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Abstract

Many functional logic languages are based on narrowing, a unification-based goal-solving

mechanism which subsumes the reduction mechanism of functional languages and the

resolution principle of logic languages. Needed narrowing is an optimal evaluation strategy

which constitutes the basis of modern (narrowing-based) lazy functional logic languages. In

this work, we present the fundamentals of partial evaluation in such languages. We provide

correctness results for partial evaluation based on needed narrowing and show that the

nice properties of this strategy are essential for the specialization process. In particular, the

structure of the original program is preserved by partial evaluation and, thus, the same

evaluation strategy can be applied for the execution of specialized programs. This is in

contrast to other partial evaluation schemes for lazy functional logic programs which may

change the program structure in a negative way. Recent proposals for the partial evaluation

of declarative multi-paradigm programs use (some form of) needed narrowing to perform

computations at partial evaluation time. Therefore, our results constitute the basis for the

correctness of such partial evaluators.

KEYWORDS: partial evaluation, functional logic programming, needed narrowing

1 Introduction

Functional logic languages combine the operational principles of the most important

declarative programming paradigms, namely functional and logic programming.

Efficient demand-driven functional computations are amalgamated with the flexible

use of logical variables providing for function inversion and search for solutions.

� A preliminary short version of this paper appeared in the Proceedings of the International Conference on
Functional Programming (ICFP’99), pp. 273–283, Paris, 1999. This work has been partially supported
by CICYT TIC2001-2705-C03-01, by MCYT under grant HA2001-0059, and by the German Research
Council (DFG) under grant Ha 2457/1-2.
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The operational semantics of such languages is usually based on narrowing, a

generalization of term rewriting which combines reduction and variable instantiation.

A narrowing step instantiates variables of an expression and applies a reduction step

to a redex (reducible expression) of the instantiated expression. The instantiation of

variables is usually computed by unifying a subterm of the entire expression with

the left-hand side of some rule.

Example 1

Consider the following rules which define the less-or-equal predicate “�” on natural

numbers which are represented by terms built from data constructors 0 and s (note

that variable names always start with an uppercase letter):

0 � N → true

s(M) � 0 → false

s(M) � s(N) → M � N

The goal s(X) � Y can be solved (i.e., reduced to true) by instantiating Y to s(Y1)

to apply the third rule followed by the instantiation of X to 0 to apply the first rule:

s(X) � Y �{Y �→s(Y1)} X � Y1 �{X �→0} true

Narrowing provides completeness in the sense of logic programming (computation

of all solutions) as well as functional programming (computation of values). Since

simple narrowing can have a huge search space, great effort has been made to

develop sophisticated narrowing strategies without losing completeness; see Hanus

(1994) for a survey. To avoid unnecessary computations and to provide computations

with infinite data structures as well as a demand-driven generation of the search

space, most recent work has advocated lazy narrowing strategies (Antoy et al.

2000; Giovannetti et al. 1991; Loogen et al. 1993; Moreno-Navarro and Rodrı́guez-

Artalejo 1992). Many lazy evaluation strategies are based on the notions of demanded

or needed computations. The following example informally explains the difference

between these two notions.

Example 2

Consider the rules for “�” in Example 1 together with the following rules defining

the addition on natural numbers:

0 + N → N

s(M) + N → s(M + N)

The initial term is X � X + X. The evaluation of subterm X + X is demanded by the

second and third rules for “�”, since these rules cannot be applied to X � X + X

until the subterm X + X is reduced to a term rooted by a data constructor symbol.

However, evaluating this subterm is not needed since, if we instantiate X to 0, we

directly obtain true by using the first rule for “�.”

On the other hand, if the initial term is X + (0 + 0), the evaluation of 0 + 0 is

needed to compute its value whereas it is not demanded by any rule for “+.”

Needed narrowing (Antoy et al. 2000) is based on the idea of evaluating only subterms

which are needed in order to compute a result. For instance, in a term like t1 � t2, it
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is always necessary to evaluate t1 (to some head normal form, i.e., either a variable

or a constructor-rooted term) since all three rules in Example 1 have left-hand

sides whose first argument is not a variable. On the other hand, the evaluation of

t2 is only needed if t1 is of the form s(· · ·). Thus, if t1 is a free variable, needed

narrowing instantiates it to a constructor, here 0 or s(· · ·). Then, depending on this

instantiation, either the first rule is applied or the second argument t2 is evaluated.

Needed narrowing is currently the best narrowing strategy for first-order functional

logic programs due to its optimality properties w.r.t. the length of derivations

and the number of computed solutions (Antoy et al. 2000). Informally speaking,

needed narrowing derivations are the shortest possible narrowing derivations if

common subterms are shared (as it is usually done in implementations of functional

languages), and the set of all solutions computed by needed narrowing is minimal

since needed narrowing computes only independent solutions (see also Theorem 1).

Furthermore, it can be efficiently implemented by pattern matching and unification

(Hanus 1995; Loogen et al. 1993). For instance, the operational semantics of the

declarative multi-paradigm language Curry (Hanus (ed.) 2003) is based on needed

narrowing. Needed narrowing has also been extended to higher-order functions and

λ-terms as data structures and proved optimal w.r.t. the independence of computed

solutions (Hanus and Prehofer 1999).

Partial Evaluation (PE) is a semantics-preserving performance optimization tech-

nique for computer programs which consists of the specialization of the program

w.r.t. parts of its input. PE has been widely applied in the fields of term rewriting

systems (Bellegarde 1995; Bondorf 1988; Dershowitz and Reddy 1993; Lafave and

Gallagher 1997), functional programming (Consel and Danvy 1993; Jones et al.

1993), and logic programming (Gallagher 1993; Lloyd and Shepherdson 1991;

De Schreye et al. 1999). Although the objectives are similar, the general methods are

often different due to the distinct underlying models and the different perspectives

(Alpuente et al. 1998a). This separation has the negative consequence of duplicated

work since developments are not shared and many similarities are overlooked. A

unified treatment can bring the different methodologies closer and lays the ground

for new insights in all three fields (Alpuente et al. 1998a; Alpuente et al. 1998b;

Glück and Sørensen 1994; Pettorossi and Proietti 1996a; Sørensen et al. 1996).

To perform reductions at specialization time, online partial evaluators normally

include an interpreter (Consel and Danvy 1993). This implies that the power

of the transformation is highly influenced by the properties of the evaluation

strategy in the underlying interpreter. Narrowing-driven PE (Alpuente et al. 1998a;

Albert and Vidal 2002) is the first generic algorithm for the specialization of

functional logic programs. The method is parametric w.r.t. the narrowing strategy

which is used for the automatic construction of the search trees. The method is

formalized within the theoretical framework established by Lloyd and Shepherdson

(1991) for the PE of logic programs (also known as partial deduction), although a

number of concepts have been generalized to deal with the functional component

of the language (e.g. nested function calls in expressions, different evaluation

strategies, etc.). This approach has better opportunities for optimization thanks

to the functional dimension (e.g. by the inclusion of deterministic evaluation steps).
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Also, since unification is embedded into narrowing, it is able to automatically

propagate syntactic information on the partial input (term structure) and not only

constant values, similar to partial deduction. Using the terminology of Glück and

Sørensen (1996), narrowing-driven PE is able to produce both polyvariant and

polygenetic specializations, i.e., it can produce different specializations for the same

function definition and can also combine distinct original function definitions into

a comprehensive specialized function. This means that narrowing-driven PE has the

same potential for specialization as positive supercompilation of functional programs

(Sørensen et al. 1996) and conjunctive partial deduction of logic programs (De Schreye

et al. 1999); more detailed comparisons can be found in Alpuente et al. (1998a,

1998b) and Albert and Vidal (2002).

The main contribution of this work is the proof of the basic computational

properties of PE based on needed narrowing. The most recent approaches for the

PE of multi-paradigm functional logic languages (Albert et al. (1999, 2002, 2003)

use (a form of) needed narrowing to perform computations at PE time (see also

section 6). Therefore, our results constitute the basis for the correctness of such

partial evaluators. To be more precise, we provide the following results for PE based

on needed narrowing:

• We prove the strong correctness of the PE scheme: the answers computed

by needed narrowing in the original and the partially evaluated programs

coincide.

• We establish the relation between PE based on needed narrowing and PE

based on a different lazy evaluation mechanism – which is the basis of previous

partial evaluators (Alpuente et al. 1997). We formally prove the superiority

of needed narrowing to perform partial computations. In particular, we prove

that the structure of the original program is preserved by PE based on needed

narrowing and, thus, the same optimal evaluation strategy can be applied

for the execution of specialized programs. This is in contrast to previous PE

schemes (Alpuente et al. 1997) for lazy functional logic programs which may

change the program structure in a negative way.

• We show that specialized programs preserve deterministic evaluations, i.e.,

if the source program can evaluate a goal without any choice, then the

partially evaluated program does just the same. This is important from an

implementation point of view and it is not obtained by PE based on other

operational models, like lazy narrowing.

Providing experimental evidence of the practical advantages of using needed nar-

rowing to perform PE is outside the scope of this paper. We refer, for example, to

Albert et al. (2002), where this topic has been extensively addressed for a practical

partial evaluator based on the foundations presented in this paper.

The structure of the paper is as follows. After some basic definitions in the

next section, we recall in section 3 the formal definition of inductively sequential

programs and needed narrowing. Section 4 recalls the lazy narrowing strategy and

relates it to needed narrowing. The definition of partial evaluation based on needed

narrowing is provided in section 5 together with results about the structure of

specialized programs and the (strong) correctness of the transformation. Section 6
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outlines several recent extensions of PE based on needed narrowing. Finally, section 7

concludes. Detailed proofs of selected results can be found in Alpuente et al. (2004).

2 Preliminaries

Term rewriting systems (TRSs) provide an adequate computational model for

functional languages which allow the definition of functions by means of patterns

(e.g. Haskell, Hope or Miranda). Within this framework, the class of inductively

sequential programs, which we consider in this paper, has been defined, studied,

and used for the implementation of programming languages which provide for

optimal computations both in functional and functional logic programming (Antoy

1992; Antoy et al. 2000; Hanus 1997; Hanus et al. 1998; Loogen et al. 1993).

Inductively sequential programs can be thought of as constructor-based TRSs with

discriminating left-hand sides, i.e., typical functional programs where at most one

rule is used to reduce a particular subterm (without variables). Thus, in the remainder

of the paper we follow the standard framework of term rewriting (Dershowitz and

Jouannaud 1990) for developing our results.

We consider a (many-sorted) signature Σ partitioned into a set C of constructors

and a set F of (defined) functions or operations. We write c/n ∈ C and f /n ∈ F
for n-ary constructor and operation symbols, respectively. There is at least one sort

Bool containing the Boolean constructors true and false. Given a set of variables

X, the set of terms and constructor terms are denoted by T(C ∪ F,X) and T(C,X),

respectively. The set of variables occurring in a term t is denoted by Var(t). A

term t is ground if Var(t) = �. A term is linear if it does not contain multiple

occurrences of one variable. We write on for the sequence of objects o1, . . . , on .

A pattern is a term of the form f (dn ) where f /n ∈ F and d1, . . . , dn ∈ T(C,X). A

term is operation-rooted if it has an operation symbol at the root. root(t) denotes the

symbol at the root of the term t . A position p in a term t is represented by a sequence

of natural numbers (Λ denotes the empty sequence, i.e., the root position). They are

used to address the nodes of a term viewed as a tree (Dewey notation). For instance,

if t = f (t1, . . . , tn ), positions 1, . . . , n refer to arguments t1, . . . , tn respectively; thus,

given a position pi of a subterm of ti , position i · pi denotes the corresponding

subterm of t . Positions are ordered by the prefix ordering: u � v , if there exists

w such that u · w = v . Given a term t , Pos(t) and NVPos(t) denote the set of

positions and the set of non-variable positions of t , respectively. t |p denotes the

subterm of t at position p, and t[s]p denotes the result of replacing the subterm t |p
by the term s – see Dershowitz and Jouannaud (1990) for details.

We denote by {x1 �→ t1, . . . , xn �→ tn} the substitution σ with σ(xi ) = ti for

i = 1, . . . , n (with xi �= xj if i �= j ), and σ(x ) = x for all other variables x . The

set Dom(σ) = {x ∈ X | σ(x ) �= x} is called the domain of σ. A substitution σ is

constructor (ground constructor), if σ(x ) is constructor (ground constructor) for all

x ∈ Dom(σ). The identity substitution is denoted by id . Substitutions are extended to

morphisms on terms by σ(f (tn )) = f (σ(tn )) for every term f (tn ). Given a substitution

θ and a set of variables V ⊆ X, we denote by θ |̀V the substitution obtained from θ

by restricting its domain to V . We write (θ = σ)[V ] if θ|̀V = σ |̀V , and (θ � σ)[V ]

denotes the existence of a substitution γ such that (γ ◦ θ = σ)[V ].
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Term t ′ is an instance of t if there is a substitution σ with t ′ = σ(t). This implies a

(relative generality) subsumption ordering on terms which is defined by t � t ′ iff t ′ is

an instance of t . A unifier of two terms s and t is a substitution σ with σ(s) = σ(t).

The unifier σ is most general if (σ � σ′)[X] for each other unifier σ′.

A rewrite rule is an ordered pair (l , r), written l → r , with l , r ∈ T(C ∪ F,X),

l �∈ X and Var(r) ⊆ Var(l ). A set of rewrite rules is called a term rewriting system

(TRS). The terms l and r are called the left-hand side (lhs) and the right-hand side

(rhs) of the rule, respectively. A TRS R is left-linear if l is linear for all l → r ∈ R.

A TRS is constructor-based (CB) if each lhs l is a pattern. Two (possibly renamed)

rules l → r and l ′ → r ′ overlap, if there is a non-variable position p ∈ NVPos(l )

and a most general unifier σ such that σ(l |p) = σ(l ′). A left-linear TRS without

overlapping rules is called orthogonal. In the remainder of this paper, a functional

logic program is a finite left-linear CB-TRS. Conditions in program rules are treated

by using the predefined functions and, if then else, case of which are reduced by

standard defining rules (Moreno-Navarro and Rodrı́guez-Artalejo 1992).

A rewrite step is an application of a rewrite rule to a term, i.e., t →p,R s if there

is a position p in t , a rewrite rule R of the form l → r and a substitution σ with

t |p = σ(l ) and s = t[σ(r)]p (p and R will often be omitted in the notation of a

rewrite step). The instantiated lhs σ(l ) is called a redex. PosR(t) denotes the set of

redex positions of the term t in the TRS R. →+ (→∗) denotes the transitive (reflexive

and transitive) closure of →. If t →∗ s , we say that t is rewritten to s . A term t

is root-stable (often called a head-normal form) if it cannot be rewritten to a redex.

A constructor root-stable term is either a variable or a constructor-rooted term, i.e.,

a term rooted by a constructor symbol. A term t is called irreducible or in normal

form if there is no term s with t → s .

To evaluate terms containing variables, narrowing non-deterministically instanti-

ates its variables such that a rewrite step is possible – usually by computing most

general unifiers between a subterm and some lhs (Hanus 1994), but this requirement

is relaxed in needed narrowing steps in order to obtain an optimal evaluation strategy

(Antoy et al. 2000). Formally, t �p,R,σ t ′ is a narrowing step if p is a non-variable

position in t and σ(t) →p,R t ′. We denote by t0 �∗
σ tn a sequence of narrowing steps

t0 �σ1
. . . �σn

tn with σ = σn ◦ · · · ◦σ1 (if n = 0 then σ = id ). Since we are interested

in computing values (constructor terms) as well as answers (substitutions), we say

that the narrowing derivation t �∗
σ c computes the result c with answer σ if c is a

constructor term. The evaluation to ground constructor terms is the most common

semantics of functional (logic) languages. In lazy functional (logic) languages, the

equality predicate ≈ used in some examples is defined as the strict equality on terms

(note that we do not require terminating rewrite systems and, thus, reflexivity is not

desired), i.e., the equation t1 ≈ t2 is satisfied if and only if t1 and t2 are reducible

to the same ground constructor term. Furthermore, a substitution σ is a solution for

an equation t1 ≈ t2 if σ(t1) ≈ σ(t2) is satisfied. The strict equality can be defined as

a binary Boolean function by the following set of orthogonal rewrite rules:

c ≈ c → true c/0 ∈ C
c(X1, . . . , Xn) ≈ c(Y1, . . . , Yn) → (X1 ≈ Y1) ∧ . . . ∧ (Xn ≈ Yn) c/n ∈ C, n > 0

true ∧ X → X
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Thus, we do not treat strict equality in any special way and it is sufficient to

consider it as a Boolean function. We say that σ is a computed answer substitution

for an equation e if there is a narrowing derivation e �∗
σ true. More details about

strict equality can be found elsewhere (Antoy et al. 2000; Giovannetti et al. 1991;

Moreno-Navarro and Rodrı́guez-Artalejo 1992).

As in logic programming, narrowing derivations can be represented by a (possibly

infinite) finitely branching tree. Formally, given a program R and an operation-

rooted term t , a narrowing tree for t in R is a tree satisfying the following conditions:

(a) each node of the tree is a term, (b) the root node is t , and (c) if s is a node

of the tree then, for each narrowing step s �p,R,σ s ′, the node has a child s ′ and

the corresponding arc in the tree is labeled with (p,R, σ). A failing leaf contains

a term which is not a constructor term and which cannot be further narrowed.

Following Lloyd and Shepherdson (1991), in this work we adopt the convention

that a derivation can be incomplete (thus, a branch can be failed, incomplete,

successful, or infinite).

3 Needed narrowing

Since functional logic languages are intended to extend (pure) logic languages,

completeness of the operational semantics is an important issue. Similarly to

logic programming, completeness means the ability to compute representatives of

all solutions for one or more equations (this will be formalized in Theorem 1).

Narrowing, as defined in the previous section, is complete but highly (don’t-know)

non-deterministic: if t is a term, we have to apply at all non-variable subterms

all possible rules with all possible substitutions in order to compute all solutions.

Clearly, this would be too inefficient for a realistic functional logic language. Thus,

a challenge in the design of functional logic languages is the definition of a “good”

narrowing strategy, i.e., a restriction on the narrowing steps issuing from a given

term t , without losing completeness. (Hanus 1994) contains a survey of various

attempts to define reasonable narrowing strategies.

Needed narrowing (Antoy et al. 2000) is currently the best known narrowing

strategy due to its optimality properties (see the discussion in section 1 and

Theorem 1). Needed narrowing is defined on inductively sequential programs, a

class of CB-TRSs where the left-hand sides do not overlap (in particular, they are

not unifiable). To provide a definition of this class of programs and the needed

narrowing strategy, we introduce definitional trees (Antoy 1992). Here we use the

definition of Antoy (1997), which is more appropriate for our purposes.

A definitional tree of a finite set S of linear patterns is a non-empty set P of linear

patterns partially ordered by subsumption having the following properties:

Root property: P has a minimum element (that we denote as pattern(P)), also called

the pattern of the definitional tree.

Leaves property: the maximal elements of P, called the leaves of the definitional

tree, are the elements of S . Non-maximal elements are also called branch nodes.

Parent property: if π ∈ P, π �= pattern(P), there exists a unique π′ ∈ P, called the

parent of π (and π is called a child of π′), such that π′ < π and there is no other

pattern π′′ ∈ T(C ∪ F,X) with π′ < π′′ < π.

https://doi.org/10.1017/S1471068404002303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002303


280 M. Alpuente et al.

0 � Y → true s(X′) � Y

s(X′) � 0 → false s(X′) � s(Y′) → X′ � Y′

X � Y

�
�

��

�
�

��

�
�

��
�

�
��

Fig. 1. Definitional tree for the function “�”.

Induction property: given π ∈ P\S , there is a position o in π with π|o ∈ X (called

the inductive position), and constructors c1/k1, . . . , cn/kn ∈ C with ci �= cj for i �= j ,

such that, for all π1, . . . , πn which have the parent π, πi = π[ci (xki
)]o (where xki

are new distinct variables) for all 1 � i � n .1

If R is an orthogonal TRS and f /n a defined function, we call P a definitional

tree of f if pattern(P) = f (xn ) for distinct variables xn and the leaves of P are all

(and only) variants of the left-hand sides of the rules in R defining f (i.e., rules

l → r such that root(t) = f , f ∈ F). Due to the orthogonality of R, we can assign a

unique rule defining f to each leaf. A defined function is called inductively sequential

if it has a definitional tree. A rewrite system R is called inductively sequential if all

its defined functions are inductively sequential. An inductively sequential TRS can

be viewed as a set of definitional trees, each defining a function symbol. There can

be more than one definitional tree for an inductively sequential function. In the

following, we assume that there is a fixed definitional tree for each defined function.

It is often convenient and simplifies understanding to provide a graphic repres-

entation of definitional trees, where each inner node is marked with a pattern, the

inductive position in branch nodes is surrounded by a box, and the leaves contain

the corresponding rules. For instance, the definitional tree of the function “�” in

Example 1 is illustrated in Figure 1.

The following auxiliary proposition shows that functions defined by a single rule

are always inductively sequential.

Proposition 1

If f (tn ) is a linear pattern, then there exists a definitional tree for the set {f (tn )} with

pattern f (xn ).

Proof

By induction on the number of constructor symbols occurring in t , where each

constructor symbol is introduced in a child of a branch node and each branch node

has only one child. �

1 There might be more than one potential inductive position when constructing a definitional tree. In
this case one can select any of them since the results about needed narrowing do not depend on the
selected definitional tree.
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For the definition of needed narrowing, we assume that t is an operation-rooted

term and P is a definitional tree with pattern(P) = π such that π � t . We define

a function λ from terms and definitional trees to sets of tuples (position, rule,

substitution) as the least set satisfying the following properties. We consider two

cases for P:2

1. If π is a leaf, i.e., P = {π}, and π → r is a variant of a rewrite rule, then

λ(t ,P) = {(Λ, π → r , id )}.

2. If π is a branch node, consider the inductive position o of π and a child

πi = π[ci (xn )]o ∈ P. Let Pi = {π′ ∈ P | πi � π′} be the definitional tree where

all patterns are instances of πi . Then we consider the following cases for the

subterm t |o:

λ(t ,P) 





(p,R, σ ◦ τ) if t |o = x ∈ X, τ = {x �→ ci (xn )},
and (p,R, σ) ∈ λ(τ(t),Pi );

(p,R, σ ◦ id ) if t |o = ci (tn ) and (p,R, σ) ∈ λ(t ,Pi );

(o · p,R, σ ◦ id ) if t |o = f (tn ), f ∈ F, and (p,R, σ) ∈ λ(t |o ,P′)

where P′ is a definitional tree for f .

Informally speaking, needed narrowing applies a rule, if the definitional tree does

not require further pattern matching (case 1), or checks the subterm corresponding

to the inductive position of the branch node (case 2): if it is a variable, it is

instantiated to the constructor of a child; if it is already a constructor, we proceed

with the corresponding child (note that we do not actually need substitution id

but we include it to provide a normalized representation of a needed narrowing

step, see below); if it is a function, we evaluate it by recursively applying needed

narrowing. Thus, the strategy differs from typical lazy functional languages only in

the instantiation of free variables.

Note that, in each recursive step during the computation of λ, we compose

the current substitution with the local substitution of this step (which can be the

identity). Thus, each needed narrowing step can be represented as (p,R, ϕk ◦ · · · ◦
ϕ1), where each ϕj is either the identity or the replacement of a single variable

computed in each recursive step (see the following proposition). This is also called the

canonical representation of a needed narrowing step. As in proof procedures for logic

programming, we assume that the definitional trees always contain new variables if

they are used in a narrowing step. This implies that all computed substitutions are

idempotent (we will implicitly assume this property in the following).

To compute needed narrowing steps for an operation-rooted term t , we take the

definitional tree P for the root of t and compute λ(t ,P). Then, for all (p,R, σ) ∈
λ(t ,P), t �p,R,σ t ′ is a needed narrowing step. We call this step deterministic if λ(t ,P)

contains exactly one element.

2 This description of a needed narrowing step is slightly different from that in Antoy et al. (2000), but it
results in the same needed narrowing steps.
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Example 3

Consider the rules in Example 2. Then the function λ computes the following set for

the initial term X � X + X:

{(Λ, 0 � N → true, {X �→ 0}), (2, s(M) + N → s(M + N), {X �→ s(M)})}

This corresponds to the following narrowing steps:

X � X + X �{X �→0} true

X � X + X �{X �→s(M)} s(M) � s(M + s(M))

In the following we state some interesting properties of needed narrowing which

are useful for our later results. The first proposition shows that each substitution in

a needed narrowing step instantiates only variables occurring in the initial term.

Proposition 2

If (p,R, ϕk ◦ · · · ◦ ϕ1) ∈ λ(t ,P) is a needed narrowing step, then, for i = 1, . . . , k ,

ϕi = id or ϕi = {x �→ c(xn )} (where xn are pairwise different variables) with

x ∈ Var(ϕi−1 ◦ · · · ◦ ϕ1(t)).

Proof

By induction on k . �

The next lemma shows that for different narrowing steps (computing different sub-

stitutions) there is always a variable which is instantiated to different constructors:

Lemma 1

Let t be an operation-rooted term, P a definitional tree with pattern(P) � t and

(p,R, ϕk ◦ · · · ◦ϕ1), (p
′,R′, ϕ′

k ′ ◦ · · · ◦ϕ′
1) ∈ λ(t ,P), k � k ′. Then, for all i ∈ {1, . . . , k},

• either ϕi ◦ · · · ◦ ϕ1 = ϕ′
i ◦ · · · ◦ ϕ′

1, or

• there exists some j < i with

1. ϕj ◦ · · · ◦ ϕ1 = ϕ′
j ◦ · · · ◦ ϕ′

1, and

2. ϕj+1 = {x �→ c(· · ·)} and ϕ′
j+1 = {x �→ c′(· · ·)} with c �= c′.

Proof

By induction on k (the number of recursive steps performed by λ to compute

(p,R, ϕk ◦ · · · ◦ ϕ1)):

k = 1: then P = {π} and λ(t ,P) = {(Λ,R, id )}. Thus, the proposition trivially holds.

k > 1: then π = pattern(P) is a branch node and there is an inductive position

o of π such that all children of π have the form πi = π[ci (xn )]o ∈ P. Let

Pi = {π′ ∈ P | πi � π′} be the definitional tree where all patterns are instances of

πi , for i = 1, . . . , n . We prove the induction step by a case distinction on the form

of the subterm t |o:
t |o = x ∈ X: then ϕ1 = {x �→ ci (xn )} and (p,R, ϕk ◦ · · · ◦ ϕ2) ∈ λ(ϕ1(t),Pi ) for

some i . If ϕ′
1 = {x �→ c(· · ·)} with c �= ci , then the proposition directly holds.

Otherwise, if ϕ1 = ϕ′
1, the proposition follows from the induction hypothesis

applied to (p,R, ϕk ◦ · · · ◦ ϕ2), (p
′,R′, ϕ′

k ′ ◦ · · · ◦ ϕ′
2) ∈ λ(ϕ1(t),Pi ).
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t |o = ci (tn ): then ϕ1 = id and (p,R, ϕk ◦ · · · ◦ ϕ2) ∈ λ(t ,Pi ). Clearly, ϕ′
1 = id by

definition of λ. Hence the proposition follows from the induction hypothesis

applied to (p,R, ϕk ◦ · · · ◦ ϕ2), (p
′,R′, ϕ′

k ′ ◦ · · · ◦ ϕ′
2) ∈ λ(t ,Pi ).

t |o = f (tn ): then ϕ1 = id and (p,R, ϕk ◦ · · · ◦ ϕ2) ∈ λ(t |o ,P′) where P′ is a

definitional tree for f . By definition of λ, ϕ′
1 = id . Then the proposition follows

from the induction hypothesis applied to (p,R, ϕk ◦· · ·◦ϕ2), (p
′,R′, ϕ′

k ′ ◦· · ·◦ϕ′
2) ∈

λ(t |o ,P′).

�

For inductively sequential programs, needed narrowing is sound and complete

w.r.t. strict equality when we consider constructor substitutions as solutions (note

that constructor substitutions are sufficient in practice since a broader class of

solutions would contain unevaluated or undefined expressions for the considered

programs). Moreover, needed narrowing does not compute redundant solutions.

These properties are formalized as follows, where we say that two substitutions σ

and σ′ are independent (on a set of variables V ⊆ X) iff there is some x ∈ V such

that σ(x ) and σ′(x ) are not unifiable.3

Theorem 1 (Antoy et al. 2000 )

Let R be an inductively sequential program and e an equation.

1. (Soundness) If e �∗
σ true is a needed narrowing derivation, then σ is a solution

for e.

2. (Completeness) For each constructor substitution σ that is a solution of e, there

exists a needed narrowing derivation e �∗
σ′ true with σ′ � σ [Var(e)].

3. (Minimality) If e �∗
σ true and e �∗

σ′ true are two distinct needed narrowing

derivations, then σ and σ′ are independent on Var(e).

An important advantage of functional logic languages in comparison to pure

logic languages is their improved operational behavior by avoiding non-deterministic

computation steps. One reason for that is a demand-driven computation strategy

which can avoid the evaluation of potential non-deterministic expressions. For

instance, consider the rules in Examples 1 and 3 and the term 0 � X + X. Needed

narrowing evaluates this term by one deterministic step to true. In an equivalent

logic program, this nested term must be flattened into a conjunction of two predicate

calls, like +(X, X, Z) ∧ �(0, Z), which causes a non-deterministic computation due to

the predicate call +(X, X, Z).4 Another reason for the improved operational behavior

of functional logic languages is the ability of particular evaluation strategies (like

needed narrowing or parallel narrowing (Antoy et al. 1997)) to evaluate ground

terms in a completely deterministic way, which is important to ensure an efficient

implementation of purely functional evaluations. This property, which is obvious by

3 Actually, Antoy et al. (2000) prove a stronger property (disjointness of solutions), but this is not
necessary here.

4 Such non-deterministic computations could be avoided using Prolog systems with coroutining which
allow the suspension of some non-deterministic computations, but then we are faced with the problem
of floundering and incompleteness.
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the definition of needed narrowing, is formally stated in the following proposition.

For this purpose, we call a term t deterministically evaluable (w.r.t. needed narrowing)

if each step in a narrowing derivation issuing from t is deterministic. A term t

deterministically normalizes to a constructor term c (w.r.t. needed narrowing) if t is

deterministically evaluable and there is a needed narrowing derivation t �∗
id c (i.e.,

c is the normal form of t).

Proposition 3

Let R be an inductively sequential program and t be a term.

1. If t �∗
id c is a needed narrowing derivation, then t deterministically normalizes

to c.

2. If t is ground, then t is deterministically evaluable.

4 Lazy narrowing and uniform programs

One of the main objectives of this work is to clarify the relation between the

definition of a PE scheme based on needed narrowing and a previous PE method

based on lazy narrowing (Alpuente et al. 1997). To show the improvements obtained

by using needed narrowing to perform partial computations, we first provide a brief

review of the lazy narrowing strategy in this section.

Lazy narrowing reduces expressions at outermost narrowable positions. Narrowing

at inner positions is performed only if it is demanded (by the pattern in the lhs of

some rule). In the following, we specify a lazy narrowing strategy which is similar

to (Moreno-Navarro and Rodrı́guez-Artalejo 1992).

The following definitions are necessary for our formalization of lazy narrowing.

A linear unification problem is a pair of terms: δ = 〈f (dn ), f (tn )〉, where f (dn ) and

f (tn ) do not share variables, and f (dn ) is a linear pattern. Linear unification LU(δ)

can either succeed, fail or suspend, delivering (Succ, σ), (Fail,�) or (Demand,P ), re-

spectively, where P is the set of demanded positions which require further evaluation;

details can be found in (Alpuente et al. 1997).

We define the lazy narrowing strategy in the following definition. Roughly

speaking, the set-valued function λlazy (t) returns the set of triples (p,R, σ) such

that p is a demanded position of t which can be narrowed by the rule R with

substitution σ (where σ is a most general unifier of t |p and the left-hand side of R).

We assume the rules of R to be numbered with R1, . . . ,Rm .

Definition 1 (lazy narrowing strategy)

λlazy (t) =
⋃m

k=1 λ (t ,Λ, k )

λ (t , p, k ) = if root(lk ) = root(t |p) then

case LU(〈lk , t |p〉) of




(Succ, σ) : {(p,Rk , σ)}
(Fail,�) : �
(Demand,P ) :

⋃
q∈P

⋃m
k=1 λ (t , p · q , k )

else �

where Rk = (lk → rk ) is a (renamed apart) rule of R.

https://doi.org/10.1017/S1471068404002303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002303


Specialization of functional logic programs based on needed narrowing 285

Example 4

Consider the rules for “�” and “+” in Examples 1 and 3. Then lazy narrowing

evaluates the term X � X+ X by applying a narrowing step at the top (with the first

rule for “�”) or by applying a narrowing step to the second argument X + X since

this is demanded by the second and third rule for “�”. Thus, there are three lazy

narrowing steps:

X � X + X �{X �→0} true

X � X + X �{X �→0} 0 � 0

X � X + X �{X �→s(M)} s(M) � s(M + s(M))

Note that the second lazy narrowing step is in some sense superfluous since it also

yields the final value true with the same binding as the first step. The avoidance

of such superfluous steps by using needed narrowing will have a positive impact on

the PE process, as we will see later.

In orthogonal programs, lazy narrowing is complete w.r.t. strict equality and

constructor substitutions:

Proposition 4 (Moreno-Navarro and Rodŕıguez-Artalejo 1992 )

Let R be an orthogonal program, e an equation, and σ a constructor substitution

that is a solution for e. Then there is a lazy narrowing derivation e �∗
σ′ true such

that σ′ � σ [Var(e)].

Thus, lazy narrowing is complete for a larger class of programs than needed

narrowing (since inductively sequential programs are always orthogonal), but it may

have a worse behavior than needed narrowing (see Example 4). Nevertheless, the

idea of needed narrowing can also be extended to almost orthogonal programs

(Antoy et al. 1997), but then the optimality properties are lost. There exists a

class of programs where the superfluous steps of lazy narrowing are avoided, since

lazy narrowing and needed narrowing coincide on this class. These are the uniform

programs (Zartmann 1997) which are inductively sequential programs where at most

one constructor occurs in the left-hand side of each rule. A program is uniform if

each function f is defined by one rule f (xn ) → r or the left-hand side of every rule

Ri defining f is left-linear and has the form f (xk , ci (yni
), zm ), where the constructors

ci are distinct in different rules. Note that uniform programs are orthogonal. In the

latter case, an evaluation of a call to f demands its (k + 1)-th argument. A different

definition of uniform programs can be found in (Kuchen et al. 1990).

There is a simple mapping U from inductively sequential into uniform programs

which is based on flattening nested patterns, see (Zartmann 1997). For instance, if

R is the program in Example 1, then U(R) consists of the rules

0 � N → true

s(M) � N → M �′ N

M �′ 0 → false

M �′ s(N1) → M � N1

where �′ is a new function symbol.

The following theorem states a correspondence between needed narrowing deriva-

tions using the original program and lazy narrowing derivations in the transformed
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uniform program. For a more detailed comparison between needed narrowing and

lazy narrowing, we refer to (Alpuente et al. 2003).

Theorem 2 (Zartmann 1997 )

Let R be an inductively sequential program, U(R) the transformed uniform program,

and t an operation-rooted term. Then there exists a needed narrowing derivation

t �∗
σ s w.r.t. R to a constructor root-stable form s iff there exists a lazy narrowing

derivation t �∗
σ s w.r.t. U(R).

5 Partial evaluation with needed narrowing

In this section, we introduce the basic notions of PE in (lazy) functional logic

programming. Then, we analyze the fundamental properties of PE based on needed

narrowing and establish the relation with PE based on lazy narrowing.

Partial evaluation is a semantics-based program optimization technique which

has been investigated within different programming paradigms and applied to a

wide variety of languages. The first PE framework for functional logic programs

has been defined by Alpuente et al. (1998a). In this framework, narrowing (the

standard operational semantics of integrated languages) is used to drive the PE

process; similarly to partial deduction, specialized program rules are constructed

from narrowing derivations using the notion of resultant. In the following, s �+
σ t

denotes a narrowing derivation with at least one narrowing step.

Definition 2 (resultant)

Let R be a TRS and s be a term. Given a narrowing derivation s �+
σ t , its associated

resultant is the rewrite rule σ(s) → t .

Note that, whenever the specialized call s is not a linear pattern, the left-hand

sides of resultants may not be linear patterns either and hence resultants may not

be program rules:

Example 5

Consider the following inductively sequential program:

double(X) → X + X

0 + N → N

s(M) + N → s(M + N)

Given the term double(W) + W and the following needed narrowing derivation (the

selected redex is underlined at each narrowing step):

double(W) + W �id (W + W) + W �{W �→s(M)} s(M + s(M)) + s(M)

we compute the associated resultant:

double(s(M)) + s(M) → s(M + s(M)) + s(M)

This resultant is not a legal program rule since its left-hand side contains nested

defined function symbols (“+” and “double”) as well as multiple occurrences of the

same variable.
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{Xs �→ nil} {Xs �→ X′ : X′
s}

�����������

�����������

X′ : append(append(X′
s, Ys), Zs)

append(X′ : append(X′
s, Ys), Zs)append(Ys, Zs)

append(append(Xs, Ys), Zs)

{Ys �→ nil} {Ys �→ Y′ : Y′
s}

�����������

�����������
Y′ : append(Y′

s, Zs)Zs

append(Ys, Zs)

Fig. 2. Needed narrowing trees for append(append(Xs, Ys), Zs) and append(Xs, Ys).

To produce legal program rules, we introduce a post-processing of renaming which

not only eliminates redundant structures but also obtains independent specializations

in the sense of Lloyd and Shepherdson (1991). Furthermore, it is also necessary for

the correctness of the PE transformation. Roughly speaking, independence ensures

that the different specializations for the same function definition are correctly

distinguished, which is crucial for polyvariant specialization.

The (pre–)partial evaluation of a term s is obtained by constructing a (possibly

incomplete) narrowing tree for s and then extracting the specialized definitions (the

resultants) from the non–failing, root–to–leaf paths of the tree.

Definition 3 (pre–partial evaluation)

Let R be a TRS and s a term. Let T be a finite (possibly incomplete) narrowing tree

for s in R such that no constructor root-stable term in the tree has been narrowed.

Let tn be the terms in the non-failing leaves of T. Then, the set of resultants

{σi (s) → ti | i = 1, . . . , n} for the narrowing sequences {s �+
σi

ti | i = 1, . . . , n} is

called a pre–partial evaluation of s in R.

The pre–partial evaluation of a set of terms S in R is defined as the union of the

pre–partial evaluations for the terms of S in R.

Example 6

Consider the following function append to concatenate two lists (here we use “nil”

and “:” as constructors of lists):

append(nil, Ys) → Ys
append(X : Xs, Ys) → X : append(Xs, Ys)

together with the set of calls S = {append(append(Xs, Ys), Zs), append(Xs, Ys)}. Given

the needed narrowing trees of Figure 2, the associated pre–partial evaluation of S
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in R is as follows:

append(append(nil, Ys), Zs) → append(Ys, Zs)

append(append(X : Xs, Ys), Zs) → X : append(append(Xs, Ys), Zs)

append(nil, Zs) → Zs
append(Y : Ys, Zs) → Y : append(Ys, Zs)

The following example illustrates that the restriction not to evaluate terms in

constructor root-stable form cannot be dropped.

Example 7

Consider the following program R:

f(0) → 0

g(X) → s(f(X))

h(s(X)) → s(0)

together with the set of calls S = {g(X), h(X)}. Given the needed narrowing

derivations:

g(X) �id s(f(X)) �{X �→0} s(0)

h(X) �{X �→s(Y)} s(0)

a pre–partial evaluation of S in R is the following program R′:

g(0) → s(0)

h(s(X)) → s(0)

Now, the equation h(g(s(0))) ≈ X has the following successful needed narrowing

derivation in R:

h(g(s(0))) ≈ X �id h(s(f(s(0)))) ≈ X �id s(0) ≈ X �∗
{X �→s(0)} true

whereas it fails in the specialized program R′.

The problem shown in the above example is due to the backpropagation of bindings

to the left-hand sides of resultants: within a lazy context, the instantiation of the

left-hand sides of resultants with bindings which come from the evaluation of terms

in constructor root-stable form may incorrectly restrict the domain of functions (e.g.

function “g” above).

A recursive closedness condition, which guarantees that each call which might

occur during the execution of the resulting program is covered by some program

rule, is formalized by inductively checking that the different calls in the rules are

sufficiently covered by the specialized functions. For instance, a function call like

s(X) + Y cannot be considered closed w.r.t. the set of calls {0 + Y, s(0) + Y}.
Informally, a term t rooted by a defined function symbol is closed w.r.t. a set of

calls S , if it is an instance of a term of S and the terms in the matching substitution

are recursively closed by S .
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Definition 4 (closedness)

Let S be a finite set of terms. We say that a term t is S -closed if closed (S , t) holds,

where the predicate closed is defined inductively as follows:

closed (S , t) ⇔




true if t ∈ X
closed (S , t1) ∧ . . . ∧ closed (S , tn ) if t = c(tn ), c ∈ C∗, n � 0∧

x �→t ′∈θ closed (S , t ′) if ∃s ∈ S such that θ(s) = t

for some substitution θ

where C∗ = (C ∪ {≈,∧}).
We say that a set of terms T is S -closed, written closed (S ,T ), if closed (S , t) holds

for all t ∈ T , and we say that a TRS R is S -closed if closed (S ,Rcalls ) holds. Here

we denote by Rcalls the set of the right-hand sides of the rules in R.

For instance, the pre–partial evaluation of Example 6 is closed w.r.t. the set of

partially evaluated calls {append(append(Xs, Ys), Zs), append(Xs, Ys)}.
According to the (non-deterministic) definition above, an expression rooted by a

“primitive” function symbol, such as a conjunction t1 ∧ t2 or an equation t1 ≈ t2,

can be proved closed w.r.t. S either by checking that t1 and t2 are S -closed or by

testing whether the conjunction (equation) is an instance of a call in S (followed

by an inductive test of the subterms). This is useful when we are not interested in

specializing complex expressions (like conjunctions or equations) but we still want

to run them after specialization. Note that this is safe since we consider that the

rules which define the primitive functions “≈” and “∧” are automatically added to

each program by existing programming environments, hence calls to these symbols

are steadily covered in the specialized program. A general technique for dealing

with primitive symbols which deterministically splits terms before testing them for

closedness can be found in (Albert et al. 1998).

In general, given a call s and a program R, there exists an infinite number of

different pre–partial evaluations of s in R. A fixed rule for generating resultants

called an unfolding rule is assumed, which determines the expressions to be narrowed

(by using a fixed narrowing strategy) and which decides how to stop the construction

of narrowing trees; see (Albert et al. 1998, 2002) and (Alpuente et al. 1998a) for a

definition of concrete unfolding rules.

In the following, we denote by pre–NN–PE and pre–LN–PE the sets of resultants

computed for S in R by considering an unfolding rule which constructs finite needed

and lazy narrowing trees, respectively. We will use the acronyms NN–PE and LN–

PE for the renamed rules which will result from the corresponding post-processing

of renaming. The idea behind this transformation is that, for any call (which is closed

w.r.t. the considered set of calls), the answers computed for this call in the original

program and the answers computed for the renamed call in the specialized, renamed

program do coincide. In particular, in order to define a partial evaluator based on

needed narrowing and to ensure that the resulting program is inductively sequential

whenever the source program is, we have to make sure that the set of specialized

terms (after renaming) contains only linear patterns with distinct root symbols. This

can be ensured by introducing a new function symbol for each specialized term and

then replacing each call in the specialized program by a call to the corresponding
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renamed function. In particular, the left-hand sides of the specialized program (which

are constructor instances of the specialized terms) are replaced by instances of the

corresponding new linear patterns through renaming.

Definition 5 (independent renaming)
An independent renaming ρ for a set of terms S is a mapping from terms to terms

defined as follows: for s ∈ S , ρ(s) = fs (xn ), where xn are the distinct variables in s

in the left-to-right ordering and fs is a new function symbol, which does not occur

in R or S and is different from the root symbol of any other ρ(s ′), with s ′ ∈ S and

s ′ �= s . We also denote by ρ(S ) the set S ′ = {ρ(s) | s ∈ S }.
Example 8
Consider the set S = {append(append(Xs, Ys), Zs), append(Xs, Ys)}. The following

mapping:

ρ = {append(Xs, Ys) �→ app(Xs, Ys), append(append(Xs, Ys), Zs) �→ dapp(Xs, Ys, Zs)}
is an independent renaming for S .

While independent renamings suffice to rename the left-hand sides of resultants

(since they are constructor instances of the specialized calls), the right-hand sides are

renamed by means of the auxiliary function renρ, which recursively replaces each call

in the given expression by a call to the corresponding renamed function (according

to ρ).

Definition 6 (renaming function)
Let S be a finite set of terms and ρ an independent renaming of S . Given a term t ,

the non-deterministic function renρ is defined as follows:

renρ(t) =




t if t ∈ X
c(renρ(tn )) if t = c(tn ), c ∈ C∗, and n � 0

θ′(ρ(s)) if ∃θ, ∃s ∈ S such that t = θ(s) and

θ′ = {x �→ renρ(θ(x )) | x ∈ Dom(θ)}
t otherwise

where C∗ = (C ∪ {≈,∧}).
Similarly to the test for closedness, an equation s ≈ t can be (non-deterministically)

renamed either by independently renaming s and t or by replacing the considered

equation by a call to the corresponding new, renamed function (when the equation

is an instance of some specialized call in S ). Note also that the renaming function

is a total function: if an operation-rooted term t is not an instance of any term in S

(which can occur if t is not S -closed), the function renρ(t) returns t itself (i.e., term

t is not renamed).

The notion of partial evaluation can be formally defined as follows.

Definition 7 (partial evaluation)
Let R be a TRS, S a finite set of terms and R′ a pre–partial evaluation of R w.r.t.

S . Let ρ be an independent renaming of S . We define the partial evaluation R′′ of

R w.r.t. S (under ρ) as follows:

R′′ =
⋃
s∈S

{θ(ρ(s)) → renρ(r) | θ(s) → r ∈ R′ is a resultant for s in R}
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We now illustrate these definitions with an example.

Example 9

Let us consider the program append and the set of terms S of Example 6, together

with the independent renaming ρ of Example 8. A partial evaluation R′ of R w.r.t.

S (under ρ) is:

dapp(nil, Ys, Zs) → app(Ys, Zs)

dapp(X : Xs, Ys, Zs) → X : dapp(Xs, Ys, Zs)

app(nil, Ys) → Ys
app(X : Xs, Ys) → X : app(Xs, Ys)

Note that, for a given renaming ρ, the renamed form of a program R may depend

on the strategy which selects the term from ρ(S ) which is used to rename a given

call t in R (e.g. append(append(Xs, Ys), Zs)), since there may exist, in general, more

than one term in S that covers the call t . Some potential specialization might be

lost due to an inconvenient choice. Appropriate heuristics which are able to produce

the best potential specialization have been introduced in the implementation of the

partial evaluator described by Albert et al. (2002).

The correctness of LN-PE is stated by Albert et al. (1998) and Alpuente et al. (1997).

It is important to clarify that, even if the methodology for narrowing-driven PE in

(Alpuente et al. 1998a) is parametric w.r.t. the narrowing strategy, this framework

only ensures that:

• partially evaluated programs are closed w.r.t. the set of partially evaluated calls

– which is necessary, although does not suffice, to guarantee the completeness

of the transformation – and

• the PE process always terminates.

In particular, the correctness of the PE transformation cannot be proved in a way

independent of the narrowing strategy. These results are by their nature highly

dependent on the concrete strategy which is considered, as it is known that different

narrowing strategies have quite different semantic properties. In fact, the use of a

lazy evaluation strategy imposes some additional restrictions on PE, such as the use

of “strict equality”, the requirement not to evaluate terms in constructor root-stable

form during PE, or the need for an additional post-processing of renaming. All these

additional requirements are essential to ensure the correctness of the transformation

and were not present in the original framework of Alpuente et al. (1998a, 1998b),

where correctness is only proved for an eager narrowing strategy. Therefore, it was

necessary to develop a new theory for PE based on lazy narrowing as a separate work

(Alpuente et al. 1997), which is now overcome by the needed narrowing methodology

formalized in this article.

The following lemma shows that any PE based on needed narrowing can also

be obtained (but possibly with more steps) by PE of the transformed uniform

program based on lazy narrowing. This means that, in some sense, the specializations

computed by a partial evaluator based on needed narrowing cannot be worse than

the specializations computed by a partial evaluator based on lazy narrowing. On

https://doi.org/10.1017/S1471068404002303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002303


292 M. Alpuente et al.

the other hand, we will also show later that there are cases where a LN-PE is worse

than a NN-PE for the same original program.

Lemma 2

Let R be an inductively sequential program, Ru = U(R) the corresponding uniform

program, and S a finite set of operation-rooted terms. If R′ is an NN-PE of S in

R, then R′ is also an LN-PE of S in Ru .

Proof

Since the final renaming applied in the partial evaluation of a program does not

depend on the narrowing strategy used during the pre-partial evaluation, it suffices

to show that each resultant w.r.t. needed narrowing in R corresponds to a resultant

w.r.t. lazy narrowing in Ru . Due to the definition of a resultant, each rule in the

pre-partial evaluation w.r.t. needed narrowing in R has the form

σ(t) → s

where t ∈ S and t �+
σ s is a needed narrowing derivation w.r.t. R. By Theorem 2,

there exists a lazy narrowing derivation t �+
σ s w.r.t. Ru which has the same

answer and result (note that Theorem 2 states this property only for derivations into

constructor-rooted terms, but it also holds in the direction used here for arbitrary

needed narrowing derivations since each needed narrowing step corresponds to a

sequence of lazy narrowing steps w.r.t. the transformed uniform programs, which

can be seen by the proof of this theorem). Thus, σ(t) → s is a resultant of this lazy

narrowing derivation w.r.t. Ru . �

The following theorem states an important property of PE based on needed

narrowing: if the input program is inductively sequential, then the partially evaluated

program is also inductively sequential and, thus, we can also apply the needed

narrowing strategy to evaluate calls in the specialized program. The proof of this

theorem can be found in (Alpuente et al. 2004). An extension of this theorem –

although it relies on the result below regarding the unfolding transformation – in

the context of a more general fold/unfold framework can be found in (Alpuente

et al. 2004).

Theorem 3

Let R be an inductively sequential program and S a finite set of operation-rooted

terms. Then each NN-PE of R w.r.t. S is inductively sequential.

The following example reveals that, when we consider lazy narrowing, the LN-PE

of a uniform program w.r.t. a linear pattern may not be uniform.

Example 10

Let R be the following uniform program:

f(X, b) → g(X)

g(a) → a

and t = f(X, Y) and ρ(t) = f2(X, Y). Then a LN-PE R′ of t in R (under ρ) is

f2(a, b) → a

which is not uniform.

https://doi.org/10.1017/S1471068404002303 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068404002303


Specialization of functional logic programs based on needed narrowing 293

The residual program R′ in the example above is inductively sequential. This

raises the question whether the LN-PE of a uniform program is always inductively

sequential. Corollary 1 will positively answer this question.

Corollary 1

Let R be a uniform program and S a finite set of operation-rooted terms. If R′ is a

LN-PE of S in R, then R′ is inductively sequential.

Proof

Since a uniform program is inductively sequential and lazy narrowing steps w.r.t.

uniform programs are also needed narrowing steps (cf. proof of Theorem 2), the

proposition is a direct consequence of Theorem 3. �

The uniformity condition in Corollary 1 cannot be weakened to inductive

sequentiality when LN-PEs are considered, as demonstrated by the following

counterexample.

Example 11

Let R be the following inductively sequential program:

f(a, a, a) → b h(a, b, X) → b

f(b, b, X) → b h(e, X, k) → b

g(a, b, X) → b i(X, c, d) → b

g(X, c, d) → b i(e, X, k) → b

Let t = f(g(X, Y, Z), h(X, Y, Z), i(X, Y, Z)) ∈ S and ρ be a renaming such that ρ(t) =

f3(X, Y, Z). Then, every LN-PE R′ of S in R (considering depth-2 lazy narrowing

trees to construct the resultants) contains the rules:

f3(a, b, X) → · · ·
f3(e, X, k) → · · ·
f3(X, c, d) → · · ·

and thus R′ is not inductively sequential.

One of the main factors affecting the quality of a PE is the treatment of choice

points (Leuschel and Bruynooghe 2002; Gallagher 1993). The following examples

illustrate the different way in which NN-PE and LN-PE “compile-in” choice points

during unfolding, which is crucial to performance since a poor control choice

during the construction of the computation trees can inadvertently introduce extra

computation into a program.

Example 12

Consider again the rules of Example 3 and the input term X � X+ Y. The computed

LN-PE is as follows:

leq2(0, N) → true

leq2(0, N′) → true

leq2(s(M), N) → leq2(M, N)

where the renamed initial term is leq2(X, Y). The redundancy of lazy narrowing

has the effect that the first two rules of the specialized program are identical (up to
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renaming). In contrast, a better specialization – without generating redundant rules –

is obtained by PE based on needed narrowing, since the NN-PE consists of the

following rules:

leq2(0, N) → true

leq2(s(M), N) → leq2(M, N)

Note that a call-by-value partial evaluator based on innermost narrowing (Alpuente

et al. 1998a) has an even worse behavior in this example since it does not specialize

the program at all.

In the example above, the superfluous rule in the LN-PE can be avoided by

removing duplicates in a post-processing step. The next example shows that this is

not always possible.

Example 13

Lazy evaluation strategies are necessary if one wants to deal with infinite data

structures and possibly non-terminating function calls. The following orthogonal

program makes use of these features:

f(0, 0) → s(f(0, 0)) g(0) → g(0)

f(s(N), X) → s(f(N, X)) h(s(X)) → 0

The specialization is initiated with the term h(f(X, g(Y))). Note that this term reduces

to 0 if X is bound to s(· · ·), and it does not terminate if X is bound to 0 due to

the nonterminating evaluation of the second argument. The NN-PE of this program

perfectly reflects this behavior (the renamed initial term is h2(X, Y)):

h0 → h0 h2(0, 0) → h0

h2(s(X), Y) → 0

On the other hand, the LN-PE of this program has a worse structure:

h1(X) → h1(X) h2(X, 0) → h1(X)

h1(s(X)) → 0 h2(s(X), Y) → 0

h2(s(X), 0) → 0

The program specialized by LN-PE in the example above is not inductively

sequential (nor orthogonal), in contrast to the original one. This does not only mean

that lazy and needed narrowing are not applicable to the specialized program but

also that the specialized program has a worse termination behavior than the original

one. For instance, consider the term h(f(s(0), g(0))). The evaluation of this term has a

finite derivation tree w.r.t. lazy narrowing as well as needed narrowing in the original

program. However, the renamed term h2(s(0), 0) has a finite derivation tree w.r.t.

the NN-PE but an infinite derivation tree w.r.t. the LN-PE (using lazy narrowing);

the infinite branch is caused by the application of the rules h2(X, 0) → h1(X) and

h1(X) → h1(X).

This last example also shows that LN-PE can destroy the advantages of de-

terministic reduction of functional logic programs, which is not possible using

NN-PE. This is ensured by the following theorem, which guarantees that a term

which is deterministically normalizable w.r.t. the original program cannot cause a

non-deterministic evaluation w.r.t. the specialized program obtained by NN-PE.
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Theorem 4

Let R be an inductively sequential program, S a finite set of operation-rooted terms,

ρ an independent renaming of S , and e an equation. Let R′ be a NN-PE of R w.r.t.

S (under ρ) such that R′ ∪ {e′} is S ′-closed, where e′ = renρ(e) and S ′ = ρ(S ). If e

deterministically normalizes to true w.r.t. R, then e′ deterministically normalizes to

true w.r.t. R′.

Proof

Since e deterministically normalizes to true w.r.t. R, there is a needed narrowing

derivation e �∗
id true in R. By Theorem 5 (see below), there is a needed narrowing

derivation e′ �∗
σ true in R′ with σ = id [Var(e)]. This implies σ = id by definition

of needed narrowing. Therefore, e′ deterministically normalizes to true w.r.t. R′ by

Proposition 3. �

This property of specialized programs is desirable and important from an

implementation point of view, since the implementation of non-deterministic steps

is an expensive operation in logic-oriented languages. Moreover, additional non-

determinism in the specialized programs can result in additional infinite derivations,

as shown in Example 13. This might have the effect that solutions are no longer

computable in a sequential implementation based on backtracking. Essentially,

deterministic computations are preserved thanks to the use of needed narrowing

over inductively sequential programs to perform partial computations. For instance,

consider the function “leq” of Example 1 together with the simple function “foo”:

foo(0) → 0

Given a function call of the form X � foo(Y), many narrowing strategies (e.g., lazy

narrowing) have two ways to proceed: either by reducing the call to function “�”

using the first rule

X � foo(Y) �{X �→0} true

and by reducing the call to function “foo” (which is demanded by the second and

third rules of “�”)

X � foo(Y) �{Y �→0} X � 0

Thus, their associated resultants are as follows:

0 � foo(Y) → true

X � foo(0) → X � 0

Now, given a call of the form 0 � foo(Z), both resultants are applicable but the

second one is clearly redundant. Actually, the second resultant is only meaningful

to evaluate those calls whose first argument is of the form s(· · ·), since only the

second and third rules of “�” demanded the evaluation of call foo(0) that gave

rise to this resultant. The advantage of using needed narrowing is that it applies

some additional bindings so that this information is made explicit in the computed

resultants, e.g. the resultants obtained by needed narrowing are

0 � foo(Y) → true

s(Z) � foo(0) → s(Z) � 0
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thus avoiding the creation of additional non-determinism. This property is somehow

related to the notion of perfect splits used in (Abramov and Glück 2000; Abramov

and Glück 2002; Glück and Klimov 1993) to guarantee that no computations are

neither lost nor added when constructing – by driving (Turchin 1986), a symbolic

execution mechanism which shares many similarities with lazy narrowing – the

perfect process trees of (positive) supercompilation (Sørensen et al. 1996).

Note that there is no counterpart of this property in the partial deduction of

logic programs, since the considered execution mechanism (some variant of SLD-

resolution) never demands – in a don’t-know non-deterministic way – the evaluation

of different atoms of the same goal.

Finally, we state the strong correctness of NN-PE, which amounts to the compu-

tational equivalence between the original and the specialized programs (i.e., the fact

that the two programs compute exactly the same answers) for the considered goals.

The proof of this theorem can be found in (Alpuente et al. 2004).

Theorem 5 (strong correctness)

Let R be an inductively sequential program. Let e be an equation, V ⊇ Var(e) a

finite set of variables, S a finite set of operation-rooted terms, and ρ an independent

renaming of S . Let R′ be a NN-PE of R w.r.t. S (under ρ) such that R′ ∪ {e′} is

S ′-closed, where e′ = renρ(e) and S ′ = ρ(S ). Then, e �∗
σ true is a needed narrowing

derivation for e in R iff there exists a needed narrowing derivation e′ �∗
σ′ true in R′

such that (σ′ = σ)[V ] (up to renaming).

It is worthwhile to note that the correctness of NN-PE cannot be derived from

the correctness of LN-PE (Alpuente et al. 1997), since the preservation of inductive

sequentiality (cf. Theorem 3) is a crucial point in our proof scheme, and this property

does not hold for LN-PE.

On the other hand, it is well-known that partial evaluation can be defined within

the fold/unfold framework (Pettorossi and Proietti 1996b) by using only unfolding

and a restricted form of folding. Hence the correctness of NN-PE could be derived

from the correctness of a fold/unfold framework for the transformation of functional

logic programs based on needed narrowing. However, the only framework of this

kind in the literature is that by Alpuente et al. (1999, 2004) and their proofs

of correctness – regarding the unfolding transformation – rely on the results in

this paper. The precise relation between partial evaluation and the fold/unfold

transformation – for lazy functional logic programs – can be found in (Alpuente

et al. 2000).

6 Further developments

In the previous sections, we introduced the theoretical basis for PE in the context of

lazy functional logic programming. Since the preliminary publication of these results,

several extensions as well as concrete partial evaluators have been developed. In this

section, we review some of these subsequent developments.

The computational model of modern declarative multi-paradigm languages, which

integrate the most important features of functional, logic, and concurrent pro-

gramming, is based on a combination of two different operational principles:
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needed narrowing and residuation (Hanus 1997). The residuation principle is based

on the idea of delaying function calls until they are sufficiently instantiated for

a deterministic evaluation by rewriting. The particular mechanism (narrowing

or residuation) is specified by evaluation annotations: deterministic functions are

annotated as rigid (which forces a delayed evaluation by rewriting), while non-

deterministic functions are annotated as flexible (which enables narrowing steps).

Although NN-PE is originally formulated for functional logic languages based

uniquely on needed narrowing, it is still possible to adapt it to the use of distinct

operational mechanisms. In fact, NN-PE has been already adjusted to perform

partial computations using the combined operational semantics described above

(Albert 2001; Albert et al. 1999).

On the other hand, NN-PE has also been extended (Albert et al. 2002) in

order to make it viable for defining partial evaluators for practical multi-paradigm

functional logic languages like Curry (Hanus (ed.) 2003) or Toy (López-Fraguas

and Sánchez-Hernández 1999). When one considers a practical language, several

extensions have to be considered, e.g. higher-order functions, concurrent constraints,

calls to external functions, etc. To deal with these additional features, the underlying

operational calculus becomes usually more complex. As we mentioned earlier, an

on-line partial evaluator normally includes an interpreter of the language (Consel

and Danvy 1993). Then, as the operational semantics becomes more elaborated,

the associated PE techniques become (more powerful but) also increasingly more

complex. To avoid this problem, an approach successfully tested in other contexts

(Bondorf 1989; Glück and Klimov 1993; Nemytykh et al. 1996) is to consider the

PE of programs written in a maximally simplified programming language.

Hanus and Prehofer (1999) have introduced a flat representation for functional

logic programs in which definitional trees are embedded in the rewrite rules by

means of case expressions:

Example 14

Function “�” of Example 1 can be written in the flat representation as follows:

X � Y = case X of { 0 → true;

s(X1) → case Y of { 0 → false;

s(Y1) → X1 � Y1 } }
Two nice properties of the flat representation are that it provides more explicit

control – hence the associated calculus is simpler than needed narrowing – and source

programs can be automatically translated to the new representation. Moreover, it

constitutes the basis of a recent proposal for an intermediate language, FlatCurry,

used during the compilation of Curry programs (Antoy and Hanus 2000; Antoy

et al. 2001). A new PE scheme (Albert 2001; Albert et al. 2002) has been designed

by considering such a flat representation for functional logic programs.

However, the use of the standard semantics for flat programs – the LNT calculus

(Hanus and Prehofer 1999), which is equivalent to needed narrowing – at PE time

does not avoid the backpropagation of bindings when evaluating terms in constructor

root-stable form, which can be problematic within a lazy context (see Example 7).

In order to overcome this problem, a residualizing version of the standard semantics
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is introduced: the RLNT calculus (Albert 2001; Albert et al. 2003). Finally, since

modern lazy functional logic languages can be automatically translated into this flat

representation – which still contains all the necessary information about programs –

the resulting technique is widely applicable.

All these results laid the ground for the development of a partial evaluation

tool for Curry programs, which has been distributed with the Portland Aachen

Kiel Curry System (Hanus (ed.) et al. 2003) since April 2001. Our partial evaluator

constructs optimized, residual versions for selected calls of the input program. These

calls are annotated by means of the function PEVAL which is equivalent to the

identity function. Let us show a typical session with the partial evaluator. Here

we consider the optimization of a program containing several calls to higher-order

functions (since it is common to use higher-order combinators such as map, foldr,

etc. in Curry programs). Although the use of such functions makes programs concise,

some overhead is introduced at run time. Hence, we apply our partial evaluator to

optimize calls to these functions. As a concrete example, consider the following

(annotated) Curry program:5

main xs ys = (PEVAL (map (iter (+1) 2) xs)) ++ ys

iter f n = if n==0 then f else iter (comp f f) (n-1)

comp f g x = f (g x)

bench = main [1..20000] []

stored in the file map iter.curry. Function comp is a higher-order function to

compose two input functions, while iter composes a given function 2n times. Thus,

given two input lists, xs and ys, function main adds 4 to each element of xs – the

annotated expression – and then concatenates the result with the second list ys.

The built-in function “++” denotes list concatenation in Curry (more details can be

found in (Hanus (ed.) 2003)). To measure the improvement achieved by the process,

we have also included the function bench with a simple call to function main,

where [1..20000] represents a list from 1 to 20000. First, we load the program

into PAKCS, turn on the time mode (to obtain the run time of computations), and

execute function bench:

prelude> :l map iter
...

compiled /tmp/map iter.pl in module user, 620 msec 9888 bytes

map iter> :set +time

map iter> bench

Runtime: 750 msec.

Result: [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,...]

Now, we run the partial evaluation tool and show the result of the process:

map iter> :peval
...

5 Here we follow the Curry syntax: both variables and functions (except for PEVAL) start with lower case
letters and function application is denoted by juxtaposition.
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Writing specialized program into "map iter pe.flc"...

Loading partially evaluated program "map iter pe"...

map iter pe> :show

main xs ys = (map pe0 xs) ++ ys

iter f n = if n==0 then f else iter (comp f f) (n-1)

comp f g x = f (g x)

bench = main [1..20000] []

map pe0 [] = []

map pe0 (x : xs) = ((((x + 1) + 1) + 1) + 1) : map pe0 xs

Only two modifications have been performed over the original program: the

annotated expression has been replaced by a call to the new function map pe0

and the residual (first-order) definition of map pe0 has been added. To check the

improvement achieved, we can run function bench again:

map iter pe> bench

Runtime: 170 msec.

Result: [5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,...]

Thus, the new program runs approximately 4.5 times faster than the original one.

The reason is that it has a first-order definition and is completely “deforested”

(Wadler 1990) in contrast to the original definition. In fact, the most successful

experiences were achieved by specializing calls involving higher-order functions

(obtaining speedups up to a factor of 9) and generic functions with some static data,

like a string pattern matcher where a speedup of 14 was obtained; experimental

results can be found in (Albert et al. 2002).

Note that all aforementioned proposals rely on the theoretical foundations

presented in this work. Therefore, our results constitute the basis for the correctness

of all these developments.

7 Conclusions

Few attempts have been made to investigate powerful and effective PE techniques

which can be applied to term rewriting systems, logic programs, and functional

programs. In this work, we have introduced the theoretical basis for the PE of

functional logic programs based on needed narrowing. We have proved its strong

correctness, i.e., that the answers computed by needed narrowing in the original

and specialized programs for the considered goals are identical (up to renaming).

Furthermore, we have proved that the PE process keeps the inductively sequential

structure of programs so that the needed narrowing strategy can also be used for the

execution of specialized programs. As a consequence, our PE process preserves the

following desirable property for functional logic programs: deterministic evaluations

w.r.t. the original program are still deterministic in the specialized program. This

property is nontrivial as witnessed by counterexamples for the case of lazy narrowing.

This allows us to conclude that PE based on needed narrowing provides the best

known basis for specializing functional logic programs.
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To summarize, the notions presented in this article seem to be the most promising

approach for the PE of modern functional logic languages based on a lazy semantics:

• We have shown that a partial evaluator based on lazy narrowing may lead

from orthogonal programs to programs outside this class. This is clearly

improved by PE based on needed narrowing as it preserves the original

(inductively sequential) structure of programs, which is the only requirement

for the completeness of the method.

• On the other hand, modern functional logic languages are based on (some form

of) needed narrowing and, thus, this article is intended to be the foundational

work in this area.

Finally, as we mentioned before, current approaches to the PE of multi-paradigm

functional logic languages (Albert et al. 1999, 2002) rely on the theoretical founda-

tions presented in this work. Therefore, our results provide the necessary basis for

the correctness of all these subsequent developments.
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