|∇Φ| → 0 as |x| →∞, (2.5)

and

Φ(x, 0, 0)=Φ0(x),
∂Φ

∂t
(x, 0, 0)=−gH0(x), x ∈ SF, (2.6)

where D is the fluid domain, g is the acceleration due to gravity and H0(x) is the
initial elevation of the free surface. For x ∈ SF, −ρΦ0(x) may be interpreted as a
pressure impulse applied to the free surface at t = 0 (Batchelor 1967, § 6.10); here ρ
is the fluid density. Throughout this paper the normal coordinate n is directed out of
the fluid domain and n1 denotes the x-component of this normal. The velocity potential
Φ and the displacement X1 are also related through the equation of motion for the
structure which, for t > 0, is

MV̇1(t)=−ρ
∫∫

SB

∂Φ

∂t
(x, z, t)n1 dS− c11X1(t)− d11V1(t), (2.7)

where c11 and d11 are respectively spring and damper coefficients for any moorings
(for most of what follows, c11 = d11 = 0).

The initial impulses applied to the fluid and structure give discontinuous changes in
the velocity potential Φ and the velocity V1(t) of the structure (which are both zero for
t < 0) that are related by

Φ(x, z, 0)=ΦS(x, z, 0)+ V1(0)Ω1(x, z) (2.8)

(see McIver & McIver 2011, equation (34)). Here ΦS(x, z, t) is the solution to the
above initial-value problem when the structure is held fixed, and Ω1(x, z) is the
solution to the ‘high-frequency radiation problem’

∇2Ω1 = 0 in D, (2.9)
Ω1 = 0 on SF, (2.10)
∂Ω1

∂n
= n1 on SB, (2.11)

∂Ω1

∂n
= 0 on Sbed , (2.12)

and

Ω1→ 0 as |x| →∞. (2.13)
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292 P. McIver

When the instantaneous change in the momentum of the structure at t = 0 is equated
to the impulses acting upon it, this gives

MV1(0)=−ρ
∫∫

SB

Φ(x, z, 0) n1 dS+ I =−Φ̃S,1 − V1(0)µ11(∞)+ I, (2.14)

where

Φ̃S,1 = ρ
∫∫

SB

ΦS(x, z, 0) n1 dS, (2.15)

and

µ11(∞)= ρ
∫∫

SB

Ω1(x, z) n1 dS (2.16)

is the high-frequency limit of the added-mass coefficient for the structure. It follows
from (2.14) that the initial velocity of the structure

V1(0)= I − Φ̃S,1

M + µ11(∞) . (2.17)

2.2. The frequency-domain problem
The frequency-domain problem is obtained by taking a Fourier transform in time t. For
a function F(t) that is piecewise smooth and satisfies

F(t)= 0, t < 0, (2.18)

its Fourier transform is defined as

f (ω)=
∫ ∞

0
F(t) eiωt dt ≡F {F(t)}, Imω = v > 0, (2.19)

and the corresponding inversion formula is

F(t)= 1
2π

∫ ∞+iv

−∞+iv
f (ω) e−iωt dω ≡F−1{f (ω)} (2.20)

(see Stakgold 2000, § 5.6). The positive imaginary part of ω is required to ensure the
existence of the Fourier transform in cases where F grows algebraically as t tends to
infinity.

Fourier transformation of the equation of motion (2.7) yields

M [−iωv1(ω)− V1(0)]

=−ρ
∫∫

SB

[−iωφ(x, z, ω)−Φ(x, z, 0)] n1 dS− c11x1(ω)− d11v1(ω), (2.21)

where lower-case letters are used to denote the Fourier transforms of the corresponding
time-domain quantities. It is convenient for the following discussion to make the
decomposition

φ(x, z, ω)= φS(x, z, ω)+ v1(ω)φ1(x, z, ω), (2.22)

where the frequency-domain scattering potential φS satisfies

∇2φS = 0 in D, (2.23)
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Horizontal motion in the time domain 293

∂φS

∂z
= ω

2

g
φS − iω

g
Φ0 −H0 on SF, (2.24)

∂φS

∂n
= 0 on SB, (2.25)

and

∂φS

∂n
= 0 on Sbed , (2.26)

while the radiation potential φ1 satisfies

∇2φ1 = 0 in D, (2.27)
∂φ1

∂z
= ω

2

g
φ1 on SF, (2.28)

∂φ1

∂n
= n1 on SB, (2.29)

and

∂φ1

∂n
= 0 on Sbed . (2.30)

Causality requires that each of φS and φ1 must also satisfy an appropriately formulated
radiation condition. The potential φ1 is a conventional radiation potential for time-
harmonic motions but, in general, φS is not a scattering potential for time-harmonic
motions because of the appearance of initial values in (2.24). With the coordinates
chosen so that X1(0) = 0, and hence so that the frequency-domain displacement
x1(ω)= v1(ω)/(−iω), the equation of motion can be solved to give

x1(ω)= [M + µ11(∞)] V1(0)+ Φ̃S,1 + ξ1(ω)

c11 − iωd11 − ω2 [M + µ11(ω)+ iν11(ω)]
(2.31)

(this is equivalent to the reduction to one mode of motion of equation (40) in McIver
& McIver 2011) or, after substitution for the initial velocity given in (2.17),

x1(ω)= I + ξ1(ω)

c11 − iωd11 − ω2 [M + µ11(ω)+ iν11(ω)]
. (2.32)

Here, the exciting force

ξ1(ω)= iωρ
∫∫

SB

φS(x, z, ω) n1 dS, (2.33)

and the added-mass and damping coefficients, µ11 and ων11 respectively, follow from

µ11(ω)+ iν11(ω)= ρ
∫∫

SB

φ1(x, z, ω) n1 dS. (2.34)

From McIver & McIver (2011, equation (46)), the time-domain exciting force Ξ1(t)
is related to the frequency-domain exciting force ξ1(ω) by

Ξ1(t)=F−1
{
ξ1(ω)+ Φ̃S,1

}
, (2.35)

and from properties of Fourier integrals (Bleistein & Handelsman 1986, § 3.2)

lim
|ω|→∞

ξ1(ω)=−Φ̃S,1. (2.36)
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294 P. McIver

A pole in ξ1(ω) at ω = 0 would imply that there is a non-oscillatory component of
Ξ1(t) that does not decay to zero as t→∞ (McIver & McIver 2011, § 5); it will
be assumed in the following that there is no such pole. (For a given geometry, the
absence of such a pole may be demonstrated by calculation.)

The possible low-frequency asymptotic forms, that is as ω→ 0, of µ11(ω)+ iν11(ω)

have been extensively investigated and a review is given by McIver (1994a). In
particular, it is known that ν11(0)= 0, and that µ11(0) is finite and positive.

2.3. Large-time asymptotics
The large-time asymptotics of X1(t) can be deduced from the form of x1(ω) as
ω→ 0. Specifically, from the results given by McIver & McIver (2011, § 5), if
x1(ω) ∼ −V∞/ω2 as ω→ 0, where V∞ is independent of ω, then X1(t) ∼ V∞t as
t→∞. A non-zero value of V∞ violates the assumptions of the linearized theory
as the predicted displacement of the structure is no longer appropriately small for
all time, and hence the boundary condition (2.3) cannot be applied on the initial
surface SB. If x1(ω) does not have a double pole at ω = 0 then V∞ = 0. This is the
case when the structure is moored so that c11 6= 0 and/or d11 6= 0. The presence of
a spring provides a restoring force that constrains the motion of the structure to a
neighbourhood of its original position, while with c11 = 0, but d11 6= 0, x1(ω) may have
a simple pole at ω = 0 which corresponds to a finite asymptotic displacement of the
structure. From now on it will be assumed that the structure is unrestrained so that
c11 = d11 = 0 and then, from (2.17), (2.31) and (2.32)

V∞ = [M + µ11(∞)] V1(0)+ Φ̃S,1 + ξ1(0)
M + µ11(0)

= I + ξ1(0)
M + µ11(0)

. (2.37)

These results may also be obtained from consideration of the change in the momentum
of the structure over the time interval (0,∞).

A number of different scenarios are discussed in the following subsections in which
numerical calculations are compared with asymptotic results. The procedure used for
the numerical evaluation of the time-domain displacement X1(t) by inverse Fourier
transform is described in appendix A. It is noted there that the required inverse
transforms may be expressed in terms of inverse Fourier cosine or sine transforms; for
the particular cases described in this section evaluation of the Fourier integrals using
an inverse Fourier sine transform is computationally advantageous.

2.3.1. Motion initiated by an applied impulse
The simplest case is when there is no scattered wave field (that is Φ0(x)=H0(x)≡

0) and the motion is initiated by a non-zero impulse I applied to the structure, which
is equivalent to prescribing a non-zero initial velocity (as long as the impulse imparted
to the fluid is correctly accounted for). From (2.37), V∞ 6= 0 and the assumptions
of the linearized theory are violated. A sample computation for a vertical circular
cylinder of radius a that extends throughout the depth is shown in figure 1; in this,
and all subsequent computations, lengths are scaled by a, and time by

√
h/g. The

required hydrodynamic coefficients µ11(ω) and ν11(ω) are readily computed from the
well-known solution for the radiation of waves by the horizontal oscillations of a
vertical cylinder; see, for example, Dean & Dalrymple (1991, § 6.4). For all of the
computations reported in this paper, the mass M of the cylinder is taken to be ρπa2h.
As the values of µ11(0) and µ11(∞) do not differ greatly, it follows from the first of
(2.37) that V∞/V1(0) is close to unity.
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FIGURE 1. The displacement X1 versus time t of a cylinder of radius a= 0.1h given an initial
velocity V1(0)= 0.05a

√
g/h. The dashed line has slope V1(0).

2.3.2. Release from rest in an ambient wave field
If the structure is unrestrained and has an initial velocity V1(0) = 0 then, from the

first of (2.37),

V∞ = Φ̃S,1 + ξ1(0)
M + µ11(0)

, (2.38)

which is non-zero provided that Φ̃S,1 + ξ1(0) 6= 0. From (2.17), V1(0)= 0 occurs when
the applied impulse I negates exactly the impulse Φ̃S,1 arising from the pressure
impulse on the free surface. From the viewpoint of times t strictly greater than zero,
so that the impulses that initiate the motion are not considered, this is equivalent to
the structure being released from rest within an existing wave field. ‘Switching on’ the
ambient wave field produces a pressure impulse on the structure which, to ensure that
V1(0) = 0, is negated by an equal and opposite direct impulse. In view of the great
variety of ambient wave fields that might be prescribed, it is difficult to make general
statements about this situation but an illustrative example is now described.

Suppose that for times t > 0 a time-domain scattered wave field has the form

ΦS(x, z, t)= 1
2π

∫ ∞
−∞

[
− igA(ω′)

ω′

]
ψS(x, z, ω′) e−iω′t dω′, (2.39)

where for ω > 0

ψS(x, z, ω)= eikx cosh k(z+ h)

cosh kh
+ ψD(x, z, ω), (2.40)

ψS(x, z,−ω)= ψS(x, z, ω), and ψD(x, z, ω) satisfies a radiation condition that specifies
outgoing waves. The corresponding initial values of the free-surface potential Φ0 and
elevation H0 follow from (2.39). Here k is the positive real root of

ω2 = gk tanh kh, (2.41)

and A(ω) is prescribed with A(−ω) = A(ω) and A(0) = 0. The potential ψS(x, z, ω)
describes a time-harmonic scattered wave field corresponding to a long-crested
incident wave with wavenumber k that propagates in the x-direction.
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296 P. McIver

For the time-domain potential in (2.39), Fourier transformation using the
definition (2.19) yields the corresponding frequency-domain potential

φS(x, z, ω)=− g

2π

∫ ∞
−∞

A(ω′) ψS(x, z, ω′)
ω′(ω′ − ω) dω′, Imω > 0, (2.42)

so that the frequency-domain exciting force

ξ1(ω)= iωρ
∫∫

SB

φS(x, z, ω) n1 dS=− iω
2πA

∫ ∞
−∞

A(ω′) χ1(ω
′)

ω′(ω′ − ω) dω′, (2.43)

where

χ1(ω)= iωρ
∫∫

SB

(−igA

ω

)
ψS(x, z, ω) n1 dS= ρgA

∫∫
SB

ψS(x, z, ω) n1 dS (2.44)

is the conventional exciting force for an incident time-harmonic wave of amplitude A .
In addition

Φ̃S,1 ≡ ρ
∫∫

SB

ΦS(x, z, 0) n1 dS=− i
2πA

∫ ∞
−∞

A(ω′) χ1(ω
′)

ω′
dω′ (2.45)

so that

Φ̃S,1 + ξ1(0)=− i
2πA

∫ ∞
−∞

A(ω′) χ1(ω
′)

ω′
dω′ = 1

πA
Im
∫ ∞

0

A(ω′) χ1(ω
′)

ω′
dω′. (2.46)

It is possible to choose A(ω) to give Φ̃S,1 + ξ1(0)= 0 but, in general, Φ̃S,1 + ξ1(0) 6= 0
so that the asymptotic velocity V∞ 6= 0 and the assumption of small motion is violated.

A time-domain ambient wave field that is time harmonic with frequency ω̂ is
recovered by taking

A(ω)= πA [δ(ω + ω̂)+ δ(ω − ω̂)], (2.47)

where δ is the Dirac delta function, so that (2.39) and (2.46) become, respectively,

ΦS(x, z, t)= Re
[
− igA

ω̂
ψS(x, z, ω̂) e−iω̂t

]
, (2.48)

and

Φ̃S,1 + ξ1(0)= Imχ1(ω̂)

ω̂
. (2.49)

The exciting force χ1 for time-harmonic waves is readily computed for many
structures. For example, in the case that SB is a vertical cylinder of radius a extending
throughout the depth (Linton & McIver 2001, § 2.4.1)

Φ̃S,1 + ξ1(0)=−4ρω̂A Y′1(k̂a)

k̂3 |H′1(k̂a)|2
(2.50)

where Y1 is a Bessel function, H1 a Hankel function of the first kind, the primes
denote differentiation with respect to the function argument, and k̂ is the positive real
root of ω̂2 = gk̂ tanh k̂h. In general Φ̃S,1 + ξ1(0) 6= 0, and hence V∞ 6= 0, and as t→∞
the solution is a translation with a superimposed steady oscillation of frequency ω̂.
However, whenever k̂a is a zero of Y′1 the translation is eliminated. It might be

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

33
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.335


Horizontal motion in the time domain 297

anticipated that other structures will display a similar behaviour with no asymptotic
steady translation at isolated wave frequencies.

2.3.3. Motion initiated by a pressure impulse
Motion initiated by a pressure impulse applied to the free surface is now

investigated, both with and without an impulse applied directly to the structure. Again,
calculations are presented for a vertical cylinder of radius a extending throughout the
depth. The free surface is chosen to be initially flat, so that H0(x)= 0 for x ∈ SF, and
the initial free-surface potential is taken as

Φ0(x)=
√

g

γ 3
K1(γ r) cos θ, r > a, (2.51)

where (r, θ) are horizontal polar coordinates with origin on the axis of the cylinder,
K1 is a modified Bessel function, and γ is a constant. The solution to the scattering
problem is obtained in appendix B and, in particular, the exciting force ξ1(ω) is given
in (B 9). In this case ξ1(0) = 0 and hence, from the second of (2.37), there is no
asymptotic steady translation unless an impulse is applied directly to the structure.
Furthermore, from (B 14), Φ̃S,1 6= 0 and hence, in general, the structure has a non-zero
initial velocity.

The displacement of the structure is shown in figure 2 when there is both a pressure
impulse and a direct impulse I (the latter is obtained by the equivalent process of
specifying an initial velocity). In this case, the theory predicts that the displacement of
the structure settles to a decaying oscillation about X1 = V∞t.

Figure 3 shows a calculation when there is a pressure impulse but no impulse
I applied directly to the structure so that, from (2.37), V∞ = 0 and the large-time
behaviour is a decaying oscillation about X1 = 0. There seems to be no reason to think
that ξ1(0) = 0 is atypical for motions initiated by a pressure impulse and therefore,
despite the fact that the initial velocity V1(0) 6= 0, there is no asymptotic steady
translation when the structure moves solely as a result of fluctuations in the fluid
pressure. This can be understood by decomposing the motion of the structure into two
components, namely: (i) that part arising solely from the initial pressure impulse; and
(ii) that part, in t > 0, arising from the evolution of the scattered wave field. From
(2.14), in the equation of motion for the structure the pressure impulse is equivalent to
a directly applied impulse I = −Φ̃S,1 and, by the second of (2.37), this contributes an
amount −Φ̃S,1/[M+µ11(0)] to the asymptotic velocity. The initial impulse accounts for
the non-zero value of V1(0) and hence, in the present decomposition, the motion of the
structure arising solely from the scattered field in t > 0 has V1(0) = 0. Then, from the
first of (2.37) with ξ1(0)= 0, the corresponding contribution to the asymptotic velocity
is Φ̃S,1/[M + µ11(0)], which exactly cancels that arising from the initial impulse.

To shed more light on motions generated by a pressure impulse in a more practical
setting, the motion initiated by a wave maker in the presence of a floating structure is
investigated in the following section.

3. Response to a wave maker
3.1. Formulation

The problem is now modified by introducing into the fluid domain a wave maker that
performs small motions in the x-direction, with a prescribed velocity VW(t), about the
wetted surface SW . The geometrical form of this wave maker need not be specified at
this stage, although figure 4 illustrates the geometry and coordinate systems when
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t
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FIGURE 2. The displacement X1 versus time t of a cylinder of radius a= 0.1h given an initial
velocity V1(0) = 0.07a

√
g/h and for an initial free-surface potential (2.51) with γ a = 1. The

dashed line has slope V1(0) and the dot-dash line has slope V∞.

0 1 2 3 4 5
t

–0.01

0

0.01

0.02

FIGURE 3. The displacement X1 versus time t of a cylinder of radius a= 0.1h for an initial
free-surface potential (2.51) with γ a= 1. The dashed line has slope V1(0).
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FIGURE 4. Coordinate systems for § 3 illustrated in (a) a vertical plane and (b) a horizontal
plane.
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SW is a vertical wall and the structure SB is a vertical cylinder, both extending
throughout the depth. As before, the motion of the fluid is described by a velocity
potential Φ(x, z, t), and the motion of the structure by its horizontal displacement
X1(t), measured from its initial position, and by its velocity V1(t). The fluid and
structures are at rest for t < 0 and the motion is initiated solely by the motion of the
wave maker. The initial-value problem for the potential is as follows:

∇2Φ = 0 in D, (3.1)
∂2Φ

∂t2
+ g

∂Φ

∂z
= 0 on SF, (3.2)

∂Φ

∂n
= VW(t)n1 on SW, (3.3)

∂Φ

∂n
= V1(t)n1 on SB, (3.4)

∂Φ

∂n
= 0 on Sbed , (3.5)

|∇Φ| → 0 as |x| →∞ within D, (3.6)

and

Φ(x, 0, 0)= ∂Φ
∂t
(x, 0, 0)= 0, x ∈ SF. (3.7)

The Fourier transform φ(x, z, ω) of the time-domain potential Φ(x, z, t) is written as

φ(x, z, ω)= vW(ω)φW(x, z, ω)+ v1(ω)φ1(ω) (3.8)

where again lower-case letters are used to denote the Fourier transforms of
the corresponding time-domain quantities. The potential φ1 describes the forced
oscillations of the structure when the wave maker is held fixed, and solves the problem
for φ1 given in § 2 with the addition of

∂φ1

∂n
= 0 on SW . (3.9)

The potential φW describes the forced oscillations of the wave maker when the
structure is held fixed, and solves

∇2φW = 0 in D, (3.10)
∂φW

∂z
= ω

2

g
φW on SF, (3.11)

∂φW

∂n
= n1 on SW, (3.12)

and

∂φW

∂n
= 0 on SB ∪ Sbed , (3.13)

together with a radiation condition.
The start up of the wave maker may generate a pressure impulse which

instantaneously causes the structure to move with a non-zero velocity. In a similar
fashion to (2.8), this results in an initial potential

Φ(x, z, 0)= VW(0)ΩW(x, z)+ V1(0)Ω1(x, z), (3.14)
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where Ω1 solves the same problem as the Ω1 that appears in § 2, with the addition
of a homogeneous Neumann condition on SW , while ΩW solves a similar problem that
includes the conditions

∂ΩW

∂n
= n1 on SW, (3.15)

and

∂ΩW

∂n
= 0 on SB. (3.16)

The change in momentum of the structure induced by the start up of the wave maker
is

MV1(0)=−ρ
∫∫

SB

Φ(x, z, 0) n1 dS=−VW(0)Φ̃W,1 − V1(0)µ11(∞), (3.17)

where

Φ̃W,1 = ρ
∫∫

SB

ΩW(x, z) n1 dS (3.18)

and µ11(∞) is given by (2.16), and hence the initial velocity of the structure is

V1(0)=− VW(0)Φ̃W,1

M + µ11(∞) . (3.19)

The equation of motion for the structure is identical in form to that in (2.7). Fourier
transformation in time and introduction of the decomposition (3.8) yields, with the aid
of (3.14) and (3.19),

x1(ω)= vW(ω)ξ1(ω)

c11 − iωd11 − ω2 [M + µ11(ω)+ iν11(ω)]
, (3.20)

where

ξ1(ω)= iωρ
∫∫

SB

φW(x, z, ω) n1 dS. (3.21)

The notation here is chosen to mimic that used in § 2; thus Φ̃W,1 is proportional to the
fluid impulse on SB due to the start up of the wave maker, and ξ1(ω) is proportional
to the exciting force on SB due to unit oscillations of the wave maker. An alternative
notation is in terms of conventional added-mass and damping coefficients that describe
the forces on the structure due to the motion of the wave maker. It follows from (3.18)
and (3.21) that

Φ̃W,1 = lim
ω→∞

ξ1(ω)

iω
. (3.22)

As discussed in § 2.3, for there to be a steady translation of the structure at large
times the frequency-domain displacement x1(ω) must have a double pole at ω = 0.
From (3.20), when the structure is unrestrained so that c11 = d11 = 0, this will occur
provided vW(0)ξ1(0) 6= 0. The Fourier transform vW(ω) of the wave-maker velocity
may indeed be non-zero at ω = 0; for example, the velocity

VW(t)= V0 cos ω̂t e−βt, β > 0, (3.23)
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FIGURE 5. The real (solid line) and imaginary (dashed line) parts of the ratio of exciting
force to frequency ξ1(ω)/ω versus frequency ω for a cylinder of radius a = 0.1h a distance
d = h from a wave maker.

has the Fourier transform

vW(ω)= V0(β − iω)

(β − iω)2+ω̂2
∼ V0β

β2 + ω̂2
as ω→ 0. (3.24)

The existence of a double pole in x1(ω) then depends on ξ1(0) which may be
calculated for a given geometry. In the next subsection, the solution is investigated
for a vertical cylinder excited by the motion of a vertical wall.

3.2. A vertical cylinder excited by the motion of wave maker

An unrestrained vertical cylinder of radius a extending throughout the depth is initially
a distance d from a wave maker which occupies that part of the plane x = 0 in
−h < z < 0. The geometry and coordinate systems are sketched in figure 4, and
methods for the calculation of the required hydrodynamic quantities are described in
appendix C. From the discussion at the end of § 3.1, the value of the zero-frequency
exciting force ξ1(0) is key to understanding the large-time behaviour of the cylinder.
Typical behaviour of ξ1(ω)/ω is illustrated in figure 5 and it is clear that ξ1(0) = 0 so
that there is no double pole at ω = 0 in the frequency-domain displacement x1(ω), and
hence no asymptotic steady translation of the cylinder.

A calculation of the cylinder displacement X1(t) for the decaying wave-maker
velocity (3.23) is given in figure 6. In this case, x1(ω) has a simple pole at ω = 0
and, from the residue at that pole,

X1(t)→ X∞ ≡ vW(0)
M + µ11(0)

lim
ω→0

iξ1(ω)

ω
as t→∞ (3.25)

(McIver & McIver 2011, § 5) so that the cylinder is displaced a distance X∞ from
its initial position. It may be shown from the reciprocity relation (C 29) that, in
fact, X∞ = vW(0) so that the asymptotic displacement depends only on the motion
of the wave maker. (The method of calculation for X1(t) is described in appendix A.
For both of the calculations presented in this section the inverse cosine transform is
appropriate.)
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t
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FIGURE 6. The displacement X1 versus time t of a cylinder of radius a = 0.1h a distance
d = h from a wave maker which has velocity (3.23), where ω̂ = 2

√
g/h, β = √g/h and

V0 = a
√

g/h. The dashed line has slope V1(0) and the solid line shows the asymptotic
displacement X∞.
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FIGURE 7. The displacement X1 versus time t of a cylinder of radius a = 0.1h a distance
d = h from a wave maker which has velocity (3.23), where ω̂ =√g/h and V0 = a

√
g/h. The

dashed line has slope V1(0).

The final calculation, shown in figure 7, is for the oscillatory wave-maker
velocity (3.23)

VW(t)= V0 cos ω̂t (3.26)

for which the Fourier transform

vW(ω)= iωV0

ω2 − ω̂2
∼− iωV0

ω̂2
as ω→ 0. (3.27)

Now x1(ω) has no pole of any order at ω = 0 and the cylinder settles to an oscillation
about its initial position with frequency ω̂; this is an example of the ‘limiting
amplitude principle’ which is proved for the case of an oscillatory forcing applied
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directly to a structure by Vullierme-Ledard (1987). In neither of the cases illustrated in
figures 6 and 7 are the assumptions of the linear theory violated.

3.3. An integro-differential equation
Cummins (1962) obtains an integro-differential equation for the time-domain motion
of a structure with coefficients in terms of frequency-domain quantities. The derivation
is based on the responses to impulsive motions, but a direct derivation of such
equations using the inverse Fourier transform is used, for example, by Yu & Falnes
(1995), Meylan & Sturova (2009) and McIver & McIver (2011), and this approach is
followed here.

When expressed in terms of the frequency-domain velocity v1(ω), and with the aid
of (3.19), (3.20) may be written as

[M + µ11(∞)] [−iωv1(ω)− V1(0)]
+ [µ11(ω)− µ11(∞)+ iν11(ω)] [−iωv1(ω)− V1(0)]
+ l11(ω)V1(0)+ c11x1(ω)+ d11v1(ω)

= [lW,1(ω)− lW,1(∞)
]

[iωvW(ω)+ VW(0)]+
[
lW,1(ω)− lW,1(∞)

]
VW(0)

+ lW,1(∞) [iωvW(ω)+ VW(0)] , (3.28)

where

lW,1(ω)= ξ1(ω)

iω
and lW,1(∞)= lim

ω→∞
lW,1(ω)≡ Φ̃W,1. (3.29)

Inverse Fourier transform and application of the convolution theorem then gives, for
times t > 0,

[M + µ11(∞)] V̇1(t)+
∫ t

0
L11(t − τ)V̇1(τ ) dτ

+L11(t)V1(0)+ c11X1(t)+ d11V1(t)=Ξ1(t), (3.30)

where

L11(t)=F−1 {µ11(ω)− µ11(∞)+ iν11(ω)} = 2
π

∫ ∞
0
ν11(ω) sinωt dω, (3.31)

Ξ1(t)=−
∫ t

0
LW,1(t − τ)V̇W(τ ) dτ − LW,1(t)VW(0)− lW,1(∞)V̇W(t) (3.32)

and

LW,1(t)=F−1
{

lW,1(ω)− lW,1(∞)
}= 2
π

∫ ∞
0

Im
[
ξ1(ω)

iω

]
sinωt dω. (3.33)

Equation (3.30) is an integro-differential equation for the displacement X1(t) of the
structure.

Here L11 and LW,1 are so-called impulse response functions, that is inverse Fourier
transforms of time-harmonic quantities. It is known that an impulse response function
may be non-causal, so that it is non-zero for most times t < 0, in situations where the
exciting force is used as the output and the wave elevation at some reference location
is used as the input (Falnes 1995). This lack of causality arises because the chosen
input is not the true cause of the output; the actual cause is whatever mechanism
generates the waves. The impulse response functions used here, and in particular LW,1

which governs the excitation, are causal as the input is the motion of the wave maker.
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Although no new calculations using (3.30) are presented here, it has been verified
that it reproduces the results presented in figures 6 and 7. Although for these
particular examples, computations are more straightforward with a direct application
of the inverse Fourier transform, (3.30) may be advantageous for complicated forcing
functions VW(t).

4. Conclusion
The aim of this paper is to shed light on the circumstances under which the

linearized theory of water waves predicts motions which violate the assumptions of the
theory. Specifically, initial conditions which lead to apparently unbounded horizontal
motions of an unrestrained floating structure have been identified. Initial conditions
which involve an impulse directly applied to the structure will, in general, lead to a
motion that at large times is dominated by a steady translation. The simplest such case
is when an horizontal impulse is applied to a structure residing in a quiescent fluid, but
the same phenomenon is, in general, observed when a structure is released from rest
within an existing wave field. In the latter case, a direct impulse is required to negate
the non-zero initial velocity that arises from ‘switching on’ the ambient waves. As
far as the author is aware, the correct long-time behaviour of the impulsively started
free motion of an unrestrained structure in water with a free surface has not been
investigated. In contrast to this, the fluid motion arising from the prescribed motion of
a structure started impulsively from rest has been studied extensively (see, for example,
Joo, Schultz & Messiter 1990).

Unlike the motion of a structure initiated by a direct impulse, motions initiated
indirectly by a pressure impulse do not display an asymptotic translation, and hence
the assumptions of the theory are not violated. Two particular examples of this are
the application of a pressure impulse to the free surface, and the pressure impulse
generated by the start up of a wave maker. This is significant as it confirms that
the standard formulation of the linearized theory of water waves may be used for a
structure in a wave tank when the motions of both the fluid and the structure are
started from rest by the action of the wave maker. It would be useful to extend this
work to include nonlinear effects.

Although this paper has been concerned with unrestrained horizontal motions, it can
be anticipated that similar conclusions apply to yaw motions for which, again, there is
no natural restoring force.

Appendix A. Numerical evaluation of the inverse Fourier transform
Here the numerical evaluation of the inverse Fourier transform

X1(t)= 1
2π

∫ ∞+iv

−∞+iv
x1(ω) e−iωt dω (A 1)

is considered in the case that

x1(ω)=−V∞
ω2
+ iX∞

ω
+ O(1) as ω→ 0, (A 2)

and

x1(ω)∼ x0

ω − ω̂ as ω→ ω̂ (A 3)
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with ω̂ ∈ R. From the definition of the Fourier transform equation (2.19), x1(−ω) =
x1(ω) and hence there must also be a pole of x1(ω) at ω =−ω̂ with

x1(ω)∼ −x0

ω + ω̂ as ω→−ω̂. (A 4)

It is assumed that all other singularities of x1(ω) are in the lower half of the complex-
ω-plane.

The inverse transform equation (A 1) is written as

X1(t)= 1
2π

∫ ∞+iv

−∞+iv

[
x1(ω)+ V∞

ω2
− iX∞

ω
− x0

ω − ω̂ +
x0

ω + ω̂
]

e−iωt dω

− 1
2π

∫ ∞+iv

−∞+iv

[
V∞
ω2
− iX∞

ω
− x0

ω − ω̂ +
x0

ω + ω̂
]

e−iωt dω

= 1
2π

∫ ∞
−∞

[
x1(ω)+ V∞

ω2
− iX∞

ω
− x0

ω − ω̂ +
x0

ω + ω̂
]

e−iωt dω

+V∞t + X∞ + 2Im {x0 e−iω̂t}, (A 5)

where in the first integral the path of integration is moved onto the real axis as the
integrand is now free of singularities, and the second integral is evaluated by closing
the integration path using a semicircle at infinity in the lower half-plane.

From the definition (2.19), for a function F(t) the real and imaginary parts of its
Fourier transform f (ω) for ω ∈ R are respectively

Re f (ω)=
∫ ∞

0
F(t) cosωt dt and Im f (ω)=

∫ ∞
0

F(t) sinωt dt. (A 6)

Thus, F(t) may be recovered from either the inverse cosine transform of Re f (ω), or
from the inverse sine transform of Im f (ω); that is

F(t)= 1
2π

∫ ∞
−∞

f (ω) e−iωt dω = 2
π

∫ ∞
0

Re f (ω) cosωt dω = 2
π

∫ ∞
0

Im f (ω) sinωt dω.

(A 7)

In numerical computations, the inverse cosine or sine transform can be chosen
according to which of Re f (ω) and Im f (ω) decays most rapidly as ω→∞. This
approach to the numerical evaluation of Fourier integrals was suggested to the author
by Dr M. Meylan (private communication).

Appendix B. The scattering problem for a vertical cylinder
Solutions to scattering problems in the presence of a vertical cylinder of radius a

may be obtained using the modified version of Weber’s integral theorem given by
Hunt & Baddour (1980, equation (54)), and used in McIver (1994b). The theorem
states that provided r1/2f (r) is integrable over (a,∞) then

f (r)=
∫ ∞

0

Cn(qr)q dq∣∣H′n(qa)
∣∣2
∫ ∞

a
Cn(qR)f (R)R dR, (B 1)

where

Cn(qr)= Jn(qr)Y′n(qa)− Yn(qr)J′n(qa), (B 2)
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Jn and Yn are Bessel functions, and Hn is a Hankel function of the first kind. An
important property of Cn is that C′n(qa)= 0.

Attention will be restricted to the case that the free surface is flat initially, so that
H0(x) ≡ 0 in (2.24), and it will be that assumed that the initial free-surface potential
has a Fourier series expansion

Φ0(x)=
∞∑

n=0

[αn(r) cos nθ + βn(r) sin nθ ] , x ∈ SF, (B 3)

where αn and βn are known functions of r that decay to zero as r→∞ sufficiently
quickly for the application of Weber’s integral theorem (β0 ≡ 0, but is included above
for convenience). A form for the scattering potential that satisfies identically the
required equations, with the exception of the free-surface and radiation conditions, is

φS(x, z, ω)=
∞∑

n=0

∫
Cω

[An(q) cos nθ + Bn(q) sin nθ ] Cn(qr) cosh q(z+ h) dq, (B 4)

where Cω is a contour that passes along the positive real-q-axis in a way to be
specified shortly. Substitution of the ansatz (B 4) into the free-surface condition (2.24)
with the above Φ0(x), followed by applications of orthogonality properties of the
trigonometric functions in θ , and of Weber’s integral theorem, gives{

An(q)
Bn(q)

}[
q sinh qh− ω

2

g
cosh qh

]
=− iω

g

q∣∣H′n(qa)
∣∣2
∫ ∞

a
Cn(qR)

{
αn(R)
βn(R)

}
R dR. (B 5)

From the forms for An and Bn it is apparent that the integrand in the right-hand side
of (B 4) has poles at the roots of q tanh qh = ω2/g, and in particular at q = k where k
is real and positive. The radiation condition of outgoing waves is satisfied by choosing
the contour Cω to ensure that φS behaves appropriately as r→∞. Examination of the
residue at the pole at q = k shows that Cω must pass beneath the pole at q = k when
ω > 0, but above the pole when ω < 0.

The specific initial condition

Φ0(x)=
√

g

γ 3
K1(γ r) cos θ, x ∈ SF, (B 6)

where γ > 0 is a constant, is now examined in detail. From the result∫ ∞
a

C1(qR)K1(γR)R dR=− 2γK′1(γ a)

πq(q2 + γ 2)
(B 7)

(Abramowitz & Stegun 1965, equation (11.3.29)) it follows that the scattering potential

φS(x, z, ω)=−2iω
√

g K′1(γ a) cos θ

π
√
γ

∫
Cω

C1(qr) cosh q(z+ h) dq∣∣H′1(qa)
∣∣2(q2 + γ 2)(ω2 −W2) cosh qh

, (B 8)

and the exciting force defined in (2.33) is

ξ1(ω)=−4ω2ρ
√

g K′1(γ a)

π
√
γ

∫
Cω

tanh qh dq

q2
∣∣H′1(qa)

∣∣2(q2 + γ 2)(ω2 −W2)
, (B 9)

where

W2 = gq tanh qh. (B 10)
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(A Wronskian relation for Bessel functions has been used to obtain C1(qa) = 2/πqa;
see Abramowitz & Stegun (1965), equation (9.1.16).)

By inverse Fourier transformation, the time-domain scattering potential

ΦS(x, z, t)= 1
2π

∫ ∞+iv

−∞+iv
φS(x, z, ω) e−iωt dω (B 11)

where now Imω = v > 0 (McIver & McIver 2011, equation (14)). A consequence of
a non-zero imaginary part to ω is to move the pole at q = k in the integrand in (B 8)
off the real-q-axis; for ω > 0 it moves in to the upper half of the complex-q-plane, and
for ω < 0 it moves into the lower half-plane. As a result of these pole movements the
q-integration can now be taken strictly along the positive part of the real-q-axis. For
t > 0 the ω integration is carried out by closing the contour in the lower half of the
complex-ω-plane, to obtain∫ ∞+iv

−∞+iv

ω e−iωt

ω2 −W2
dω =−2πi cos Wt, (B 12)

and the time-domain potential corresponding to (B 8) is therefore

ΦS(x, z, t)=−2
√

g K′1(γ a) cos θ

π
√
γ

∫ ∞
0

C1(qr) cosh q(z+ h) cos Wt dq∣∣H′1(qa)
∣∣2(q2 + γ 2) cosh qh

. (B 13)

From (2.15)

Φ̃S,1 = 4ρ
√

g K′1(γ a)

π
√
γ

∫ ∞
0

tanh qh dq

q2
∣∣H′1(qa)

∣∣2(q2 + γ 2)
, (B 14)

which is equal to lim|ω|→∞[−ξ1(ω)], as required by (2.36).

Appendix C. Response to a wave maker: frequency-domain solution
Here methods of solution are given for the frequency-domain solution used in

the calculations reported in § 3. The structure SB is a vertical cylinder of radius a
extending throughout the depth, and the forcing is provided by the motion about x= 0
of a vertical wave maker. The geometry and coordinate systems are illustrated in
figure 4.

C.1. Forced motion of the cylinder
The governing equations for the radiation potential φ1 that describes the fluid response
to the forced oscillations of the cylinder while the wave maker is held fixed are

∇2φ1 = 0 in D, (C 1)
∂φ1

∂r
= cos θ on SB, (C 2)

∂φ1

∂z
= ω

2

g
φ1 on SF, (C 3)

and

∂φ1

∂n
= 0 on Sbed ∪ SW, (C 4)

together with a radiation condition specifying outgoing waves as kr → ∞ for
θ ∈ (−π/2,π/2).
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The form

φ1 =
∞∑

n=0

ψn(z)
∞∑

m=0

BmnZmn

[
Km(knr) cos mθ + (−1)m Km(knr′) cos mθ ′

]
, (C 5)

satisfies all of the governing equations except for the non-homogeneous boundary
condition (C 2) on the surface of the cylinder. This last condition is satisfied by
appropriate choice of the series coefficients Bmn, and the factor

Zmn = I′m(kna)

K′m(kna)
(C 6)

has been introduced for convenience. The vertical eigenfunctions are

ψn(z)= cos kn(z+ h)

Nn
, n= 0, 1, 2, . . . , (C 7)

where

Nn =
√

1
2

(
1+ sin 2knh

2knh

)
, (C 8)

kn is a root of

ω2 + gkn tan knh= 0, (C 9)

k0 = −ik where the real wavenumber k > 0, and the positive real numbers kn,
n = 1, 2, 3, . . . are arranged in increasing order. With these definitions, the vertical
eigenfunctions satisfy the orthogonality conditions

1
h

∫ 0

−h
ψm(z)ψn(z) dz= δmn, m, n= 0, 1, 2, . . . , (C 10)

where δmn is the Kronecker delta.
For r < 2d, Graf’s addition theorem in the form given by Linton & McIver (2001,

equation (6.20)) allows (C 5) to be rewritten as

φ1 =
∞∑

n=0

ψn(z)
∞∑

m=0

cos mθ

{
BmnZmnKm(knr)

+ 1
2
(−1)m εmIm(knr)

∞∑
l=0

BlnZln (−1)l [Kl−m(2knd)+ Kl+m(2knd)]

}
. (C 11)

With the aid of (C 10) and the orthogonality of the trigonometric functions, the
boundary condition (C 2) then yields a system for each n of the form

Bmn + 1
2
(−1)m εm

∞∑
l=0

BlnZln (−1)l [Kl−m(2knd)+ Kl+m(2knd)]= δ1m sin knh

k2
nhNnI′m(kna)

,

m= 0, 1, 2, . . . , (C 12)

and this is readily solved by truncation.
As first noted by Linton & Evans (1990), in problems of this type calculations

of the force on the cylinder are simplified by substituting (C 12) back into (C 11) to
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obtain

φ1 =
∞∑

n=0

ψn(z)

{
sin knh

k2
nhNn

I1(knr)

I′1(kna)
cos θ +

∞∑
m=0

Bmn [Km(knr)Zmn − Im(knr)] cos mθ

}
, (C 13)

so that the force coefficient

µ11(ω)+ iν11(ω)≡−ρ
∫

SB

φ1 cos θ dS

=−ρaπ
∞∑

n=0

sin knh

knNn

{
sin knh

k2
nhNn

I1(kna)

I′1(kna)
+ B1n [K1(kna)Z1n − I1(kna)]

}
. (C 14)

C.2. Forced motion of the wave maker
In the absence of the cylinder SB, so that the fluid occupies the whole of x > 0,
−h < z < 0, the fluid response to the motion of the wave maker is described by the
potential

φI =
∞∑

n=0

Ane−knxψn(z) (C 15)

where

An =− 1
knh

∫ 0

−h
ψn(z) dz (C 16)

(Linton & McIver 2001, § 2.2.1). The governing equations for the potential φS that
describes the fluid response to the forced motion of the wave maker when the cylinder
is held fixed are

∇2φS = 0 in D, (C 17)
∂φS

∂r
=−∂φI

∂r
on SB, (C 18)

∂φS

∂z
= ω

2

g
φS on SF, (C 19)

and

∂φS

∂n
= 0 on Sbed ∪ SW, (C 20)

together with a radiation condition specifying outgoing waves as kr → ∞ for
θ ∈ (−π/2,π/2). The forcing on the cylinder SB is obtained by using equation (9.6.34)
of Abramowitz & Stegun (1965) to write

e−knx = e−kndeknr cos(π−θ) = e−knd
∞∑

m=0

(−1)m εm Im(knr) cos mθ (C 21)

so that

∂φI

∂r
=−

∞∑
n=0

knAnψn(z)e−knd
∞∑

m=0

(−1)m εm I′m(kna) cos mθ on SB. (C 22)

Here εm is the Neumann symbol defined by ε0 = 1, εm = 2 for m > 1.
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The procedure for obtaining the solution for φS is similar to that used above to
obtain φ1 and it is found that

φS =−φI +
∞∑

n=0

ψn(z)
∞∑

m=0

Bmn [Km(knr)Zmn − Im(knr)] cos mθ, (C 23)

where the series coefficients for each n now satisfy

Bmn + 1
2 (−1)m εm

∞∑
l=0

BlnZln (−1)l [Kl−m(2knd)+ Kl+m(2knd)]=−Ane−knd (−1)m εm,

m= 0, 1, 2, . . . . (C 24)

The force on the cylinder due to the fluid motion generated by the wave maker is

ξ1(ω)≡−iωρ
∫

SB

(φI + φS) cos θ dS=−iωρaπ
∞∑

n=0

sin knh

knNn
B1n [K1(kna)Z1n − I1(kna)] .

(C 25)

C.3. A reciprocity relation
Reciprocity relations are well known in water waves (see, for example, Linton &
McIver 2001, § 1.4); here a relation is obtained that yields the force ξ1 on the cylinder
arising from the forced motion of the wave maker, in terms of the potential φ1 that
describes the fluid response to the forced motion of the cylinder. Green’s theorem
applied over the fluid domain to the harmonic potentials φI + φS and φ1 yields

0=
∫

SW∪SB∪S∞

[
(φI + φS)

∂φ1

∂n
− φ1

∂

∂n
(φI + φS)

]
dS

=
∫

SW

φ1U(z) dS+
∫

SB

(φI + φS)(− cos θ) dS

+
∫

S∞

[
(φI + φS)

∂φ1

∂n
− φ1

∂

∂n
(φI + φS)

]
dS, (C 26)

where S∞ is a closing vertical half-cylinder at infinity occupying θ ∈ (−π/2,π/2). The
standard radiation condition satisfied by both φS and φ1 gives∫

S∞

[
φS
∂φ1

∂n
− φ1

∂φS

∂n

]
dS= 0, (C 27)

while a routine application of the method of stationary phase yields∫
S∞

[
φI
∂φ1

∂n
− φ1

∂φI

∂n

]
dS= 0, (C 28)

so that from (C 25) and (C 26)

ξ1 =−iωρ
∫

SW

φ1 U(z) dS. (C 29)

In the calculation of ξ1 from this expression the form of φ1 in (C 5) simplifies because,
on the wave maker SW , r = r′ and θ = π − θ ′ so that, after taking account of the
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definition (C 16),

ξ1 = 4iωρdh
∞∑

n=0

knAn

∞∑
m=0

BmnZmn (−1)m Cm(knd) (C 30)

where

Cm(α)=
∫ π/2

0
Km(α sec θ ′) cos mθ ′sec2θ ′ dθ ′. (C 31)

For a non-negative integer m and real α > 0, the binomial series and Gradshteyn &
Ryzhik (1980, equation (6.596.3)) allow this integral to be rewritten as

Cm(α)= Re
∫ ∞

0
Km

(
α
√

1+ u2
) (

ei arctan u
)m

du

= Re
∫ ∞

0
Km

(
α
√

1+ u2
)( 1+ iu√

1+ u2

)m

du

= Re
m∑

k=0

(
m
k

)
ik

∫ ∞
0

Km

(
α
√

1+ u2
)

(√
1+ u2

)m uk du

= Re
m∑

k=0

(
m
k

)
ik 2(k−1)/2

α(k+1)/2
0

(
k + 1

2

)
Km−k/2−1/2(α)

=
[m/2]∑
k=0

(
m
2k

)
(−1)k 2k−1/2

αk+1/2
0
(
k + 1

2

)
Km−k−1/2(α), (C 32)

where [·] denotes the integer part. The Bessel functions Kq−1/2(α), q= 0, 1, 2, . . . , are
readily evaluated using the identities

K−1/2(α)= K1/2(α) and Kq+1/2(α)=
√
π

2α
e−α

q∑
k=0

(q+ k)!
k!(q− k)! (2α)k ,

q= 0, 1, 2, . . . (C 33)

(Gradshteyn & Ryzhik 1980, equation (8.468)). Using the above formulae, the author
has evaluated Cm(α) for many integers m and in every case found that

Cm(α)= πe−α

2α
, α 6= 0. (C 34)

However, the author has not been able to demonstrate that this holds for all m.
Symbolic and numerical calculations using Mathematica suggest that (C 34) also holds
when α is pure imaginary.
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