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In this paper we deal with the one-dimensional Stefan problem

u
t
®u

xx
¯ sd(t) δ(x®s(t)) in 2¬2+, u(x, 0)¯ u

!
(x)

with kinetic condition sd(t)¯ f(u) on the free boundary F¯²(x, t), x¯ s(t)´, where δ(x) is the

Dirac function. We proved in [1] that if r f(u)r%M eγrur for some M" 0 and γ ` (0, 1}4), then

there exists a global solution to the above problem; and the solution may blow up in finite time

if f(u)&C eγ
"
rur for some γ

"
large. In this paper we obtain the optimal exponent, which turns

out to be o2πe. That is, the above problem has a global solution if r f(u)r%M eγrur for some

γ ` (0,o2πe), and the solution may blow up in finite time if f(u)&C eo
#
πerur.

1 Introduction

In this paper we deal with the following one-dimensional Stefan problem with kinetic

condition on the free boundary:

1

2

3

4

u
t
®u

xx
¯ 0 in Q

"T
eQ

#T
,

u−(s(t), t)¯ u+(s(t), t) on F,

u−

x
(s(t), t)®u+

x
(s(t), t)¯ sd(t) on F,

sd(t)¯ f(u), s(0)¯ b on F,

u(x, 0)¯ u
!
(x),

(1.1)

where Q
"T

¯²(x, t) ; ®¢!x! s(t), 0! t!T ´, Q
#T

¯²(x, t) ; s(t)!x!¢, 0! t!T ´,
F¯²(x, t) ; x¯ s(t)´ is the free boundary, f(u) is a locally Lipschitz function, and u

!
`C(2)

is a bounded function.

Problem (1.1) arises in solid combustions [2, 3] and phase transition processes with

supercooling or superheating, and has been studied by many authors (see [1–11] and the

references therein). Local existence and uniqueness of solutions can be obtained by the fixed

point theorem. The global existence of solutions has also been discussed by several authors.

In this paper, we are interested in growth conditions on f so that (1.1) admits a global

solution. In this respect the best result, as far as we know, was obtained by the authors [1].

We proved [1] that if r f(u)r%M eγrur for some M" 0 and γ ` (0, "
%
), there exists a global

solution to the problem (1.1) ; whereas if f(u)& δ eγ
"
rur for some δ" 0 and γ

"
large,

the solution may blow up in finite time. We find that the proof [1] can be refined to

get the optimal exponent. We prove in this paper that there exists a critical exponent
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γ
!
¯o2πe such that (1.1) has a global solution if r f(u)r%M eγrur for some γ ` (0,γ

!
) ; and

if f(u)&C eγ
!
rur, the solution may blow up in finite time.

This paper is arranged as follows. In §2 we show that there exists a global solution to

(1.1) if r f(u)r%M eγrur for some γ ` (0,γ
!
) and M" 0. In §3 we give an example to show that

the solution may blow up in finite time if f(u)&C eγ
!
rur. The proof in this paper is a

refinement of that in our earlier work [1], and hence is somewhat similar.

2 Global existence

In this section we consider the global existence of solutions to (1.1). The local existence,

uniqueness, and regularity for solutions of problem (1.1) have been proved [1] by means of

the fixed point theorem. To prove the global existence, we need only to establish the

following a priori estimate:

ru(x, t)r%M for (x, t) `2¬[0,T ], (2.1)

where M depends only on T, u
!
and f. By the maximum principle we see that u(x, t) attains

its maximum on the free boundary F.

Let u be a solution of (1.1). In the sence of distributions u satisfies

1

2

3

4

u
t
®u

xx
¯ sd(t) δ(x®s(t)) in 2¬2+,

u(x, 0)¯ u
!
(x).

(2.2)

Let

K(x, t)¯

1

2

3

4

1

o(4πt)
e−

x#

%t

0

t" 0,

t% 0.

(2.3)

Then u can be represented by

u(x, t)¯&
¢

−¢

K(x®ξ, t) u
!
(ξ) dξ& t

!

&
¢

−¢

sd(τ) δ(ξ®s(τ))K(x®ξ, t®τ) dξ dτ

¯&
¢

−¢

K(x®ξ, t) u
!
(ξ) dξ& t

!

sd(τ)K(x®s(τ), t®τ) dτ. (2.4)

Suppose there exist positive constants M
!
" 0 and γ ` (0,o2πe) such that

r f(u)r%M
!
eγrur for all u `2. (2.5)

To prove (2.1) we argue by contradiction. Suppose for some N large enough,

u(s(T ),T )&N. (2.6)

In what follows we will use C to denote positive constants which depend only on M
!
, γ, and

su
!
s
L

¢, but are independent of T and N.

For any t%T, we define

σ(t)¯ sup ²α ` (ta, t), rsd(α)r[rt®αr"/#−δ " 1´, (2.7)

where ta ¯max ²t®1, 0´,

δ¯
1

4 01®
γ

o2πe1 . (2.8)
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If rsd(α)r[rt®αr"/#−δ % 1 for all α ` (ta, t), we define σ(t)¯ ta. By definition we have

rsd(σ(t))r[rt®σ(t)r"/#−δ ¯ 1 if 0! t®σ(t)! 1. (2.9)

Let α
!
¯T. We define α

k
inductively by α

k
¯σ(α

k−"
). Since s(t) `C "[0,T ] we see that there

exists n& 1 such that α
n
¯ 0.

Lemma 1 For any t!T, we ha�e

ru(s(t), t)r%Cβ log
1

t®σ(t)
, (2.10)

where β¯
1

2o2πe
. (2.11)

Proof From (2.4), we have

u(s(t), t)¯ I
"
I

#
I

$

¯:&
¢

−¢

exp (®(s(t)®ξ)#}4t)

o4πt
u
!
(ξ) dξ

0& t

σ(t)

&
σ(t)

!

1 exp (®(s(t)®s(τ))#

4(t®τ) * sd(t)
(4π(t®τ))"/#

dτ,

where rI
"
r% sup ru

!
(x)r,

rI
#
r%& t

σ(t)

(t®τ)−"/#+δ

4π(t®τ))"/#
dτ¯

(t®σ(t))δ

2oπδ
%

1

2oπδ
¯:C

!
. (2.12)

Integrating by parts we have

&
σ(t)

!

sd(τ)
ot®τ

exp (®(s(t)®s(τ))#

4(t®τ) * dτ

¯®2&
σ(t)

!

exp (®(s(t)®s(τ))#

4(t®τ) * d
s(t)®s(τ)

2ot®τ

&
σ(t)

!

s(t)®s(τ)

2(t®τ)$/#
exp (®(s(t)®s(τ))#

4(t®τ) * dτ.

The first integral on the right-hand side is bounded. We obtain

rI
$
r%C

1

2oπ&
σ(t)

!

1

t®τ
z[ exp (®z#) dτ,

where z¯ rs(t)®s(τ)r}2ot®τ. Observe that

0% z exp (®z#)%
1

o2e
for z& 0. (2.13)
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We obtain

rI
$
r%C

1

2o2πe
log

1

t®σ(t)
.

Lemma 1 is therefore proved. *

Lemma 2 If 0!α
k
®σ(α

k
)! 1, we ha�e

rα
k+"

®α
k+#

rβγ %C rα
k
®α

k+"
r"/#−δ. (2.14)

Proof By (2.9) we have

1¯ rsd(σ(α
k
))rr[rα

k
®σ(α

k
)r"/#−δ ¯ rsd(α

k+"
)r[rα

k
®α

k+"
r"/#−δ.

Hence by Lemma 1,

rα
k
®α

k+"
r−"/#+δ ¯ rsd(α

k+"
)r

¯ r f(u(s(α
k+"

),α
k+"

))r

%M
!
eγru(s(αk+"

),α
k+"

)r

%M
!
eγ(C−βlog(αk+"

−σ(αk+"
))

%C}(α
K+"

®σ(α
k+"

))βγ

¯C}(α
k+"

®α
k+#

)βγ.

(2.14) follows.

Similar to (2.12), we have

&
α
k

α
k+"

sd(τ)K(s(t)®s(τ), t®τ) dτ%&
α
k

α
k+"

(α
k
®τ)−"/#+δ

o4π(t®τ)
dτ

%&
α
k

α
k+"

(α
k
®τ)−"/#+δ

o4π(α
k
®τ)

dτ%C
!
.

Here by (2.4) we have

N% sup ru
!
(x)rnC

!
. (2.15)

Let k
!

be such that

α
k
!

®α
k
!
+"

¯ inf ²α
k
®α

k+"
;k¯ 0, 1,…, n®1´.

By the local existence and regularity of solutions of (1.1) we may suppose k
!
1 n®1,

namely, k
!
% n®2, and

α
k
!

®α
k
!
+"

%α
k
!
+"

®α
k
!
+#

. (2.16)

By Lemma 2,

rα
k
!
+"

®α
k
!
+#

rβγ %C rα
k
!

®α
k
!
+"

rδ[rα
k
!

®α
k
!
+"

r"/#−#δ.

By (2.16) we obtain

rα
k
!
+"

®α
k
!
+#

rβγ %C rα
k
!

®α
k
!
+"

rδ[rα
k
!
+"

®α
k
!
+#

r"/#−#δ.
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Note that βγ¯ "

#
®2δ, we obtain

rα
k
!

®α
k
!
+"

r&C "/
δ.

Hence

T¯ 3
n−"

k=!

(α
k
®α

k+"
)& nC−"/

δ,

i.e. n%C "/
δT. By (2.15) we obtain

N% sup ru
!
(x)rC

!
C "/

δT. (2.17)

We have thus proved

Theorem 1 Suppose (2.5) holds. Then (1.1) has a global solution u which satisfies

ru(x, t)r%C(1t), (2.18)

where C depends only on γ, M
!
, and sup ru

!
(x)r.

Remark It is easy to see from the above proof that Theorem 1 still holds if (2.5) is replaced

by

r f(u)r%C e
o
#
πerur}(1rur)"+ε (2.19)

for some ε" 0. Indeed, one needs only to replace rt®αr"/#−δ by rt®αr"/# log "+
ε/#(t®α) in

(2.7). Then a slight modification of the above argument still gives (2.18).

3 A blow-up example

In this section we show that the exponent o2πe in the last section is optimal for the global

existence. We will construct f(u) with f(u)%C eo(#
πe)rur such that the solution u of (1.1)

blows up in finite time. The example given here is actually the same as in our earlier work

[1].

Let s(t) `C #[0,T ) be given; we consider the problem

1

2

3

4

u
t
®u

xx
¯ 0 in Q

"T
eQ

#T
,

u−(s(t), t)¯ u+(s(t), t) on F,

u−

x
(s(t), t)®u+

x
(s(t), t)¯ sd(t) on F,

u(x, 0)¯ u and u(x, t)U 0 as rxrU¢.

(3.1)

Problem (3.1) is uniquely solvable. In the sense of distributions the solution of (3.1) is

equivalent to the solution of

1

2

3

4

u
t
®u

xx
¯ sd(t) δ(x®s(t)) in 2¬(0,T ),

u(x, 0)¯ 0,
(3.2)

where δ(x) is the Dirac function. By (2.4) the solution of (3.2) is given by

u(x, t)¯& t

!

sd(t®τ)

o4πτ
e−

rx−s(t−τ)r#

%
τ dτ. (3.3)
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Let s(t)¯®o2(T®t). Denote ε¯T®t. We have

sd(t®τ)¯
1

o2(ετ)
, sX (t®τ)¯

1

[2(ετ)]$/#
. (3.4)

Let F(t, τ)¯ 1}4τrs(t)®s(t®τ)r#¯ 1}2τroετ®oεr#, then

F(t, τ)¯
1

2

oετ®oε

oετoε
!

1

2
, (3.5)

¥
¥t

F(t, τ)¯
1

2τ
(oετ®oε) 0 1

oε
®

1

oετ1¯
F(t, τ)

oεoετ
. (3.6)

From (3.3) we therefore obtain

u(s(t), t)&
e−"/#

o4π&
t

!

sd(t®τ)

oτ
dτ

¯
1

2o2πe&
t

!

1

oτoετ
dτ

¯
1

2o2πe
log 0'1

t

ε
't

ε1
&

1

2o2πe
log 01

t

ε1¯
1

2o2πe
log

T

T®t
. (3.7)

Hence u(s(t), t)U¢ as tUT. Next we show that u(s(t), t) is strictly increasing for t ` (0,T ).

We have

d

dt
u(s(t), t)¯& t

!

sX (t®τ)

o4πτ
e−F(t,τ) dτ®& t

!

sd(t®τ)

o4πτ
F
t
(t, τ) e−F(t,τ) dτ


sd(0)

o4πt
e−rs(t)−s(!)

r#/%t ¯: I
"
®I

#
I

$
, (3.8)

where I
$
" 0. To show

d

dt
u(s(t), t)& 0, it suffices to verify I

"
& I

#
. By (3.4)–(3.6) we have

I
"
¯

1

4o2π&
t

!

1

τ"/#(ετ)$/#
exp 9®1

2

oετ®oε

oετoε1dτ,

I
#
¯

1

4o2π&
t

!

1

(ετ)"/# (ετ)

oετ®oε

oετoε
exp 0®1

2

oet®oε

oετoε1dτ.

Let τ¯ εα ; then we need only to verify that

& t/ε

!

1

α"/#(1α)$/#
exp 9®1

2

o1α®1

o1α1:dα

&& t/ε

!

1

α"/#(1α)

o1α®1

o1α1
exp 9®1

2

o1α®1

o1α1:dα.
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Let } (α) denote the integrand on the left-hand side, and ψ(α) denote the one on the

right-hand side. If t% 2(1o2) ε, we have} (α)&ψ(α), and so we are through. If t"
2(1o2) ε, it suffices to verify

& t/ε

#("+
o
#)

[ψ(α)®} (α)] dα%&#("+
o
#)

!

[ψ(α)®ψ(α)] dα. (3.9)

Set α¯ 1}α« ; then left-hand side of (3.9) is bounded by

&
¢

#("+
o
#)

α®2o1α

α"/#(1α)$/# (1o1α)
exp 9®1

2

o1α®1

o1α1:dα

¯& (o#−−")/#

!

1®2oαo1α

α"/#(1α)$/# (oαo1α)
exp 9®1

2

o1α®oα

o1αoα:dα.

Hence it suffices to verify that for α ` (0, "
#
(o2®1)),

1®2oαo1α

α"/#(1α)$/# (oαo1α)
exp 9®1

2

o1α®oα

o1αoα:
% } (α)®ψ(α)

¯
2o1α®α

α"/#(1α)$/# (1o1α)
exp 9®1

2

o1α®1

o1α1: . (3.10)

Note that for α ` (0, "
#

(o2®1)),

exp 9®1

2

o1α®oα

o1αoα:% exp 9®1

2

o1α®1

o1α1: .
Hence (3.10) follows from the inequality

1®2oαo1α

oαo1α
%

2o1α®α

1o1α
.

The last inequality holds for α ` (0, "
#
(o2®1)). Hence (d}dt) u(s(t), t) is strictly increasing.

Now we can define f(u) :2+ U2+ by

f(u(s(t), t)¯ sd(t)¯
1

o2(T®t)
. (3.11)

f(u) is obviously positive and increasing in (0,T ). For the function f(u) defined above, we

therefore conclude by uniqueness that the solution u(x, t) of (1.1) blows up at time t¯T.

From (3.7) it is easy to see that f(u) is of exponential growth as uU¢ with

f(u)%
1

o2T
e

o
#
πerur. (3.12)

Moreover, lim
uU

!
f(u)¯ 1}o2T .
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4 Conclusion

Theorem 1 shows that the solution u([, t) exists globally and grows linearly under the

assumption (2.5) or (2.19). On the other hand, the example constructed above shows that

u([, t) may blow up in finite time if f(u)&C e
o
#
πerur. Hence o2πe is the critical exponent for

the global existence. Notice that by choosing T large enough, the coefficient 1}o2T on the

right-hand side of (3.12) may be as small as we want, which suggests that the global

existence depends on the growth rate rather than the magnitude of f itself. By the above

construction it is easy to see that for some f, the problem (1.1) admits a global solution

which grows superlinearly.
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