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The surface gravity wave pattern that forms behind a steadily moving disturbance is well
known to comprise divergent waves and transverse waves, contained within a distinctive
V-shaped wake. In this paper, we are concerned with a theoretical study of the limit of
a slow-moving disturbance (small Froude numbers) in the absence of surface tension, for
which the wake is dominated by transverse waves. Three configurations are considered:
flow past a submerged source singularity, a submerged doublet and a pressure distribution
applied to the surface. We treat the linearised version of these problems and use the method
of stationary phase and exponential asymptotics to demonstrate that the apparent wake
angle is less than the classical Kelvin angle and to quantify the decrease in apparent
wake angle as the Froude number decreases. These results complement a number of
recent studies for sufficiently fast-moving disturbances (large Froude numbers) where the
apparent wake angle has been also shown to be less than the classical Kelvin angle. As well
as shedding light on the issue of apparent wake angle, we also study the fully nonlinear
problems for our three configurations under various limits to demonstrate the unique and
interesting features of Kelvin wake patterns at small Froude numbers.

Key words: surface gravity waves

1. Introduction

We are interested in studying three-dimensional steady free-surface flows that are caused
by a disturbance moving at a constant speed. This disturbance could be a pressure applied
to the fluid surface or due to a submerged body. In each case, the wave pattern that forms
behind the disturbance is made up of divergent and transverse waves in the same way as
a ship wake is. We focus here on the low-Froude-number regime which arises when the
disturbance is travelling sufficiently slowly.

In part we are motivated by renewed recent interest in Kelvin ship wakes, initiated
by Rabaud & Moisy (2013), who noted that, for sufficiently fast-moving ships (large
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enough Froude numbers), contrary to commonly held views, the wake angle that is
observed behind a steadily moving ship (which we call the apparent wake angle, θapp)
is less than the well-known Kelvin angle θwedge = arcsin(1/3) (obtained from the linear
dispersion relation). Rabaud & Moisy (2013) provided a controversial explanation for this
phenomenon by relying on an assumption that a ship hull does not create waves that are
longer than its length. This study was followed up by Darmon, Benzaquen & Raphaël
(2014), who provided a rather different explanation, namely that the apparent wake angle is
naturally provided by lining up the points of maximum wave amplitude along the divergent
waves. A theoretical analysis of the far-field wake behind a steadily moving pressure
disturbance shows that this interpretation of apparent wake angle is consistent with the
data of Rabaud & Moisy (2013) for large Froude numbers (see also Verberck (2013) and
Dias (2014) for a summary of these first two papers). On the other hand, for real ships,
there is an argument that the driving physics behind the reduced apparent wake angle is
wave interference between divergent waves generated at the bow and stern of the vessel
(He et al. 2014; Noblesse et al. 2014).

Since then there have been several subsequent papers which focus on non-axisymmetric
simplified ship models and interference effects (Benzaquen, Darmon & Raphaël 2014;
Moisy & Rabaud 2014b; Miao & Liu 2015; Zhang et al. 2015; Ma et al. 2016; Noblesse
et al. 2016; Zhu et al. 2017, 2018; Wu et al. 2019), effects of shear and finite depth
(Ellingsen 2014; Pethiyagoda, McCue & Moroney 2015; Zhu et al. 2015; Li & Ellingsen
2016; Smeltzer & Ellingsen 2017; Li 2018) as well as the effects of viscosity (Liang
& Chen 2019). While the details of these linear studies differ, a summary is that for
moderate Froude numbers the apparent wake angle is roughly the same as the Kelvin
angle, while for large Froude numbers the apparent wake angle decreases like the inverse
Froude number (for non-axisymmetric models, there is a region in which the apparent
wake angle decreases like the inverse Froude number squared (Moisy & Rabaud 2014b;
Noblesse et al. 2014; Zhang et al. 2015)).

To complement the above research, we wish to revisit some of these ideas, but
instead concentrate on the Kelvin wake pattern for small Froude numbers. This regime
is interesting because it turns out that, for sufficiently slow-moving ships, the apparent
wake angle decreases as the Froude number decreases. Thus, we have another regime in
which the apparent wake angle is less than the Kelvin angle. For sufficiently low Froude
numbers, however, we are no longer free to use the points of maximum wave amplitude to
define the apparent wake angle, since these points all lie on the centreline. The reason for
this different wave structure is that low-Froude-number flows are dominated by transverse
waves, not the divergent waves, and transverse waves decay away from the centreline. As
such, we borrow an idea from Darmon et al. (2014) and consider an arbitrary percentage
of maximum height and associate the apparent wake angle with the wedge that aligns
with this percentage. Note that analyses of far-field ship waves in the low-Froude-number
regime are rare, an exception being the technical reports by Noblesse (1986a,b,c) who used
the low-Froude-number limit to simplify an integral over the hull and perform a stationary
phase approximation.

Furthermore, as well as considering the apparent wake angle, we are also motivated to
study the effects of nonlinearity (Soomere 2007). Nonlinear free-surface flows at small
Froude numbers are difficult to study in three dimensions since the wavelength decreases
roughly like the square of the Froude number and the amplitude decreases exponentially in
the small-Froude-number limit (Keller 1979). Thus there are computational issues that are
in addition to the usual challenges of computing fully nonlinear solutions to this difficult
three-dimensional problem. From the perspective of formal asymptotics, the exponentially
small amplitudes mean that the waves appear beyond all orders of a traditional perturbation
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expansion in powers of Froude number squared (Lustri & Chapman 2013). For this reason,
there has been little analytical progress for the nonlinear version of this problem. One study
by Hermans & Brandsma (1989) used ray theory to evaluate wave profiles and resistance
for weakly nonlinear ship waves, accounting for the near-field water displacement by a
hull.

In this paper, we consider three flow configurations: flow past an applied pressure
distribution, which is often used as a simple model for flow due to a ship (see Darmon
et al. 2014; Ellingsen 2014; Moisy & Rabaud 2014a,b; Pethiyagoda et al. 2015, for
example); flow past a submerged source singularity (Forbes 1989; Lustri & Chapman
2013; Pethiyagoda et al. 2014b), which can be thought of as a building block for
three-dimensional flows (Noblesse 1978, 1981); and flow past a submerged doublet
(Havelock 1932), which acts as a toy model for flow due to an underwater vessel (Kim
1969; Scullen 1998; Pethiyagoda, McCue & Moroney 2014a; Arzhannikov & Kotelnikov
2016). In § 2 we lay out the governing equations for these flow configurations and provide
a summary of the physical interpretation in each case. We also explain the definitions of
apparent wake angle that are used in this study. Section 3 is devoted to the linear versions of
our flow configurations which have the advantage of giving rise to known exact solutions.
We apply the method of stationary phase to derive explicit formulae for the apparent wake
angle and use exponential asymptotics as a tool to propose an envelope function within
which the apparent wake exists. Our results show precisely how the wake narrows as the
Froude number decreases. In §§ 4 and 5 we treat two different small-Froude-number limits
of the fully nonlinear problems of flow past a submerged source and doublet, while in § 6
we undertake a numerical study in which we compute highly nonlinear solutions for small
Froude numbers. The wave patterns we observe in this regime appear to have interesting
features that have not been recorded previously. Finally, in § 7 we summarise our results
and discuss their significance.

2. Flow configurations and apparent wake angle

2.1. Shared governing equations
For each of the three flow configurations considered in this paper, we assume the fluid is
incompressible and inviscid and that the flow is irrotational. We choose to ignore surface
tension to specifically observe the effects of a low Froude number on gravity waves (as
opposed to gravity–capillary waves). In a real world context, our observations would apply
to large cargo ships, near-surface submarines manoeuvring slowly or slow-moving currents
past floating platforms, for example, where Froude numbers can be small while surface
tension is negligible. On the hand, our analysis may not be directly applicable for slowly
moving small-scale experimental hulls or a duck, for example, where surface tension is
important.

We denote the location of the unknown free surface by z = ζ(x, y). The velocity
potential φ(x, y, z) therefore satisfies Laplace’s equation throughout the flow field

∇2φ = 0, for z < ζ(x, y). (2.1)

In dimensional units we suppose the disturbance (submerged source, submerged
doublet or pressure) is moving with speed U and is associated with a representative
length scale L. We set g to be acceleration due to gravity. Thus, by fixing our frame
of reference to move with the disturbance, the dimensionless kinematic and dynamic
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conditions on the free surface are

φxζx + φyζy = φz, on z = ζ(x, y), (2.2)

(φ2
x + φ2

y + φ2
z )+ 2ζ

F2 + δp(x, y) = 1, on z = ζ(x, y), (2.3)

where the Froude number is defined by

F = U√
gL
. (2.4)

The term δp(x, y) is an applied pressure on the surface (in addition to atmospheric
pressure), as described below. The appropriate far-field conditions for our dimensionless
problems are

φ ∼ x, ζ → 0 as x → −∞, (2.5)

φ ∼ x, as z → −∞. (2.6)

Equation (2.5) enforces the radiation condition that surface gravity waves do not propagate
ahead of the disturbance, while (2.6) simply ensures that the flow approaches a uniform
stream in the infinitely deep limit.

2.2. Flow past a submerged point source
The first flow configuration involves a point source of dimensional strength m, submerged
a dimensional distance L from the (undisturbed) surface, moving steadily through a fluid
in a horizontal direction with dimensional speed U. The motion of the source produces a
steady ship wake pattern on the free surface. We fix our frame of reference to move with
the source, so that our governing equations are (2.1)–(2.6), except that we do not have an
additional pressure on the surface, so we set δ = 0 in (2.3). Further, we have the additional
condition

φ ∼ x − ε

4π
√

x2 + y2 + (z + 1)2
as (x, y, z) → (0, 0,−1), (2.7)

where ε = m/(UL2), which simply ensures that the velocity potential has the appropriate
singular behaviour at the source.

The linearised version of this problem (ε � 1; see § 3.1) is equivalent to flow past
a submerged semi-infinite Rankine body with a rounded nose (like a cigar) which
approaches a cylinder of radius

√
ε/π in the far field (Batchelor 1967). Nonlinearity acts

to distort the shape of the submerged body, and for highly nonlinear flows (ε � 1), the
analogy with a submerged Rankine body no longer holds (Pethiyagoda et al. 2014a). In
what follows, the numerical solutions of the fully nonlinear equations (2.1)–(2.6) (with
δ = 0) and (2.7) are computed using the boundary integral method outlined in Pethiyagoda
et al. (2014b), which is based on the algorithm outlined in Forbes (1989).

2.3. Flow past a submerged point doublet
For our second flow configuration, we replace the point source singularity in § 2.2 with
a point doublet of dimensional strength κ . Thus, the governing equations are again
(2.1)–(2.6) with δ = 0, but instead of (2.7) we have

φ ∼ x + μx
4π(x2 + y2 + (z + 1)2)3/2

, as (x, y, z) → (0, 0,−1), (2.8)

where μ = κ/(UL3) is dimensionless strength of the doublet.
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In this case, the linear version of the problem (μ � 1; see § 3.2) is equivalent to flow
past a submerged solid sphere of radius (μ/2π)1/3 (Lamb 1916). Nonlinear solutions for
moderate values of μ have a very similar interpretation, except that the spherical body is
distorted and indeed the surface is no longer closed (Pethiyagoda et al. 2014a). All of our
numerical solutions to the nonlinear problem (2.1)–(2.6), (2.8) (δ = 0) are computed using
the scheme outlined in Pethiyagoda et al. (2014a).

2.4. Flow past a pressure distribution
Our third configuration involves studying the wake that forms behind a steadily moving
pressure distribution applied to the free surface. The type of pressure we are focussing
on is localised and characterised by some pressure scale P and horizontal length
scale L. By fixing our frame of reference to move with the pressure, the steady problem
is to solve (2.1)–(2.6), where δ = P/ρU2 is the dimensionless pressure strength and ρ is
fluid density.

In our formulation, the localised pressure distribution could take any form (Miao & Liu
2015), provided it decays to zero as x2 + y2 → ∞. For the most part we use the simple
Gaussian

p(x, y) = exp(−π2(x2 + y2)), (2.9)
which has been used extensively in the past as a very simple model for generating ship
wakes (Darmon et al. 2014; Ellingsen 2014; Pethiyagoda et al. 2015; Li & Ellingsen 2016;
Pethiyagoda, McCue & Moroney 2017; Smeltzer & Ellingsen 2017; Pethiyagoda et al.
2018). In the present form, (2.1)–(2.6), (2.9) together describe a nonlinear free-surface flow
problem which depends on the Froude number F and the pressure strength δ. In §§ 4–6
we present numerical results for this problem which are calculated using the numerical
scheme outlined in Pethiyagoda et al. (2017), which is based on earlier work by Părău &
Vanden-Broeck (2002) and Părău, Vanden-Broeck & Cooker (2005).

2.5. Measuring the apparent wake angle
We consider two different methods of measuring the apparent wake angle of a ship
wake, θapp. Method I was used by Darmon et al. (2014), where a wave crest is isolated
downstream and then the wave elevation is plotted against the polar angle as measured
from the origin to the centreline (y = 0). We choose an arbitrary percentage of the
maximum height and mark the polar angle that gives this height as the apparent wake
angle θapp. For this paper we will use 5 %, 10 % and 20 % in our measurements (α = 0.05,
0.1 and 0.2). We use Method I for low Froude numbers where the wake is dominated by
transverse waves.

The second method of measuring the apparent wake angle θapp, Method II, given in
Pethiyagoda et al. (2014a), is performed by isolating each transverse wavelength of the
wake and marking the highest peak. We then fit a line to the highest peaks using a linear
least squares algorithm. The apparent wake angle θapp is then given by the angle between
the fitted line and the centreline. We use Method II for moderate values of the Froude
number, for which wakes are made up of both transverse and divergent waves.

3. Linear regime

3.1. Submerged point source (ε → 0 with F fixed)
Taking the limit as ε → 0 while fixing F has the effect of turning off the source while
keeping its speed constant. We can linearise the problem about this limit to give a modified
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system of governing equations, namely Laplace’s equation

∇2φ = 0, for z < 0, (3.1)

together with the kinematic condition

ζx = φz on z = 0, (3.2)

and the dynamic condition

φx − 1 + ζ

F2 = 0 on z = 0. (3.3)

The remaining governing equations (2.5)–(2.7) remain unchanged. Note that the kinematic
and dynamic boundary conditions have been projected onto the plane z = 0, which is a
(well-known) key feature of this linearisation.

We will use the exact solution to (3.1)–(3.3), (2.5)–(2.7), given by Peters (1949), namely

ζ(x, y) = −εF2 sgn(x)
π2

∫ π/2

0
cosψ

∫ ∞

0

k e−k|x| cos(ky sinψ)g(k, ψ)
F4k2 + cos2 ψ

dk dψ

+ εH(x)
π

∫ ∞

−∞
ξ e−F2ξ2

cos(xξ) cos( yξλ) dλ, (3.4)

where

g(k, ψ) = F2k sin(k cosψ)+ cosψ cos(k cosψ), (3.5)

ξ(λ) =
√
λ2 + 1/F2, (3.6)

and H(x) is the Heaviside function. In this form, the double integral provides the near-field
component that decays rapidly away from the origin, while the single integral provides the
wave train component. In figure 1(a–c) we show the wave pattern from the single integral
for three different Froude numbers. For F = 0.1 and 0.2, we can see the wake is completely
dominated by transverse waves, while for F = 1 we see a mix of both transverse and
divergent waves. Note that the reason we only show the wave pattern in figure 1 from
the single integral is that, for small Froude number F, the near-field contribution from
the double integral is much larger than the wave amplitude, and so when we plot the full
surface the waves are obscured by the near-field disturbance.

We perform a stationary phase approximation on the exact linear solution (3.4) which
results in the approximate wave profile given in polar coordinates (r =

√
x2 + y2, θ =

tan−1( y/x))

ζ(r, θ) ∼ a1(r, θ) cos
(

rg(λ1(θ), θ)+ π

4

)
+ a2(r, θ) cos

(
rg(λ2(θ), θ)− π

4

)
(3.7)

as r → ∞ for |θ | < arcsin(1/3), where

λ1(θ) = −1 + √
1 − 8 tan2 θ

4 tan θ
, λ2(θ) = −1 − √

1 − 8 tan2 θ

4 tan θ
, (3.8a,b)

f (λ) = ε
√
λ2 + 1
F2 exp

(
−λ

2 + 1
F2

)
, g(λ, θ) =

√
λ2 + 1
F2 (cos θ + λ sin θ), (3.9a,b)

a1(r, θ) =
√

2
π

f (λ1(θ))√
r|gλλ(λ1(θ), θ)|

, a2(r, θ) =
√

2
π

f (λ2(θ))√
r|gλλ(λ2(θ), θ)|

, (3.10a,b)
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Figure 1. (a–c) Plan view of the wave pattern for linear flow past a submerged source for Froude numbers
F = 0.1, 0.2 and 1. Only the single integral in (3.4) is used for the computation. (d–f ) Equivalent images for
flow past a submerged doublet, this time computed using the single integral term of (3.16). In (a,b) and (d,e),
the dashed line indicates the wake angle defined by 20 % of the wave height. In (c, f ), the dashed line is Kelvin’s
angle θwedge. (g) A plot of wave height against angle (θ ) for flow past a point source (solid curves) and a doublet
(dashed curves) given by (3.15) and (3.19), respectively, for the Froude numbers F = 0.2 (blue, dashed orange),
F = 0.1 (green, dashed violet) and F = 0.05 (red, dashed blue).

and gλλ(λ, θ) is the second partial derivative of g(λ, θ) with respect to λ. In simple terms,
the far-field surface takes the form

ζ(r, θ) ∼ ε

r1/2 A(θ) exp(−G(θ)/F2) as r → ∞, (3.11)

where A and G are functions of θ (Pethiyagoda et al. 2014a). The linear dependence on ε
in (3.11) arises because we are considering the linear version of the problem. The r−1/2

dependence implies that the wave pattern decays rather slowly as we move further away
from the cause of the waves. Finally, the exponential dependence on −F−2 reveals that the
waves themselves become extremely small in the small-Froude-number limit, which is the
limit we are most interested in here.

We now consider (3.7) in more detail. The factors a1 and a2 represent the
function envelopes for the transverse and divergent waves, respectively. Since λ2

1 <

λ2
2 for 0 � θ < θwedge (where remember that θwedge is Kelvin’s angle), it follows that

exp(−(λ2
2 + 1)/F2) � exp(−(λ2

1 + 1)/F2) for F � 1. In other words, for small Froude
numbers, the transverse waves exponentially dominate the divergent waves and thus, in
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practice, we will observe the highest parts of the wave pattern along the crestlines of the
transverse waves.

The location of the crestlines is given by

cos
(

rg(λ1(θ), θ)+ π

4

)
= 1, (3.12)

which leads to the relationship

r(θ) = (2n − 1/4)π
g(λ1(θ), θ)

, (3.13)

where n is some positive integer. Thus, we have a formula for the wave height along the
crest

as
crest(θ) = ε

√
2g(λ1(θ), θ)

(2n − 1/4)π2gλλ(λ1(θ), θ)
f (λ1(θ)). (3.14)

Scaling such that âs
crest(0) = 1 gives

âs
crest(θ) = (λ1(θ)

2 + 1)3/2
√

cos θ + λ1(θ) sin θ
cos θ + (2λ1(θ)3 + 3λ1(θ)) sin θ

exp(−λ1(θ)
2/F2).

(3.15)

Plotting this crest height for different Froude numbers (figure 1g), we see that as the Froude
number F decreases, the Gaussian-like wave crest narrows, which means that the apparent
wake angle decreases as F decreases. We can use (3.15) to determine the wake angle, θapp,
by setting âs

crest(θapp) = α, where α is the chosen fraction of the maximum wave height.
For example, in figure 1(a,b) we have plotted dashed lines that indicate the apparent wake
angle when α is chosen to be α = 0.2.

3.2. Submerged point doublet (μ → 0 with F fixed)
The linear governing equations for flow past a submerged doublet are given by (3.1)–(3.3),
(2.5)–(2.6) and (2.8). They are derived by fixing F in the fully nonlinear equations and
taking the limit μ → 0, which is equivalent to considering flow past a submerged sphere
of vanishing radius while keeping its depth and the far-field speed constant. The exact
solution to the linear problem is given by

ζ(x, y) = μF2

π2

∫ π/2

0
cosψ

∫ ∞

0

k2 e−k|x| cos(ky sinψ)g(k, ψ)
F4k2 + cos2 ψ

dk dψ

− μH(x)
π

∫ ∞

−∞
ξ2 e−F2ξ2

sin(xξ) cos( yξλ) dλ, (3.16)

where g(k, ψ) and ξ(λ) are given by (3.5) and (3.6), respectively. Representative wave
patterns computed using the single integral term in (3.16) are shown in figure 1(d–f ). For
the two small Froude numbers F = 0.1 and 0.2, the plan view looks very similar to that
for flow past a submerged source, with the wake appearing to be made up of transverse
waves only, and the waves themselves appearing to be a phase shift when compared to flow
past a submerged source. For the moderate Froude number F = 1, the image is more like
a traditional ship wake, with both transverse and divergent waves.
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Kelvin wake pattern at small Froude numbers

As with the flow due to a submerged source, we can write the stationary phase
approximation

ζ(r, θ) ∼ a1(r, θ) sin
(

rg(λ1(θ), θ)+ π

4

)
+ a2(r, θ) sin

(
rg(λ2(θ), θ)− π

4

)
, (3.17)

where a1(r, θ), a2(r, θ), λ1(θ), λ2(θ) and g(λ, θ) are given by (3.8a,b), (3.9b)–(3.10b), but
this time

f (λ) = μ(λ2 + 1) exp(−(λ2 + 1)/F2). (3.18)

Following the same argument, the scaled amplitude along the transverse wave crest is
given by

âd
crest(θ) = (λ1(θ)

2 + 1)2
√

cos θ + λ1(θ) sin θ
cos θ + (2λ1(θ)3 + 3λ1(θ)) sin θ

exp(−λ1(θ)
2/F2). (3.19)

We note that âd
crest(θ) =

√
(λ1(θ)2 + 1)âs

crest(θ), and λ1 → 0 as F → 0; therefore, the
shape of the transverse wave crest for flow due to a submerged doublet will approach that
due to a submerged source in the low-Froude-number limit. This property can be seen in
figure 1(g), where the curves are actually different but virtually indistinguishable on this
scale.

3.3. Applied pressure distribution (δ → 0 with F fixed)
The linear governing equations for flow past a pressure distribution are given by (3.1) and
(3.2), (2.5) and (2.6) and the linearised dynamic condition

φx − 1 + ζ

F2 + p(x, y) = 0 on z = 0, (3.20)

where the applied pressure distribution is (2.9). One form for the exact solution, adapted
from Pethiyagoda et al. (2017), is

ζ(x, y) = −δF2p(x, y)

+ δF2

2π3

∫ π/2

−π/2

∫ ∞

0

k2 exp(−k2/4π2) cos(k[|x| cosψ + y sinψ])
k − k0

dk dψ

− δF2H(x)
π2

∫ ∞

−∞
ξ2 exp(−F4ξ4/4π2) sin(xξ) cos( yξλ) dλ, (3.21)

where the path of k-integration is diverted below the pole k = 1/(F2 cos2 ψ).
As with the submerged doublet, the stationary phase approximation is given by (3.17),

where a1(r, θ), a2(r, θ), λ1(θ), λ2(θ) and g(λ, θ) are given by (3.8a,b), (3.9b)–(3.10b),

f (λ) = δF2(λ2 + 1) exp(−(λ2 + 1)2/4π2F4) (3.22)

and the scaled transverse wave crest is given by

âp
crest(θ) = (λ1(θ)

2 + 1)2
√

cos θ + λ1(θ) sin θ
cos θ + (2λ1(θ)3 + 3λ1(θ)) sin θ

× exp(−((λ1(θ)
2 + 1)2 − 1)/4π2F4). (3.23)
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22
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10–2 101

Figure 2. Plots of apparent wake angle against the Froude number. The solid curve represents Method I defined
in § 2.5 using a 20 % cutoff height. The low-Froude-number results only consider the transverse waves of the
stationary phase approximation. The apparent wake angles calculated from Method II are given by the marks
with the large-Froude-number approximation given by the dashed line. The blue, red and yellow colours denote
flow past a submerged source, submerged doublet and applied pressure distribution, respectively.

As mentioned above, we are using the applied pressure distribution (2.9) to align this
work with a number of previous studies. It is interesting to note that the choice

p(x, y) = − ∂

∂x

(
1

2π
√

x2 + y2 + 1

)
, (3.24)

provides a wave pattern that is identical to that produced by a submerged source. Similarly,

p(x, y) = − ∂2

∂x2

(
1

2π
√

x2 + y2 + 1

)
, (3.25)

provides a wave pattern that is identical to that produced by a submerged doublet (McCue,
Pethiyagoda & Moroney 2019). Further, if we apply one derivative in (3.25) using the
product rule, then one of the resulting two terms corresponds to a pressure distribution
considered by Havelock (1919). This pressure leads to a different near-field wave pattern
to that due to flow past a submerged doublet, however the far-field behaviour is the same.

3.4. Apparent wake angle for linear flows
In figure 2 we plot apparent wake angles for linearised flow past a submerged source (blue),
submerged doublet (red) or an applied pressure distribution (violet). The results using
Method I (see § 2.5), valid for low Froude numbers, are represented by the solid curves for
a 20 % cutoff height (α = 0.2). The open circles, triangles and squares are computed using
Method II. The dashed lines show the large-Froude-number approximation for Method II
found using the method of stationary phase.

We see from figure 2 that, for low Froude numbers, the apparent wake angle θapp appears
to depend linearly on the Froude number F on this log scale, which suggests a power-law
relationship. For flow past a point source we can determine the relationship by first setting
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Kelvin wake pattern at small Froude numbers

the desired amplitude âs
crest = α, taking logs of both sides and assuming θapp � 1 to give

lnα =
(

5
2

− 1
F2

)
θ2 + O(θ4). (3.26)

Rearranging (3.26) for θapp and taking F → 0, we find

θapp ∼
√

ln(1/α)F as F → 0. (3.27)

Performing the same procedure to flow past a doublet will give the same scaling (3.27),
while for flow past the pressure distribution (2.9) we find

θapp ∼ π
√

2 ln(1/α)F2 as F → 0. (3.28)

In a sense, figure 2 combines the results of Darmon et al. (2014) and Pethiyagoda et al.
(2014a) (which are for moderate to high Froude numbers) and fills in the gaps by including
our new results for smaller Froude numbers.

We note that the O(F2) scaling for flow past the pressure distribution (2.9) is different
from the O(F) scaling for flow past a submerged source/doublet, other applied pressure
distributions can also give rise to the O(F) result, or indeed another scaling entirely. To
clarify this issue, in appendix A we show how the wake angle scaling for a general pressure
distribution depends heavily on the Fourier transform of the pressure and its derivatives.

3.5. Wake envelope via exponential asymptotics
In our analysis above we have applied the method of stationary phase to determine the
far-field wake and, subsequently, the apparent wake angle θapp, for linear flow past a
submerged point source, submerged doublet and applied pressure distribution. In this
subsection we concentrate on flow past a submerged source or doublet, and apply
ideas from exponential asymptotics to derive an envelope function which encloses the
low-Froude-number wake in both the near and far field.

We suspect from our stationary phase argument that the wave amplitude for the linear
problems is of order e−χ/F2

for F � 1, where χ is a function of position. A straightforward
asymptotic expansion implies that, for small F, the surface height can be represented by

ζ(x, y) =
N−1∑
n=0

F2nζn(x, y)+ ZN(x, y), (3.29)

where ZN(x, y) is the remainder after N terms. If the summation in (3.29) is taken to
infinity, the series is divergent; however, if N is chosen carefully so that the series is
truncated optimally (at the least term) (Boyd 1999), then

ZN ∼ B(x, y) e−χ/F2
as F → 0. (3.30)

In other words, in order to capture the wave pattern whose amplitude is smaller than all
orders of the traditional asymptotic series in powers of F2, we must analyse the remainder
term after the original series is truncated optimally. A leading-order expression for ZN is
called a superasymptotic approximation (Berry 1991).

The key issue here is that the singulant function χ governs how small ZN will be. In
particular, as Re(χ) increases, then ZN decreases exponentially. Thus, we are motivated
to plot curves of constant Re(χ), with the goal of deriving an effective envelope (or
boundary) of the wake for small Froude number. For the geometry of flow past a

915 A126-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.193


R. Pethiyagoda, T.J. Moroney, C.J. Lustri and S.W. McCue

submerged point source, this problem has been studied by Lustri & Chapman (2013). We
will not repeat the details here as they are extensive, except to say that in order to derive
a partial differential equation (PDE) for χ , they write out an ansatz for the terms ζn in the
limit n → and (together with an analogous expression for the late-order terms in a series
for φ) substitute this into the governing equations to a coupled system of PDEs. These in
turn combine to give (

∂χ

∂x

)4

+
(
∂χ

∂x

)2

+
(
∂χ

∂y

)2

= 0, (3.31)

subject to the condition that χ must vanish at the singularity of the analytically continued
free surface (x, y ∈ C, z = 0), namely

χ = 0 on x2 + y2 + 1 = 0. (3.32)

Using Charpit’s method, this PDE can be solved to give

χ = ± s − x
s(2 + s2)

, (3.33)

where s is one of the four roots to the quartic

(x2 + y2)s4 + 4xs3 + (x2 + 4y2 + 4)s2 + 4xs + (4y2 + 4) = 0. (3.34)

We are interested in the curves defined by

Re(χ) = ν, (3.35)

where ν is some constant, the positive value of χ and s such that Re(xs) > 0 is chosen.
There is no need to distinguish between complex conjugates.

To relate (3.35) to the apparent wake angle θapp we consider the leading-order
asymptotic approximation of Re(χ) for r → ∞ (in polar coordinates), derived in
appendix B,

Re(χ) = f (θ)+ O(r−1), (3.36)

where

f = 3 cos θ
√

9 cos2 θ − 8 − 9 cos2 θ + 8

27 cos4 θ − 9 cos3 θ
√

9 cos2 θ − 8 − 42 cos2 θ + 10 cos θ
√

9 cos2 θ − 8 + 16
.

(3.37)

Therefore, for some constant ν, the curve Re(χ) = ν approaches a ray of angle θ measured
from the origin defined as the solution to f (θ) = ν. In figure 3 we present contour plots,
where the contours are given for every 10th percentile of the wave height within a single
wavelength, for the free-surface profiles given by the single integral term of (3.4). We also
include the curve defined by Re(χ) = ν where for figure 3(a,b) f (θapp) = ν, âcrest(θapp) =
α and α = 0.1. For figure 3(c,d) the constant ν is chosen by ensuring the curve passes
through the edge of the 10 % (α = 0.1) contour. We can see that the curve (3.35) closely
borders the 10th percentile contour. Note that we have drawn plots like those in figure 3
using different values of α (not shown here) and the agreement is just as good as that
shown in figure 3.

The image in figure 3(a), which is for a very small Froude number F = 0.1, focuses on
the near-field wave pattern. To appreciate the sense in which the curve Re(χ) = ν bends
around and approaches a constant ray in the far field, we show in figure 4 the same image
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Kelvin wake pattern at small Froude numbers

–0.6

–10 –40

–20

0

–5

0

5

10 40

20

–2

–1

0

1

2

0.2

5 10 15 20 25 20 40 60 80 100

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 2 3 4 5 6 7

–0.4

–0.2

0

0.2

0.4

0.6
F = 0.1 F = 0.2

F = 0.4 F = 0.8

y

y

x x

(b)(a)

(c) (d )

Figure 3. A contour plot of the positive heights of the free-surface profile for flow past a submerged source, in
which there is a contour for every 10th percentile of the wave height within a single wavelength. The solid
line is a line of constant Re(χ) as given in (3.33), specifically (a) Re(χ) = 1.0236, (b) Re(χ) = 1.1026,
(c) Re(χ) = 1.4170 and (d) Re(χ) = 2.3602. The dashed line is Kelvin’s angle θwedge measured from the
origin.

–2

2 4 6 8
x

y

10 12 14 16 18

0

2

Figure 4. A contour plot of the positive heights of the free-surface profile for flow past a source with F = 0.1,
The contour is at 10 % of the wave height within a single wavelength. The solid line is given by Re(χ) =
1.0236. The dashed line is Kelvin’s angle θwedge.

but drawn on a much larger scale. Taking together, both figures 3(a) and 4 demonstrate
how well the curve Re(χ) = ν acts to define the envelope of the wave pattern for small
Froude numbers.

We emphasise that the analysis in Lustri & Chapman (2013) was performed for the
problem of linearised flow past a submerged point source, using the condition (2.7).
However, the analysis used to derive the governing equation for χ (3.31) and the boundary
condition (3.32) does not depend on the behaviour or strength of the singularity at z = −1,
but only its location. Therefore, the expression for χ given in (3.33) may be applied in
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Figure 5. A contour plot of the positive heights of the free-surface profile for flow past a submerged doublet,
in which there is a contour for every 10th percentile of the wave height within a single wavelength. The solid
line is a line of constant Re(χ) as given in (3.33), specifically (a) Re(χ) = 1.0236, (b) Re(χ) = 1.1026. The
dashed line is Kelvin’s angle θwedge.

an identical fashion to derive an envelope function for the analogous problem of flow
past a submerged doublet (or even a range of other point singularities). We illustrate this
behaviour in figure 5, where lines of constant Re(χ) are overlaid on the positive heights
of the free-surface profile for flow past a submerged doublet with F = 0.1 and 0.2. We see
that these curves provide an accurate representation of the envelope of the apparent wave
region on the surface.

3.6. Interference effects at low Froude numbers
When analysing the apparent wake angle for ship wakes with large Froude numbers,
Noblesse et al. (2014) and Zhang et al. (2015) have shown that interference between
bow and stern waves have the effect of changing the large-Froude-number scaling in this
limit. Here we will briefly address the effects of interference on the apparent wake angle
in the low-Froude-number regime. In figure 6(a–c) we present surface profiles for flow
past a Rankine body constructed by a submerging a point source and point sink of equal
strengths, where the sink is downstream a horizontal distance � from the source (here
the dimensionless depth of the source and sink is unity). In this way, the bow-like waves
created by flow past the submerged source may interfere with the stern-like waves due
to flow past the submerged sink. The solutions we present in figure 6, generated from
the superposition of surface profiles given by (3.4) with F = 0.2, are shown for separation
distances (a) � = 1.89, (b) � = 1.97 and (c) � = 2.01, representing maximum constructive,
intermediate and destructive interference, respectively.

The values of � chosen for figure 6 come from noting that the wavelength of a
transverse wave is 2πF2; for destructive interference we require that �/2πF2 is an integer,
while for constructive interference the same quotient is a half-integer. The intermediate
interference profile was chosen such that the quotient, �/2πF2, has a remainder of
±1/6. Note the associated length-based Froude numbers F� = F/

√
� are (a) F� = 0.1457,

(b) F� = 0.1425 and (c) F� = 0.1410. Using colour intensity to denote wave amplitude, it
is easy to see from this figure that even though the three geometries are very similar, the
effects of wave interference on wave amplitude can be significant. Indeed, the waves in (a)
appear to have a much larger amplitude than in (c). On the other hand, the apparent wake
angle does not appear to change from panels (a–c).

To better understand this comparison, we have also presented in figure 6(d) the surface
elevation along crests marked by the red curves in figure 6(a–c). In this figure we have
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Figure 6. (a–c) Plan view of the wave pattern for linear flow past a submerged source and sink, of
equal strengths, separated a non-dimensional horizontal distance of (a) � = 1.89 (constructive interference),
(b) � = 1.97 (no net interference) and (c) � = 2.01 (destructive interference) for Froude number F = 0.2.
A superposition of the single integral in (3.4) is used for the computation. The dashed line indicates the wake
angle defined by α = 0.2 for each of the point singularities. The surface height along the red curves in (a–c)
are plotted in (d) against ray angle θ .

normalised the amplitudes so that the intermediate wave in (b) has a height of unity at
θ = 0. It can be readily seen in figure 6(d) that the maximum elevation of a wave crest
varies greatly depending on whether there is constructive or destructive interference
between the bow-lie and stern-like waves. The different maximum elevations mean
Method I will give very different apparent wake angle measurements, depending on what
type of interference is occurring. Therefore, using Method I to measure the apparent wake
angle will no longer give a monotonically decreasing wake angle when Froude number
decreases because the surface profile will cycle through constructive and destructive
interference as the Froude number changes.

While the maximum height between the three crests in figure 6(d) vary, all three crest
collapse onto the same curve as the ray angle moves away from the centreline. This
is because the downstream sink only effects the surface profile within a wedge that is
contained wholly with then a wedge that defines the influence of the submerged source.
As can be seen in figure 6(a–c), between the dashed lines is a region on the outer edge
of the wake pattern for which only the upstream source contributes to the surface profile.
Therefore, even though Method I will give different results between a Rankine body and
a single submerged source, the wake angle measurement for a source is applicable for a
Rankine body provided its length is sufficiently large.

4. Rigid lid approximations

4.1. Submerged point source (F → 0 with ε fixed)
Taking the limit of F → 0 with ε fixed is analogous to flow past a submerged Rankine
body with a rounded nose (that approaches a cylinder of radius

√
ε/π in the far field)

while reducing the speed of the base flow to zero. In order to keep the dimensionless
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parameter ε constant, the dimensional source strength m must also be decreased such that
the ratio m/U is constant, thus in this interpretation the source is being turned off as its
speed is slowed.

In the asymptotic regime F → 0 with ε fixed, we can approximate the free-surface
profile by performing a simple rigid lid approximation similar to that provided in Forbes
& Hocking (1990). To this end, we write

φ = φ0(x, y, z)+ O(F2), ζ = F2ζ1(x, y)+ O(F4), (4.1a,b)

and perturb φ about z = 0 to give

φ(x, y,F2ζ1 + O(F4)) = φ0(x, y, 0)+ F2 [φ1(x, y, 0)+ ζ1(x, y)φ0z(x, y, 0)
]+ O(F4).

(4.2)

We then substitute (4.1a,b) and (4.2) into the kinematic and dynamic conditions to derive
appropriate boundary conditions for the rigid lid approximation.

The first-order term of the kinematic condition gives us φ0z(x, y, 0) = 0. Using the
method of images with the condition (2.7), we find

φ0(x, y, z) = x − ε

4π

(
1√

x2 + y2 + (z + 1)2
+ 1√

x2 + y2 + (z − 1)2

)
. (4.3)

Taking the first-order terms of the dynamic condition and substituting (4.3) in yields

ζ1(x, y) = − ε2

8π2
x2 + y2

(x2 + y2 + 1)3
− ε

2π

x
(x2 + y2 + 1)3/2

. (4.4)

From (4.1a,b), the leading-order approximation is ζ = F2ζ1.
The rigid lid solution (4.4) is not capable of capturing any of the details of the wave

pattern behind the submerged body; however, it does approximate the near-field behaviour
extremely well, at least for small Froude numbers. To make such a comparison, we
have in figure 7 representative free-surface profiles for the example F = 0.3, ε = 0.1. In
figure 7(a), the numerical solution to the fully nonlinear problem (2.1)–(2.6) (with δ = 0)
and (2.7) is shown, while in figure 7(b) we have the rigid lid solution (4.1b) with (4.4). On
this scale, both surfaces appear to compare very well with each other.

Also included in figure 7 is the linear solution (3.4) from § 3.1. For these chosen
parameters, the linear solution is also very similar to the full numerical solution, although
the match is not as good as the rigid lid solution. The one key difference is that the linear
solution is able to capture the small transverse waves, while (as just mentioned) the rigid
lid solution is not.

Given the amplitude of the waves downstream for the disturbance is extremely small
for this example, it is difficult to extract these waves from the full numerical solution in
panel (a) of figure 7. We can, however, subtract the rigid lid solution (4.1b), (4.4) from
the numerical solution to isolate these waves, as in figure 7(d). Thus the rigid lid solution
turns out to be useful to help analyse the full numerical solution for small Froude numbers.

In order to perform a full asymptotic analysis in the limit F → 0 with ε fixed, we require
techniques in exponential asymptotics that have not yet been fully developed. We discuss
this issue in § 7.

4.2. Submerged point doublet (F → 0 with μ fixed)
By fixing μ and taking the limit F → 0, the configuration tends to a flow of decreasing
magnitude past a submerged spherical body (of radius (μ/2π)1/3). In dimensional terms,
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Kelvin wake pattern at small Froude numbers

(c)(a)

(b) (d )

Figure 7. A comparison of three different free-surface profiles for flow past a point source with F = 0.3 and
ε = 0.1. The different profiles are of; (a) the full nonlinear solution, (b) the linear solution, (c) the rigid lid
approximation and (d) the difference between the nonlinear solution and the rigid lid approximation. In order
to give a sense of the scale, the maximum surface heights in these images are (a) 6.27 × 10−4, (b) 5.50 × 10−4,
(c) 6.27 × 10−4 and (d) 1.00 × 10−4. The nonlinear solution is presented on a 721 × 241 mesh with �x =
�y = 0.05 and x0 = −18.

fixing μ while decreasing F is equivalent reducing both U and κ while keeping κ/U
constant. Thus, another interpretation of this limit is the doublet is gradually being turned
off as it is being slowed down.

The rigid lid approximation can also be applied to this flow configuration. Omitting the
details, we find

ζ(x, y) = F2
[
μ2

8π2

(
− 1
(x2 + y2 + 1)3

+ 6x2

(x2 + y2 + 1)4
− 9(x4 + x2y2)

(x2 + y2 + 1)5

)

+ μ

2π

(
− 1
(x2 + y2 + 1)3/2

+ 3x2

(x2 + y2 + 1)5/2

)]
. (4.5)

For brevity, we shall not include images of the surface (4.5); however, it turns out that the
results are analogous to figure 7 in that the rigid lid solution (4.5) provides a very good
approximation for the full nonlinear solution in the near field, but is deficient in the sense
that it does not describe the wave train downstream. Further discussion on this asymptotic
limit is deferred until § 7.

4.3. Applied pressure distribution (F → 0 with δ fixed)
Here we suppose that F → 0 with δ fixed, which has the physical interpretation of turning
the pressure off as it is being slowed down. The rigid lid approximation for this regime is
given by the straightforward expression

ζ(x, y) = −F2δp(x, y). (4.6)

Again, to save space we shall not go into any further details here, except to repeat that
the rigid lid approximation does a very good job of predicting the near-field behaviour for
small F, but does not capture the wave pattern, as the wave amplitudes are exponentially
small compared to powers of F2.
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F = 0.03F → 0

F → 0

F → 0

F = 0.07

F = 0.02 F = 0.04

F = 0.06 F = 0.12

(e)

(b)(a) (c)

(h)(g) (i)

(d ) ( f )

Figure 8. A free-surface profile for nonlinear flow past (a–c) a point source with εF = 2, (d–f ) a point doublet
with μF = 1 and (g–i) a pressure distribution with δF2 = 3. All solutions are presented on a 721 × 361 mesh
with �x = �y = 0.033 and x0 = −12.

5. Slowly moving submerged point singularity and pressure distribution

5.1. Submerged point source (F → 0 with εF fixed)
In the double limit F → 0, ε → ∞ with εF held constant, the solution approaches that
for flow due to a stationary submerged point source explored in Forbes & Hocking (1990),
Vanden-Broeck & Keller (1997) and Hocking, Forbes & Stokes (2016), governed by the
single parameter m̄ = εF = m/

√
gL5. This base flow is itself a highly non-trivial free

boundary problem, which these authors demonstrate has solutions up to some limiting
value m̄, m̄max say. There is some uncertainty about what this limiting value is, given
the challenges introduced by the nonlinearities involved. In figure 8(a), we present an
axisymmetric free-surface profile for this base case for the single value m̄ = 2. This is a
highly nonlinear solution which is close the limiting configuration for m̄ = m̄max.

To illustrate the regime with F � 1, m̄ constant, we include two nonlinear free-surface
profiles in figure 8(b,c) with m̄ = 2, this time for F = 0.03 (ε = 200/3) and F = 0.07
(ε = 200/7). These are clearly non-axisymmetric surfaces which appear to be small
perturbations of the solution in figure 8(a). They correspond to slowly moving submerged
point sources.

Note that in figure 8(a) there is a central peak in the surface elevation at the origin.
This peak is accompanied by a stagnation point which must occur on the surface directly
above the source due to symmetry. In panels (b,c), for which there is a non-zero flow
in the far field, we see that the central peak has moved slightly along the x-axis in the

915 A126-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

19
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.193


Kelvin wake pattern at small Froude numbers

negative direction. In these two cases, the height of the peaks is less than F2/2 and so
these peaks are not stagnation points.

5.2. Submerged point doublet (F → 0 with μF fixed)
If we take F → 0 and μ → ∞ with μF = μ̄ held constant, then the limiting flow is that
due to a stationary point doublet. As far as we can tell, the fully nonlinear version of this
configuration does not appear to be considered in the literature. We have not undertaken
a detailed analysis of the parameter space for this interesting problem, as it is outside the
scope of the present study. Instead, we present a representative profile in figure 8(d) for
μ̄ = 1. Then in figure 8(e, f ) we show solutions with the same value of μ̄ = 1, but with
F = 0.02 and 0.04, respectively. These profiles with F > 0 are clearly small perturbations
of the base configuration with a stationary point doublet. They correspond to a slowly
moving submerged point doublet.

5.3. Applied pressure distribution (F → 0 with δF fixed)
In the limit F → 0, δ → ∞ with δF2 = δ̄ fixed, the flow approaches that due to a
stationary pressure distribution. An example of this trivial configuration is shown in
figure 8(g), where δ̄ = 3. We can perturb this flow by moving the applied pressure
distribution very slowly, for example as in figure 8(h,i). These two rather unremarkable
solutions are also for δ̄ = 3, except this time F = 0.06 and 0.12, respectively.

6. Highly nonlinear regime

In this section we fix the Froude number F to be small and apply our numerical scheme
to increase ε, μ or δ as much as possible. This is a highly nonlinear regime which, as far
as we can tell, has not received any attention (at least for three-dimensional flows). We are
able to compute distinctive wave patterns that have highly nonlinear features not observed
in any other parameter regime.

6.1. Submerged point source (ε → εmax with F fixed)
To begin, consider the problem of flow past a submerged point source. By setting F =
0.3, ε = 0.1, we can compute a solution which is only weakly nonlinear, as shown in
figure 9(a). Now, as ε increases, the effects of nonlinearity are more prominent. A train
of waves appears behind the disturbance. If we keep increasing ε, then we can attempt
to explore the limit ε → εmax with F fixed, where εmax is defined such that the free
surface ζ(x, y) for ε = εmax has the property max(ζ ) = F2/2 (as permitted by Bernoulli’s
equation (2.3)). This would be the limiting configuration characterised by a stagnation
point where ζ(x, y) = max(ζ ). With our numerical scheme, we are not able to compute
the actual limiting configuration, but we are able to resolve solutions that are close to
the limit. For example, with F = 0.3, the largest value of ε we were able to compute a
solution was ε = 8.5. The corresponding free-surface profile is shown in figure 9(b). As
an indication of how nonlinear this solution is, the maximum slope of the surface along
the centreline is 32◦, which occurs immediately before the highest peak. It is interesting to
note this steepness is slightly higher than that for the steepest possible two-dimensional
wave (30◦) (Schwartz 1974), known as the Stokes limiting configuration (Stokes
1847).

Looking closely at figure 9(a,b), we see there is an initial peak in the free-surface profile.
This initial peak is the only prominent feature in figure 9(a), for which the strength of the
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ε = 0.1 ε = 8.5

μ = 0.1 μ = 1.58

δ = 0.1 δ = 0.55(e)

(b)(a)

(c) (d )

( f )

Figure 9. Free-surface profiles for flow past (a,b) a submerged point source, (c,d) a submerged point doublet
and (e, f ) an applied pressure distribution for Froude number F = 0.3. Both weakly nonlinear and (a,c,e) highly
nonlinear (b,d, f ) solutions shown. The maximum gradient of the surface elevation along the centreline for each
case is approximately (a) 0.02◦, (b) 32◦, (c) 0.3◦, (d) 25◦, (e) 5◦ and ( f ) 35◦. All solutions are presented on a
721 × 241 mesh with �x = �y = 0.05 and x0 = −18.

source is small. On the other hand, in figure 9(b), at the highest source strength we could
solve for, there is also the initial peak, but this is followed by many further peaks along
the wave train. It turns out that the first peak of the wave train is higher than the initial
peak in figure 9(b). If we assume the solution will reach its limiting configuration when
ζ(x, y) = max(ζ ) at one of the peaks, it is of interest to speculate which peak is the cause
of the solution breaking down as ε → εmax.

We do this in figure 10(a,b) for two values of the Froude number, where we plot the
height of the initial peak and the first peak of the wave train against the strength of the
source, ε, remembering that the higher the value of ε the more nonlinear the solution is.
We also plot the limiting height F2/2 as a horizontal dashed line, remembering that no
solutions exist with any value of ζ > max(ζ ) = F2/2. For F = 0.2, in figure 10(a) we see
the blue data points representing the initial peak are much higher than the first peak of the
wave train, and so it is almost certain that the initial peak is approaching the limiting height
as ε → εmax. In contrast, for F = 0.3 the pattern appears the same for small and moderate
values of ε, with the initial peak much higher than the first peak of the wave train, but then
for a very large value of ε the data intersect. Therefore, for F = 0.3 it appears that the first
peak of the wave train is the cause of the solution reaching the limiting configuration. As
far as we can tell, while this type of issue is explored in some detail for steady flows in two
dimensions, the more complicated analogues in three dimensions are relatively unexplored
in the literature (Pethiyagoda et al. 2014a; Buttle et al. 2018).
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Figure 10. A plot of the height of the initial peak (blue) and the first peak of the wave train (red) against the
key parameter (ε, μ or δ) for flow past (a,b) a submerged source, (c,d) a submerged doublet and (e, f ) an applied
pressure distribution. Plots in (a,c,e) are for F = 0.2 while those in (b,d, f ) are for F = 0.3. The dashed line is
the Stokes limiting height, ζ = F2/2.

6.2. Submerged point doublet (μ → μmax with F fixed)
For the problem of flow past a submerged point doublet, there are some notable differences
when compared to the previous subsection. First, we show a weakly nonlinear solution
in figure 9(c) for μ = 0.1 and a highly nonlinear solution in figure 9(d) for μ = 1.58.
While there are some relatively small waves behind the disturbance for μ = 0.1, these
waves dominate the wake for μ = 1.58. The solution presented in figure 9(d) is the most
nonlinear solution we could compute in the sense that μ = 1.58 is the largest value of the
doublet strength for which our numerical scheme would converge. These waves here are
very steep, with the maximum slope along the centreline roughly 25◦. A clear qualitative
difference between this highly nonlinear solution and the one in figure 9(b) for flow past a
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point source is that the wave pattern in figure 9(d) is characterised by very steep divergent
waves. This is surprising as the Froude number here is very low and a rule of thumb is that
ship wave profiles for small Froude number are dominated by transverse waves.

Another observation from figure 9(c,d) is that in both cases we see the initial peak of the
free-surface profile is lower than the first peak of the wave train, and in the highly nonlinear
case in figure 9(d) the difference in heights is substantial. This means that, ultimately, the
solution will reach a limiting configuration as μ → μmax when the height of the first peak
of the wave train reaches max(ζ ) = F2/2. To demonstrate how these two peaks depend
on the strength of the doublet, we show data in figure 10(c,d) for two values of the Froude
number F = 0.2 and 0.3. The qualitative difference between figures 10(c,d) and 10(a,b) is
clear.

6.3. Applied pressure distribution (δ → δmax with F fixed)
We have also studied the problem of flow past a pressure distribution by fixing the Froude
number F and increasing the strength of the pressure δ. We compare two free-surface
profiles in figure 9(e, f ). The solution in figure 9(e) is only weakly nonlinear as δ is rather
small, while the solution in figure 9( f ) is highly nonlinear with maximum slope along the
centreline of roughly 35◦. As with figure 9(d), we see in figure 9( f ) that the wave pattern
is dominated by the divergent waves, which is surprising since the Froude number is small
and we may expect the divergent waves to be much smaller than the transverse waves in this
regime. The strong nonlinearity here is obviously causing this counterintuitive behaviour.

It is interesting to also track the height of the first peak of the wave train as δ increases.
For F = 0.2 we see in figure 10(e) that this first peak appears to be increasing with δ in
a way that suggests the solution will reach a limiting configuration when this maximum
height reaches max(ζ ) as δ → δmax. On the other hand, for F = 0.3 in figure 10( f ), the
trend is not as convincing, and so it is not clear whether a further increase in δ will lead to
the solution ultimately reaching a limiting configuration.

7. Discussion

We have provided a rather detailed study of three-dimensional steady free-surface flows
past a disturbance in the regime in which the background flow is considered ‘slow’ or, in
other words, the Froude number is small. We are ignoring the effects of surface tension
which makes the analysis and the computational work much more tractable. In practical
terms, with surface tension and gravity both included, there is a lower limit on the speed
of the disturbance which is found by setting the dimensionless surface tension parameter
β = γ g/ρU4 to be β = 1/4, where here γ is the dimensional surface tension; for water,
this minimum speed is roughly 0.23 m s−1. As such, in order to observe gravity-dominated
waves with low Froude numbers, we rely on larger length scales rather than smaller speeds.
For example, for a vessel moving at U = 1 m s−1 in water, if the length scale is L = 5.2
m then the Froude number is F = 0.14, which is very small, as we have demonstrated.
As a check, in this scenario the dimensionless surface tension parameter would be β ≈
7 × 10−4 � 1/4, which certainly corresponds to a gravity-dominated regime, confirming
that in this example surface tension could be ignored.

Our study is motivated in part by the great deal of recent attention devoted to the
complementary limit of large Froude number. The three configurations we have focussed
on are flow past a submerged point source, flow past a submerged point doublet and
flow past an applied pressure distribution. In each case, the typical wave patterns share
characteristics of a ship wake or a wake created by a submerged vessel like a submarine.
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Kelvin wake pattern at small Froude numbers

Importantly, for small Froude number (slow background flow or slow-moving ship) it is
normally observed that the wake is dominated by transverse waves while for large Froude
numbers (fast background flow or fast-moving ship) the wake is dominated by divergent
waves. By examining a number of different limiting regimes we have been able to shine
light on various examples in which the wave patterns have properties that are not normally
observed.

While there are many results in this study, one key finding is that the apparent wake
angle θapp for small Froude numbers appears to decrease as the Froude number decreases.
Applying the definition of apparent wake angle used by Darmon et al. (2014), where an
arbitrary percentage of the maximum height is used to define the boundary of the wave,
we find that θapp scales like F for linearised flow past a submerged source or doublet
(see (3.27)) and like F2 for flow past an applied pressure (see (3.28)). These results
complement the large-Froude-number scaling for which the apparent wake angle θapp
(defined by tracking the highest peak of the waves as in Pethiyagoda et al. (2014a)) is
proportional to 1/F. Another striking result is how for highly nonlinear regimes with small
Froude number the wave patterns appear to be dominated by divergent waves (for the cases
of flow past a submerged doublet and applied pressure) when the usual observation is
that low-Froude-number flows are dominated by transverse waves. These highly nonlinear
steady wave patterns are rather noteworthy and are worth further study, especially as they
approach their limiting configuration with a stagnation point forming at the highest wave
peak.

As pointed out as early as Dagan (1975) (in the context of two-dimensional flows),
the perturbation schemes that give rise to linear problems are not uniform if we take the
additional limit F → 0. For the present study, the linear problems are for ε � 1, μ � 1
and δ � 1, and so the small-Froude-number limits in § 3 are strictly for ε � F � 1,
μ � F � 1 or δ � F � 1. The details of the corresponding interesting and challenging
problem in exponential asymptotics are contained in Lustri & Chapman (2013) and the
time-dependent analogue (Lustri & Chapman 2014) which, along with Lustri, Pethiyagoda
& Chapman (2019), are the only previous studies of three-dimensional ship waves that use
exponential asymptotics in the limit F → 0. In terms of future work, one obvious open
problem in exponential asymptotics is to perform the equivalent analysis for F → 0 with
ε, μ or δ fixed. We close by discussing the challenges involved in approaching such a
problem.

The full nonlinear problem in exponential asymptotics (F → 0 with ε or μ fixed) is
superficially similar to the linear regime analysis presented in § 3; however, attempting
to formulate the problem in such a way that the exponential asymptotic techniques of
Lustri & Chapman (2013) may be applied proves to be a significant challenge. In the
linear regime, the flow region is contained within the half-space z � 0, while for the
full nonlinear problem (which is a free boundary problem) this is not true. Typically,
nonlinear free boundary problems in fluid dynamics are studied analytically by applying a
mapping to the flow region which fixes the position of the surface. In two dimensions, this
is often accomplished by expressing the flow in terms of a complex potential, and applying
subsequent mappings in order to contain the flow behaviour within a convenient domain,
such as (Binder, Dias & Vanden-Broeck 2006; Chapman & Vanden-Broeck 2006; Lustri,
McCue & Binder 2012). For three-dimensional problems, such conformal mappings are
not available.

There are two techniques that are normally used in three dimensions to fix free surface
positions; boundary-fixing transformations, and potential mappings. Boundary-fixing
transformations typically involve defining a new variable η = ζ(x, y)− z, where ζ(x, y) is
the free-surface position. In this case, the surface is fixed at η = 0; however, the position
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of the singularity is now unknown. Three-dimensional extensions of complex potential
mappings, such as Clebsch potentials (Lamb 1916), offer more promise; however, these
methods introduce another free boundary into the problem, as it must be determined
whether any particular streamline of the flow originated at the submerged source, or
upstream.

Once the appropriate mapped region is determined, we expect that any subsequent
analysis will be significantly more complicated for the nonlinear case. In particular,
the governing equation for χ will no longer be independent of the source type, as in
(3.31), and hence we will need to determine this quantity for each different submerged
obstacle. The systems obtained by applying exponential asymptotics to highly nonlinear
fluid flow problems are often very difficult, or even analytically intractable, and must be
solved numerically; see, for e.g. Lustri (2013). Nonetheless, studying the resultant highly
nonlinear systems can still provide significant insight into the behaviour of water waves,
and in particular, the interactions between various wave classes, such as the different wave
types seen in Lustri & Chapman (2013).
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Appendix A. Apparent wake angle scaling for a general pressure distribution

In this section we will the low-Froude-number scaling for the apparent wake angle due
to flow past a general pressure distribution. Given a pressure distribution p(x, y) and its
associated Fourier transform p̃(k, ψ), where k is the wavenumber and ψ is the angle of
propagation, we can rewrite (3.21) and (3.23) in terms of the general pressure distribution,

ζ(x, y) = −δF2p(x, y)+ δF2

2π2

∫ π/2

−π/2

∫ ∞

0

k2p̃(k, ψ) cos(k[|x| cosψ + y sinψ])
k − k0

dk dψ

− δF2H(x)
π

∫ ∞

−∞
ξ2p̃(k(λ), ψ(λ)) sin(xξ) cos( yξλ) dλ, (A1)

âp
crest(θ) = (λ1(θ)

2 + 1)2
√

cos θ + λ1(θ) sin θ
cos θ + (2λ1(θ)3 + 3λ1(θ)) sin θ

|p̃(k(λ1(θ)), ψ(λ1(θ))|
|p̃(1/F2, 0)| ,

(A2)

where k(λ) = (λ2 + 1)/F2, ψ(λ) = tan−1 λ, ξ is given by (3.6) and λ1(θ) is given by
(3.8a). We take the logarithm of both sides of (A2) and, anticipating that the wake will
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narrow for decreasing Froude number, expand the results as a Taylor series of about θ = 0,
noting λ1 = −θ + O(θ3) as θ → 0 to find

ln(âp
crest) = − p̃ψ

p̃
θ +

(
3 + p̃k

F2p̃
+ p̃ψψ

2p̃
−

p̃2
ψ

2p̃2

)
θ2 + O(θ3), (A3)

where subscripts indicate partial differentiation and the functions p̃, p̃k, p̃ψ and p̃ψψ are
evaluated at k = 1/F2 and ψ = 0.

From this point we consider a specific pressure distribution, set âp
crest = α, θ = θapp and

attempt to take the limit as F → 0. Clearly the resulting scaling law heavily depends on
the form of the pressure in Fourier space and its derivatives. An axisymmetric pressure
distribution will have p̃ψ = 0, which will simplify the matter. For example, for the
Gaussian pressure (2.9), p̃k/p̃ evaluated at k = 1/F2, ψ = 0 is −1/(2π2F2), which gives
the F2 scaling (3.28). On the other hand, a decaying pressure p(x, y) = (1 + x2 + y2)−1

has p̃k/p̃ = K1(k)/K0(k), where K0 and K1 are modified Bessel functions of the second
kind, which means that the apparent wake angle scales exactly as in (3.27). For the
non-axisymmetric pressure distributions (3.24) and (3.25), the scaled derivatives with
respect to ψ (i.e. p̃ψ/p̃ and p̃ψψ/p̃) do not depend on the Froude number and so again
we arrive at the scaling θapp = O(F). More complicated pressure distribution may lead to
different scalings.

Appendix B. Asymptotic approximation of Re(χ)

In this section we will derive the asymptotic approximation of Re(χ) as r → ∞ by
converting (3.33) and (3.34) to polar coordinates and choosing the positive sign for (3.33)

χ = s − r cos θ
s(2 + s2)

, (B1)

where s is one of the four roots to the quartic

r2s4 + 4r cos θs3 + (r2 + 3r2 sin2 θ + 4)s2 + 4r cos θs + (4r2 sin2 θ + 4) = 0. (B2)

We use the perturbation s = s0 + s1/r + O(1/r2) in (B1) and (B2) to give

χ = − r cos θ
s0(2 + s2

0)
+ s4

0 + 2s2
0 + (2 + 3s2

0)s1 cos θ

s2
0(s

2
0 + 2)2

+ O
(

1
r

)
, (B3)

where s0 is a root of
s4

0 + (1 + 3 sin2 θ)s2
0 + 4 sin2 θ = 0, (B4)

and

s1 = − 2 cos θ(s2
0 + 1)

2s2
0 − 3 cos2 θ + 4

. (B5)

The solution of (B4) we are interested in is

s0 = i
2

√
8 − 6 cos2 θ + 2 cos θ

√
9 cos2 θ − 8, (B6)

noting that, within the Kelvin angle, cos θ >
√

8/3, s0 is purely imaginary and therefore
s1 is purely real. Thus, we have

Re(χ) = s4
0 + 2s2

0 + (2 + 3s2
0)s1 cos θ

s2
0(s

2
0 + 2)2

+ O
(

1
r

)
. (B7)
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Substituting (B5) and (B6) into (B7) and simplifying gives us our asymptotic
approximation for Re(χ) (3.36) and (3.37).
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