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We present direct numerical simulations of Taylor–Couette flow with grooved walls
at a fixed radius ratio η = ri/ro = 0.714 with inner cylinder Reynolds number up
to Rei = 3.76 × 104, corresponding to Taylor number up to Ta = 2.15 × 109. The
grooves are axisymmetric V-shaped obstacles attached to the wall with a tip angle of
90◦. Results are compared to the smooth wall case in order to investigate the effects
of grooves on Taylor–Couette flow. We focus on the effective scaling laws for the
torque, flow structures, and boundary layers. It is found that, when the groove height
is smaller than the boundary layer thickness, the torque is the same as that of the
smooth wall cases. With increasing Ta, the boundary layer thickness becomes smaller
than the groove height. Plumes are ejected from the tips of the grooves and secondary
circulations between the latter are formed. This is associated with a sharp increase of
the torque, and thus the effective scaling law for the torque versus Ta becomes much
steeper. Further increasing Ta does not result in an additional slope increase. Instead,
the effective scaling law saturates to the ‘ultimate’ regime effective exponents seen for
smooth walls. It is found that even though after saturation the slope is the same as
for the smooth wall case, the absolute value of torque is increased, and more so with
the larger size of the grooves.

Key words: plumes/thermals, Taylor–Couette flow, turbulence simulation

1. Introduction
Non-smooth surfaces exist everywhere in nature, and many engineering applications

need to deal with rough boundaries. The question of how local wall roughness affects
global transport properties dates back to the pioneering study by Nikuradse (1933)
in pipe flow. Nikuradse performed experiments on pipes with sand glued to the wall
as densely as possible. The measurements of the friction coefficient Cf = τ/(ρU2/2),
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where τ is the surfaced averaged friction stress, ρ the fluid density and U the
mean flow velocity, show that roughness has little impact in the laminar regime,
but after increasing the Reynolds number Re, the friction factor turns upwards and
reaches an asymptote. At the highest Re, the friction factor becomes independent of
Re. Nikuradse then explained that, in the smooth case, the viscous sublayer depth
depends on Re, and hence the friction factor. However, by introducing roughness,
the viscous sublayer decreases down to the roughness scale, where the friction factor
becomes independent of Re. Since then, there have been many studies concerning
flow in pipes with surface roughness (see Jimenez (2004) for a review).

In general, studying the effect of a change of the boundary conditions at the wall
will lead to a better understanding of the bulk–boundary layer (BL) interaction and
the flow transport properties which are closely connected therewith. Next to pipe flow,
the canonical systems in turbulent flows are Rayleigh–Bénard (RB) flow, in which
a fluid is driven by the temperature difference between the hot bottom plate and
cold top plate, and Taylor–Couette (TC) flow, in which a fluid is confined between
two independently rotating coaxial cylinders. Both flows have been well studied and
show rich patterns with smooth walls (see Ahlers, Grossmann & Lohse (2009) for a
comprehensive review on RB flow and Fardin, Perge & Taberlet (2014); Grossmann,
Lohse & Sun (2016) on TC flow). Eckhardt, Grossmann & Lohse (2007a,b) showed
that pipe, RB and TC flows are analogous to each other. Because of the close analogy,
a better understanding of TC flow will lead to a more profound insight also in RB
and pipe flow, and vice versa.

The temperature difference between the top and bottom plate in RB flow is
analogous to different rotation rates of the inner and outer cylinders in TC flow.
The rotation difference in TC flow is non-dimensionally characterized by the Taylor
number Ta, which is analogous to the dimensionless temperature difference in RB
flow, i.e. the Rayleigh number Ra. For TC flow, the global transport property is
expressed as the dimensionless torque Nuω, which is analogous to the dimensionless
heat flux in RB flow, i.e. the Nusselt number Nu. In TC flow, when the driving
force Ta is small, both the BL and the bulk are of laminar type. When increasing Ta,
first the bulk becomes turbulent, and finally also the BLs (Grossmann, Lohse & Sun
2014; Ostilla-Mónico et al. 2014a,b). This state is the so-called ‘ultimate’ regime.
The ultimate regime is relevant not only conceptually (Kraichnan 1962; Grossmann
& Lohse 2000, 2001), but also because many applications in nature and engineering
are within that regime. For TC flow, the BL transition was first found by Lathrop,
Fineberg & Swinney (1992a,b) and Lewis & Swinney (1999), though they did not
relate it to the ‘ultimate’ regime. Later, van Gils et al. (2011), Huisman et al. (2012,
2013) and Ostilla-Mónico et al. (2014a,b) put it into this conceptual framework. In
RB turbulence, the ultimate regime was experimentally found by He et al. (2012a,b).
In both RB and TC turbulence, the ultimate regime scalings, namely Nu ∼ Raβ in
RB flow and Nuω ∼ Taβ in TC flow, have an effective exponent of β ≈ 0.38–0.40,
originating from 1/2 (Kraichnan 1962) and logarithmic corrections (Grossmann &
Lohse 2011, 2012).

For RB flow with roughness, various different effective scaling laws relating heat
transport to the driving, written in the form Nu = ARaβ , were suggested. When the
height of roughness δ is larger than the thermal BL thickness λθ ' L/(2Nu), where L
is the distance between two plates, Shen, Tong & Xia (1996) found that the prefactor
A increased by 20 %, whereas the exponent β did not change on using rough surfaces
made of regularly spaced pyramids. Later, by using the same facility, but a different
pyramid height (9 mm compared to 3.2 mm in Shen et al. (1996)), Du & Tong
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(2000) measured the increase of A to be as much as 76 % and the exponent β again
stayed the same. Based on flow visualization, Du & Tong (2000) concluded that the
enhancement of heat transport is due to plume ejection from the tip of the pyramids.
Also Ciliberto & Laroche (1999) found that β was unaffected but, more surprisingly,
A decreased when λθ < δ. In another experiment, which used pyramid roughness,
by Qiu, Xia & Tong (2005), both A and β were found to increase and the new
β with roughness was 0.35. Wei et al. (2014) found β ≈ 0.35 with roughness on
both the lower and upper plates. In contrast, Stringano, Pascazio & Verzicco (2006),
who numerically investigated RB convection over grooved plates, showed that the
secondary vortex inside the grooves would lift up the BL and help the plumes detach
from the tip, which is consistent with the result of Du & Tong (2000). Both A
and β increased and β changed to approximately 0.37. By implementing V-shaped
axis-symmetrical roughness both on the sidewalls and horizontal plates, Roche et al.
(2001) obtained an increase of β to approximately 0.51, which was interpreted as
triggering the ultimate region 1/2 law without the logarithmic correction proposed
by Kraichnan (1962), after λθ drops below the roughness height. They concluded
that the roughness imposes a new length scale on the thermal BLs. They argued that
the sublayer thickness would be fixed by the roughness such that the logarithmic
correction would become irrelevant. Ahlers et al. (2009) pointed out that the 1/2
scaling observed might possibly be due to a crossover between rough surfaces from a
regime with a groove depth less than the BL thickness to a regime where the groove
depth is larger than the BL thickness. Tisserand et al. (2011) postulated that, if this
interpretation was correct, then the β = 1/2 behaviour of RB flow with roughness
would be fortuitous. Salort et al. (2014) further showed that, in their model, β could
range from 0.38 to 0.5, depending on the extent of instability of the BL. Clearly,
more work is needed to resolve this issue.

We now come to TC flow with roughness, the subject of the present study, for
which studies are less common. Cadot et al. (1997) performed experiments with
equidistant ribs on both the inner and the outer surface. These ribs were straight
and parallel to the axis of the cylinders. With smooth boundaries, the dissipation
in the boundary is dominant and the drag coefficient decreases with increasing Re.
However, with rough walls, Cadot et al. (1997) argued that the dissipation in the
BLs is no longer dominant, due to the extra dissipation in the bulk. In that regime
the global drag coefficient becomes constant with increasing Re. Inspired by this
work, van den Berg et al. (2003) performed further experiments with the same
style of roughness. They reported results for the four cases of two smooth walls,
smooth-inner/rough-outer, rough-outer/smooth-inner, and two rough walls. The data
were interpreted within the Grossmann–Lohse (GL) theory (Grossmann & Lohse 2000,
2001, 2002). The flow was found to change from BL dominant to bulk dominant. In
the case with two rough walls, the drag coefficient is again found to be independent
of Re. The phenomenon of drag saturation with increasing Re is very similar to that
found by Nikuradse (1933) in his rough pipe experiments.

We stress that there are usually two different types of wall roughness. In the first
type the roughness is arranged in such a way as to impede the mean flow. We call this
‘perpendicular roughness’. This kind of roughness element seems to be a more efficient
generator of skin friction than smooth walls (Jimenez 2004). The studies of Cadot
et al. (1997) and van den Berg et al. (2003) can both be included in this category.
The other possibility is to arrange the roughness aligned with the mean flow, i.e.
‘parallel roughness’. A well-documented example is the flow over riblets (Choi, Moin
& Kim 1993; Chu & Karniadakis 1993). Under specific circumstances they decrease
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FIGURE 1. (Colour online) Schematic view of the Taylor–Couette system and the groove
geometry. (a) Three-dimensional view. The inner cylinder with radius ri is rotating with
angular velocity ωi. The outer cylinder with radius ro is at rest. (b) Cross-section view of
the gap between the cylinders: d= ro − ri. The length scale of the grooves is δ.

drag by 6 % (Choi et al. 1993). Many different kinds of roughness can be formed by
combining these two approaches.

Inspired by the above studies, especially the similarities between pipe, RB and
TC flow, we study how the Nuω versus Ta scaling and the corresponding flow
structure behave with roughness in TC. In the present study, we perform direct
numerical simulation (DNS) of TC flow with grooved walls. Because the grooves are
quite large compared to the viscous scale, we avoid calling them roughness, similar
to Stringano et al. (2006). The grooves implemented here are V-shaped obstacles
attached to the wall with a tip angle of 90◦ and axisymmetric to the axis of cylinder.
This arrangement of grooves is categorized as parallel roughness. A schematic view
of the structure is shown in figure 1. Note that the rough element type in this study
is similar to the one used in Stringano et al. (2006), but different from the one used
in Shen et al. (1996) and Du & Tong (2000), in which pyramid structures were used.

Our motivations are as follows: (i) DNS provides us with the ability to reproduce
all the details of the flow field which are unavailable in experiments, and therefore
enables us to reveal the connection between the effective scaling laws for the torque,
the boundary layer, and the flow structures. (ii) We want to answer the question
whether, with parallel roughness, the ultimate regime effective scaling exponent β
would change, or whether it stays the same as in the smooth case, namely β = 0.38
in the relevant Ta regime.

The manuscript is organized as follows. In § 2, we describe the numerical methods
and parameter settings. In § 3, we show the effective scaling laws between the Nusselt
number and Taylor number in smooth and grooved cases. In § 4, it is shown how
grooves change the flow structure. Section 5 presents the boundary layer dynamics
with grooves. Finally, conclusions are drawn in § 6.

2. Numerical settings
2.1. Parameter descriptions

In the present study, the outer cylinder is stationary and only the inner cylinder is
rotating and thus driving the flow. The flow is bounded by two lateral grooved walls
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cylinders with no-slip boundary conditions. The lower and upper surfaces are replaced
by axially periodic boundary conditions and therefore do not include the effects of
end walls unavoidably present in TC experiments. The grooves of the lateral walls are
V-shaped, with a tip angle of 90◦ and a height δ (figure 1). ri and ro are the base radii
of the inner and the outer cylinder without grooves, respectively. The valley-to-valley
distance d= ro− ri is used to non-dimensionalize all lengths and the base velocity of
the inner cylinder U= riωi for normalizing velocities, where ωi is the angular velocity
of the inner cylinder. The inner grooves rotate with the inner cylinder, and thus have
constant angular velocity. This means that the azimuthal velocity at the tip of the
groove is slightly larger by a factor of (ri + δ)/ri than the velocity at the valley of
the inner cylinder. The geometry of the system is fixed at a specific radius ratio η=
ri/ro= 0.714. The reasons for keeping the outer cylinder stationary and choosing such
a radius ratio are because they are close to the previous experimental and numerical
studies (Lathrop et al. 1992a,b; Lewis & Swinney 1999; Huisman et al. 2012, 2013;
Ostilla-Mónico et al. 2014a), so that we can make direct comparisons with those
results. We define the dimensionless radial coordinate as y = (r − ri)/d, so that it
ranges from 0 at the inner cylinder to 1 at the outer cylinder. Brauckmann & Eckhardt
(2013) and Ostilla-Mónico et al. (2014a,b) showed that a rotational symmetry of order
six does not change the flow statistics for η = 0.714. We follow their approach and
choose this value to reduce the number of grids and the computational cost. The
aspect ratio Γ is chosen to be Γ =L/d= 2π/3= 2.094 (Ostilla-Mónico et al. 2014a),
where L is the axial domain length. In this way one pair of Taylor vortices can be
sustained in our DNS. The dimensionless torque is defined in the form Nuω = T/Tpa,
where Tpa is the torque of the purely azimuthal laminar state without grooves.

The motion of the fluid is governed by the incompressible Navier–Stokes equations

∂u
∂t
+ u · ∇u=−∇p+ f (η)

Ta1/2
∇2u, (2.1)

∇ · u= 0, (2.2)

where u and p are the fluid velocity and pressure, respectively. f (η) is a geometrical
factor which is in the form

f (η)= (1+ η)
3

8η2
. (2.3)

The Ta number, in the absence of outer cylinder rotation, is written as

Ta= 1
64
(1+ η)4
η2

d2(ri + ro)
2ω2

i ν
−2, (2.4)

where ν is the kinematic viscosity of the fluid.
An alternative way to determine the system by using the inner cylinder Reynolds

number Rei= riωid/ν, rather than the Ta number, is suggested in the work of Lathrop
et al. (1992a,b), Lewis & Swinney (1999). Note that these two definitions can be
easily translated into each other using the relation

Ta= [ f (η)Rei]2. (2.5)
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2.2. Numerical method

A second-order finite difference code is employed for the present research, which is
written in cylindrical coordinates and discretized on a staggered mesh. Details of the
base code can be found in Verzicco & Orlandi (1996) and van der Poel et al. (2015a).
The code has been extensively validated in Ostilla et al. (2013) and Ostilla-Mónico
et al. (2014a,b). Time marching is performed by a third-order Runge–Kutta scheme
and the fractional step is used for the pressure–momentum coupling, in combination
with a semi-implicit scheme for viscous terms. To achieve large-scale computation, a
hybrid MPI-pencil and OpenMP decomposition is used to parallelize the code.

An immersed boundary (IB) technique (Fadlun et al. 2000) has been implemented
into the code in order to deal with grooves on the surfaces of both cylinders. The
main idea of the IB method is to add a body force term f to the momentum
equation (2.1), mimicking the boundary effect, to enforce in this way the desired
velocity on the boundary, so that a regular non-body fitted mesh can be used. The
information transfer between boundaries and nearby meshes is performed by means
of interpolation. The advantage of the IB method is immediate: flow bounded by
arbitrary complex geometry can be easily solved on a very simple mesh with an
additional body force. This IB method has already been validated in a variety
of contexts (Fadlun et al. 2000; Stringano et al. 2006). For more details on the
implementation, accuracy and application of the IB method, we refer the reader to
Fadlun et al. (2000) and Mittal & Iaccarino (2005).

In order to guarantee the proper resolution, we proceed as follows. The mean
angular velocity current Jω, defined by

Jω = r3(〈urω〉A,t − ν∂r〈ω〉A,t), (2.6)

is strictly conserved along the radius r (Eckhardt et al. 2007b). In this equation, ur

denotes the radial velocity component and ω the angular velocity. On the one hand,
Jω is related to the torque T by T/(2πLρf ) = Jω, where ρf is the fluid density. On
the other hand, Jω can also be related to Nuω as Nuω = T/Tpa = Jω/Jω0 , in which Jω0
is the angular velocity current of the purely azimuthal state without grooves. 〈· · · 〉A,t
represents averages over a cylindrical surface at radius r and over time. Numerically,
Jω will deviate slightly from being constant due to numerical errors. To quantify this
difference, we define

∆J = max(Jω(r))−min(Jω(r))
〈Jω(r)〉r , (2.7)

where the maximum and minimum are determined over all r, which is chosen to be
within the range ri + δ 6 r 6 ro − δ because of the influences of the grooves. As
illustrated by Ostilla et al. (2013), ∆J 6 0.01 is a very strict requirement for the
meshes. We make sure that all of our simulations meet this criterion (see table 1).
An additional issue on resolution within the near-wall region by using the IB method
is that grooves do not coincide with the coordinate lines. This results in a finer mesh
in the radial and axial directions. Compared to the case without grooves at the same
Ta number, the number of grids increases by at least by a factor of four. Figure 2
shows an example of the mesh in the meridional plane.
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FIGURE 2. (Colour online) An example of the mesh used in our simulations in the
meridional plane with radial grids and axial grids of Nr × Nz = 160 × 512. (a) Whole
surface. (b) Enlargement of the region near the grooves. A more refined mesh is needed
near the tip of the grooves. Note that the grid resolution in the axial direction is much
higher than the one used in Ostilla et al. (2013), Ostilla-Mónico et al. (2014a) because
here we have to implement the IB method.

2.3. Explored phase space
Inspired by the literature on RB flow with roughness (Shen et al. 1996; Du & Tong
2000), in which it was found that the heat flux increase can not be explained solely
by the increase of surface area, three different groove heights with the same total area
in each series, i.e. δ= 0.052d, δ= 0.105d and δ= 0.209d, corresponding to 20, 10 and
5 grooves on both surfaces of cylinder, were analysed. In each series with the same
groove height, Ta is varied from 105 to 109. We then directly compare our results with
our previous simulations by Ostilla et al. (2013) and Ostilla-Mónico et al. (2014a), as
well as experiments by Lewis & Swinney (1999), all without grooves. The details of
all simulations are given in table 1.

3. Global response: dimensionless torque
As mentioned above, the global response of transport of the TC system can be

expressed as the torque which is required to keep the inner cylinder at a fixed
angular velocity. To investigate the effect of the grooved walls, in this section, the
dimensionless torque Nuω is presented as a function of Ta, i.e. Nuω = ATaβ , with
grooved walls, in comparison with the results for smooth walls.

Figure 3 shows Nuω with increasing Ta for smooth cases and grooved cases with
three series of different groove heights. For the smooth TC flow, from Ta= 2.5× 105
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δ/d Ta Rei Nθ ×Nr ×Nz Nuω 100∆J

0.052 2.44× 105 4.00× 102 64× 160× 512 2.869 0.21
0.052 7.04× 105 6.80× 102 64× 160× 512 3.655 0.42
0.052 1.91× 106 1.12× 103 64× 192× 768 4.678 0.33
0.052 3.90× 106 1.60× 103 128× 224× 896 5.535 0.26
0.052 9.52× 106 2.50× 103 128× 256× 1024 6.646 0.41
0.052 2.39× 107 3.96× 103 160× 320× 1280 7.208 0.38
0.052 4.77× 107 5.60× 103 160× 400× 1600 8.421 0.62
0.052 9.75× 107 8.00× 103 192× 512× 2048 11.11 0.56
0.052 2.15× 108 1.19× 104 192× 512× 2048 16.60 0.82
0.052 4.62× 108 1.74× 104 256× 640× 2560 22.70 0.79
0.052 9.75× 108 2.53× 104 256× 640× 2560 30.85 0.83
0.052 2.15× 109 3.76× 104 384× 700× 2800 41.12 0.78

0.105 2.44× 105 4.00× 102 64× 160× 512 2.907 0.10
0.105 7.04× 105 6.80× 102 64× 160× 512 3.653 0.26
0.105 1.91× 106 1.12× 103 64× 192× 768 4.450 0.32
0.105 3.90× 106 1.60× 103 128× 256× 1024 5.151 0.31
0.105 9.52× 106 2.50× 103 128× 256× 1024 6.096 0.28
0.105 2.39× 107 3.96× 103 160× 384× 1536 7.933 0.49
0.105 4.77× 107 5.60× 103 160× 400× 1600 11.15 0.37
0.105 9.75× 107 8.00× 103 192× 512× 2048 15.24 0.68
0.105 2.15× 108 1.19× 104 192× 512× 2048 20.32 0.42
0.105 4.62× 108 1.74× 104 256× 640× 2560 26.56 0.83
0.105 9.75× 108 2.53× 104 256× 640× 2560 34.76 0.57

0.209 1.03× 105 2.60× 102 64× 160× 512 2.452 0.19
0.209 2.44× 105 4.00× 102 64× 160× 512 3.333 0.24
0.209 7.04× 105 6.80× 102 64× 160× 512 4.516 0.39
0.209 1.91× 106 1.12× 103 64× 192× 768 5.364 0.23
0.209 3.90× 106 1.60× 103 128× 256× 1024 6.489 0.47
0.209 9.52× 106 2.50× 103 128× 256× 1024 8.016 0.59
0.209 2.39× 107 3.96× 103 160× 384× 1536 11.73 0.63
0.209 4.77× 107 5.60× 103 160× 400× 1600 14.15 0.48
0.209 9.75× 107 8.00× 103 192× 512× 2048 17.93 0.72
0.209 2.15× 108 1.19× 104 192× 512× 2048 22.49 0.61

TABLE 1. Values of the control parameters and the numerical results of the simulations.
Three series of different groove height are presented. In each series, we vary Ta, and thus
Rei. The fourth column shows the number of grids used in the azimuthal (Nθ ), radial (Nr)
and axial direction (Nz). The fifth column shows the dimensionless torque, Nuω. The last
column shows the criteria of resolution we choose, i.e. angular velocity current difference
along the radius Jω. All of the simulations were run in a reduced geometry with L= 2π/3
and a rotation symmetry of the order 6. The corresponding cases at the same Ta without
grooves (with smooth cylinders) can be found in Ostilla et al. (2013), Ostilla-Mónico et al.
(2014a).

up to Ta = 3 × 106, an effective scaling law of Nuω ∼ Ta1/3 is found, which is
associated with the laminar Taylor vortices. Between Ta= 3× 106 and Ta= 2× 108,
there is a transitional region in which first the bulk becomes turbulent, and then the
boundary layers also become gradually turbulent (see the gradually growing turbulent
BL in Ostilla-Mónico et al. (2014a)). When Ta is even larger, the flow is fully
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FIGURE 3. (Colour online) (a) Nusselt number as function of Ta for η= 0.714. The data
are from experiments and numerical simulations: · · · , smooth walls experiments by Lewis
& Swinney (1999); E, smooth walls simulations by Brauckmann & Eckhardt (2013); @,
smooth walls simulations by Ostilla-Mónico et al. (2014a);A, grooved walls simulations
with δ= 0.052d in the present study; ♦, grooved walls simulations with δ= 0.105d in the
present study;B, grooved walls simulations with δ= 0.209d in the present study. Dashed
line and dotted dashed line show the 1/3 and the 0.38 slope. Two arrows indicate Ta=
4.77× 107 and Ta= 9.85× 108 in the δ = 0.105d series. The former Ta is in the regime
where the scaling slope is larger than 0.38 and the latter is in the regime where the slope
saturates back to 0.38. These two cases are used in the main text as examples to show
why Nuω is increased and why the scaling slope is changed. (b) The same as (a), but
now the Nusselt number is scaled with Ta−1/3. (c) The same as (a), now with the Nusselt
number scaled with Ta−1/2. The arrows show the positions where the local 1/2 law can
be seen. (d) The same as (a), now with the Nusselt number scaled with Ta−0.38.

turbulent, in both the bulk and boundary layer, and the so-called ‘ultimate’ regime
appears, with an effective scaling law close to Nuω ∼ Ta0.38 (Ostilla-Mónico et al.
2014a,b).

The situation is more complicated for the grooved TC flow. As shown in figure 3,
for the case of δ = 0.052d, three different scaling laws are found with increasing Ta:
at the early stage, the effective scaling follows the same Nuω∼ Ta1/3, as long as Ta is
smaller than a threshold Taylor number Tath, at which the effective scaling exponent
β in the grooved cases starts to deviate from the smooth cases. Once Ta> Tath, Nuω
for the grooved wall cases increases with a steeper exponent β than for the smooth
wall counterpart. The exponent β can locally be 1/2 for this region. However, further
increasing Ta leads to a saturation to the ultimate regime effective scaling Nuω ∼
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FIGURE 4. (Colour online) Friction factor Cf = 2πNuωJω0 ν
−2/Re2

i as a function of the
inner cylinder Reynolds number Rei.@, smooth walls simulations by Ostilla-Mónico et al.
(2014a);A, grooved walls simulations with δ= 0.052d; ♦, grooved walls simulations with
δ = 0.105d;B, grooved walls simulations with δ = 0.209d.

Ta0.38, as already seen for smooth walls, but with a larger prefactor. This means that
the influence of the grooves on the effective scaling exponent becomes weaker with
increasing Ta.

Note that Nuω does not always increase after Ta exceeds the threshold Tath. For
the case of δ = 0.105d, at Ta < Tath, the relations between Nuω and Ta of smooth
and grooved cases still follow the same route. But, after Ta> Tath, there is a region
where Nuω decreases. The largest decrease is 5 % and occurs at Ta= 1.0× 107. The
mechanism will be shown and explained in detail in § 4. This can be related to
channel flow in which Choi et al. (1993) also found drag reduction in a specific
range of Re. With a further increase in Ta, when Ta > 2.5 × 107, the exponent β
starts to increase and can locally be as steep as 1/2. Again, after that, the effective
scaling saturates once Ta is large enough.

For δ= 0.209d, the threshold Tath is at approximately Ta= 1.0× 105. After a small
range of steep regime in which the slope is larger than 0.38, we find only an upward
shift of Nuω. The effective scaling law does not change much, either in the laminar
or in the turbulent region. This suggests that these massive grooves cannot shift the
transition to the ultimate regime to even smaller value of Ta.

At given Ta, we find that a larger groove height causes a more profound increase
of Nuω. For example, after saturation, for the cases of δ= 0.052d, δ= 0.105d and δ=
0.209d, Nuω increases by 41 %, 58 % and 68 %, respectively. The enhanced transport
in TC flow with grooved walls therefore cannot be solely ascribed to the surface area
increase; it is rather the local flow dynamics near the grooves which enhances the
transport. In the following sections we will look into the flow details to explore the
mechanism of Nuω increase which goes beyond the pure increase of surface area by
the grooves. Note that the behaviour of Nuω versus Ta can also be expressed in terms
of the friction factor

Cf = 2πNuωJω0 ν
−2/Re2

i , (3.1)

as a function of the inner cylinder Reynolds number Rei, which is shown in figure 4.
From this definition, we find that once the local scaling exponent between Nuω and
Ta equals 1/2, a plateau can be found in the Cf versus Rei relation.
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FIGURE 5. (Colour online) Comparison between boundary layer thickness λ and groove
height δ. The solid line denotes the averaged boundary layer thickness estimated by λ'
dσ/(2Nuω) (Brauckmann & Eckhardt 2013). Each triangle symbol shows the value of Ta
at which the groove height equals the boundary layer thickness.

It is a common finding that, in RB flow, the surface roughness becomes active
only when the thermal boundary layer is thinner than a characteristic roughness height
(Shen et al. 1996; Stringano et al. 2006). Similar to this, we also want to stress that,
in TC flow with grooves, the effect of grooves on Nuω can only be seen when the BL
thickness λ becomes less than the groove height δ. At small Ta, the BL is very thick,
and thus the grooves are buried under the BL and the fluid cannot feel their influence.
At large Ta, the BL becomes thinner than the grooves, and thus they strongly affect
the BL dynamics and thereby alter the transport properties. At this critical value Tath,
the BL thickness equals the groove height. The averaged BL thickness λ in TC flow
can be estimated by λ ' dσ/(2Nuω) (Brauckmann & Eckhardt 2013), where σ is
defined as σ = [(ri + ro)/(2

√
rori)]4. Indeed, our simulations show that Nuω starts to

change once the boundary layer thickness becomes smaller than the groove height.
As shown in figure 5, for cases of δ = 0.209d, δ = 0.105d and δ = 0.502d, we have
Tath' 1.0× 105, Tath' 2.8× 106 and Tath' 9.0× 107, respectively. Also from figure 3
it is found that there are sharp transitions for Nuω at these points.

We stress that the local exponent β≈1/2 we have found in figure 3 (see the arrows)
is not the ultimate region scaling without logarithmic correction, but just a crossover
between a regime where the groove depth is less than the BL thickness and a regime
where the groove depth is larger than the BL thickness. Hence it is fortuitous to find
this 1/2 exponent in TC flow with grooves. Note that in pipe flow (Nikuradse 1933)
and TC flow with perpendicular roughness (van den Berg et al. 2003) the situation
is different. In both cases, the roughness is orthogonal to the flow direction and the
main flow is impeded by the roughness. The transfer of momentum from the fluid to
the wall is accomplished by the drag on the roughness elements, which at high Re is
predominantly by pressure forces, rather than by viscous stresses. A new length scale
of the groove height is thus implemented into the system and the drag is independent
of Re at high Re (Pope 2002). In contrast, in our current simulations with grooves,
these are aligned with the flow direction. As a result, the grooves do not play an
immediate role in generating drag, and there is no new length scale to be implemented
into the BL. With increasing Ta, the viscous stresses still dominate the drag. Therefore,
the exponent β saturates to the same value as for the smooth case at larger Ta. It is
important to note that, in RB flow, the large-scale flow fluctuates, and so it always
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FIGURE 6. (Colour online) Tip-to-tip Nusselt number as a function of the tip-to-tip Taylor
number scale with Tatt−0.38 for η=0.714.A, grooved walls simulations with δ=0.052d; ♦,
grooved walls simulations with δ= 0.105d;B, grooved walls simulations with δ= 0.209d.
Comparing this figure with figure 3(d), we find no change in the scaling exponent.

sees the roughness as small obstacles generating direct drag. This aspect is different
from TC flow. However, drag in TC flow is caused by the wall shear rate of the
azimuthal velocity. This is analogous to the wall gradient of the temperature in RB
flow, not to the drag caused by the velocity field.

From the above findings, we summarize that, compared to smooth cases, in grooved
wall TC flow there are three different characteristic regimes. First, when Ta < Tath,
smooth and groove cases show the same behaviour. Second, when Ta > Tath, the
scaling exponent β increases to be locally as large as 1/2. Third, when Ta is large
enough, there is a saturation regime in which the exponent β saturates back to the
ultimate region effective scaling law 0.38, but the prefactor of Nuω is increased by a
substantial margin.

So far, the Ta and Nuω depicted here are both based on the base-to-base
distance d. The usage of d follows the convention of RB studies (Du & Tong
2000; Stringano et al. 2006). This choice, however, is quite arbitrary, because
d is only one possibility for the reference length. The tip-to-tip distance could
also be selected to non-dimensionalize Ta and Nuω. Such a definition would then
lead to the tip-to-tip Taylor number Tatt = Ta(d − 2δ)2/d2 and Nusselt number
Nutt

ω = Nuω(d − 2δ)r2
i r2

o/[d(ri + δ)2(ro − δ)2]. In figure 6, we show Nutt
ω as a function

of Tatt. Despite the grooves being quite high in our simulations, different choices
of the characteristic length scale do not affect the effective power laws, but only
the exact values of the transitional Ta numbers. Therefore, it is a reasonable choice
that we only use d as the reference length scale. If the system reached the ultimate
state, one would expect that the transport of torque should be the same, i.e. the Nuω
versus Ta relation should be the same as that for the smooth case. When deducing
the surface area increase, in our current simulations of δ = 0.052d, δ = 0.105d
and δ = 0.209d, Nuω increases by −1 %, 12 % and 18 % compared to the smooth
case, respectively. We expect that these differences become smaller and smaller with
increasing Ta. Simulations with higher Ta are required to resolve this question.

4. Flow structures
In order to find the mechanism behind the Nuω increase, in this section, visualizations

of the flow in the bulk and the grooves are shown to compare the grooved and smooth
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FIGURE 7. (Colour online) Contour plots of the instantaneous azimuthal velocity field uθ
for (a) the smooth, (b) the δ = 0.052d, and (c) the δ = 0.105d cases at Ta= 4.77× 107.
The colour scale goes from azimuthal velocity 0 (blue) to 1 (red). In the smooth case, the
flow is in the transition region where the laminar regions in the boundary layer coexist
with turbulent, plume-ejecting areas. In (b), the boundary layer is still thicker than the
groove, and therefore no evident difference can be distinguished between (a) and (b). For
(c), the boundary layer is thinner than the grooves and plumes are ejected from all tips
of the grooves.

cases. Figure 7 shows three contour plots of the instantaneous azimuthal velocity uθ
in the meridional plane for the smooth and the δ = 0.052d and δ = 0.105d cases
at Ta = 4.77 × 107. Figure 7(a) shows the flow in the transition region where the
laminar zones in the BL coexist with turbulent, plume-ejecting areas. These plumes
are associated with the axial and radial structure which is induced by the Taylor
vortices. Plumes are ejected from preferential positions where there are adverse
pressure gradients such that detachment from the BL is supported. In figure 7(b),
where δ = 0.052d, Ta is still smaller than Tath, which also means that the grooves
are still buried within the BL and hence the effect of the grooves is very small. This
is the reason why obvious differences cannot be distinguished between figure 7(a)
and (b). However, for figure 7(c), where δ = 0.105d, Ta > Tath and the power law
between Nuω and Ta, which can be seen from figure 3, is in the steep regime. We
find that plumes are ejected from all the tips of the grooves. It is interesting to note
that, for the smooth case, the plumes are ejected only from some specific regions,
while for the grooved case, plumes are detached from nearly all the tips of the
grooves. Because more plumes are ejected compared to the smooth case, Nuω is
greatly enhanced, and the larger exponent β regime can be seen in figure 3.

Figure 8 shows three contour plots of the instantaneous azimuthal velocity uθ in
the meridional plane for the smooth, and the δ = 0.052d and δ = 0.105d cases at
Ta = 9.75 × 108. Figure 8(a) shows the flow in the fully turbulent region. Due to
the decrease in the wall pressure gradient in the axial direction, plumes are ejected
from more places compared to Ta = 4.77 × 107. For figure 8(b), where δ = 0.052d,
we have Ta > Tath, and thus we can see that more plumes are ejected due to the
existence of grooves. The groove tips are the preferential places for these ejections.
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FIGURE 8. (Colour online) Contour plots of the instantaneous azimuthal velocity field uθ
for (a) the smooth, (b) the δ = 0.052d, and (c) the δ = 0.105d cases at Ta= 9.75× 108.
The colour scale goes from azimuthal velocity 0 (blue) to 1 (red). In the smooth case, the
flow is in the fully turbulent region where the bulk and boundary both become turbulent.
Due to the decrease of wall pressure gradient in the axial direction, plumes are ejected
from more places compared to Ta= 4.77× 107. In (b) and (c), where Ta> Tath, plumes
are ejected from the tips, and these plumes all show preferential directions which follow
the Taylor vortices.

In figure 8(c), for the case of δ = 0.105d, compared to the smooth case, plumes are
still ejected from the tips of grooves, but near the valleys there are spots where plumes
grow. The difference in the number of plumes between the grooved and smooth cases
reduces with increasing Ta. This maybe another reason why the Nuω versus Ta scaling
saturates at high Ta. In addition, we note that these plumes have different directions of
movement, either to the top or bottom. It is interesting to find that these plumes follow
the direction of Taylor vortices, which also means that Taylor vortices still exist even
if there are grooves. This behaviour can be explained by the association between the
large-scale Taylor vortices and the secondary vortices inside the grooves, which we
will show in the following paragraphs.

One may argue that plumes may only be emitted at some points of the groove
tips. This, however, is not the case. Figure 9 shows contour plots of the instantaneous
azimuthal velocity uθ of the smooth and δ = 0.105d cases for Taylor number Ta =
9.75 × 108 at constant radius cuts. In figure 9(a), at wall distance y = (r − ri)/d =
4 × 10−3, the flow is in the BL and herring-bone streaks can be seen due to the
boundary layer instability. While, in figure 9(b), at wall distance y= (r− ri)/d= 0.106
or wall distance in terms of the tip of grooves y′ = (r − ri − δ)/d = 1 × 10−3, the
flow is very close to the tips of the grooves, high-speed plumes (shown in red) can
be identified almost everywhere near the tips of the grooves. It is also seen from
this panel that evidence of large-scale vortices can be identified between high-speed
regions where there are large zones of low speed. This is because in these regions
flows are driven by Taylor rolls and move from the outer to the inner cylinder or
vice versa. In addition, the flow is statistically homogeneous in the θ direction. Both
panels can serve as a confirmation of this assumption.
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FIGURE 9. (Colour online) Contour plots of the instantaneous azimuthal velocity uθ (θ, z)
for Taylor number Ta = 9.75 × 108 at constant radius cuts. The colour scale goes from
azimuthal velocity 0 (blue) to 1 (red). (a) The smooth case at fixed wall distance y =
(r − ri)/d = 4 × 10−3. (b) The δ = 0.105d case at fixed wall distance in terms of the
tip of grooves y′ = (r − ri − δ)/d = 1 × 10−3. (a) Shows the herring-bone streaks in the
boundary layer while (b) shows plumes being ejected homogeneously along the azimuthal
direction.
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FIGURE 10. (Colour online) Enlargement of the near-wall region for contour plots of the
instantaneous azimuthal velocity uθ superposed with instantaneous velocity vectors in the
meridional plane at Ta= 9.75× 108. (a) The smooth case, (b) the δ = 0.105d case. The
colour scale goes from azimuthal velocity 0 (blue) to 1 (red). The velocity vectors are
formed by the axial and radial velocity on the surface. For the smooth case in (a), the
plumes are induced by the acceleration of radial flow. Then vortex rings are formed. For
the grooved configuration in (b), the axial flow drives the secondary vortex inside the
grooves. At the same time the interaction between the secondary vortex and the Taylor
rolls causes the detachment of the boundary layer from the tips of the grooves. The
detached azimuthal flow then develops into a plume.

We now discuss why plumes are preferentially ejected from the tips of the grooves.
Figure 10 shows the contour plots of the instantaneous azimuthal velocity uθ ,
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FIGURE 11. (Colour online) Contour plots of the time- and azimuthally averaged
correlation r3〈urω〉A,t at Ta=9.75×108. (a) The smooth case, (b) the δ=0.105d case. The
correlation has been normalized according to r3〈urω〉A,t/(Jω0 Nuω). The red colour represents
the largest value while the blue colour represents the smallest value. It can be seen from
the comparison that the interaction between the secondary vortices inside the grooves
and large-scale Taylor rolls enhances the convective part of the transport in the near-tip
regions.

which are enlargements of the plume-detaching region of figure 8, superposed by
instantaneous velocity vectors in the meridional plane. Figure 8(a) shows how plumes
detach from the wall of the inner cylinder. A radial pressure gradient accelerates the
fluid in the central part of the plume. The sudden acceleration generates secondary
vorticity close to the plume, deforming the plume into a mushroom shape. However,
for the grooved case, the situation is completely different. The axial pressure gradient
favours the Taylor vortex propelling a secondary vortex inside the grooves. This
secondary vortex has the opposite direction compared to the large-scale Taylor vortex.
The interaction between the Taylor vortex and the secondary vortex causes the
detachment of the BL from the tips of the grooves into the bulk, and hence forms
a plume. Then the plumes are dissipated into the large-scale Taylor rolls. These
phenomena are clearly seen in figure 8(b). We note that it is very similar to the
famous ‘lid-driven-cavity’ flow – however, it is the Taylor roll that drives the flow in
the grooves. Although in RB flows the mechanism for large-scale rolls is different
from TC flow, similar thermal plumes are also found to be ejected from the tips of
roughness elements there (Du & Tong 2000; Stringano et al. 2006).

It can be seen from figure 10 how plumes enhance Nuω as well. From the definition
of angular velocity current Jω (equation (2.1)), it is known that Nuω consists of
two parts: convective and conductive contributions. The convective contribution is
proportional to the correlation r3〈urω〉A,t. The interaction between the secondary
vortex inside the grooves and the Taylor vortex first induces a radial velocity at the
tips, then lifts the BL. The geometrically induced radial flow separation, together
with the BL detachment, greatly enhances the convective part of the Nusselt number.
As evidence of this, in figure 11, a comparison of the correlation r3〈urω〉A,t at the
same Ta= 9.75× 108 between the smooth and δ = 0.105d cases is performed. From
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FIGURE 12. (Colour online) Contour plots of the time- and azimuthally averaged
azimuthal velocity 〈uθ 〉θ,t superposed by time- and azimuthally averaged velocity vectors
in the meridional plane at Ta= 9.75× 108. (a) The smooth case, (b) the δ= 0.105d case.
The colour scale goes from azimuthal velocity 0.3 (blue) to 0.7 (red). It can be seen from
the comparison that the interaction between the secondary vortices inside the grooves and
large-scale Taylor rolls favours the circulation of Taylor rolls, and hence we get enhanced
transport.

figure 11(b), it is seen that the BL is thin enough for the grooves to protrude from
it, so that, in this case, the interaction of the secondary vortex inside the grooves
with the Taylor rolls contributes to the total angular momentum transport, while
the additional activity in the near-tip region determines the extra transport increase.
In other words, the grooves enhance plume generation and allow the plumes to
be ejected towards the Taylor rolls. The combined mechanisms then increase the
convective part of torque transport.

From another point of view, we have mentioned before that large-scale Taylor
vortices still exist in grooved TC flow. In figure 12, time-averaged azimuthal velocity
contour plots with superposed velocity vectors are presented for the smooth and the
δ= 0.105d configurations at Ta= 9.75× 108. Figure 12(a) corresponds to a flow field
in the ultimate regime. The Taylor roll is still present, but weaker, and plumes are
ejected from many places on the surface. As a comparison, in figure 12(b) it is seen
that the large-scale Taylor roll interacts with the secondary vortex inside the grooves,
and therefore we conclude that, because of these grooves, on one hand, the Taylor roll
induces recirculation inside the grooves, and at the same time the secondary vortex
also favours the flow of Taylor rolls more effectively than the smooth case. We define
a wind Reynolds number as Rew = σ(ur)d/ν, where σ(ur) is the standard deviation
of the radial velocity. For this figure, we find Rew(grooved) = 1.12Rew(smooth). In
this case the presence of grooves generally leads to a stronger Taylor roll, which also
contributes to the convective part of torque transport.

If, in contrast, the fluctuation of the Taylor roll is not strong enough to induce the
secondary vortex inside the grooves, then stagnant flow inside the grooves could not
favour the Taylor vortices. Oppositely, the grooves impede the circulation of Taylor
rolls when the rolls flow past the grooves. In figure 13, a time-averaged azimuthal
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FIGURE 13. (Colour online) Contour plots of the time- and azimuthally averaged
azimuthal velocity 〈uθ 〉θ,t superposed by time- and azimuthally averaged velocity vectors
in the meridional plane at Ta= 9.52× 106. (a) The smooth case, (b) the δ= 0.105d case.
The colour scale goes from azimuthal velocity 0 (blue) to 1 (red). Comparing the two
panels, no evident secondary vortices can be identified inside the grooves, which serve
only as obstacles to the Taylor rolls. This is the reason why in some cases we find that
Nuω is decreased.

velocity contour plot with superposed velocity vectors is presented for the δ= 0.105d
configuration at Ta= 9.52× 106. No evident secondary vortices can be seen inside the
grooves. Also, no large separation of Taylor rolls can be identified and these grooves
serve only as obstacles to hinder the flow from crossing them. For this figure, we find
Rew(grooved)= 0.84Rew(smooth). As a result, weaker Taylor vortices reduce the radial
angular velocity transport, and Nuω is decreased.

In the above paragraphs, we discussed how grooves affect the bulk flow and the
convective part of Nuω. Because of the conservation of angular velocity current Jω
along the radius, the grooves will also have an impact on the wall turbulence structure
and wall shear rate. To further illustrate the mechanism increasing or decreasing Nuω,
here we include a snapshot of the instantaneous streamwise (azimuthal) vorticity field,
as shown in figure 14 for Ta = 9.52 × 106 and Ta = 9.75 × 108 with δ = 0.105d.
This figure shows the streamwise vorticity field superposed by the velocity vectors
in the plane. At Ta = 9.52 × 106, there is almost no secondary vortex between the
grooves, and only at the tips of the grooves do we see the streamwise vortices which
are caused by flow separation there. At Ta= 9.75× 108, the secondary vortex is much
stronger compared to that of the Ta = 9.52 × 106 case. Between groove tips, almost
all surface areas of grooves are exposed to the sweep motion that streamwise vorticity
(secondary vortex) induces. The stronger the secondary vortex, the greater the surface
area exposed to the sweep motion it induces, and hence the higher the shear rate of
azimuthal velocity. We refer later, in figures 21 and 22, to how secondary vortices
gradually occupy the entire region between grooves, and hence increase the shear rate
not only at the tips, but also in the valleys, with increasing Re.
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FIGURE 14. (Colour online) Enlargement of the near-wall region for contour plots of the
instantaneous streamwise vorticity field superposed with instantaneous velocity vectors in
the meridional plane at Ta= 9.52× 106 (a) and Ta= 9.75× 108 (b) with δ= 0.105d. The
black arrows show the velocity vectors in the plane. Blue denotes a negative streamwise
vorticity and red a positive streamwise vorticity.
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FIGURE 15. (Colour online) Wall shear rate ∂uθ/∂r averaged in time, azimuthally, and
over ten grooves for the δ= 0.105d case at two different Taylor numbers: (a) Ta= 9.52×
106; (b) Ta= 9.75× 108. The solid lines denote the grooved case and the dashed line the
averaged wall shear rate for the smooth case at the same Ta.

We now turn to discussing how the secondary vortices are related to the wall shear
rate of the azimuthal velocity, and hence Nuω. In figure 15, we show the azimuthal
shear rate averaged in time, azimuthally, and over ten grooves at two different Taylor
numbers Ta= 9.52× 106 and Ta= 9.75× 108, compared with the results in the smooth
case. At Ta= 9.52× 106, without secondary vortices, only the tips of the grooves are
exposed to the shear of the Taylor rolls, and the shear rate decays very quickly to
zero from the tips to the valleys of the grooves. There is just a small region close
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FIGURE 16. (Colour online) Averaged azimuthal velocity profile along a radius for the
smooth and the δ = 0.105d case at two different Taylor numbers: (a) Ta = 4.77 × 107;
(b) Ta = 9.75 × 108. The solid line shows the time-, azimuthally and axially averaged
velocity profile for the smooth case. The dashed line denotes the grooved case profile
over time, azimuth and ten valleys, while the dot-dashed line denotes time, azimuth and
ten tips, respectively.

to the groove tip where the shear rate is larger than that in the smooth case. That
is why the torque is reduced. However, at Ta = 9.75 × 108, with strong secondary
vortices, the strong mixing effect causes almost the entire surface area to be exposed
equally to the high shear rate. Only very close to the valley, can one find that the
shear rate is smaller than its smooth counterpart. That is why the torque is enhanced.
The mechanism proposed here is similar to that in channel flow with riblets, where
the location of quasistreamwise vortices is changed by the size of the grooves, and
thus turbulence drag increases or decreases according to the groove size (Choi et al.
1993). However, we observe only very few cases at one groove height 0.1d with Ta
number of approximately 107 where torque is reduced. At this Ta, the flow is not fully
turbulent, and we would restrict our analysis to specific cases. Indeed, more work is
needed to explore whether drag reduction is possible for fully turbulent TC flow.

5. Boundary layer dynamics
In this section we focus on the question of how exactly the grooves modify the

BL dynamics. Figure 16 shows the mean velocity profiles in the smooth and in the
δ= 0.105d configuration at Ta= 4.77× 107 and at Ta= 9.75× 108. At the smaller Ta
the scaling slope is larger than the effective ultimate regime scaling 0.38, while at the
larger Ta the effective scaling saturates back to 0.38. By choosing these two Ta, we
can thus directly compare the BL differences between these two regimes. It is seen
from this figure that the bulk velocity increases in the presence of wall roughness, i.e.
the influence of the wall roughness penetrates well into the bulk region of the flow,
because of the conservation of the angular velocity current Jω= r3(〈urω〉A,t− ν∂r〈ω〉A,t)
along the radius. Figure 17 shows an enlarged region of figure 16 near the wall of
the inner cylinder. The velocity profile for the smooth case is time-, azimuthally, and
axially averaged, while for the grooved case it is time- and azimuthally averaged for
ten different tip points and valley points of the grooves. For the smooth case, the
velocity profile indicates that, due to turbulent mixing induced by the Taylor rolls, the
azimuthal velocity is uniform in the bulk region and the velocity gradient across the
radius is concentrated in thin boundary layers. With increasing Ta, the BL becomes
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FIGURE 17. (Colour online) A close look at the near inner cylinder region for the
averaged azimuthal velocity profile of the smooth and the δ= 0.105d case at two different
Taylor numbers: (a) Ta= 4.77× 107; (b) Ta= 9.75× 108. The solid line shows the time-,
azimuthally and axially averaged velocity profile for the smooth case. The dashed line
denotes the grooved case profile over time, azimuth and ten valleys, while the dot-dashed
line denotes time, azimuth and ten tips, respectively. Note that ζ = y− δ/d is the horizontal
distance from the solid surface.

thinner and the velocity gradient becomes steeper, as expected. Correspondingly, the
azimuthal velocity profile in the bulk becomes flatter and the bulk is more extended
towards the walls.

Similar features also apply to TC flow with grooves, but at the same time it
also shows some interesting characteristic differences. For the grooved case at
Ta = 4.77 × 107, the velocity gradient is larger at the tip of the groove, while it
attains the minimum value at the valley. This is because the flow trapped inside the
groove is viscosity dominated and the secondary vortex is very weak. In comparison,
at Ta= 9.75× 108, the secondary vortex inside the groove is strengthened significantly.
The strong secondary vortex fully mixes the flow inside the grooves, and even a flat
small bulk region can be seen. At the same time, the BL thickness at the valley is
greatly decreased as a result of the extension of the secondary vortex. Because the
secondary vortex must flow smoothly over the valley, where it is singular, the BL
is thicker in the valley as compared to at the tip. We expect the difference of the
BL thickness between the tip and valley point to become smaller and smaller on
increasing the Ta. The asymmetry of the BL at the inner and outer surfaces is caused
by the curvature of the cylinders, and also depends on the strength of the Taylor
rolls, as has been detailed in Ostilla-Mónico et al. (2014b).

The distinctive feature for the ultimate regime is the turbulent BL. For wall
distances much larger than the internal length scale and much smaller than the
outer length scale, the mean velocity profile has a logarithmic dependence on the
distance to the wall. It has been shown in many canonical flows, such as pipe,
channel and BL flow, that logarithmic velocity profiles exist. We refer the reader to
the reviews by Marusic et al. (2010) and Smits, McKeon & Marusic (2011) for a
detailed introduction. Figure 18 presents the non-dimensionalized azimuthal velocity
u+ = (U − 〈uθ 〉t,θ)/u∗ on tips and valleys as a function of the wall distance y+ for
the inner cylinder boundary layer at Ta= 9.75× 108 for the grooved case. We define
u∗, the local friction velocity, as u∗ = (ν〈∂ruθ(ri)〉t,θ)1/2 for valleys and tips, with ∂r

the derivative normal to the wall and y+ the non-dimensional wall distance, given by
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FIGURE 18. (Colour online) Velocity profiles of the smooth and the δ= 0.105d case non-
dimensionalized by friction velocity and wall distance at Ta= 9.75× 108. The ten red and
ten green lines represent the non-dimensionalized azimuthal velocity u+= (U− 〈uθ 〉θ,t)/u∗
over ten valleys and ten tips for the grooved case, which show different interactions with
the Taylor rolls. The local friction velocity is defined as u∗ = (ν〈∂ruθ (ri)〉t,θ )1/2, with ∂r
the derivative normal to the wall, where y+ is the non-dimensional wall distance y+ =
(r− ri)u∗/ν for valleys and y+= (r− ri− δ)u∗/ν for tips in wall units. The blue line shows
the averaged mean velocity profile for the smooth case at the same Ta. In the smooth case,
we also average over the axial direction. That is, replacing 〈· · ·〉θ,t by 〈· · ·〉θ,t,z in the above
definitions, with the wall distance being the same as the one used for the valleys. The
dashed lines show the relationships u+ = y+ and u+ = 2.5 ln (y+)+ 5.2.

y+ = (r− ri)u∗/ν for valleys and y+ = (r− ri − δ)u∗/ν for tips in terms of wall units.
As a comparison, in figure 18 we also plot the averaged mean velocity profile for the
smooth case at the same Ta. That is, by replacing 〈· · ·〉t,θ with 〈· · ·〉t,θ,z in the above
definitions, with the wall distance the same as the one used for valleys. In the smooth
case, the mean velocity profile is first linear in the viscous region, then after a buffer
region becomes logarithmic. For the grooved case, significant downward shifts in the
log-law are obtained near the tips, whereas significant upward shifts are obtained near
the valleys. Because of the strong plume ejection, all tips of grooves show logarithmic
behaviour in the boundary layer, in accordance with the findings by Ostilla-Mónico
et al. (2014a) and van der Poel et al. (2015b), which show that the BL is turbulent
at the place where plumes are ejected. The implication is that a specific layout of
grooves with tips could locally induce turbulent BLs at specific points. Meanwhile,
because Taylor rolls still exist, the plumes have to follow the direction of the Taylor
rolls, which results in the different velocity profile slopes for the logarithmic region
at different tips (also see figure 12b). In the valley, as described before, the BL is
thicker than at the tip, so that the flow is more viscosity dominated. It is interesting
to note that the velocity profiles nearly overlap in the valleys. This indicates that
different secondary vortices at different heights are homogeneous.

The grooves not only influence the mean velocity, but also the fluctuations.
Figure 19 shows the root mean square (r.m.s.) azimuthal velocity profiles in the
smooth and the δ = 0.105d configuration at Ta = 4.77 × 107 and at Ta = 9.75 × 108.
Figure 20 shows an enlarged region of figure 19 near the wall of the inner cylinder.
The r.m.s. velocity for the smooth case is defined as (uθ)rms = (〈u2

θ 〉t,θ,z − 〈uθ 〉2t,θ,z)1/2,
while for the grooved case it is defined as (〈u2

θ 〉t,θ −〈uθ 〉2t,θ)1/2, averaged over different
tips or valleys. For the smooth case, there is only one peak of the r.m.s. velocity,
which is associated with the enhanced fluctuation in the buffer layer. With increasing
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FIGURE 19. (Colour online) Root mean square azimuthal velocity profile of the smooth
and the δ = 0.105d case at two different Taylor numbers: (a) Ta= 4.77× 107; (b) Ta=
9.75 × 108. The solid line shows the time-, azimuthally and axially averaged velocity
profile for the smooth case. The dashed line denotes the grooved case profile for valleys,
while the dot-dashed denotes the profile above tips. The r.m.s. velocity for the smooth
case is defined as (uθ )rms = (〈u2

θ 〉t,θ,z − 〈uθ 〉2t,θ,z)1/2, while for grooved case it is defined as
(〈u2

θ 〉t,θ − 〈uθ 〉2t,θ )1/2 and then averaged over ten different tips or valleys.
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FIGURE 20. (Colour online) A close look at the root mean square azimuthal velocity
profile of the smooth and the δ = 0.105d case in the near-wall region at two different
Taylor numbers: (a) Ta = 4.77 × 107; (b) Ta = 9.75 × 108. The solid line shows the
time-, azimuthally and axially averaged velocity profiles for the smooth case. The dashed
line denotes the grooved case profile for valleys, while the dot-dashed denotes the profile
above the tips. The r.m.s. velocity for the smooth case is defined as (uθ )rms = (〈u2

θ 〉t,θ,z −〈uθ 〉2t,θ,z)1/2, while for grooved case it is defined as (〈u2
θ 〉t,θ − 〈uθ 〉2t,θ )1/2 and then averaged

over ten different tips or valleys. Note that ζ = y − δ/d is the horizontal distance from
the solid surface.

Ta, as the turbulent intensity becomes larger and the BL becomes thinner, and, as
expected, the peak is shifted to the inner cylinder and the r.m.s. is larger.

For the grooved case with Ta= 4.77× 107, at the tips of the grooves, the position
where the peak occurs is also shifted to the inner cylinder and the r.m.s. velocity is
larger. In the valley, we see two different peaks of the r.m.s. velocity. One close to the
wall and one close to the bulk. The near-wall peak is associated with the buffer layer
and the other peak is associated with the shear layer between the secondary vortex and
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FIGURE 21. (Colour online) The positions of the peaks of the r.m.s. azimuthal velocity
profile near the inner cylinder for the δ= 0.105d cases averaged in time, azimuth and over
ten grooves at two different Taylor numbers: (a) Ta= 4.77× 107; (b) Ta= 9.75× 108. The
red points are the positions of these peaks. We average over ten grooves. Abbreviations:
BL = boundary layer, SV = secondary vortex.

the Taylor roll. The secondary vortex is located between these two peaks. Because
the flow inside the groove is viscosity dominated and laminar, the position of this
peak is far away from the wall and the intensity is less than in the shear layer. At
Ta = 9.75 × 108, the secondary vortex becomes stronger and extends closer towards
the wall, as illustrated before. As a result, the BL becomes thinner and shifts closer
to the wall; at the same time, the intensity of fluctuation becomes higher than the
shear layer.

Figure 21 shows the positions where the peaks of the r.m.s. azimuthal velocity
profiles close to the inner cylinder occur for Ta= 4.77× 107 and for Ta= 9.75× 108,
both for the δ= 0.105d case. The profiles were averaged in the azimuthal direction, in
time and over the ten grooves. Although other definitions are possible, inspired by the
work of Stringano et al. (2006), we define the near-wall peak of the r.m.s. velocity
profile as the thickness of the boundary layer. This enables us to separate the flow
domain into three zones. Between the wall and the near-wall peak is the BL layer
zone. Between the two peaks is the secondary vortex zone, and beyond is the bulk
zone. From the comparison between these two panels, it is seen that, with increasing
Ta, the BL inside the groove becomes thinner and more uniformly distributed along
the surface of the groove. This indicates that, at high Ta, the azimuthal velocity can
not feel the effect of the grooves, and thus forms the uniformly thick BL, just as in
the smooth case. As an indication of the growing strength of the secondary vortices,
in figure 22 we show the distance between the peaks of the r.m.s. azimuthal velocity
in the groove valley as a function of Ta for the δ= 0.105d case. It is found that the
size of the secondary vortex saturates to 0.11d.

Finally, to shed further light on why the effective scaling is larger than 0.38 at
Ta= 4.77× 107 and saturates back to 0.38 at Ta= 9.75× 108 for the δ= 0.105d series,
we compare the energy dissipation rate εu = ν〈(∇u)2〉t,θ,z along the radius, as shown
in figure 23. According to Grossmann & Lohse (2011), the logarithmic correction,
which originates from the turbulent boundary layer, leads to an effective scaling of
0.38. Even in the fully turbulent regime in which we are, the boundary layer effects
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FIGURE 22. (Colour online) Distance l/d between the peaks of the root mean square
azimuthal velocity in the groove valley as a function of Ta for the δ = 0.105d cases.
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FIGURE 23. (Colour online) Energy dissipation rate εu = ν〈(∇u)2〉t,θ,z along the radius
for the δ= 0.105d series. It was averaged in time, azimuth and height at two different Ta:
(a) Ta= 4.77× 107; (b) Ta= 9.75× 108.

still play a major role in determining the scaling exponent. Only asymptotically, will
the Nu versus Ta scaling exponent go to 1/2, but we are far away from this exponent
in any experiment. At Ta = 9.75 × 108, because the BL inside the groove becomes
more similar to the smooth case, the contribution of the BL to the energy dissipation
returns. As a result, the logarithmic correction to the scaling law occurs. At Ta =
4.77 × 107, the BL inside the groove is thick and laminar; however, this is not the
smooth laminar BL where there is a steep shear layer very close to the wall which
contributes significantly to the dissipation. In this case, the shear is very small in the
valley region, but large around the tip (see figures 15 and 16). It is clearly seen that
the shear rate in the region between the grooves is much less than that of the smooth
case. Thus, it is reasonable that the dissipation from the BL contributes less and it
is bulk dominant. We estimate the dissipation contributed from BL and bulk at two
values of Taylor number from figure 23. At Ta = 4.77 × 107, the region below the
groove height contributes 49 % of the total dissipation while the bulk contributes 51 %.
In contrast, at Ta= 9.75× 108, the region below the groove height contributes 65 %
of the total dissipation while the bulk contributes 35 %. Therefore, according to the
GL theory (Grossmann & Lohse 2000), in the regime close to Ta= 4.77× 107, where
it is more bulk dominant, the local effective scaling exponent is larger than 0.38.
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6. Conclusions
In this study, direct numerical simulations are conducted to explore Taylor–Couette

flow in the presence of grooved walls. Numerical results corresponding to Taylor
numbers up to Ta = 2.15 × 109 are presented for three different sizes of groove,
namely δ = 0.052d, δ = 0.105d and δ = 0.209d, at a radius ratio η= 0.714.

We find three different characteristic regimes, reflected in different effective scaling
laws between Nuω and Ta. First, when Ta < Tath, i.e. when the boundary layer
thickness is larger than the height of the grooves, there is an overlap regime in which
smooth and groove cases show the same behaviour. Second, when Ta>Tath, i.e. when
the boundary layer thickness is less than the groove height, there is a steep-slope
regime in which the power-law exponent between Nuω and Ta becomes larger than
the ultimate region effective scaling of 0.38. Third, when Ta is large enough, there
is a saturation regime in which the effective scaling law saturates back to 0.38. It is
found that, even after saturation, the slope is the same as for the smooth case, and
the absolute value of torque is increased beyond the ratio of the surface area increase
between grooved and smooth walls.

The visualization of the flow structure shows that the enhanced transport is caused
by plume ejection from the tips of the grooves. First, the axial flow induces secondary
vortices inside the grooves. Second, the interaction between the secondary vortices and
the Taylor vortices facilitates flow separation on the tips. Third, this flow separation
causes the boundary layer to detach into the bulk, and thus the boundary layer flow
forms plumes and follows the preferential direction of Taylor vortices. Finally, the
combination of plumes and flow separation greatly strengthens the convective part
of Nuω. In particular, there is a possibility that the torque can become smaller when
there are no plumes ejected from the tips of the grooves and the grooves impede the
Taylor rolls. Another interesting feature revealed from visualizations is that large-scale
Taylor vortices still survive in the presence of the grooves. This is because the induced
secondary vortices inside the grooves also favour the circulation of the Taylor rolls.

With increasing Ta, the intensity of the secondary vortex inside the grooves is
strengthened. The boundary layer thickness in the valley is decreased and more
uniformly distributed along the surface of the groove. A small flat bulk region for
the mean velocity profile can be seen inside the grooves. At high Ta, the azimuthal
velocity cannot feel the effect of the grooves, and thus forms the uniformly thick
BL, just as the smooth case. As to the fluctuation, it is found that, on the tips of the
grooves, there is only one peak for the root mean square azimuthal velocity, while
in the valley there are two peaks. The first peak is associated with the BL near the
valley, and the second peak with the shear layer between the secondary vortices and
the Taylor vortices. We found that the steep-slope regime is more bulk dominant,
and therefore the effective scaling slope is larger, while in the saturation regime, the
boundary layer contribution reoccurs, and hence the scaling slope saturates.

Our ambition is to further understand plume-triggered transitions. Ostilla-Mónico
et al. (2014a) and van der Poel et al. (2015b) have shown that in smooth TC and
RB flows the transition to the ultimate regime can be triggered by plumes because
the regions of BLs where the plumes are ejected become turbulent. On the one hand,
we would like to study whether in the grooved case the turbulent boundary layer can
not only be formed on the tips of grooves, but for much larger Ta also inside the
grooves, and thus lead to the ultimate regime. On the other hand, grooves can be
used to manipulate the plumes because they are ejected from the tips of the grooves.
If we implemented more and more grooves, and made the tips sharp enough such that
there were more and more tips where plumes could be ejected, the ultimate regime
could possibly be achieved at a much smaller Ta.
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