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Abstract
In the integrated navigation system using extended Kalman filter (EKF), the state error conventionally uses linear
approximation to tackle the commonly nonlinear problem. However, this error definition can diverge the filter in
some adverse situations due to significant distortion of the linear approximation. By contrast, the nonlinear state
error defined in the Lie group satisfies the autonomous equation, which thus has distinctively better convergence
property. This work proposes a novel strapdown inertial navigation system (SINS) nonlinear state error defined in
the Lie group and derives the SINS equations of the Lie group EKF (LG-EKF) for the MIMU/GNSS/magnetometer
integrated navigation system. The corresponding measurement equations are also derived. A land vehicle field test
has been conducted to evaluate the performance of EKF, ST-EKF (state transformation extended Kalman filter)
and LG-EKF, which verifies LG-EKF’s superior estimation accuracy of the heading angle as well as the other two
horizontal angles (pitch and roll). The LG-EKF proposed in this paper is unlimited in the choice of sensors, which
means it can be applied with both high-end and low-end inertial sensors.

1. Introduction

The recent development of micro-electro-mechanical system (MEMS) technologies has made MEMS
inertial measurement units (IMU) available at a lower price and considerable precision, making MEMS-
IMU an ideal inertial sensor in many industrial and military navigation appliances (Jang and Liccardo,
2007; Leclerc, 2007; Ravish et al., 2013). With the global navigation satellite system (GNSS) signal
thus aided, land and aerial vehicles can achieve high-precision integrated navigation. However, due to
the low heading damping in strapdown inertial navigation system (SINS)/GNSS integrated navigation,
additional heading information is needed to improve the precision, such as magnetometer (Cui et al.,
2019) and polarised light (Liang et al., 2020). The magnetometer is more common in navigation
applications and its calibration method has been investigated extensively (Wu et al., 2018; Wu, 2019;
Xiang et al., 2019). Therefore, a well-calibrated magnetometer-aided attitude estimation system has
become a favoured supplement in low-cost applications (Wu et al., 2016; Miao et al., 2014).

Extended Kalman Filter (EKF) is the most popular estimator in SINS; it utilises the Riccati equation
to achieve adaptive gain tuning to handle the time-varying nature of the linearised error equation
(Sebesta and Boizot, 2014; Brossard et al., 2019). The conventional EKF state error is usually the
first-order linearisation of the real nonlinear system, which requires state error to be sufficiently small.
However, this strict condition relies greatly on the actual estimated states, which cannot always be
met when the navigation system states have a large deviation from real initial values, possibly causing
the covariance inconsistency problem and even diverging the Kalman filter (Hartley et al., 2020). For
instance, the paper Robert and Perrot (2017) illustrated a case where vibration of the vehicle mistakenly
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causes the estimated covariance of the unobservable error state to undergo continuous reduction. To
solve the covariance inconsistency problem, Huang et al. (2010) used the observability-constrained EKF
(OC-EKF) to optimise the linearisation points and therefore minimise the linearisation error. Schmidt
(1966) proposed the Schmidt-Kalman filter (S-KF) setting the unobservable state covariance to zero.

Nevertheless, these methodologies do not change the nature of the nonlinearity problem of state errors
due to the linear approximation. Wang et al. (2018) proposed the state transformation EKF (ST-EKF),
which used a new velocity nonlinear error state, and showed robustness and accuracy improvement in
high-precision navigation applications significantly. The invariant Kalman filter (Barrau and Bonnabel,
2017a; 2020) which utilised the theory of symmetry preserving observers demonstrated that, for the
left-invariant system on the Lie group, the nonlinear observer could be designed to make the right-
invariant (or left-invariant) error state obey the autonomous equation. This nonlinear observer has a rare
property of trajectory independence, which means that even if the navigation state undergoes nonlinear
changes, the error state evolution still follows a linear differential equation. The invariant Kalman filter
theory has been widely used and provided performance improvement in many navigation engineering
cases (Barrau and Bonnabel, 2017b; Brossard et al., 2018; Hartley et al., 2020).

The contributions and organisation of this paper are as follows. In section 2, the SINS equations with
regard to the Earth-centred inertial (ECI) frame resolving in Earth-centred Earth-fixed (ECEF) frame
are derived. And then in section 3, the proof that the proposed nonlinear state errors based on the matrix
Lie group methodology satisfy trajectory independent error propagation property is given. The common
frame definitions of SINS state errors are then presented in section 4. The detailed system equation of
LG-EKF is also derived. In section 5, the new measurement equation for SINS/GNSS/magnetometer
integration is developed. Section 6 reports a land vehicle field test that was conducted to compare the
performance of EKF, ST-EKF and LG-EKF, in which LG-EKF achieved more accurate estimation of
all the three attitude angles. The LG-EKF proposed in this paper can be applied in integrated navigation
systems no matter whether they are based on high-end or low-end inertial sensors.

2. SINS navigation differential equation in ECEF frame

The new full state SINS differential equations are derived first to obtain the SINS state error differential
equations subsequently. The coordinate frames are declared as follows.

i frame: ECI frame.
e frame: ECEF frame.
n frame: Local navigation frame. Its origin is the object described by the navigation solution. Here it

is the North-East-Down frame.
b frame: Body frame. This is commonly the IMU frame, which comprises the origin and orientation

of the object described by the navigation solution.

𝑪𝑒𝑏 represents the direction cosine matrix transforming b frame to e frame; 𝒗𝑒𝑖𝑏 is the body velocity
with regard to the i frame resolving in e frame; 𝒓𝑒𝑖𝑏 is the position vector pointing from i frame’s origin
to b frame’s origin projected in e frame. Other symbols also follow similar naming rules.

The time derivative of 𝑪𝑒𝑏 can be derived

�𝑪𝑒𝑏 = 𝑪𝑒𝑏 (𝝎𝑏𝑖𝑏∧) − (𝝎𝑒𝑖𝑒∧)𝑪𝑒𝑏 (1)

and the time derivative of 𝒗𝑖𝑖𝑏 is also expressed as

�𝒗𝑖𝑖𝑏 = 𝑪𝑖𝑏 𝒇
𝑏 + 𝒈𝑖𝑖𝑏 (2)

where 𝒇 𝑏 is the specific force; 𝒈𝑖𝑖𝑏 is the local gravitational acceleration projected in i frame.
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From Equation (2) the time derivative of 𝒗𝑒𝑖𝑏 can be derived

�𝒗𝑒𝑖𝑏 =
d
dt
(𝑪𝑒𝑖 𝒗𝑖𝑖𝑏) = −(𝝎𝑒𝑖𝑒∧)𝒗𝑒𝑖𝑏 + 𝑪𝑒𝑖 𝑪

𝑖
𝑏 𝒇

𝑏 + 𝑪𝑒𝑖 𝒈
𝑖
𝑖𝑏 = 𝑪𝑒𝑏 𝒇

𝑏 − (𝝎𝑒𝑖𝑒∧)𝒗𝑒𝑖𝑏 + 𝒈𝑒𝑖𝑏 (3)

where the differential equation �𝑪𝑖𝑒 = 𝑪𝑖𝑒 (𝝎𝑒𝑖𝑒∧) is used; 𝒈𝑒𝑖𝑏 is the local gravitational acceleration
projected in e frame.

The time derivative of the 𝒓𝑒𝑖𝑏 can be derived as

�𝒓𝑒𝑖𝑏 =
d
dt
(𝑪𝑒𝑖 𝒓𝑖𝑖𝑏) = −(𝝎𝑒𝑖𝑒∧)𝑪𝑒𝑖 𝒓𝑖𝑖𝑏 + 𝑪𝑒𝑖 �𝒓𝑖𝑖𝑏 = −(𝝎𝑒𝑖𝑒∧)𝒓𝑒𝑖𝑏 + 𝒗𝑒𝑖𝑏 (4)

Equations (1), (3) and (4) form the full state SINS navigation differential equations, which build up the
basis of the derivation of the nonlinear state error equations in section 4.

3. Proof of the invariance property of new SINS nonlinear states

This section gives the detailed proof that the navigation states defined in Equations (1), (3) and (4)
satisfy the autonomous error equation in Barrau and Bonnabel (2017a), which means that they have
invariance property. For more details of the invariance property, refer to Barrau and Bonnabel (2017a).

Define the dynamic system differential equation as

d
dt

𝝌 = 𝑓𝒖𝑡
(𝝌) (5)

where the state 𝝌 lives in the Lie group and 𝒖𝑡 represents a certain input. Define the right-invariant
error as 𝜼𝑅 = 𝝌 𝝌̃−1, where 𝝌̃ is the estimated state. According to Theorem 1 in Barrau and Bonnabel
(2017a), if 𝑓u𝑡

(𝝌) satisfies Equation (6), then 𝜼𝑅 is said to have a state trajectory independent property.

𝑓u𝑡
(𝝌𝐴𝝌𝐵) = 𝑓u𝑡

(𝝌𝐴)𝝌𝐵 + 𝝌𝐴 𝑓u𝑡
(𝝌𝐵) − 𝝌𝐴 𝑓u𝑡

(𝑰𝑑)𝝌𝐵 (6)

where the two states 𝝌𝐴 and 𝝌𝐵 live in the Lie group and 𝑰𝑑 is the identity matrix.
Moreover, if 𝜼𝑅 is state trajectory independent, the Equation (7) is satisfied as well.

d
dt
𝜼𝑅 = 𝑔𝒖𝑡

(𝜼𝑅) = 𝑓𝒖𝑡
(𝜼𝑅) − 𝜼𝑅 𝑓𝒖𝑡

(𝑰𝑑) (7)

The property of Equation (6) is proved first. The system state 𝝌 and its corresponding inverse 𝝌−1

are defined as

𝝌 =

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏 𝒗𝑒𝑖𝑏 𝒓𝑒𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ , 𝝌−1 =

⎡⎢⎢⎢⎢⎣
𝑪𝑏𝑒 −𝒗𝑏𝑖𝑏 −𝒓𝑏𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (8)

Then, the differential of 𝝌 can be derived

d
dt

𝝌 = 𝑓𝒖𝑡
(𝝌) = d

dt

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏 𝒗𝑒𝑖𝑏 𝒓𝑒𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
�𝑪𝑒𝑏 �𝒗𝑒𝑖𝑏 �𝒓𝑒𝑖𝑏

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦ = 𝝌𝑾1 +𝑾2𝝌

=

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏 𝒗𝑒𝑖𝑏 𝒓𝑒𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
(𝝎𝑏𝑖𝑏∧) 𝒇 𝑏 03×1

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎣
−(𝝎𝑒𝑖𝑒∧) 𝒈𝑒𝑖𝑏 𝒗𝑒𝑖𝑏

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏 𝒗𝑒𝑖𝑏 𝒓𝑒𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (9)
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where

𝑾1 =

⎡⎢⎢⎢⎢⎣
(𝝎𝑏𝑖𝑏∧) 𝒇 𝑏 03×1

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦ , 𝑾2 =

⎡⎢⎢⎢⎢⎣
−(𝝎𝑒𝑖𝑒∧) 𝒈𝑒𝑖𝑏 𝒗𝑒𝑖𝑏

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦ (10)

Let

𝝌𝐴 =

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏𝐴 𝒗𝑒𝑖𝑏𝐴 𝒓𝑒𝑖𝑏𝐴
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ , 𝝌𝐵 =

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏𝐵 𝒗𝑒𝑖𝑏𝐵 𝒓𝑒𝑖𝑏𝐵
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (11)

therefore

𝝌𝐴𝝌𝐵 =

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏𝐴 𝒗𝑒𝑖𝑏𝐴 𝒓𝑒𝑖𝑏𝐴
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏𝐵 𝒗𝑒𝑖𝑏𝐵 𝒓𝑒𝑖𝑏𝐵
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏𝐴𝑪

𝑒
𝑏𝐵 𝒗𝑒𝑖𝑏𝐴 + 𝑪𝑒𝑏𝐴𝒗

𝑒
𝑖𝑏𝐵 𝒓𝑒𝑖𝑏𝐴 + 𝑪𝑒𝑏𝐴𝒓

𝑒
𝑖𝑏𝐵

01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (12)

According to Equation (9), we have 𝑓𝒖𝑡
(𝑰𝑑) = 𝑾1 +𝑾2 and 𝑓𝑢𝑡 (𝝌𝐴𝝌𝐵) = 𝝌𝐴𝝌𝐵𝑾1 +𝑾2𝝌𝐴𝝌𝐵.

Therefore, the right side of Equation (6) can be written as

𝑓𝒖𝑡
(𝝌𝐴)𝝌𝐵 + 𝝌𝐴 𝑓𝒖𝑡

(𝝌𝐵) − 𝝌𝐴 𝑓𝒖𝑡
(𝑰𝑑)𝝌𝐵

= 𝝌𝐴𝑾1𝝌𝐵 +𝑾2𝝌𝐴𝝌𝐵 + 𝝌𝐴𝝌𝐵𝑾1 + 𝝌𝐴𝑾2𝝌𝐵 − 𝝌𝐴(𝑾1 +𝑾2)𝝌𝐵
= 𝝌𝐴𝝌𝐵𝑾1 +𝑾2𝝌𝐴𝝌𝐵 = 𝑓𝒖𝑡

(𝝌𝐴𝝌𝐵) (13)

Here we have proved that the navigation states defined in Equations (1), (3) and (4) satisfy the property
of Equation (6). The right-invariant error 𝜼𝑅 satisfies the property of Equation (7) is also proved next.

From Equation (8), we have

𝜼𝑅 = 𝝌 𝝌̃−1 =

⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏 𝒗𝑒𝑖𝑏 𝒓𝑒𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑪̃
𝑏
𝑒 −𝒗̃𝑏𝑖𝑏 −𝒓̃𝑏𝑖𝑏

01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏𝑪̃

𝑏
𝑒 𝒗𝑒𝑖𝑏 − 𝑪𝑒𝑏 𝒗̃

𝑏
𝑖𝑏 𝒓𝑒𝑖𝑏 − 𝑪𝑒𝑏 𝒓̃

𝑏
𝑖𝑏

01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (14)

Substitute Equation (14) into (7),

d
dt
𝜼𝑅 = 𝑔𝒖𝑡

(𝜼𝑅) = 𝑓𝒖𝑡
(𝜼𝑅) − 𝜼𝑅 𝑓𝒖𝑡

(𝑰𝑑) = 𝜼𝑅𝑾1 +𝑾2𝜼
𝑅 − 𝜼𝑅 (𝑾1 +𝑾2)

= 𝑾2𝜼
𝑅 − 𝜼𝑅𝑾2 =

⎡⎢⎢⎢⎢⎣
−(𝝎𝑒𝑖𝑒∧) 𝒈𝑒𝑖𝑏 𝒗𝑒𝑖𝑏

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦ 𝜼𝑅 − 𝜼𝑅
⎡⎢⎢⎢⎢⎣
−(𝝎𝑒𝑖𝑒∧) 𝒈𝑒𝑖𝑏 𝒗𝑒𝑖𝑏

01×3 0 0
01×3 0 0

⎤⎥⎥⎥⎥⎦
(15)

Thus, the property in Equation (7) has been verified. The proofs above have proved that the navigation
states defined in Equations (1), (3) and (4) possess the rare trajectory independent error propagation
property, which means that even if the change of the state error is nonlinear, its propagation remains
linear. In the next section, the differential equations of the SINS nonlinear state errors are derived in
detail.

4. The differential equations of the SINS nonlinear state error

The new SINS nonlinear state errors related to the attitude, velocity and position can be obtained from
the right-invariant errors in Equation (14).
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Define the new SINS state errors

𝑪𝑒𝑏𝑪̃
𝑏
𝑒 = exp(𝝓𝑒∧)

𝑱𝝆𝑒𝒗 = 𝒗𝑒𝑖𝑏 − 𝑪𝑒𝑏 𝒗̃
𝑏
𝑖𝑏 = (𝒗𝑒𝑖𝑏 − 𝒗̃𝑒𝑖𝑏) + (𝑰 − 𝑪𝑒𝑏𝑪̃

𝑏
𝑒 ) 𝒗̃𝑒𝑖𝑏 = −𝛿𝒗𝑒𝑖𝑏 + (𝑰 − exp(𝝓𝑒∧)) 𝒗̃𝑒𝑖𝑏

𝑱𝝆𝑒𝒓 = 𝒓𝑒𝑖𝑏 − 𝑪𝑒𝑏 𝒓̃
𝑏
𝑖𝑏 = (𝒓𝑒𝑖𝑏 − 𝒓̃𝑒𝑖𝑏) + (𝑰 − 𝑪𝑒𝑏𝑪̃

𝑏
𝑒 ) 𝒓̃𝑒𝑖𝑏 = −𝛿𝒓𝑒𝑖𝑏 + (𝑰 − exp(𝝓𝑒∧)) 𝒓̃𝑒𝑖𝑏

(16)

where 𝝓𝑒 is the misalignment angle vector, 𝑱𝝆𝑒𝒗 and 𝑱𝝆𝑒𝒓 denote the new nonlinear velocity error vector
and position error vector, respectively; exp(·) is the matrix exponential. Compared with the linear state
errors, which are the direct difference of the vectors in the computational coordinate frame and the real
coordinate frame, the new nonlinear state errors are defined in the common coordinate frame (Andrle
and Crassidis, 2015). More specifically, the new nonlinear state errors consider both the magnitude
difference and the direction difference of two vectors, which can lead to provable convergence properties
of the Kalman filter.

Rewrite the right-invariant error 𝜼𝑅 in Equation (14)

𝜼𝑅 =

⎡⎢⎢⎢⎢⎣
exp(𝝓𝑒∧) 𝑱𝝆𝑒𝒗 𝑱𝝆𝑒𝒓

01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (17)

In order to establish the system equation of the Kalman filter, the differential equations of 𝝓𝑒,𝑱𝝆𝑒𝒗
and 𝑱𝝆𝑒𝒓 must be derived.

Assume that the gyroscope and accelerometer measurements contain noise and can be expressed as

𝝎̃𝑏𝑖𝑏 = 𝝎𝑏𝑖𝑏 + 𝛿𝝎𝑏𝑖𝑏 = 𝝎𝑏𝑖𝑏 + 𝜺𝑏 + 𝒘𝑔

𝒇̃
𝑏
= 𝒇 𝑏 + 𝛿 𝒇 𝑏 = 𝒇 𝑏 + ∇𝑏 + 𝒘𝑎

(18)

where 𝒘𝑔 is the white noise vector of the gyroscopes and 𝒘𝑎 is the white noise vector of the accelerom-
eters; 𝜺𝑏 is the bias vector of gyroscopes and ∇𝑏 is the bias vector of accelerometers, which are constant
values with differential equations

�𝜺𝑏 = 0, �∇𝑏 = 0 (19)

The differential equation of the misalignment angle 𝝓𝑒 is derived as follows. First, the derivative of
𝑪𝑒𝑏𝑪̃

𝑏
𝑒 can be derived as

d
dt
(𝑪𝑒𝑏𝑪̃

𝑏
𝑒 ) = �𝑪𝑒𝑏𝑪̃

𝑏
𝑒 + 𝑪𝑒𝑏

�̃𝑪𝑏𝑒
= 𝑪𝑒𝑏𝑪̃

𝑏
𝑒 (𝝎𝑒𝑖𝑒∧) − (𝝎𝑒𝑖𝑒∧)𝑪𝑒𝑏𝑪̃

𝑏
𝑒 − 𝑪𝑒𝑏 ((𝜺𝑏 + 𝒘𝑔)∧)𝑪𝑏𝑒

(20)

The first-order approximation of 𝑪𝑒𝑏𝑪̃
𝑏
𝑒 is

𝑪𝑒𝑏𝑪̃
𝑏
𝑒 = exp(𝝓𝑒∧) ≈ 𝑰 + 𝝓𝑒∧ (21)

Substitute Equation (21) into (20), then the derivative of 𝝓𝑒 can be expressed as

d
dt
(𝝓𝑒) = −𝝎𝑒𝑖𝑒 ∧ 𝝓𝑒 − 𝑪𝑒𝑏𝜺

𝑏 − 𝑪𝑒𝑏𝒘𝑔 (22)
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The differential equation of the new velocity error 𝑱𝝆𝑒𝒗 is derived as

d
dt
(𝑱𝝆𝑒𝒗) =

d
dt
((𝒗𝑒𝑖𝑏 − 𝒗̃𝑒𝑖𝑏) + (𝑰 − 𝑪𝑒𝑏𝑪̃

𝑏
𝑒 ) 𝒗̃𝑒𝑖𝑏) =

d
dt
(𝒗𝑒𝑖𝑏 − 𝑪𝑒𝑏𝑪̃

𝑏
𝑒 𝒗̃
𝑒
𝑖𝑏)

=

[
(𝒈𝑒𝑖𝑏∧) +

𝜇

|𝒓𝑒𝑖𝑏 |3
(𝒓𝑒𝑖𝑏∧)

]
𝝓𝑒 − (𝝎𝑒𝑖𝑒∧)𝑱𝜌𝑒𝒗 −

𝜇

|𝒓𝑒𝑖𝑏 |3
(𝑱𝝆𝑒𝒓 )

− (𝒗̃𝑒𝑖𝑏∧)𝑪𝑒𝑏 (𝜺𝑏 + 𝒘𝑔) − 𝑪𝑒𝑏 (∇𝑏 + 𝒘𝑎) (23)

where 𝛿𝒈𝑒𝑖𝑏 ≈ − 𝜇

|𝒓𝑒𝑖𝑏 |3
𝛿𝒓𝑒𝑖𝑏 ≈ 𝜇

|𝒓𝑒𝑖𝑏 |3
(𝑱𝝆𝑒𝒓 − 𝒓𝑒𝑖𝑏 ∧ 𝝓𝑒) is used and 𝜇 is defined in Groves (2013).

The differential equation of the new position error 𝑱𝝆𝑒𝒓 is derived as

d
dt
(𝑱𝝆𝑒𝒓 ) = �𝒓𝑒𝑖𝑏 − 𝑪𝑒𝑏𝑪̃

𝑏
𝑒
�̃𝒓𝑒𝑖𝑏 −

d
dt
(𝑪𝑒𝑏𝑪̃

𝑏
𝑒 ) 𝒓̃𝑒𝑖𝑏

= 𝑱𝝆𝑒𝒗 − (𝝎𝑒𝑖𝑒∧)𝑱𝝆𝑒𝒓 − ( 𝒓̃𝑒𝑖𝑏∧)𝑪𝑒𝑏 (𝜺𝑏 + 𝒘𝑔)
(24)

According to Equations (19), (22), (23) and (24), all the state error equations of the LG-EKF can be
involved as a unified form as Equation (25)

�𝒙𝐿𝐺−𝐸𝐾𝐹 = 𝑭𝐿𝐺−𝐸𝐾𝐹𝒙𝐿𝐺−𝐸𝐾𝐹 + 𝑮𝐿𝐺−𝐸𝐾𝐹𝒘 (25)

where 𝑭𝐿𝐺−𝐸𝐾𝐹 is the system matrix, 𝒙𝐿𝐺−𝐸𝐾𝐹 is the state error vector, 𝑮𝐿𝐺−𝐸𝐾𝐹 is the noise shaping
matrix. They are detailed as below

𝒙𝐿𝐺−𝐸𝐾𝐹 =
[
(𝝓𝑒)𝑇 (𝑱𝝆𝑒𝒗)𝑇 (𝑱𝝆𝑒𝒓 )𝑇 (𝜺𝑏)𝑇 (∇𝑏)𝑇

]𝑇
(26)

𝑮𝐿𝐺−𝐸𝐾𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑪𝑒𝑏 03×3

−(𝒗𝑒𝑖𝑏∧)𝑪𝑒𝑏 −𝑪𝑒𝑏
−( 𝒓̃𝑒𝑖𝑏∧)𝑪𝑒𝑏 03×3

03×3 03×3

03×3 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(27)

𝑭𝐿𝐺−𝐸𝐾𝐹 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(𝝎𝑒𝑖𝑒∧) 03×3 03×3 −𝑪𝑒𝑏 03×3�

�
(𝒈𝑒𝑖𝑏∧)
+ 𝜇

|𝒓𝑒𝑖𝑏 |3
(𝒓𝑒𝑖𝑏∧)

���� −(𝝎𝑒𝑖𝑒∧) − 𝜇

|𝒓𝑒𝑖𝑏 |3
−(𝒗𝑒𝑖𝑏∧)𝑪𝑒𝑏 −𝑪𝑒𝑏

03×3 𝑰3×3 −(𝝎𝑒𝑖𝑒∧) −( 𝒓̃𝑒𝑖𝑏∧)𝑪𝑒𝑏 03×3
03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(28)

Compare the system matrix of LG-EKF in Equation (28) with the system matrix of EKF in Groves
(2013); the specific force term has been replaced by the gravitational acceleration term. In engineering
applications, the implementation of the conventional EKF requires high-frequency propagation of the
system matrix to adequately cover the bandwidth of specific force (Wang et al., 2018, 2019a, 2019b,
2019c). However, in the LG-EKF, high-speed processing of the system matrix has been unnecessary since
the gravitational acceleration is more robust for local navigation problems. Therefore, the propagation
and updating processes of the Kalman filter can be executed simultaneously at a relatively slower
rate, which is more computationally efficient. It should be pointed out that the complete Lie formulae
expressions have infinity terms and the process and observation models of the Kalman filter are the
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approximation of linearisation which means that the Jacobian of the Lie exponential is not merely the
wedge operation (Wu et al., 2020).

The system state error models above are capable of use in almost any SINS based integrated navigation
system. The next section develops the velocity and position observation equations, and the heading angle
measurement equations for the low-cost MIMU/GNSS/magnetometer integrated navigation system.

5. LG-EKF measurement equations for MIMU/GNSS/magnetometer integrated system

The velocity and position measurements are provided by GNSS information. The heading angle
measurement is provided by the magnetometer.

The LG-EKF measurement models are a little more complicated than that of the EKF. On the one
hand, the navigation parameters 𝒗𝑒𝑖𝑏 and 𝑟𝑒𝑖𝑏 resolved in SINS are with regard to i frame resolving in e
frame, while the GNSS measurements are generally with regard to e frame resolving in e frame. Thus,
the following state transformation equations are needed

𝒓̃𝑒𝑖𝑏 = 𝒓̃𝑒𝑒𝑏, 𝒓̃
𝑖
𝑖𝑏 = 𝒓̃𝑖𝑒𝑏, 𝛿 𝒓̃

𝑒
𝑖𝑏 = 𝛿 𝒓̃𝑒𝑒𝑏, 𝒗̃

𝑖
𝑖𝑏 = 𝒗̃𝑖𝑒𝑏 + 𝝎𝑖𝑖𝑒 × 𝒓̃𝑖𝑖𝑏 , 𝒗̃

𝑒
𝑖𝑏 = 𝒗̃𝑒𝑒𝑏 + 𝝎𝑒𝑖𝑒 × 𝒓̃𝑒𝑒𝑏

𝒗̃𝑒𝑒𝑏 = 𝒗̃𝑒𝑖𝑏 − 𝝎𝑒𝑖𝑒 × 𝒓̃𝑒𝑒𝑏, 𝛿𝒗̃
𝑒
𝑒𝑏 = 𝛿𝒗̃𝑒𝑖𝑏 − 𝝎𝑒𝑖𝑒 × 𝜹𝒓̃𝑒𝑒𝑏

(29)

where 𝛿 𝒓̃𝑒𝑖𝑏 is the position error with regard to i frame resolving in e frame and 𝛿 𝒓̃𝑒𝑒𝑏 is the position error
with regard to e frame resolving in e frame.

The measurement models are described as

𝛿z𝑣 = 𝛿𝒗𝑒𝑖𝑏 + 𝝊𝑣,3×1 = −𝑱𝝆𝑒𝒗 + [𝒗̃𝑒𝑖𝑏∧]𝝓𝑒 + 𝝊𝑣,3×1

𝛿z𝑟 = 𝛿𝒓𝑒𝑖𝑏 + 𝝊𝑟 ,3×1 = −𝑱𝝆𝑒𝑟 + [ 𝒓̃𝑒𝑖𝑏∧]𝝓𝑒 + 𝝊𝑟 ,3×1
(30)

where 𝛿z𝑣 and 𝛿z𝑟 are the velocity and position errors formed by SINS and GNSS. 𝝊𝑣,3×1 and 𝝊𝑟 ,3×1
are the corresponding measurement noises, which are generally considered as white noise with certain
covariance.

On the other hand, the heading angle 𝜓𝑛 provided by the magnetometer is usually projected in the
n frame, whereas the misalignment angle 𝝓𝑒 is defined in the e frame. Therefore, a relationship of 𝜓𝑛
with misalignment angle defined in e frame is needed.

Consider the transformation matrix 𝑪𝑒𝑛

𝑪𝑛𝑒 =
⎡⎢⎢⎢⎢⎣
− sin 𝐿 cos𝜆 − sin 𝐿 sin𝜆 cos 𝐿

− sin𝜆 cos𝜆 0
− cos 𝐿 cos𝜆 cos 𝐿 sin𝜆 − sin 𝐿

⎤⎥⎥⎥⎥⎦ (31)

where L and 𝜆 are latitude and longitude, respectively.
The skew symmetry matrix related to the misalignment angle vector estimated in e frame is expressed

in Equation (32).

𝑪𝑒𝑏𝑪̃
𝑏
𝑒 = 𝑰 + (𝝓𝑒×) =

⎡⎢⎢⎢⎢⎣
1 −𝜙𝑒𝑧 𝜙𝑒𝑦
𝜙𝑒𝑧 1 −𝜙𝑒𝑥
−𝜙𝑒𝑦 𝜙𝑒𝑥 1

⎤⎥⎥⎥⎥⎦ (32)

where 𝜙𝑒𝑥 , 𝜙
𝑒
𝑦 , 𝜙

𝑒
𝑧 are the small misalignment angles represented in e frame.

Similarly, the skew symmetry matrix related to the misalignment angle vector estimated in n frame
is expressed in Equation (33) as

𝑪𝑛𝑏𝑪̃
𝑏
𝑛 =

⎡⎢⎢⎢⎢⎣
1 −𝜙𝐷 𝜙𝐸
𝜙𝐷 1 −𝜙𝑁
−𝜙𝐸 𝜙𝑁 1

⎤⎥⎥⎥⎥⎦ (33)

where 𝜙𝑁 , 𝜙𝐸 , 𝜙𝐷 are the small misalignment angles represented in n frame.
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Then the following equation can be formed from Equations (32) and (33)

𝑪𝑒𝑏𝑪̃
𝑏
𝑒 = 𝑪𝑒𝑛𝑪

𝑛
𝑏𝑪̃

𝑏
𝑛𝑪̃

𝑛
𝑒

≈
⎡⎢⎢⎢⎢⎣
− sin 𝐿 cos𝜆 − sin𝜆 − cos 𝐿 cos𝜆
− sin 𝐿 sin𝜆 cos𝜆 cos 𝐿 sin𝜆

cos 𝐿 0 − sin 𝐿

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1 −𝜙𝐷 𝜙𝐸
𝜙𝐷 1 −𝜙𝑁
−𝜙𝐸 𝜙𝑁 1

⎤⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎣
− sin 𝐿 cos𝜆 − sin 𝐿 sin𝜆 cos 𝐿

− sin𝜆 cos𝜆 0
− cos 𝐿 cos𝜆 cos 𝐿 sin𝜆 − sin 𝐿

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
1 −𝜙𝑒𝑧 𝜙𝑒𝑦
𝜙𝑒𝑧 1 −𝜙𝑒𝑥
−𝜙𝑒𝑦 𝜙𝑒𝑥 1

⎤⎥⎥⎥⎥⎦

(34)

Ignoring the horizontal misalignment angles, Equation (34) can be written as⎡⎢⎢⎢⎢⎣
1 −𝜙𝐷 0
𝜙𝐷 1 0
0 0 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
− sin 𝐿 cos𝜆 − sin 𝐿 sin𝜆 cos 𝐿

− sin𝜆 cos𝜆 0
− cos 𝐿 cos𝜆 cos 𝐿 sin𝜆 − sin 𝐿

⎤⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎣

1 −𝜙𝑒𝑧 𝜙𝑒𝑦
𝜙𝑒𝑧 1 −𝜙𝑒𝑥
−𝜙𝑒𝑦 𝜙𝑒𝑥 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
− sin 𝐿 cos𝜆 − sin𝜆 − cos 𝐿 cos𝜆
− sin 𝐿 sin𝜆 cos𝜆 cos 𝐿 sin𝜆

cos 𝐿 0 − sin 𝐿

⎤⎥⎥⎥⎥⎦
(35)

From Equation (35), 𝜙𝐷 can be expressed as

𝜙𝐷 =
[ − sin𝜆 cos𝜆 0

] ⎡⎢⎢⎢⎢⎣
1 −𝜙𝑒𝑧 𝜙𝑒𝑦
𝜙𝑒𝑧 1 −𝜙𝑒𝑥
−𝜙𝑒𝑦 𝜙𝑒𝑥 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
− sin 𝐿 cos𝜆
− sin 𝐿 sin𝜆

cos 𝐿

⎤⎥⎥⎥⎥⎦
= (− cos𝜆 cos 𝐿)𝜙𝑒𝑥 + (− sin𝜆 cos 𝐿)𝜙𝑒𝑦 + (− sin 𝐿)𝜙𝑒𝑧

(36)

As a result, the measurement equation related to the heading angle is obtained

𝛿𝑧𝜓 = 𝜓̃𝑛 − 𝜓𝑛 = −𝜙𝐷 = 𝑯𝜓𝝓
𝑒 (37)

where

𝑯𝜓 =
[
cos𝜆 cos 𝐿 sin𝜆 cos 𝐿 sin 𝐿

]
(38)

In a unified form, the measurement error 𝛿𝒛 is expressed as

𝛿𝒛 = 𝑯𝒙𝐿𝐺−𝐸𝐾𝐹 + 𝝊 (39)

where

𝛿𝒛 =

⎡⎢⎢⎢⎢⎣
𝛿𝒛𝑣
𝛿𝒛𝑟
𝛿𝒛𝜓

⎤⎥⎥⎥⎥⎦ , 𝝊 =

⎡⎢⎢⎢⎢⎣
𝝊𝑣,3×1
𝝊𝑟 ,3×1
𝝊𝜓,1×1

⎤⎥⎥⎥⎥⎦ , 𝑯 =

⎡⎢⎢⎢⎢⎣
(𝒗̃𝑒𝑖𝑏×) −𝑰3 03×3 03×3 03×3
( 𝒓̃𝑒𝑖𝑏×) 03×3 −𝑰3 03×3 03×3
𝑯𝜓 012×1

⎤⎥⎥⎥⎥⎦ (40)

Finally, the navigation parameters should be corrected according to Equation (41)⎡⎢⎢⎢⎢⎣
𝑪𝑒𝑏 𝒗𝑒𝑖𝑏 𝒓𝑒𝑖𝑏
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

exp(𝝓𝑒∧) 𝑱𝝆𝑒𝒗 𝑱𝝆𝑒𝒓
01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑪̃
𝑒
𝑏 𝒗̃𝑒𝑖𝑏 𝒓̃𝑒𝑖𝑏

01×3 1 0
01×3 0 1

⎤⎥⎥⎥⎥⎦ (41)
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Figure 1. Sensor configurations of the land vehicle field test.

Table 1. Specifications of the STIM300-IMU.

Gyroscope Accelerometer

Frequency 200 Hz 200 Hz
Dynamic range ±400◦/s ±10 g
Bias −250◦/h ∼ +250◦/h −2.3 mg ∼ +2.3 mg
Bias instability 0.5◦/h 0.05mg
Random walk 0.15◦/

√
h 0.07m/s/

√
h

And the attitude parameters of roll, pitch and yaw in n frame can be obtained from

𝑪𝑛𝑏 = 𝑪𝑛𝑒𝑪
𝑒
𝑏 (42)

6. Land vehicle field test

The land vehicle field test was conducted to compare the performance of EKF, ST-EKF and LG-EKF
(proposed). The experiment platform consists of a GPS signal receiver, a MEMS-IMU (MIMU, Stim-
300), a magnetometer chip (HMC5983) and a fibre optic gyroscope IMU (FOG-IMU) as the main
reference system. The update interval of the GPS is 1 s, with single point positioning accuracy of
0·1 m/s and 5 m for the velocity and the position respectively. The detailed sensor configurations are
illustrated in Figure 1. The specifications of the Stim-300 MIMU and HMC5983 are shown in Table 1 and
Table 2 respectively. The trajectory of this experiment is drawn on the Ovita map (red line in Figure 2).

The total time length of the test was 1,094 s. All the sensors were well calibrated before the
experiment, thanks to the work of He et al. (2020). The magnetometer heading angle error is presented
in Figure 3, with mean 0·074° and standard deviation 2·017°. The initial attitude of the vehicle was
given by the magnetometer heading angle and accelerometer-based levelling, it being unnecessary to
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Figure 2. Trajectory of the land vehicle field test.

Table 2. Specifications of the HMC5983-magnetometer.

Magnetometer HMC5983

Frequency 10 Hz
Scale span ±8 gauss
Dynamic range ±1 gauss
Hysteresis ±25 ppm(±2.0𝑔𝑎𝑢𝑠𝑠)
Resolution 5 mgauss

undergo a static stage to execute the coarse alignment process. The reference heading result from the
FOG-IMU integrated navigation system has an accuracy of 0·05° (1𝜎). The propagation and updating
processes of the three Kalman filters – EKF, ST-EKF and LG-EKF – were performed simultaneously
at a frequency of 1 Hz. For land vehicle applications, the heading angle is the angle most concerned in
attitude estimation since roads are generally relatively flat and do not tilt too much.

The heading angle estimation performance is compared in Figure 4 (blue line, EKF without
magnetometer heading angle measurement; red line, EKF with magnetometer heading angle measure-
ment; green line, ST-EKF with magnetometer heading angle measurement; black line, LG-EKF with
magnetometer heading angle measurement).

As can be seen in Figure 4 and Table 3, although the heading angle error provided by the magnetometer
contains fluctuations and noise, the EKF’s heading angle accuracy significantly improves after adding
magnetometer heading angle measurement, with its mean from 0·7191° to 0·5617° and its root mean
square (RMS) from 0·8064° to 0·6036°, which verifies the usefulness of fusing heading measurement
with GNSS/IMU integrated navigation. The ST-EKF has a relatively remarkable reduction of error
mean by about 0·1° compared with the EKF. The LG-EKF heading error becomes and remains the
lowest among the four lines after 700 s, whose mean is 0·3606°, and RMS is 0·4104°, also the smallest.
Therefore, the LG-EKF with nonlinear state errors defined in the Lie group has presented distinctly
superior performance in terms of the heading estimation.

Table 4 and Table 5 list the mean and RMS of the roll and pitch error results with the four methods
mentioned above respectively, where it also can be seen that LG-EKF is the one with the best per-
formance. The position and velocity errors of the four methods above are almost the same with high
precision and well observable GPS measurement, so only the result of LG-EKF is shown Figure 5 and
Figure 6.
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Figure 3. Heading error result of magnetometer in the land vehicle field test.

Figure 4. Heading error results in the land vehicle field test.

Figure 5. Position errors of LG-EKF in the land vehicle field test.
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Figure 6. Velocity errors of LG-EKF in the land vehicle field test.

Table 3. Mean and RMS of the heading error results.

Mean (deg) RMS (deg)

EKF without magnetometer 0·7191 0·8064
EKF with magnetometer 0·5617 0·6036
ST-EKF with magnetometer 0·5196 0·4721
LG-EKF with magnetometer 0·3606 0·4104

Table 4. Mean and RMS of the roll error results.

Mean (deg) RMS (deg)

EKF without magnetometer 0·0095 0·0587
EKF with magnetometer 0·0145 0·0555
ST-EKF with magnetometer 0·0146 0·0552
LG-EKF with magnetometer 0·0053 0·0365

7. Conclusions

In this paper, an LG-EKF is proposed for the integrated navigation system to tackle the nonlinear
problem. The SINS navigation differential equations in the ECEF frame are first derived, and then
the novel nonlinear right-invariant state errors of SINS under the Lie group are defined, which are
proved to be trajectory independent. The system equations of SINS are developed for the proposed
nonlinear state errors. The specific force item is replaced by a gravitational related item in the new
velocity differential equation, which improves robustness and accuracy of the navigation result. The
corresponding measurement equations of velocity, position and heading angle for the proposed LG-
EKF are derived. A land vehicle equipped with a MIMU/GPS/magnetometer system is used to conduct
a field test, which validates that the GNSS/IMU integrated navigation system achieves a better attitude
estimation with the assistance of a well-calibrated magnetometer. The proposed LG-EKF also has
a better heading angle estimation accuracy compared with the traditional EKF and ST-EKF. The
proposed LG-EKF with nonlinear state errors is not limited within this specific scenario but is capable
of other navigation applications with various sensors, both high-end and low-end. To fully exploit the
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Table 5. Mean and RMS of the pitch error results.

Mean (deg) RMS (deg)

EKF without magnetometer 0·0681 0·0876
EKF with magnetometer 0·0632 0·0834
ST-EKF with magnetometer 0·0626 0·0830
LG-EKF with magnetometer 0·0113 0·0113

potentialities of the LG-EKF, there remain many meaningful works could be done. The performance
of the LG-EKF should be tested in more applications, for example, evaluating LG-EKF’s accuracy
and robustness in the integrated navigation assisted with other sensors, like odometer or atmospheric-
pressure altimeter, and exploring the possibility of usage in visual-inertial odometry applications and
so on.
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