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Background. Social environmental stress, including childhood abuse and deprivation, is associated with increased rates
of psychiatric disorders such as schizophrenia and depression. However, the neural mechanisms mediating risk are not
completely understood. Functional magnetic resonance imaging (MRI) studies have reported effects of social environ-
mental stress on a variety of brain regions, but interpretation of results is complicated by the variety of environmental
risk factors examined and different methods employed.

Method. We examined brain regions consistently showing differences in blood oxygen level-dependent (BOLD) re-
sponse in individuals exposed to higher levels of environmental stress by performing a coordinate-based meta-analysis
on 54 functional MRI studies using activation likelihood estimation (ALE), including an overall sample of 3044 partici-
pants. We performed separate ALE analyses on studies examining adults (mean age518 years) and children/adolescents
(mean age <18 years) and a contrast analysis comparing the two types of study.

Results. Across both adult and children/adolescent studies, ALE meta-analysis revealed several clusters in which differ-
ences in BOLD response were associated with social environmental stress across multiple studies. These clusters incor-
porated several brain regions, among which the right amygdala was most frequently implicated.

Conclusions. These findings suggest that a variety of social environmental stressors is associated with differences in the
BOLD response of specific brain regions such as the right amygdala in both children/adolescents and adults. What
remains unknown is whether these environmental stressors have differential effects on treatment response in these
brain regions.
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Introduction

A strong relationship exists between a person’s social
environment and their mental health (Meyer-
Lindenberg & Tost, 2012). Increased rates of psychi-
atric disorders are consistently observed in people
who have suffered abuse, deprivation, ostracism and
isolation (Van Os et al. 2008). For example, childhood
abuse and neglect have each been associated with,
and are predictive of, increased risk for major depres-
sive disorder (MDD), post-traumatic stress disorder
and substance abuse later in life (Widom et al. 2007;
Gilbert et al. 2009). Similarly, risk for schizophrenia
has been repeatedly associated with living in larger
urban areas and with migrant status, possibly due to

higher levels of social competition (the ‘social defeat’
hypothesis; Selten & Cantor-Graae, 2005).

Functional magnetic resonance imaging (fMRI) is in-
creasingly being used to characterize how brain
responses to social and emotional stimuli may be dif-
ferent in high-risk individuals (Harmon-Jones & Beer,
2012). Recent fMRI studies comparing individuals
who have experienced higher versus lower levels of
stress have identified significant differences in blood
oxygen level-dependent (BOLD) response in brain
regions involved in social and emotional processing.
One difficulty for interpreting these results, however,
is the range of social stressors considered (e.g. urban
upbringing, childhood trauma) and cognitive tasks
(e.g. social stress, emotion recognition) that have
been used. As such, it remains unclear whether differ-
ent social environmental stressors increase risk for
mental illness through common neural mechanisms.

To address this issue, we performed a coordinate-
based meta-analysis to examine whether any brain
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regions were consistently different in high-risk indivi-
duals. This type of meta-analysis examines shared
BOLD response across independent studies by quanti-
tatively identifying brain regions consistently asso-
ciated with effects of interest (Turkeltaub et al. 2002;
Laird et al. 2005; Eickhoff et al. 2009; Wagner et al.
2014). We hypothesized that differences would be
observed in brain regions associated with threat and
negative affect in high-risk individuals compared
with low-risk individuals.

Method

Using PubMed, we searched for fMRI studies report-
ing differences in BOLD response associated with ex-
posure (in adulthood or childhood) to social
environmental stress. Studies published until June
2015 were searched for with the following search
term: (‘functional magnetic resonance imaging’ OR
‘functional MRI’ OR ‘fMRI’) AND (‘social stress’ OR
‘early life stress’ OR ‘developmental trauma’
OR ‘childhood trauma’ OR ‘childhood maltreatment’
OR ‘urban upbringing’ OR ‘urbanicity’ OR ‘social sta-
tus’ OR ‘socioeconomic status’ OR ‘ethnic minority’
OR ‘ostracism’ OR ‘rejection’ OR ‘exclusion’) NOT
Review. This resulted in 307 studies being identified
in total, of which 42 were original studies that matched
study criteria (a human fMRI study examining main
effects on BOLD response of one or more of the social
environmental stressors listed in the search term). An
additional six studies were recommended by
reviewers. Next, we reviewed the references from
each of the papers identified. This additional search
retrieved a further six studies matching criteria and
with available information. In total, 54 studies meeting
search criteria were retrieved. Fig. 1 lists the number of
studies included and excluded in this meta-analysis,
and the reasons for inclusion or exclusion.

Next, we used the activation likelihood estimation
(ALE) method in GingerALE 2.3 (Laird et al. 2005;
Eickhoff et al. 2009; Eickhoff et al. 2012; Turkeltaub
et al. 2012) to perform a meta-analysis to determine
whether any specific brain regions were consistently
associated with exposure to social environmental
stress. Where cluster coordinates were presented in
Talairach space, these were converted to Montreal
Neurological Institute (MNI) space using GingerALE
[‘Talairach to MNI (SPM)’ transform] to input into
the meta-analysis.

Maps of altered BOLD response were created for
each study by modelling individual coordinates as
Gaussian functions. The width of each of these func-
tions is calculated by GingerALE software based on
each study’s sample size, i.e. GingerALE will model
coordinates as wider Gaussian functions for loci from

larger studies. Next, the overlap between these maps
was used to calculate an ALE map. The probability
of finding a particular value within an ALE map across
studies was used to create a p-value image, which was
thresholded using a false discovery rate of p < 0.05 and
cluster-thresholded using 1000 threshold permutations
and a cluster-level threshold of p < 0.05. We performed
an ALE analysis of studies examining adults (mean age
518 years) and children and/or adolescents (mean age
<18 years) separately, to examine effects of social envir-
onmental stress at different developmental stages. We
also performed a contrast analysis to examine differ-
ences between environmental effects on children/ado-
lescents versus adults. For this contrast analysis, we
also used a false discovery rate of p < 0.05 and cluster-
thresholded using 1000 threshold permutations.

Results

In total, 54 studies meeting search criteria were
retrieved, including a total sample of 3044 participants
(see Fig. 1 and online Supplementary Tables S1 and
S2). Where studies or analyses used overlapping sam-
ples, we used the smaller sample to calculate the
Gaussian functions, as this is a more conservative ap-
proach (S. Eickhoff, personal correspondence).

Studies varied in terms of social environmental
stressors investigated and tasks used, though some
studies reported similar stressors and tasks. For ex-
ample, the most frequently examined stressor was
‘childhood trauma’ or ‘childhood maltreatment’ (12
studies), followed by ‘early life stress’ (five studies)
and ‘socio-economic status’ (five studies). The most

Fig. 1. Studies included and excluded from activation
likelihood estimation meta-analysis.
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frequently used task was facial emotion recognition (22
studies).

Across all studies, 55.49% of participants were adults
(mean age 518 years) and 44.51% of participants were
children and/or adolescents; 51.97% of participants
across 52 of the studies were listed as male, and
48.03% of participants were listed as female (however,
gender information for the final sample included in the
analysis after quality control was not provided for two
studies (Dannlowski et al. 2012, 2013; Hsu et al. 2010).
A total of 27 studies used negative emotional stimuli,
seven used positive emotional stimuli, 12 used a mix
of negative, positive and/or neutral emotional stimuli,
seven used cognitive tasks, and one used a task con-
taining both emotional and cognitive conditions of
interest (see online Supplementary Tables S1 and S2).

ALE meta-analysis results – adult studies

We first performed an ALE meta-analysis that
included all 34 identified adult studies (1703 partici-
pants), irrespective of participant status as a patient,
healthy volunteer or combat veteran, and in the case
of patients, irrespective of diagnosis. Of the partici-
pants included in this analysis, 27.95% were patients,
1.64% were combat veterans and 70.40% were healthy
volunteers. This analysis identified eight separate clus-
ters in which BOLD response differed in groups
exposed to greater social environmental stress (see
Table 1 and Fig. 2). Clusters incorporated the bilateral
amygdala, left superior frontal gyrus, left precuneus,
left putamen, left thalamus, left insula and left inferior
frontal gyrus. The cluster showing differences in BOLD
response across the largest number of separate empir-
ical studies was located at the right amygdala (nine
studies). In the right amygdala cluster, increased
BOLD response in the risk group compared with the
non-risk group was reported across all studies except
one. The single study, by Boecker et al. (2014), which
showed decreased BOLD response may have differed
from the other six studies by reporting decreased
BOLD response in this region during reward anticipa-
tion (a happy face symbol indicating a reward), rather
than presentation of overt emotional stimuli (emotion-
al faces, social stress, pleasant music).

Given that 13 of the 34 studies reviewed included
patient participants, and in one case, combat veterans,
we re-ran the ALE meta-analysis on the 21 studies that
only included healthy civilian participants (1099 parti-
cipants). Clusters incorporating the amygdala, thal-
amus and insula, identified in the first part of our
analysis, again showed significant differences in
BOLD response (and in the same direction) based on
a comparison of participants with a history of high ver-
sus low environmental stress (see Table 2 and Fig. 3).

The most consistent differences in BOLD response
were again observed for the right amygdala (seven
studies).

ALE meta-analysis results – children/adolescent
studies

Analysis of 21 studies examining children/adolescents
(mean age <18 years; 1341 participants) revealed six
clusters showing significant overlap between studies,
incorporating the bilateral amygdala, left superior tem-
poral gyrus, right middle temporal gyrus, right cere-
bellum and right thalamus (see Table 3 and Fig. 4).
The cluster showing differences in BOLD response
across the largest number of separate empirical studies
was located at the right amygdala (eight studies).
Across all eight studies, the high-risk group showed
increased amygdala BOLD response compared with
the low-risk group.

ALE meta-analysis results – contrast between adult
studies and children/adolescent studies

Contrast analysis comparing sets of foci for the adult
studies and children/adolescent studies revealed no
statistically significant differences.

Discussion

This study used ALE meta-analysis to investigate
whether the neural effects of social environmental
stress were consistent and reproducible based on
fMRI studies to date. Based on this analysis, brain
regions including the right amygdala showed a con-
sistent pattern of increased BOLD response to emotion-
al stimuli in groups with a history of social
environmental stress across multiple studies and at
multiple developmental stages.

Findings of increased BOLD response in the amyg-
dala are consistent with fMRI studies reporting
increased neural response of this region during nega-
tive affective states and in psychiatric illness compared
with controls. For example, amygdala hyperactivity
has previously been associated with trait anxiety
(Etkin et al. 2004; Sehlmeyer et al. 2011), faster process-
ing of negative stimuli and decreased levels of psycho-
logical well-being (Van Reekum et al. 2007), depressive
symptom severity (Gaffrey et al. 2011) and cognitive
biases towards negative stimuli (Dannlowski et al.
2007a, b). Increased amygdala BOLD response has
also been reported in response to emotional stimuli
in patients diagnosed with bipolar disorder, MDD, so-
cial anxiety disorder and borderline personality dis-
order when compared with healthy controls
(Yurgelun‐Todd et al. 2000; Surguladze et al. 2005;
Minzenberg et al. 2007; Evans et al. 2008).

Neural effects of social environmental stress 2017

https://doi.org/10.1017/S0033291716000477 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291716000477


Another cluster showing increased BOLD response
across multiple adult studies with increasing stress
incorporated the superior frontal gyrus/Brodmann
area 8 (see Table 1). BOLD response in this region
increases with increasing decision uncertainty, which

may be higher in high-risk individuals during tasks in-
volving social stimuli (Volz et al. 2005). Other brain
regions highlighted by our analysis play an important
role in processing social stimuli themselves, which
might also be associated with chronic social stress.

Table 1. Brain regions showing differences in blood oxygen level-dependent response associated with social environmental stress – adult
studies (ALE meta-analysis includes all studies irrespective of whether patient groups were included)

Cluster Brain region
Volume,
mm3 ALE value

MNI coordinates:
x, y, z

No. of
studies (foci)

1 Amygdala 2408 0.036423076 20 −4 −14 9 (11)
2 Superior frontal gyrus/Brodmann area 8 800 0.019910347 −8 52 38 2 (6)
3 Precuneus/Brodmann area 7 776 0.026976801 −22 −48 50 3 (5)
4 Putamen 472 0.017731423 −14 12 −10 3 (4)

Subgenual anterior cingulate/Brodmann area 25 0.015727751 −2 14 −12
5 Parahippocampal gyrus/Brodmann area 28 360 0.023307921 −18 −4 −16 3 (3)
6 Thalamus 360 0.022023844 −10 2 4 1 (3)
7 Insula/Brodmann area 13 328 0.023216197 −46 4 −4 1 (2)
8 Inferior frontal gyrus/Brodmann area 9 312 0.017854419 −44 14 22 2 (2)

ALE, Activation likelihood estimation; MNI, Montreal Neurological Institute.

Fig. 2. Brain regions showing differences in blood oxygen level-dependent response in groups exposed to social
environmental stress – all adults. Activation likelihood estimation meta-analysis includes all adult studies irrespective of
whether patient groups were included. Each two-dimensional axial slice is labelled with a Montreal Neurological Institute
coordinate. Clusters are rendered on the ‘ch256’ brain template using MRIcroGL (http://www.mccauslandcenter.sc.edu/
mricrogl/). Additional editing of the figure (e.g. changing the size/resolution) was performed using MS Paint and Paint.NET
v3.5.10.

Table 2. Brain regions showing differences in blood oxygen level-dependent response associated with social environmental stress – adults
(ALE meta-analysis includes only studies that examined healthy volunteers)

Cluster Brain region Volume, mm3 ALE value MNI coordinates: x, y, z
No. of
studies (foci)

1 Globus pallidus 2336 0.031469878 22 −2 −14 7 (11)
2 Thalamus 472 0.022004513 −10 2 4 1 (3)
3 Insula/Brodmann area 13 400 0.022827262 −46 4 −4 2 (3)

ALE, Activation likelihood estimation; MNI, Montreal Neurological Institute.
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These include the precuneus, inferior frontal gyrus, su-
perior temporal gyrus and middle temporal gyrus (see
Tables 1–3) (Adolphs, 2001; Spreng et al. 2009; Van

Overwalle, 2009). Differences in BOLD response of stri-
atal regions were also observed in high-risk indivi-
duals across studies (see Tables 1–3). These regions,

Fig. 3. Brain regions showing differences in blood oxygen level-dependent response in groups exposed to social
environmental stress (healthy adults only). Activation likelihood estimation meta-analysis includes only studies that examined
healthy volunteers. Each two-dimensional axial slice is labelled with a Montreal Neurological Institute coordinate. Clusters are
rendered on the ‘ch256’ brain template using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/). Additional editing
of the figure (e.g. changing the size/resolution) was performed using MS Paint and Paint.NET v3.5.10.

Table 3. Brain regions showing differences in blood oxygen level-dependent response associated with social environmental stress – children/
adolescents

Cluster Brain region Volume, mm3 ALE value
MNI coordinates:
x, y, z

No. of
studies (foci)

1 Amygdala 2456 0.05817374 20 −6 −18 8 (15)
2 Globus pallidus 1880 0.04618657 −18 −14 −12 4 (11)

Parahippocampal gyrus/Brodmann area 28 0.027668297 −18 −4 −20
3 Superior temporal gyrus/Brodmann area 38 832 0.038757984 −38 14 −36 1 (6)
4 Middle temporal gyrus/Brodmann area 22 456 0.026722496 62 −32 4 2 (5)
5 Cerebellum 416 0.033058073 48 −62 −50 1 (4)
6 Thalamus 328 0.029014302 18 −6 2 1 (3)

ALE, Activation likelihood estimation; MNI, Montreal Neurological Institute.

Fig. 4. Brain regions showing differences in blood oxygen level-dependent response in groups exposed to social
environmental stress (children/adolescents). Activation likelihood estimation meta-analysis includes only studies that
examined children/adolescents. Each two-dimensional axial slice is labelled with a Montreal Neurological Institute coordinate.
Clusters are rendered on the ‘ch256’ brain template using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/).
Additional editing of the figure (e.g. changing the size/resolution) was performed using MS Paint and Paint.NET v3.5.10.
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including the putamen and globus pallidus, are heav-
ily influenced by dopamine, which is known to in-
crease in response to psychological stress, and may
account for some of these effects (Pruessner et al.
2004; Selten et al. 2013).

The therapeutic effects of psychological and pharma-
cological interventions are hypothesized to be partially
mediated via a normalization of brain response to
emotional stimuli (e.g. of the amygdala; Fu et al.
2004; DeRubeis et al. 2008; Norbury et al. 2009;
Rawlings et al. 2010; Windischberger et al. 2010). Our
study suggests that having a history of prolonged ex-
posure to a stressful social environment may have im-
portant neural effects on regions associated with
responding to stressful stimuli and illness risk and
may therefore potentially mediate these therapeutic
effects. Consistent with this view, some studies have
already suggested that antidepressant response in
MDD patients may be mediated by a history of child-
hood trauma (e.g. Nemeroff et al. 2003). Confirming
whether categorizing patients according to early ad-
versity can help predict response to treatment type or
even modality (pharmacological versus psychological
versus both) will be an important avenue for further
study.

Although neurobiological effects of social stress
were not the focus of this meta-analysis, it is interesting
to speculate about the relationship between differences
in neurochemical response, given the wealth of evi-
dence that (social) threat-related processing in the
brain results in increased downstream levels of gluco-
corticoids in the blood (Belmaker & Agam, 2008). The
amygdala, cingulate and hippocampus are particularly
high in glucocorticoid receptors and are also associated
with chronic cortisol secretion (Gold et al. 2002). Since
social environmental stress causes lasting changes in
hypothalamic–pituitary–adrenal (HPA) axis respon-
siveness to stress, including increased levels of cortisol,
this could be one mechanism by which it affects BOLD
response in these brain regions (Heim et al. 2000; Lee
et al. 2005; Belmaker & Agam, 2008; Heim et al. 2008;
Heim & Binder, 2012).

Another complimentary mechanism by which social
stress may affect BOLD response in these brain regions
is through differences in immune function. Hormones
increased by psychological stress (cortisol, adrenaline)
have significant effects on the immune system, enhan-
cing pro-inflammatory cytokine responses and
pro-inflammatory gene expression (Eisenberger &
Cole, 2012). Inflammation, in turn, is associated with
hyperactivity of both the amygdala and anterior cingu-
late in response to emotional stimuli, neural responses
that have been correlated in the same studies with so-
cial disconnection and mood deterioration, respective-
ly (Harrison et al. 2009; Inagaki et al. 2012).

With regard to possible gender effects, DeSantis et al.
(2011) report differing effects of early-life trauma on
HPA axis functioning in males and females, and
brain regions reported in this meta-analysis, such as
the amygdala, are known to function differently in
males and females in response to threatening social
stimuli (Schneider et al. 2011), suggesting that results
may differ between males and females. This
meta-analysis included studies that examined both
males and females (44 studies), males exclusively
(five studies) and females exclusively (three studies).
However, only two of these studies reported different
effects of social environmental stress between males
and females (Felmingham et al. 2010, in which
trauma-exposed women showed increased brainstem
BOLD response compared with trauma-exposed men
and Spielberg et al. 2015, in which effects of socio-
economic status on cingulate BOLD response were
only observed in females). This research could there-
fore be extended by further studies comparing effects
of social environmental stress between males and
females, and more studies examining one gender spe-
cifically (to contrast in future meta-analyses).

A majority of the studies included investigated the
effects of social stressors occurring in childhood (only
10 studies included social stressors experienced in
adulthood). While this follows the widely held expect-
ation that childhood adversity will have neurodevelop-
mental consequences, whether and how the duration
and staging of these stressors mediated the effects
observed was therefore not possible to evaluate in
this meta-analysis. Answering this question will be
an important priority for future meta-analyses as
more studies examining effects of social stressors
experienced in adulthood become available.

It is important to note that social environmental
effects on BOLD response may be influenced by the
types of tasks used (e.g. emotional versus cognitive
tasks, positive emotion versus negative emotion). For
example, Dannlowski et al. (2013) report effects of
childhood trauma on increased limbic BOLD response
during sad face processing compared with happy face
processing. Similarly, limbic hyper-responsiveness has
consistently been observed in psychiatric disorders in
response to negative stimuli, while responses to posi-
tive stimuli are not as well characterized (Rauch et al.
2000; Siegle et al. 2007; Mothersill et al. 2014). Given
that a minimum of 15 studies should be included in
each group in an ALE contrast analysis for valid
results, we could not in this study compare different
types of task (Wagner et al. 2014).

Our meta-analysis excluded studies where the neur-
al effects of social stress were not presented as main
effects, but only reported in interaction with other vari-
ables (e.g. genetic risk, oxytocin administration).
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Examining gene × environment interactions is clearly a
priority for the field to determine the degree to which
established environmental and genetic risk factors con-
verge on the same neural circuits in psychiatric illness
(Meyer-Lindenberg & Tost, 2012). For example, Streit
et al. (2014) report that individuals who were both
raised in an urban environment and who carried two
copies of the neuropeptide S receptor 1 gene showed
increased right amygdala BOLD response during stress
processing, relative to individuals who grew up in
highly urbanized environments with one or no copies
of this variant. As further studies of the neural effects
of gene by (social) environmental risk emerge, it will
be interesting to determine how genetic background
increases liability to, or resilience against, the neural
effects of the early social environment.

Finally, although the focus of this meta-analysis was
of BOLD response data during cognitive–emotional
tasks, it is important to note that chronic environmen-
tal stress may also be associated with structural differ-
ences in the brain regions identified. For example,
Dannlowski et al. (2012) showed that childhood trauma
was associated with decreased hippocampal and pre-
frontal grey matter volumes, while Tottenham et al.
(2010) have shown that children adopted out of orpha-
nages at older ages had larger amygdala volumes com-
pared with early-adopted children and controls.

In conclusion, this meta-analysis examined fMRI
studies of social environmental stress exposure in
both adults and children/adolescents. Social environ-
mental stress was found to be associated with altered
BOLD response across a range of brain regions, and,
of these, increased BOLD response of the right amyg-
dala was a robust finding across a range of populations
and based on response to a variety of stimuli. What
remains unknown is whether social environmental
stress has differing effects on treatment response in
these brain regions.

Supplementary material

For supplementary material accompanying this paper
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