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SUMMARY
This paper presents an adaptive trajectory tracking controller
for a non-holonomic wheeled mobile robot (WMR) in the
presence of parametric uncertainty in the kinematic and
dynamic models of the WMR and actuator dynamics. The
adaptive non-linear control law is designed based on input–
output feedback linearization technique to get asymptotically
exact cancellation for the uncertainty in the given system
parameters. In order to evaluate the performance of the
proposed controller, a non-adaptive controller is compared
with the adaptive controller via computer simulation results.
The results show satisfactory trajectory tracking performance
by virtue of SPR-Lyapunov design approach. In order to
verify the simulation results, a set of experiments have been
carried out on a commercial mobile robot. The experimental
results also show the effectiveness of the proposed controller.

KEYWORDS: Adaptive feedback linearization; Parametric
uncertainty; Trajectory tracking; Non-holonomic WMR.

1. Introduction
Wheeled mobile robot (WMR) is one of the most attractive
research areas. The problem of motion control of WMRs
has attracted a great deal of attention over past decades for
the sake of autonomous motion capabilities.1–5 The motion
control of WMRs using kinematic and dynamic model is
frequently reported in the literature.2–14 A survey on various
motion control problems of such non-holonomic systems
can be found in the research paper of Kolmanovsky.8 Among
these attractive problems, trajectory tracking is concerned
with the design of a controller to force a WMR to track
a geometric path with an associated timing law. A variety
of control algorithms for trajectory tracking problem is
developed in the literature.14–28 Because of the challenging
non-linear model of WMRs, the feedback linearization
technique is one of the successful design tools to solve this
problem. d’Andrea-Novel et al.13 applied the linearization
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technique to achieve tracking control of mobile robots. Yun
et al.11 showed that non-holonomic systems are not input-
state linearizable. But if a proper set of output equations are
chosen, then these systems may be input–output linearizable.
There are many works3–16 that propose tracking controllers
based on feedback linearization for WMRs, but they use
exact kinematic and dynamic model of mobile robots. In
practical situations, the physical parameters are most often
not precisely known. Feedback linearization is based on
cancellation of non-linear terms. Therefore, in presence
of uncertainty in WMR parameters, this cancellation may
not be achieved perfectly and it will be a motivation
for adaptive version of feedback linearization technique.
However, WMRs are multiple-input and multiple-output
(MIMO) non-linear underactuated mechanical systems and
therefore, development of adaptive feedback linearization for
WMRs is more cumbersome. The first attempt of applying
an adaptive version of this technique to trajectory tracking
problem of WMRs is covered in this paper and there is no
similar work to this paper in the literature. Since the actuator
dynamic is ignored based on the assumption of wheel torques
as the input of the robot system in most of the previous
researches, it is more reasonable and practical to take into
account the actuator input voltages as the control inputs.
However, the commercial WMRs may be commanded by
velocities and they may not accept the actuator voltages
as the input.27–31 Das et al.30 proposed a neuron-based
adaptive controller for a non-holonomic WMR including
actuator dynamics. Their proposed control law provides
voltage signals as the input and may not be applicable for
commercially available WMRs. Martins et al.27 proposed an
adaptive controller for kinematic and dynamic models of a
differential drive WMR including actuator dynamics. Their
proposed controller provides velocities as the input for a
commercial WMR based on the presented model by De La
Cruz and Carelli.31

The main contributions of this paper are listed as follows:
(1) An adaptive tracking controller is designed based on
input–output feedback linearization technique to compensate
for a significant uncertainty in kinematic and dynamic
parameters and actuators parameters. Most of previously
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presented works15–30 design individual controllers for kin-
ematic and dynamic models. However, this paper proposes
a unified tracking controller for an integrated kinematic and
dynamic model of the WMR. (2) An experimental result
is presented to evaluate the tracking performance of the
proposed adaptive controller on a commercial WMR which
is named robuLAB 10. For the purpose of the implementation
of the controller on robuLAB 10 WMR, the presented model
in the work of Martins and De La Cruz is used.27–31

The rest of the paper is arranged as follows: Section 2
presents a kinematic and dynamic model of WMR including
actuator dynamics. Section 3 proposes an adaptive version
of input–output feedback linearization controller in absence
of knowledge about parameters. Simulation results are
presented to show the performance of the proposed controller
in Section 4. Some experiments are presented in Section 5 in
order to show the effectiveness of the proposed control law.
Finally, Section 6 concludes the paper.

2. Kinematic and Dynamic Model of a WMR
In this section, a mathematical formulation of a non-
holonomic differential drive mobile robot moving on a planar
surface is presented. Figure 1 shows the configuration of the
non-holonomic WMR. It is assumed that WMR has two
motorized wheels on an axis that independently drive the
robot.

The centre of mass of the robot is located in PC = (xC, yC).
The point P0 = (xO, yO) is the origin of the local coordinate
frame that is attached to the WMR body. The point PL =
(xL, yL) is a virtual reference point on x-axis of the local
frame at a distance L (look-ahead distance) of PO . The
other parameters of the WMR are summarized in Table I.
The pose of the robot (position and orientation) in global
coordinate frame is specified by vector XR = [xO, yO, ϕ]T .
By considering assumptions in the works of Sarkar2 and
Coelho,3 n generalized coordinates, q, are assumed to
describe the WMR model.
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Fig. 1. Non-holonomic differential drive mobile robot.

Table I. Model parameters of non-holonomic WMR.

Parameter Description

r Driving wheels radius
2b Distance between two wheels
d Distance point PC from point PO

L Distance point PO from pointPL

mC The mass of the platform without the driving wheels
and the rotors of the DC motors

mW The mass of each driving wheel plus the rotor of its
motor

IC The moment of inertia of the platform without the
driving wheels and the rotors of the motors about a
vertical axis through PC

IW The moment of inertia of each wheel and the motor
rotor about the wheel axis

Im The moment of inertia of each wheel and the motor
rotor about a wheel diameter

Suppose that WMR has m holonomic and non-holonomic
velocity constraints (m < n) in Pfaffian form:

gj (q, q̇) =
n∑

i=1

gji(q) · q̇i = 0, j = 1, . . . , m, (1)

where all of them may be written in the following form:

A(q) · q̇ = 0, (2)

where A(q) ∈ Rm×n is a full-rank matrix. Assume that
S(q) = [s1(q), . . . , sn−m(q)]T is a full-rank matrix that is
made up of a set of smooth and linearly independent vector
fields in the null space of the A(q) (see Sarkar’s paper2 for
more details). Therefore, it may be written as

A(q) · S(q) = 0. (3)

Assuming that the velocity of P0 is in the direction of x-axis
of the local frame and there is no side slip, and considering
q = [xO, yO, ϕ]T , the following constraint with respect to
PO is obtained:

ẏO cos ϕ − ẋO sin ϕ = 0. (4)

By writing Eq. (4) in matrix form (2), matrices A(q) and S(q)
that satisfy Eq. (3) are given by

A(q) = [− sin ϕ cos ϕ 0], S(q) =

⎡
⎢⎣

cos ϕ 0

sin ϕ 0

0 1

⎤
⎥⎦ . (5)

According to Eqs. (2) and (3), it is possible to write the
kinematic equation of WMR motion in terms of pseudo-
velocities vector v(t) ∈ Rn−m as

q̇ = S(q) · v(t), (6)

where v(t) = [vr (t), ωr (t)]T is made up of linear and
angular velocities. The WMR dynamic model is derived
by Lagrangian mechanics. First, the Lagrangian L of the
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system must be calculated. Because of the planar motion,
the potential energy of the robot is zero. Therefore, the
Lagrangian is only equal to kinetic energy:

L = 1

2

ni∑
i=1

[
vT

i mivi + ωT
i Iiωi

]
. (7)

Then, one may use Euler–Lagrange equation incorporating
velocity constraints in the following form:

d

dt

{
∂L

∂q̇i

}
− ∂L

∂qi

= FG, (8)

where FG denotes the generalized forces. After calculating
Eq. (8), the dynamic model of WMR may be written as
follows:

M(q)q̈ + C(q, q̇)q̇ = B(q).τ − A(q)T λ. (9)

where M(q) ∈ Rn×n is the inertia matrix; C(q, q̇) ∈ Rn×n

is a matrix which denotes the Coriolis and centripetal
forces; B(q) ∈ Rn×(n−m) is the input transformation matrix;
τ ∈ R(n−m)×1 is the torque vector which is generated by
wheels actuators; and λ ∈ Rm×1 is the vector of constraint
forces. These matrices are expressed as follows:

M(q) =

⎡
⎢⎣

m 0 mCd sin ϕ

0 m −mCd cos ϕ

mCd sin ϕ −mCd cos ϕ I

⎤
⎥⎦,

C(q, q̇) =

⎡
⎢⎣

0 0 mCdϕ̇ cos ϕ

0 0 mCdϕ̇ sin ϕ

0 0 0

⎤
⎥⎦ ,

B(q) = 1

r

⎡
⎢⎣

cos ϕ cos ϕ

sin ϕ sin ϕ

b −b

⎤
⎥⎦ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(10)

where m = mC + 2mw and I = IC + 2Im + mCd2 +
2mwb2, and parameters mC, mw, IC and Im are defined
in Table I. This model may also be derived by applying
the change of state variables: [xO, yO] = [xC + d cos ϕ,

yC + d sin ϕ] and ignoring Iw in the presented model in the
work of Sarkar.2 To include actuator dynamic in Eq. (9), it is
assumed that the robot wheels are driven by two brush DC
motors with mechanical gears. Figure 2 shows the simplified
drive system.

The electrical equation of the motor armature is written as
follows:

ua = La

dia

dt
+ Raia + Kbθ̇M, (11)

where Kb is the back electromotive force (EMF) constant. By
ignoring the inductance of armature circuit, and considering
the relation between torque and armature current (i.e. τM =
Kτ .ia) and relations between torque and velocity before and

Fig. 2. Drive system for each wheel.

after gears (i.e. τ = n.τM and θ̇M = n · θ̇), the delivered
torque to the right and left wheels by actuators is given by30

[
τr

τl

]
= K1

[
uar

ual

]
− K2

[
θ̇r

θ̇l

]
, (12)

where K1 = (nKτ/Ra), K2 = n · KbK1, n is gear ratio and
Kτ is torque constant of the motor. Considering the relation
between angular velocities of wheels and pseudo-velocities,
we have

[
τr

τl

]
= K1

[
uar

ual

]
− K2X

[
vr

ωr

]
, X =

⎡
⎢⎢⎣

1

r

b

r

1

r
−b

r

⎤
⎥⎥⎦ ,

(13)

M(q)q̈ + C(q, q̇)q̇ = B(q) · (K1 · ua − K2Xv) − A(q)T λ.

(14)

For controller design purposes, the state space representation
can be derived by taking time derivative of the kinematic
model (6):

q̈ = Ṡ(q) · v + S(q) · v̇. (15)

Next, by replacing Eqs. (6) and (15) in Eq. (14) and
multiplying the result by ST and considering Eq. (3), we
obtain

M̄v̇(t) + C̄(q̇) · v(t) = K1B̄ · ua, (16)

where

M̄ = ST MS, C̄(q̇) = ST MṠ + ST CS + K2B̄X,

B̄ = ST B.

}
(17)

The kinematic model (6) and dynamic equation shown by
Eq. (16) can be integrated into the following state space
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representation in companion form:

ẋ =
[

Sv

−M̄−1C̄v

]
+

[
0

K1M̄
−1 · B̄

]
ua, (18)

where x = [qT , vT ]T is the state vector. This representation
allows us to apply the differential geometric control theory
for trajectory tracking problem.

Remark 1. In the derived dynamic model, the un-powered
castor wheel is ignored to reduce the complexity of the model.
However, it is more reasonable to take the free wheel dynamic
into account to avoid the poor performance of the proposed
controller in experimental results.

3. Adaptive Feedback Linearization Control
A trajectory tracking control law can be designed based on
adaptive feedback linearization technique for non-holonomic
system given in Eq. (18). In order to design the adaptive
controller, the WMR system must be exactly linearly
parameterized. Therefore, the matrices M̄, C̄ and B̄ in
Eq. (17) are expressed as

M̄ =
[
m 0

0 I

]
, C̄ =

⎡
⎢⎣

2K2

r2
mCdϕ̇

−mCdϕ̇
2b2K2

r2

⎤
⎥⎦ ,

B̄ =

⎡
⎢⎢⎣

1

r

1

r

b

r
−b

r

⎤
⎥⎥⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(19)

After substituting these matrices in Eq. (18) and
simplification of the resulting equation, we obtain

ẋ =

⎡
⎢⎢⎢⎢⎢⎣

vr cos ϕ

vr sin ϕ

ωr

0

0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

−θ1 vr − θ2 ω2
r

θ3 ωr vr − θ4 ωr

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

θ5 θ5

θ6 −θ6

⎤
⎥⎥⎥⎥⎥⎦ u,

(20)

where the parameters θi, i = 1, . . . , 6 are bounded and are
defined as follows:

θ1 = 2K2

mr2
, θ2 = mCd

m
, θ3 = mCd

I
,

θ4 = 2b2K2

Ir2
, θ5 = K1

mr
, θ6 = K1b

Ir
.

⎫⎪⎪⎬
⎪⎪⎭ (21)

The presented system in Eq. (20) might be summarized as
the following affine MIMO non-linear model:

ẋ = f (x) + q(x, θ) + g(x, θ)ua (22)

where x ∈ Rn and f (x), q(x, θ) and g(x, θ) are smooth
vector fields on Rn with g(0, θ) �= 0:

f (x) =
[

Sv

0

]
, q(x, θ) =

[
0

Q(x, θ)

]
,

g(x, θ) = K1

[
0

G(θ)

]
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(23)

Q(x, θ) =
[ −θ1 vr − θ2 ω2

r

θ3 ωr vr − θ4 ωr

]
, G(θ) =

[
θ5 θ5

θ6 −θ6

]
.

(24)

The following output variables are chosen to track a desired
trajectory based on look-ahead control method:2

y = h(x) = [h1(q), h2(q)]T = [xO + L cos ϕ,

yO + L sin ϕ]T . (25)

Remark 2. Based on the study of non-holonomic WMR
dynamics shown in Eq. (18), the following results might be
summarized:

(1) The system is controllable and its equilibrium point xe =
0 can be made Lyapunov stable, but can not be made
asymptotically stable by a smooth state feedback.24

(2) The internal dynamics of a WMR is stable, when the
mobile robot moves forwards, but unstable when it moves
backwards.25

(3) If at least one constraint is non-holonomic, it has been
shown that the WMR system is not input-state linearizable.
But if we choose a proper set of output equations, it may
be input–output linearizable.2–12

Definition 1. Given a smooth bounded reference trajectory
yr (t) = h(qr (t)) with bounded derivatives which is generated
by a reference mobile robot, and supposing that qr satisfies
the non-holonomic constraints A(qr ) · q̇r = 0, then the
trajectory tracking problem is to design a feedback control
such that it satisfies:

lim
t→∞(y(t) − yr (t)) = 0. (26)

The basic approach to obtain a linear input–output relation
is to repeatedly differentiate the outputs so that they are
explicitly related to inputs.9 After differentiating Eq. (25),
we obtain:

ẏj = Lf hj + Lqhj + Lghjua = Jhj
Sv, j = 1, 2, (27)

ÿj = L2
f hj + Lf Lqhj + LqLf hj + L2

qhj

+ (LgLf hj + LgLqhj ).ua. (28)

As a result,

ÿ = L2
f h(x) + LqLf h(x) + LgLf h(x).ua, (29)
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where

L2
f h(x) =

⎡
⎢⎢⎣

∂

∂q
(Jh1(q) · S(q)v) · S(q)v

∂

∂q
(Jh2(q) · S(q)v) · S(q)v

⎤
⎥⎥⎦ , (30)

LqLf h(x) = Jh(q)S(q)Q(x, θ),

LgLf h(x) = Jh(q)S(q)G(θ),

}
(31)

where Jh(q) = [Jh1(q), Jh1(q)]T denotes Jacobian matrix
and LgLf h(x) = D(x) is a decoupling matrix. Assuming
that det(D(x)) �= 0, the system (29) is input–output
linearizable. The following non-linear feedback

ua = D−1(x) · (η − L2
f h(x) − LqLf h(x)) (32)

linearizes and decouples the system in the following form:[
ÿ1

ÿ2

]
=

[
η1

η2

]
, (33)

where ηj , j = 1, 2 represents the external inputs. The
parameters mass (m), moment of inertia (I), wheel radius (r),
distance between two wheels (2b) and actuator parameters
are supposed to have uncertainties. The following theorem is

presented to solve the trajectory tracking problem in presence
of parametric uncertainty. But before proposing the tracking
controller, the following assumptions are made:

Assumption 1. Measurements of all states, i.e. x =
[qT , vT ]T , are available in real time.

Assumption 2. Pseudo-velocities, i.e. v(t) = [vr (t), ωr (t)]T ,
are bounded for all time t > 0.

Theorem 1. Provided that the reference trajectory yr (t)
is selected to be bounded for all times t > 0, and under
assumptions 1 and 2, the following adaptive tracking
controller guarantees that all signals in the closed-loop
system are bounded and the tracking error e(t) = y(t) − yr (t)
converge to zero as t → ∞.

ua = D̂−1(x) · (
η − L2

f h − LqL̂f h
)
,

η = ÿr + β1(ẏr − ẏ) + β2(yr − y),

θ̂ = 
WT E1,

⎫⎪⎬
⎪⎭ (34)

where W is the regression matrix, E1 is a vector of error
signals and 
 is a symmetric and positive definite matrix
as the adaptive gain. β1 and β2 are diagonal matrices which

denote derivative and proportional gains of the linear control
law, respectively.

Proof. According to certainty equivalence principle, we
need to replace D(x) and LqLf h(x) by their estimates in
decoupling control law (32):

ua = D̂−1(x) · (
η − L2

f h − LqL̂f h
)
, (35)

where

D̂(x) = LĝLf h(x), LqL̂f h = Lq̂Lf h. (36)

By substituting Eq. (35) in Eq. (29), we have

ÿ = L2
f h(x) + LqLf h(x) + D(x) · D̂−1(x)

· (η − L2
f h − LqL̂f h

)
. (37)

After some manipulation, Eq. (37) may easily be written in
the following form

ÿ = η + LqL̃f h(x) + D̃(x)D̂−1(x) · (
η − L2

f h − LqL̂f h
)
.

(38)
where

LqL̃f h(x) = LqLf h(x) −LqL̂f h, D̃(x) = D(x) − D̂(x).

(39)

Considering Eqs. (23) and (31), the terms D̃(x)D̂−1(x) and
LqL̃f h(x) are easily computed as

D̃(x)D̂−1(x) =
[
θ̃5θ̂

−1
5 cos2 ϕ + θ̃6θ̂

−1
6 sin2 ϕ

(
θ̃5θ̂

−1
5 − θ̃6θ̂

−1
6

)
cos ϕ sin ϕ(

θ̃5θ̂
−1
5 − θ̃6θ̂

−1
6

)
cos ϕ sin ϕ θ̃5θ̂

−1
5 sin2 ϕ + θ̃6θ̂

−1
6 cos2 ϕ

]
, (40)

LqL̃f h(x) =
[−θ̃1 vr cos ϕ − θ̃2ω

2
r cos ϕ − θ̃3ωr vrL sin ϕ + θ̃4ωr L sin ϕ

−θ̃1 vr sin ϕ − θ̃2ω
2
r sin ϕ + θ̃3ωr vrL cos ϕ − θ̃3ωrL cos ϕ

]
. (41)

By replacing Eqs. (40) and (41) into Eqs. (38), the parametric
model may be readily derived:

ÿ = η + W.θ̃, (42)

where θ̃ = [θ̃1, θ̃2, θ̃3, θ̃4, θ̃5, θ̃6]T and the matrix W ∈
R(n−m)×6 is defined as

W =
[

w11 w12 w13 w14 w15 w16

w21 w22 w23 w24 w25 w26

]
,

w11 = −vr cos ϕ,

w12 = −ω2
r cos ϕ,

w13 = −ωr vrL sin ϕ,

w14 = ωr L sin ϕ

w15 = θ̂−1
5 (�1 cos2 ϕ + �2 sin ϕ · cos ϕ),

w16 = θ̂−1
6 (�1 sin2 ϕ − �2 sin ϕ · cos ϕ),

w21 = −vr sin ϕ,

w22 = −ω2
r sin ϕ,

w23 = ωr vrL cos ϕ,

w24 = −ωr L cos ϕ,

w25 = θ̂−1
5 (�1 sin ϕ · cos ϕ + �2 sin2 ϕ),

w26 = θ̂−1
6 (−�1 sin ϕ · cos ϕ + �2 cos2 ϕ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(43)
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In Eqs. (43), �1 and �2 are defined as

�1 = η1 − ∂

∂q
(Jh1.Sv).Sv − w11θ̂1 − w12θ̂2

− w13θ̂3 − w14θ̂4,

�2 = η2 − ∂

∂q
(Jh2.Sv).Sv − w21θ̂1 − w22θ̂2

− w23θ̂3 − w24θ̂4.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(44)

Now, the adaptive law may be derived by SPR-Lyapunov
design approach which is motivated from the textbooks on
adaptive control of Sastry,22 Ioannou23 and the work of
Craig.26 Assume that the external control input ηj in Eq. (42)
is chosen so that jth output, yj (t), tracks the desired output,
yjr (t):

ηj = ÿjr + β1j (ẏjr − ẏj ) + β2j (yjr − yj ), j = 1, 2.

(45)
This yields the following error equation,

ëj + β1j ėj + β2j ej = Wj θ̃, (46)

where Wj = [wj1, wj2, wj3, wj4, wj5, wj6], j = 1, 2.

Remark 3. The determinant of decoupling matrix in control
law in Eq. (34) is det(D̂(x)) = −L θ̂5 θ̂6. Hence, prior bounds
on the parameters θ5 and θ6 are sufficient to guarantee non-
singularity of the decoupling matrix. As implied in the work
of Sastry,9 several techniques exist in the literature for this
purpose (e.g. see the textbooks on adaptive control22–23).
This remark and Assumption 2 also guarantee that Wj ∈ L∞.

For purposes of adaptation, one may use the following filtered
error signal for jth output:

εj = ėj + αjej . (47)

Note that since ėj = ẏj − ẏjr is known as a function of
measured states by considering Eq. (27), therefore εj is
available. The parameter αj is chosen such that the following
transfer function is strictly positive real (SPR):

Tj (s) = s + αj

s2 + β1j s + β2j

. (48)

This means that Tj (s) is analytic in the closed right half plane
and Re(Tj (jω)) > 0. Then, by positive real lemma,23 there
exist the positive definite matrices Pj and Qj such that

AT
j Pj + PjAj = −Qj,

PjBj = CT
j ,

}
(49)

where matrices Aj, Bj and Cj are defined by minimal state
space realization of Eqs. (46) and (47) in the following form:

Ẋj = AjXj + BjWj θ̃,

εj = CjXj ,

}
(50)

where Xj = [ej , ėj ]T is the state variable and

Aj =
[

0 1

−β2j −β1j

]
, Bj =

[
0

1

]
, Cj = [

αj 1
]
.

(51)
As a result, the entire system error equations may be written
as

Ẋ = AX + BWθ̃,

E1 = CX,

}
(52)

where A, B and Care block diagonal matrices:

A = diag(A1, A2), B = diag(B1, B2),

C = diag(C1, C2),

}
(53)

and X = [XT
1 , XT

2 ]T . The Lyapunov equation (49) is also
written for entire system as follows:

AT P + PA = −Q,

PB = CT ,

}
(54)

where,

P = diag(P1, P2), Q = diag(Q1, Q2). (55)

Now, one may define the following Lyapunov function to
derive adaptive law.

V (X, θ̃ ) = XT PX + θ̃ T 
−1θ̃ . (56)

By taking time derivative of the proposed function and
applying Eqs. (52) and (54), we may easily write

V̇ (X, θ̃ ) = −XT QX + 2θ̃ T (WT E1 + 
−1 ˙̃θ ). (57)

One may choose

˙̃θ = −
WT E1 (58)

to be assured that the derivative of Lyapunov function is
negative definite. Since θ is a constant parameter, then ˙̃θ =
− ˙̂θ and the adaptive law in Eq. (34) is readily obtained.

As a result, we have

V̇ (X, θ̃ ) = −XT QX ≤ −λmin(Q) ‖X‖2 . (59)

This means that X ∈ L2 and thanks to the Lyapunov
theory, we have X, θ̃ ∈ L∞. Therefore, E1 = CX ∈ L2 and
E1 ∈ L∞. By considering adaptive law, we have | ˙̂θ | ≤
‖
‖ .|WT |.|E1| which together with E1 ∈ L2 and W ∈ L∞
implies that ˙̂θ ∈ L2. Since X, θ̃ ∈ L∞, then it follows that
Ẋ = AX + BWθ̃ ∈ L∞ and Ė1 = C · Ẋ ∈ L∞; therefore,
together with E1 ∈ L2, we conclude that E1 → 0 as t → ∞,

which, in turn, implies that ˙̂θ → 0 as t → ∞. This result
shows that the tracking errors ej and ėj are asymptotically
stable. However, from this analysis, we only conclude that the
parameter estimation error remains bounded. As it is standard
in the literature, in order that the parameter error converges
to zero exponentially fast, the following Persistency of
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Fig. 3. Adaptive feedback linearizing control system for the trajectory tracking of WMR.

Excitation (PE) condition must be satisfied over any interval
of time of length T0 :

αI ≤
∫ t+T0

t

W (τ )T W (τ ) dτ ≤ βI, (60)

where α is the level of excitation and β > 0 is a constant
parameter. Note that if W /∈ L∞, a similar adaptive scheme
may be derived by using normalization techniques to cope
with unbounded regression matrix. The block diagram of the
adaptive feedback linearizing controller is shown in Fig. 3.

Remark 4. Sometimes, parameters convergence is not
satisfactory due to lack of PE condition. One may provide
sufficient excitation for the reference signal by appending a
bounded excitation signal d(t) to yr (t) (e.g. see the work of
Adetola19). A good candidate for d(t) is a linear combination
of sinusoidal functions with n̄ distinct frequencies:

d(t) =
n̄∑

i=1

ai(t) · sin ωit. (61)

After a certain amount of time, this signal is removed from
the reference yr (t) by choosing the amplitude of excitation
signal as

ai(t) = ai

1 + exp(γ (t − tC))
, (62)

where γ is a large number and tC is the time of excitation
signal removal.

Remark 5. A modification on adaptation law in Eq. (34)
seems to be necessary in presence of uncertainty due
to modelling errors, wheels slip and surface friction,
sensors noise and localization errors, kinematic and dynamic
disturbances, quantization and discretization errors and other
sources of uncertainty. The robust adaptive law may be
proposed by the following modification:

˙̂θ = 
WT E1 + fθ (t), (63)

where fθ (t) is a signal for robustness and it can be designed
with robust adaptive techniques such as σ -modification (e.g.
see the textbook of Ioannou23). This modification is not the
subject of this paper. Various applications of these techniques
can be found in the literature.20–27

4. Simulation Results
In this section, some computer simulations are performed to
evaluate the performance of the proposed controller. In these
simulations, parameters are chosen to match with a real world
mobile robot, and Gaussian white noise is also added to the
states to simulate a localization system such as odometry.
Real physical parameters of the WMR and control parameters
are summarized in Table II. In order to show the performance
of the adaptive tracking controller, a non-adaptive controller
is also designed based on feedback linearization technique

Table II. Simulation parameters values for WMR.

Simulation 2 Simulation 1 Parameter Simulation 2 Simulation 1 Parameter

0.006 Kg · m2 0.0025 Kg · m2 Im 0.05 m 0.15 m r
3 Kg · m2 15.625 Kg · m2 IC 0.3 m 0. 75 m b
0.02 s 0.02 s dt 0.15 m 0.3 m d
2 m 7.5 m R 0.2 m 0.1 m L
(2.5 m, 5.5 m) (10 m, 25 m) (xg, yg) 0.2 Kg 1 Kg mw

0.2615 7.2 K1 10 Kg 36 Kg mC

0.2668 2.592 K2 0.002 Kg · m2 0.005 Kg · m2 Iw
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Fig. 4. WMR trajectory for both controllers: Non-adaptive controller with unknown parameters (dashed-dotted line) and adaptive feedback
linearizing (AFL) controller in presence of unknown parameters (bold solid line).

in presence of unknown parameters. In the first simulation, a
smooth desired trajectory is chosen as following:

xr (t) = xg + R cos(ωrt),

yr (t) = yg + R sin(ωrt),

}
(64)

where (xg, yg) and R are the centre and radius of
circular trajectory, respectively and ωr = 0.05. The initial
values of the estimated parameters of WMR are selected
as θ̂ (0) = [1, 1, 1, 1, 1, 1]T . According to Table II, the
real values of parameters vector are chosen to be θ =
[6.06, 0.284, 0.54, 6.48, 1.26, 1.8]T . All simulations are
carried out using Euler method with the time step of 0.02 s.
In order to provide a smooth navigation, a critically damped
system is chosen by setting β1j = 2

√
β2j with β2j = 1 in

error Eq. (46) which together with αj = β2j /β1j provides
the presented SPR conditions for the transfer function
(48). Figure 4 shows the desired and WMR trajectories
for both adaptive and non-adaptive tracking controllers.
Figure 5 shows the estimated parameters by adaptation law in
Eq. (34).

Another simulation was performed for the following
desired trajectory with different set of parameters which are
summarized in Table II:

xr (t) = xg + R sin(2ωrt),

yr (t) = yg + R sin(ωrt),

}
(65)

where ωr = 0.05 and this time, the initial values
of estimated parameters are selected to be θ̂ (0) =

Fig. 5. Estimated WMR parameters θ̂i , i = 1, . . . , 5.
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Fig. 6. WMR trajectory for both controllers: Non-adaptive controller with unknown parameters (dashed-dotted line) and adaptive feedback
linearizing controller in presence of unknown parameters (bold solid line).

[1, 1, 1, 1, 1, 1]T . The real values of parameters vector
are selected to be θ = [20.52, 0.144, 0.46, 5.87, 0.5, 0.48]T .

Figure 6 shows the performance of trajectory tracking
controllers. Estimated parameters are also demonstrated by
Fig. 7.

Simulation results show that the non-adaptive controller
fails to track desired trajectory because of uncertain WMR
parameters while the adaptive controller demonstrates a
successful tracking. In addition, noisy odometry data has
undesirable effects on parameters estimates which may be
easily removed by robust adaptive techniques (e.g. see the
work of Martins27). Note that ωr must be chosen small
because the controller performance degrades when ωr is far
from zero.

5. Experimental Results
This section presents an experimental evaluation of the
proposed adaptive controller on robuLAB 10 WMR from
Robosoft Inc. which is shown in Fig. 8. The robuLAB 10 is
a differentially-driven WMR which is equipped with sonar,
a laser range finder, a wireless LAN for the communication,
12V batteries, two DC motors to drive wheels that each wheel
is equipped with an incremental encoder for the localization
system which updates the relative pose of the WMR every
200 ms. Two passive castor wheels are placed in the rear
and front of the WMR to preserve its equilibrium. The
WMR does not accept the motors voltage as the input.
It is only commanded by linear and angular velocities
which are denoted by vref,1(t) and vref,2(t), respectively.

Fig. 7. Estimated WMR parameters θ̂i , i = 1, . . . , 6.
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Fig. 8. RobuLAB 10 wheeled mobile platform.

Therefore, in order to test the proposed control law (34)
experimentally, it is assumed that the velocities of DC motors
are controlled by proportional derivative (PD) controllers. In
addition, it is assumed that DC motors are identical and their
inductances are negligible. By incorporating PD controllers
into WMR dynamics, one may achieve the following model
whose inputs are linear and angular velocities. This model is
proposed by De La Cruz et al. for the first time:31

ẋ = f (x) + g1(x, θ) vref,1 + g2(x, θ) vref,2, (66)

y = h(x) = [x + L cos ϕ, y + L sin ϕ]T , (67)

where

f (x) = [
v1 cos ϕ v1 sin ϕ v2 θ1v

2
2 − θ2 v1

− θ3 v1v2 − θ4v2
]T

,

g1(x, θ) = [0 0 0 θ5 0]T ,

g2(x, θ) = [0 0 0 0 θ6]T ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(68)

and x = [x, y, ϕ, v1, v2]T denotes the state vector, θi, i =
1, . . . , 6 are uncertain parameters which are functions
of physical parameters of the robot. Note that the non-
parametric uncertainties are ignored in model (66).

The interested reader is referred to the work of Martins
et al.27 and the work of De La Cruz et al.31 for more
details about the above presented model. In this experiment,
Microsoft Robotics Studio (MSRS) is used to implement
the proposed controller. The MSRS executes the controller
program code and generates the linear and angular velocities
to be commanded to RobuLAB 10 through a wireless
LAN. It is assumed that there is little knowledge about the
parameters of the WMR. The controller parameters for the
experiment are chosen similar to simulation parameters. A
circle-shaped trajectory is considered as the reference input
which is specified by y1r (t) = xg + R cos(ωrt), y2r (t) =
yg + R sin(ωrt) where (xg, yg) = (0.5 m, 0.5 m) and R =
4 m represent the centre and radius of the circle, respectively.
The initial values of WMR motion are set to x(0) = 2 m;
y(0) = 0.25 m; ϕ(0) = 800; v1(0) = 0; v2(0) = 0. In order
to show the tracking performance and robustness of the
proposed controller to parametric uncertainties, a feedback
linearizing control law (without adaptation) is also tested
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Fig. 9. Desired trajectory (dashed line), WMR trajectory by the
feedback linearizing (FL) controller (FL, dashed-dotted line), the
adaptive feedback linearizing (AFL) controller (AFL, bold solid
line) in x–y plane.

on the WMR. Figure 9 illustrates one of experimental
results which shows the desired trajectory (dashed line)
and trajectories of robuLAB 10 which are the result of
a feedback linearzing controller (dashed-dotted line) and
our proposed controller (bold solid line). As shown by
Figs. 9 and 10, experimental results also verify that our
proposed controller is effective in presence of uncertain
parameters. One may achieve better results by well tuning
of the controller parameters. In spite of the robustness of the
proposed controller to parametric uncertainties, the following
problems may have undesirable effects in our experiments:
(1) non-idealities of the mechanical system such as backlash,
(2) wheels slippage, (3) actuators saturation, (4) quantization
errors, (5) communication delays, (6) PD approximation
error of the WMR model in Eq. (66) (see the work of De
La Cruz31 for more details) and (7) low frequency of the
odometry system, which may induce some non-linear effects
in the closed loop system. Improvement of the presented
results demands more investigations which determine the
direction of our future works.

6. Conclusion and Future Works
An adaptive feedback linearization trajectory tracking
controller is proposed for a non-holonomic WMR in presence
of uncertainty in the parameters of the kinematic and
dynamic models and actuators dynamics. The adaptation
law is derived by SPR-Lyapunov design, and it shows
a satisfactory performance when well tuning of control
parameters is provided. Computer simulations show that the
proposed controller is robust to parametric uncertainty.
The experimental results on a commercial WMR show that
the proposed controller is effective. The presented work
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in this paper has provided a good chance to continue our
future researches. Referring to Remark 5, our next research
will be on the robustness of the adaptive trajectory tracking
controller in presence of different types of uncertainties in
the WMR models.
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