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SUMMARY
In future real-time systems such as those required for
intelligent autonomous vehicle control, we need flexibility
in choosing the set of services to support under varying
environmental conditions and system states. It is not
feasible to make an optimal choice of services at run-time,
so we propose a method of ranking the services pre-run-
time, based on the ‘utility’ of each service. This paper
focuses on the problem of calculating a ‘value’ for the
utility of each service alternative. We show how to derive
values systematically and rationally, using Measurement
Theory and Decision Analysis. The approach relies on
engineering judgement and data input by a domain expert.
In the context of autonomous vehicles, we believe that such
knowledge would be available, making ‘value-based sched-
uling’ a feasible approach.

KEYWORDS: Autonomous; Vehicle control; Real-time systems;
Service utility.

1. INTRODUCTION
Current real-time systems are scheduled statically, or pre-
run-time, with a fixed set of ‘hard services’ (those which
cannot afford to miss any deadlines) being mapped onto the
available resources. Pre-run-time checks are used to ensure
that all timing constraints are satisfied. In contrast, future
real-time systems such as those required for autonomous
vehicle control will need more flexibility in the run-time
phase, to accommodate dynamic information into their
operation. This type of run-time flexibility is needed to
enhance the dependability and performance of the system
while ensuring a basic level of functionality in all
circumstances.

The traditional static approach uses only well-known
attributes of the services such as deadline, minimum inter-
arrival time, and worst case execution time. To enable
dynamic scheduling, there is a notion that has been
receiving attention in the real-time systems literature, called
the utility of a service. It is the intrinsic benefit obtained by
running that particular service and can be represented by
some measure called its value. Consider that at various
decision points (at run-time), a set of services are available
for execution. At each point, the current resources may be
insufficient to satisfy all services. Hence, decisions must be
made to identify the ‘extra’ services to support when
resources are spare, or to select the services to sacrifice
when resources are scarce. Value-based scheduling is this
decision problem of choosing services to execute from a

given collection. so that the ‘best possible’ outcome
ensues.

Although the idea of using utility for achieving flexible
behaviour has been extensively promoted in the real-time
literature,1–4 very little has been said about how to derive the
values in the first place. This is surprising, as without
knowing how to generate appropriate values (describing the
perceived utility of a service under specific conditions), the
very idea of value-based scheduling is meaningless. In this
paper we investigate the questions “Where do the values
come from?” and “How are the values to be assigned?”. We
present some answers to these questions and illustrate them
through a paper example of a vehicle controller that has to
function autonomously in a changing environment, without
any intervention from a human operator.

The rest of the paper is organised as follows: Section 2
describes the architecture of the real-time system and its
services, and some typical parameters that affect their
values. Section 3 uses an example of an autonomous vehicle
controller to instantiate the model. Section 4 describes the
overheads involved in value-based scheduling, and Section
5 proposes the idea of using ‘modes’ for overcoming some
of these overheads. Section 6 outlines the mathematical
framework for computing values, based on measurement
theory and decision theory. In Section 7, we put together all
the elements of our value assignment approach and apply it
to the autonomous vehicle example. Section 8 extends the
approach for practical application, and Section 9 outlines
some directions for further work. The last section sum-
marises and concludes the paper.

2. COMPUTATIONAL MODEL
We assume a computational model in which a system is
deemed to consist of a set of services. Each service may be
realised by one or more service alternatives—typically,
only one of these is needed for any particular invocation of
the service (although more than one could be run to enhance
utility). Services are either periodic or sporadic and hence
there is a bound on the number of possible invocations
within any time interval. The entire system is considered to
run indefinitely, hence each service has an unbounded
number of invocations.

Let S be the set of services:

S = {S1, S2, . . . , Sn }

Each service is composed of one or more (say m)
alternatives:

Si = {Ai1
, Ai2

, . . . , Aim
}
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Each alternative is said to have the following attributes
defined (there may be others): Minimum inter-arrival time
(T), Deadline (D), Computation time or worst case
execution time (C) and Value (V).

It is usually the case that T is defined for each service, but
schemes in which each periodic service alternative has a
distinctive period are possible. The first three terms are
assumed to be known pre-run-time. In contrast, V may be
dependent upon a number of run-time factors. If a service
alternative completes it will result in some intrinsic benefit
to the environment of the computer system. In general, the
value of any service depends upon a number of criteria
including:

(i) The quality of data used for the value approximation
(e.g. accuracy, precision and statistical significance of
the data).

(ii) The time at which the service completes (i.e. too early,
acceptably early, optimally delivered. acceptably late,
too late).

(iii) The history of previous invocations of this service.
(iv) The condition of the environment (e.g. visibility and

temperature).
(v) The state of the computer system (what other services

are being provided, and the load on the system).
(vi) The importance of the service (an initial classification

being fundamental or essential, and non-fundamental
or optional services).

(vii) The probability of completion of the service.

We need a systematic procedure for deriving the value of
any service using the above factors. Before pursuing this
problem further, let us apply the computational model to the
example system.

3. THE INTELLIGENT AUTONOMOUS VEHICLE
CONTROLLER EXAMPLE
Future real-time systems for autonomous vehicle control
will need to exhibit intelligent and adaptive behaviour4 in
order to function in a highly dynamic and non-deterministic
environment, characterised by the unpredictable nature of
other vehicles, obstructions, route information, weather and
road conditions. Further, the consequences of system failure
due to faulty software, hardware or sensors may be
catastrophic.

To realise such complex systems, two potentially conflict-
ing objectives must be met: first. safety-critical and
mission-critical services must be guaranteed to provide
results of a minimum acceptable quality and reliability, by
their deadlines; second, the utility of the system as
determined by criteria such as the frequency, timeliness,
precision and confidence level of the results produced, must
be maximised.

The functionality of an autonomous vehicle control
system has a wide range of timing requirements. Within a
time frame of 10–100 seconds, it must plan and re-plan
routes to reach the chosen destination, optimising fuel and
time usage and take account of information about traffic
conditions. On a shorter time scale (approximately 1 sec),
scene recognition. assessment of other vehicle movements
and path planning are required to ensure that the vehicle can

steer a safe course, within comfortable ride limits. and carry
out manoeuvres such as overtaking or merging with other
traffic. Within a still shorter time frame of perhaps 100 ms,
collision prevention algorithms need to sample sensor data,
detect potential collisions with obstructions or other vehi-
cles and initiate avoidance or braking.

From examining a typical autonomous vehicle control
system we identify eight subsystems (i.e. services) and a
number of alternatives within each. These are shown in
Table I.

4. OVERHEADS IN RUN-TIME DECISIONS
Run-time decisions about which combination of services to
select are only needed because there may not be adequate
resources to run all services and their multiple alternatives
at all times. In ‘small’ platforms like autonomous vehicles,
the on-board computing resources are finite and we believe
that there will always be more processing or communica-
tions required than the resources allow. We treat this as a
fundamental assumption:

Assumption 1. Although during specification and design,
trade-offs have to be made between conflicting (or at least
not compatible) requirements, we assume that run-time
value-based scheduling is concerned only with the alloca-
tion of limited resources.

Since resources within a real-time system such as an
autonomous vehicle controller are limited, and may fail, we
have to either curtail the number and quality of services, or

Table I. Autonomous Vehicle Example Services and
Alternatives

Service Service Alternative

Collision Prevention Infra-red beam deflection
RADAR
Short Range Communication
Stereo Vision Vehicle Tracking

Braking Control Basic braking
Anti lock braking (ABS)
Load sensitive ABS

Engine Control Basic control
Increased precise computation (1)
Increased precise computation (2)

Lateral Control Magnetic markers
(input processing) Line Following

Lateral Control Proportional Integral Derivative
Frequency Shape Linear Quadratic
Fuzzy Rule-Based
Neuro Control

Path Finding Basic data fusion
Fuel optimisation
Ride comfort
Time optimisation

Route Planning Middle level planning
GPS global planning

Displays Control Basic update rates
Speed warnings
Fuel consumption analysis
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find some way of selecting the services dynamically. In job-
shop scheduling where the planning period is relatively
long, and deadlines are specified in terms of minutes, if not
hours, a dynamic allocation of resources may be probably
feasible. However, dynamically scheduling real-time sys-
tems with millisecond deadlines is complicated by the
following assumptions (which are supported by references
[2] and [3]).

Assumption 2. The run-time evaluation of an accurate and
comprehensive value parameter for all services (and
alternatives within a service) is prohibitively time consum-
ing.

Assumption 3. The computation, for an accurate assess-
ment of the total available resources (before some deadline)
is prohibitively time consuming.

Assumption 4. Choosing the optimal subset of available
services so that value is maximised and resource usage is
bounded to the known available level is prohibitively time
consuming (in general it is NP-hard).

To overcome these difficulties, we propose a framework
for static, or off-line computation of values by modelling the
criteria that determine value through pre-run-time calcula-
tions. In autonomous applications where communication
with 'ground crew' or human operators is not feasible
(because the acceptable response time may be just a few
milliseconds), it is imperative that the assignment of values
be carried out pre-run-time. The next section describes our
approach for overcoming the overheads implied by
Assumptions 2–4, to make value-based scheduling fea-
sible.

5. MODES AND STATIC VALUES
Section 2 listed many criteria that can affect the value of a
service. For the present, let us restrict the variability in a
service alternative’s value, to just three criteria:

• The condition of the environment (e.g. ‘wet’ or ‘dry’ road
conditions; ‘day’ or ‘night’ visibility)

• The condition of the underlying computing resource
(‘normal’, ‘overloaded’ etc.)

• The state of the application software (what exactly it is
doing at any instant)

The last cause embraces the history of the alternative’s
execution and the current state (accepted, rejected, guaran-
teed, or completed) of other related services or alternatives.
We now define a mode in terms of these three variables:

Mode =
def [Envmode, Compmode, Sysmode]

The potential complexity arising from a dynamic value
function can then be controlled by making the following
assumptions:

Assumption 5. Within a mode a fixed set of services and
alternatives are defined.

Assumption 6. Within a mode the value of each alternative
is constant.

The last assumption is the key step which allows pre-run-
time computation of values, and is realistic enough to be

useful in an engineering context. Increasing the number of
modes allows more specific dynamic behaviours to be
accommodated, although care must be taken to ensure that
mode explosion does not occur.

6. FRAMEWORK FOR COMPUTING VALUES
The idea of modes from Section 5 only solves the first part
of our original problem, i.e., restricting the variability of the
values. The second part of the problem is yet to be solved,
i.e., the actual derivation of the values. To compute service
values, we first need some means of mathematically
underpinning the notion of value. Binary relations, com-
monly found in set theory can be used to compare the
utilities of different services.

Let ‘More_Useful’ be such a relation:

(S1 More_Useful S2)⇒ (V(S1)>V(S2))

where V is the ‘value function’ that assigns a real number to
a service. If V is defined for only some of the Si then it is
called a partially ordered value function.

If V is defined for all Si then it is called an ordinal value
function:

(S1 More_Useful S2) ⇔ (V(S2)>V(S2))

Two basic problems must be addressed in deriving values:
first, knowing whether a value function exists that can
correctly represent the decision maker’s preferences
expressed in the binary relations, and second, knowing how
to construct such a value function in practice. These are
known in the literature5 as the representation and construc-
tion problems, respectively. There are theoretical results in
Measurement Theory6 known as representation theorems
which give sufficient and necessary conditions that must be
fulfilled by the preference relations (such as More_Useful
defined above) for specific analytical forms of value
functions to validly represent them. The construction
problem has been solved by various practical procedures7,8

that are based on the results of the representation theorems.
For ordinal measurement to take place (i.e. for the ordinal

value function to be used) the sufficiency conditions in its
representation theorem must be verified. In practice, these
can be tested by a pair-wise comparison experiment. For
each mode defined in Section 5, the domain expert decision
maker can be asked to express the preference relation
between every pair of service alternatives available for
execution in that mode. If the expressed preferences obey
the required conditions (ideally, the binary relation should
be asymmetric and negatively transitive,6 then an ordinal
value function can be constructed to represent them.

There are many mathematical techniques that implement
the above ideas and one such technique is AHP (Analytic
Hierarchy Process)9 which is also supported by a software
tool called Expert Choice. AHP allows more than just
ordinal preferences to be articulated: it uses cardinal
preference judgements as its input for constructing a value
function. The services are compared for the extent of their
relative utilities so that a cardinal value function can be
generated. In this way, a measure of the ‘distance’ between
alternatives and the ‘ratio’ of their relative utilities can be
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expressed, apart from just their ordering. In the next Section
we apply this technique to generate values for the service
alternatives in the autonomous vehicle example.

7. THE EXPERIMENT ON VALUE ASSIGNMENT
We show in this Section that the use of modes and a
technique like AHP can help us to generate values
systematically. If value is deemed to be constant within a
mode (Assumption 6) then value assignment as discussed
in this section can be an off-line activity.

7.1. Modes in the example system
An autonomous vehicle has a number of operational modes
depending upon the road and traffic conditions (Envmode), the
state of the on-board computing resources (Compmode) and
the performance of the services (Sysmode) provided by the

application. For illustrative purposes consider just two
major modes representing two extreme scenarios. The first,
Day-time, Dry and Fault-free (DDF) mode which refers to
operation on a dry surface, in good visibility and with non-
faulty hardware. The second mode Night-time, Wet and
Faulty (NWF) refers to night time driving in wet conditions
where some computing resources are malfunctioning.

In mode DDF we define two service groups: a Mandatory
and an Optional group. The complete set of services and
service alternatives for this example were given in Table I.
Of these, we designate one or more alternatives under each
service to be mandatory (and hence not subject to value-
based scheduling) and the rest to be optional. Figure 1
shows the hierarchy of optional services and the glossary of
abbreviations (compare with Table I). For the rest of this
paper we focus our attention on just the DDF mode. A more
extensive application of the value assignment approach can
be found in reference [10].

Fig. 1. Optional services in DDF mode.
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7.2. The pair-wise comparison process
Our objective is to obtain a value for each alternative that
can be used for value-based scheduling during mode DDF.
Given the set of services, the tool Expert Choice (EC)
supports pair-wise comparisons and builds up an internal
representation of preference judgements. If there are n
services then a minimum of (n21) pair-wise comparisons
must be made before an initial set of values can be
generated, and a total of n(n21)/2 comparisons would give
complete coverage. Various graphical and tabular user-
interface methods are supported by EC to enable these
pair-wise comparisons to be entered.

The comparison procedure is easy to carry out provided
there is domain knowledge and engineering data available to
provide the input required. In the context of autonomous
vehicle applications, we believe that such knowledge would
exist, based on which a domain expert could compare the
alternatives within each mode. Figure 2 shows a screen
dump of the comparison matrix with the ‘best’ alternative
for each service represented in the rows and columns. The
tool user (domain expert) fills in the diagonal entries and
thus provides the minimum set of comparisons.

7.3. The results
Following data entry, EC produces two outputs: a string of
real numbers (between 0 and 1) that represents the best fit of
values to services; and an inconsistency index (ICI). This
index gives an indication of the ‘rationality’ of the pair-wise

entries. An ICI of 0 means complete consistency, while ICI
close to 1 implies conflicting, inconsistent preferences. For
example, with three services, A, B, and C, if A is twice as
useful as B and B is twice as useful as C then A should be
stated to be four times as useful as C.

Since Figure 2 involves only a minimal set of compar-
isons the inconsistency index is zero (i.e. the judgements are
fully consistent). The output of the value assignment
process, shown in Figure 3, is a set of values for the mode
DDF. Once scaled to integers, they range from 183 for
‘SpeedWar’ (Speed Warning Display update), to 8 for
‘TImeOpti’ (Time Optimisation in Path Finding). These
values (V) and other characteristics such as deadline (D),
worst case computation time (C), and period (T) can then be
used to carry out Value-based scheduling as has already
been described in existing literature.

Eliciting pair-wise judgement from an expert in this way
does not guarantee that ‘real’ preferences have been
articulated, nor does it ensure that the ‘real’ utility of a
service is captured by the value assigned to it. AHP only
infers a set of values to numerically represent the input
preferences. It is not possible ever to derive ‘true’ values
since we do not know what they ‘should be’. However, a full
set of comparisons may arrive at values that are closer to the
‘truth’, although this may lead to higher levels of incon-
sistency. The AHP method can help the user reduce
inconsistency by suggesting changes to specific judgements
that would minimise the ICI. By trial and error iterations, a
final, fairly consistent set of values can be generated.

Fig. 2. Minimal set of pair-wise comparisons.
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8. CONFIDENCE IN JUDGEMENTS
So far we have assumed that the decision-maker has equal
confidence in all the input judgements that are entered. In
practice, a domain expert would differ in the confidence
placed in various judgements even if most of them are based
on engineering data. We need a mechanism for incorporat-
ing a measure of confidence into the judgements (preferably
in terms of probabilities) and using this in conjunction with
the notion of inconsistency to arrive at the final set of values
for the alternatives.

A pragmatic approach would be to elicit two matrices
from the decision-maker: one of judgements, and the other
of levels of confidence in the range [0, 1] for each
judgement. The following scheme could then be used
together with AHP’s measure of inconsistency to create a
‘best fit’ matrix of pair-wise preferences that is used to
generate the final set of values:

(i) Form the spanning set of judgements by selecting them
in order of decreasing confidence levels. Since these are
only a minimal set of judgements, there is no incon-
sistency yet.

(ii) Enter further judgements one-by-one in order of
decreasing levels of confidence. while simultaneously
reducing any resulting inconsistency by updating
(changing) them using the following rule:

new = initial + (proposed2 initial)*(12confidence)

Here, initial is the initial judgement entered by the
decision-maker and proposed is the value proposed by
AHP to reduce inconsistency.

In this way, the entire matrix can be filled by taking into
account both confidence and consistency. Further investiga-
tion of this approach would require data based on ‘real’
examples, so that the results could be verified from
experience of use.

9. FURTHER WORK
The authors are currently investigating the following
directions of further research to expand upon the work
reported in this paper:

• Defining modes and service alternatives for a real
autonomous vehicle system and conducting the experi-
ment on them, to evaluate the approach and to gain
application experience.

• Choosing a subset of alternatives rather than individual
ones, especially when the alternatives interact in some
way. For example, given adequate spare resources, is it
better to run services Sx and Sy or services Sx and Sz?

• Investigating time-varying value functions.
• Investigating multiple criteria value functions8,11 to take

into account more factors that contribute to value, and the
role of modes to represent some of these criteria.

10. CONCLUSIONS
We have investigated the idea of value-based scheduling,
and in particular, the problem of assignment or derivation of
values of service alternatives for run-time decision making

Fig. 3. Values derived from minimal judgements, with zero inconsistency ratio.
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in adaptive real-time systems such as those required for
intelligent antonomous vehicle control. Our approach
consisted of the following steps:

• Using Measurement Theory to develop a framework for
defining utilities and hence values of individual services.

• Distinguishing between various ‘modes’ of operation
such that each service has a constant utility within a
mode.

• Computing the value of each service per mode, prior to
run-time. using expert judgement to compare different
services through a technique such as AHP. The values thus
generated can then be used in static scheduling analysis or
for run-time decision making.

• Integrating the notions of consistency and confidence in
judgements to provide a systematic, rational value-
assignment procedure.

We have illustrated the ideas through a paper example of an
autonomous vehicle controller which executes a range of
services in a highly dynamic environment. The illustration
in this paper is only theoretical, and needs to be supple-
mented with a real test platform. The practical suitability of
the approach can only be evaluated using specific applica-
tions in an industrial context. The paper has also outlined
some directions of future research.

Although there is considerable literature in the real-time
community on flexible scheduling and adaptive systems,
this work lacks an engineering context and well defined
application domains. Autonomous vehicle control provides
such a context. Vehicle control cannot be purely static as the
environment is too non-deterministic. Efficient and robust
approaches are needed if resources are to be used effectively
and real-time requirements satisfied. This paper has
attempted to bring together real-time scheduling work and
and vehicle control. Both topics have much to gain from this
synergy.
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