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We consider the coupled SchrodingerKorteweg-de Vries system
i(ut + cruz) + Suze = auw,

vt + c2Vz + 02Vzzx + ’Y(’U2)z = ﬁ(‘u‘2)17
which arises in various physical contexts as a model for the interaction of long and
short nonlinear waves. Ground states of the system are, by definition, minimizers of
the energy functional subject to constraints on conserved functionals associated with
symmetries of the system. In particular, ground states have a simple time
dependence because they propagate via those symmetries. For a range of values of

the parameters a, 3, 7, i, ci, we prove the existence and stability of a two-parameter
family of ground states associated with a two-parameter family of symmetries.

1. Introduction

In this paper we prove existence and stability results for ground-state solutions to
the system of equations

i(ug + crug) + 01Uz = Quu,

5 , (1.1)
Vg + CoVy + 620www + P)/((U )w = ,B(|U| )wﬂ

where u is a complex-valued function of the real variables x and ¢, v is a real-valued
function of x and ¢, and the constants ¢;, §;, «, 3, v are real. We consider here only
the pure initial-value problem for (1.1), in which initial data (u(x,0),v(z,0)) =
(up(z),vo(z)) are posed for —oo < z < 00, and a solution (u(z,t), v(z,t)) is sought
for —0o < & < oo and t > 0. Well-posedness results for the pure initial-value
problem for (1.1) and certain variants have appeared in [7,21, 34]; we cite below
in §5 the specific results we will need here.

Systems of the form (1.1) appear as models for interactions between long and
short waves in a variety of physical settings. For example, Kawahara et al. [23]
derived (1.1) as a model for the interaction between long gravity waves and cap-
illary waves on the surface of shallow water, in the case when the group velocity
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of the capillary wave coincides with the velocity of the long wave. In [30,32], a
system of equations is derived for resonant ion-sound/Langmuir-wave interactions
in plasmas, which reduces to (1.1) under the assumption that the ion-sound wave
is unidirectional. Similarly, one can obtain (1.1) as the unidirectional reduction of
a model for the resonant interaction of acoustic and optical modes in a diatomic
lattice [38].

In the applications mentioned in the preceding paragraph, all the constants
appearing in (1.1) are typically non-zero. On the other hand, system (1.1) with
d2 = v = 0 was derived in [16,20] as a model for the interaction between long
and short water waves, and appears as well in the plasma physics literature (see,
for example, [22,37]). The presence or absence of the terms containing d, and - is
determined by the scaling assumptions made in the derivation of the equations. For
a discussion of the role of the scaling assumptions in the derivation of equations
such as (1.1), the reader may consult [10] or [17].

If 65 # 01in (1.1), then, by making appropriate use of the transformations z — 6z,
t —0t,x - x+t, u— Ou, u — u and u — ei(e"“ezt)u, where 6 € R, we can
reduce (1.1) to either

Uy + Upy = —uv,
' ) (1.2)
Vg + 2052, + SQ(U )w = —(|U| )w
or
iug + Ugy = —UV,
K , , (1.3)
Ut — 2waw + SQ(U )w = —(|U| )wﬂ

where ¢ € R. System (1.3) is of the form that arises in [5,30,32]; in these references,
one can find, in particular, explicit ground-state solutions. The analysis of (1.3),
however, is complicated by the fact that the associated energy functional, analogous
to the energy E(u,v) defined below, is not positive-definite. In this paper we only
consider (1.2), and we further restrict consideration to the case when ¢ is positive
in (1.2). (When (1.2) is used to model interactions between internal and surface-
gravity waves in a two-layer fluid, the assumption that ¢ is positive corresponds
to the assumption that the ratio of the depth of the upper layer to the depth
of the lower layer is less than a certain critical value [17].) For technical reasons,
the argument used in this paper to prove existence and stability of ground states
for (1.2) does not apply to the case when ¢ is negative. We note, however, that the
explicit one-parameter family of ground states for (1.2) given below in (2.8) does
continue to negative values of q.

We will also have occasion below to consider the case when do =~ = 01in (1.1).
In this case, system (1.1) can be reduced to the form

Uy + Uy = —uv,
! } (1.4)

ve = —(Jul*)s.
System (1.4) is of independent mathematical interest because it has been found to
have a completely integrable structure. In particular, it has an inverse-scattering

transform and explicit N-soliton solutions [28,29,37]. (By contrast, equations (1.2)
and (1.3) do not have N-soliton solutions [9].)
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The system (1.2) can be written in Hamiltonian form as
(ut,v¢) = JOE(u,v), (1.5)

where J is the antisymmetric operator defined by J(w, z) = (—%iw, zz) and E(u,v),
the Hamiltonian functional, is defined by

E(u,v) = / (Juz)® 4+ v2 — v|ul* — qv?) da.

The notation dF in (1.5) refers to the Fréchet derivative, or generalized gradient, of
E. Since the Hamiltonian F is invariant under time translations, it is a conserved
functional for the flow defined by (1.2), i.e. when applied to sufficiently regular
solutions u(z,t), v(z,t) of (1.2), F is independent of ¢. There are also two other
conserved functionals of (1.2) associated with symmetries, namely,

G(u,v) :/ v2dz — 2Im/ ully dx,

—0o0

which arises from the invariance of (1.2) under space translations x — = + 6, and
o0
H(u) = / lul|? dz,
—0o0

which arises from the invariance of (1.2) under phase shifts u — el%u.
Equations (1.4) can also be rewritten in Hamiltonian form as

(ut,ve) = JOK (u,v), (1.6)

where J is as above and K is defined by
K(u,v) = / (|uz)® — v|ul?) de.

The functionals G(u,v) and H(u) defined above are conserved functionals for (1.4)
as well.
Bound-state solutions of (1.2) or (1.4) are, by definition, solutions of the form

u(z,t) = e“Thiz — ct), v(z,t) = g(a — ct), (1.7)

where h and g are functions that vanish at infinity in some sense (usually h and
g are in H'(R)), and w and c are real constants. It is easy to see that u(x,t) and
v(z,t), as defined in (1.7), are solutions of (1.2) if and only if (h, g) is a critical point
for the functional FE(u,v), when u(z) and v(z) are varied subject to the constraints
that G(u,v) and H (u) be held constant (see § 5 below). If (h, g) is not only a critical
point, but, in fact, a global minimizer of the constrained variational problem for
E(u,v), then (1.7) is called a ground-state solution of (1.2). The same comments
also apply to (1.4), except that the functional being varied in this case is K (u,v).
In this paper, our main concern is with ground-state solutions. For a discussion
of what is currently known about bound-state solutions of (1.2) in general, see §2
below.
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The terms ‘bound state’ and ‘ground state’ are traditional in the literature con-
cerning the nonlinear Schrodinger equation

iy + gy = —ulul? (1.8)

Bound-state solutions of (1.8) are solutions of the form wu(xz,t) = e“*h(x — ct), or,
equivalently, minimizers of the Hamiltonian functional

/ (lual? = Lful*) de

—0o0

subject to the constraints that H(u) and ffooo ull; dz be held constant. It is easy to
see that any bound-state solution of (1.8) must have a profile function of the form

h(z) = eilcz/2+6), /9 5 sech(vox + 9),

where 0 = w — icQ > 0, and xp,0 € R. In fact, these bound states are actually
ground states [12]. Since |h(z)| decays monotonically to zero as z tends away from
Zo to 0o or —oo, bound-state solutions of (1.8) are often called solitary waves. By
extension, the term ‘solitary wave’ is often used to refer to bound-state solutions
of equations that are related to (1.8), such as (1.2) or (1.4). This usage, however, is
usually eschewed for bound states that are known not to have monotonic profiles,
such as the excited bound states known to exist for generalizations of (1.8) to
higher dimensions (see, for example, [11]). Since, for system (1.2), we do not know,
in general, whether the ground-state solutions we find have profiles that decay
monotonically to zero away from a single extremum, we have here avoided calling
them solitary waves.

Our main results are as follows. We prove below (see theorem 4.5 and corol-
lary 5.2) that, for a certain range of values of ¢, equation (1.2) has, for every s > 0
and t € R, a non-empty set of ground-state solutions (1.7) with profiles (h, g) satis-
fying H(h) = s and G(h, g) = t. Moreover, for a given pair of values of s and ¢, the
set Fs; of profiles of these solutions is stable, in the sense that if (h, g) € Fs+ and
a slight perturbation of (h, g) is taken as initial data for (1.2), then the resulting
solution of (1.2) can be said to have a profile that remains close to F; ; for all time
(see theorem 5.4).

Besides the main results, we also include an existence result for ground-state
solutions of (1.2), which is valid for all ¢ > 0 (theorem 3.27) and an existence and
stability result for ground-state solutions of (1.4) (theorem 5.6). Concerning the
latter result, we note that existence of bound-state solutions is obvious, since it
is easy to explicitly find all solutions of the equations that result from substitut-
ing (1.7) into (1.4) (see lemma 2.2 below). Also, the stability of these solutions has
been proved by Laurengot in [24]. However, the method used by Laurencot did not
establish whether these bound states were, in fact, ground states.

The results in the present paper are complementary to those contained in an
earlier paper of one of us [4], where different techniques were used. In particular, it
follows from the results of § 3 of [4] that, for every ¢ > 0, we can find, for arbitrary
¢ > 0 and arbitrary w € (4¢?,00), a bound-state solution (1.7) of (1.2) such that
h(z) = €l°*/2f(z), where f is real valued. Moreover, a stability result for certain
sets of such bound states is proved when w is near icQ. We also note that Chen [14]
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has proved the orbital stability of a two-parameter family of explicit bound-state
solutions (see § 2 below) in the special case ¢ = 2. Finally, we mention the elegant
proof in Ohta [33] of the stability of solitary-wave solutions of the Zakharov system,

Uy + Upe = —uv,
! } (1.9)

_(|u|2)ww:

Vit — Vg

by means of an argument that is related to the arguments used below in §4.

The proofs below follow the lines of many other proofs of existence and stability
of solitary-wave solutions to dispersive equations that have appeared over the last
couple of decades. The common elements in these proofs are the reduction of the
stability problem to the problem of showing that minimizing sequences of a con-
strained variational problem are necessarily relatively compact, and the solution of
this latter problem by the method of concentration compactness (see [13] for what
may be the first example of such a stability proof).

In the present situation, however, application of the concentration compactness
method is considerably complicated by the fact that, for a given choice of ¢ in (1.2),
we are interested in finding a true two-parameter family of bound-state solutions
(parametrized by ¢ and w). In all the applications of the method to solitary waves
that we are aware of, the variational problem has consisted of finding the extremum
of a real-valued functional E(f) subject to a single constraint of the form Q(f) = A,
where () is another real-valued functional and A € R is a constant. This leads to
a result concerning a one-parameter family of solitary waves. (In some cases, such
as that of the nonlinear Schrodinger equation (1.8) or the Zakharov system (1.9),
there at first appear to be two solitary-wave parameters, but it turns out that they
are not independent.) Here, on the other hand, we are led to consider a variational
problem in which there are not one, but two real-valued constraint functions.

Now, as was already noted in the original papers introducing the concentration
compactness method (see, for example, [26, §IV]), the general outline of the method
lends itself just as easily to problems in which there are more than one constraint
function as to problems with a single constraint functional. But putting the method
into practice requires proving the subadditivity of the variational problem with
respect to the constraint parameters, and this turns out to be considerably more
complicated in the case of two parameters. The task of proving the subadditivity
of the relevant two-parameter variational problem will occupy us through most
of §3.

The outline of this paper is as follows. In §2, we collect some basic facts con-
cerning the properties of bound-state solutions of (1.2) and (1.4). Sections 3 and 4
contain the proof of the relative compactness of minimizing sequences for the vari-
ational problems that define ground-state solutions of (1.2) and (1.4). Finally, §5
discusses the existence and properties of ground-state solutions, including their
stability properties.

NoTATION. We shall denote by f the Fourier transform of f, defined as
O =] swear,
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For 1 < p < oo, we denote by LP = LP(R) the space of all measurable functions f
on R for which the norm |f|, is finite, where

0 1/p
|f|p:(/ |f|pd$> for1<p< >

and |f|s is the essential supremum of |f| on R. Whether we intend the functions
in L? to be real or complex valued will be clear from the context. For s > 0, we
denote by HE = HE(R) the Sobolev space of all complex-valued functions f in L?
for which the norm

1/2

= ([~ a+leprisera)

is finite. We will always view H¢ as a vector space over the reals, with inner product
given by

(f1, f2) = Re[ 1+ |£|2)8f1f2 dx.

The space of all real-valued functions f in HZ will be denoted simply by H®. In
particular, we use ||f|| to denote the L? or H° norm of a function f. If I is an
open interval in R, we use H*(I) to denote the set of all functions f on I such that
fn € H? for every smooth function n with compact support in I. We define the
space X to be the Cartesian product H. x L?, and the space Y to be HL x H!,
each provided with the product norm. Finally, if 7" > 0 and Z is any Banach space,
we denote by C([0,T], Z) the Banach space of continuous maps f : [0, 7] — Z, with
norm given by
I fllcqo,m.zy = sup [[f(t)lz-
t€[0,T]

The letter C' will frequently be used to denote various constants whose actual value
is not important for our purposes.

2. Bound states

We record here some general results concerning bound-state solutions of (1.2) and
related equations. We also include a list of explicit formulae for solutions in a few
special cases, for purposes of comparison with the more general solutions we study
in later sections.

Recall that a bound-state solution of (1.2) is, by definition, a solution of the
form given in (1.7). In what follows, we further require that h € Hé and g € H'.
If we substitute (1.7) into (1.2), we can integrate the second of the resulting two
equations, using the fact that ¢ € H' to evaluate the constant of integration. We
thus see that (u(z,t),v(z,t)) is a bound-state solution of (1.2) if and only if h and g
satisfy the equations

' —wh —ich’ = —hg,
(2.1)

29" — cg = —3q9® — |n|*.
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We can further simplify (2.1) by putting h(z) = °*/2f(z), thus obtaining the
system

" —of =—fg. } 22)

29" — cg = —3q9® — |fI?,
1.2

where 0 = w — 3¢®. We can thus consider (2.2) to be the defining equations for
bound-state solutions of (1.2).

THEOREM 2.1. Suppose (f,g) € Y is a solution of (2.2), in the sense of distribu-
tions. Then we have the following.

(i) (f,9) € HE x H*.

(ii) If ¢ > 0, then either f and g are both identically zero or g(x) > 0 for all
z € R.

(iii) f(z) = p(x)e'? for 2 € R, where 0y is a real constant and ¢ is real valued.

(iv) If ¢ > 0 and ¢ > 0, there exist constants e1,e5 > 0 such that e!1*| f(z) and
el?lg(z) are in L.

Proof. For any s > 0, define the function K,(z) by

1 —VS|T

Then K,(¢) = (s + €2)7', so the operation of convolution with K takes Hg
to HEJFQ, and is, in fact, the inverse of the operator (s — 0,;) in the sense that
(s = Op) (K * f) = f for all f € H2. Now we can rewrite (2.2) in the form

f:KU+a1*(fg+a1f)a }

(2.3)
9=K.jara * (309 + 3|fI* + azg),

where a; and ay are real numbers chosen so that ¢ +a; > 0 and %c—l— as > 0.

From (2.3), statement (i) follows by a standard bootstrap argument. Since f and
g are in H}, and H{ is an algebra, then ¢2, |f|> = ff and fg are also in HE.
Hence (2.3) implies that f and ¢ are in Hg. But then g2, |f|? and fg are in H(%,
so (2.3) implies that f and g are in HQ, and so on.

To prove (ii), observe that if ¢ > 0, then we can take az = 0 in (2.3). But since
K. /; is strictly positive on R and g + |f|? is everywhere non-negative, it then
follows from the second equation in (2.3) that if either f or g is non-zero on a set
of positive measure, then g(x) > 0 everywhere.

For (iii), we first observe that, by (i) and the standard uniqueness theory for
ordinary differential equations, f(x) and f’(x) cannot both vanish at any point
xr € R. Moreover, if the zeros of f accumulate at any point € R, then, by
Rolle’s theorem, the zeros of Re f/ and Im f’ accumulate at x also, leading to the
contradictory result that f(x) = f’(z) = 0. Therefore, the zeros of f must be
isolated.
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Let 1 and z5 be any two consecutive zeros of f, where x1 < x5, and possibly
r1 = —00 or 9 = o0 or both. Then we can find infinitely differentiable functions r
and 0 on (x1,x2), with 7(z) > 0 on (x1,z2) and

lim r(z) = lm r(z) =0,

z—a] z—zy
such that, for all z € (z1,z2),
f(z) = r(z)e?@,
From the first equation in (2.2), we get

7 —or—r(0)? = —rg,}

2.4
20" + 1" = 0. (2:4)

Multiplying the second equation in (2.4) by r(z) and integrating, we obtain
r2(x)f (z) = K

for all z € (r1,22), where K is a constant. Now, by (i), |f'|> = (/)% + 72(0')? is
bounded on R, so r%(#')? = K?/r? is bounded on (x1,z2). But since r — 0 as
& — x1, this implies that K = 0 on (x1,22). Hence 6 is constant on (1, z2).

The preceding argument shows that f(z) = r(2)el?®) on R, where (z) is defined
and constant on each of the intervals separating the zeros of r(z). Now suppose that
xo € R is such that r(xz¢) = 0, and define

0~ = lim O(z), t = lim r'(z),

T—To T—To
67 = lim 6(x), tt = lim »'(z).
T—Tq T—Tq

Then e t= = /(o) = e ¢+, and since f'(z) # 0, both ¢~ and ¢+ are non-zero.
Therefore, el® —07) = t~/tT € R, from which it follows that ei(0"=07) is either 1
or —1. Hence we can arrange that f(z) = ¢(z)e? on both sides of x(, where ¢(z)
is real valued, by taking 6y = 6~ and defining ¢(z) = r(z) for = to the left of zq
and p(z) = r(m)ei(9+*97) to the right of zy. Stepping through the intervals between
zeros of r(z) one at a time, both rightward and leftward from z, and iterating this
procedure, one obtains the desired result.

To prove (iv), we borrow an argument from the proof of theorem 8.1.1 (iv) of [12].
For each € > 0 and 7 > 0, define a function ¢ by ¢(x) = el#l/(+nz)  Multiply the
first equation in (2.2) by ¢f and add the result to its complex conjugate to get

Re [ fchyar+a [ clffae= [ colrPa
Since ¢’ < ¢, we can deduce that

o[ <|f|2dx<[ <g|f|2dx—[ <|f’|2dx+e[ dfflde.  (25)
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Now using the Cauchy-Schwarz inequality with e chosen to be sufficiently small,
we deduce from (2.5) that

[ CIfPdr < C. [ Colf P da, (2.6)

where C. does not depend on 7. Since ¢ € H', we can find R > 0 such that
lg(z)| < 1/(2C) for |z| > R. It then follows from (2.6) that

| dsrarsoc [ eHg@li@ar,
—o0 |z|<R
and taking n — 0 gives
/ el f(2) 2 dz < oo. (2.7)

Now, since f € H!, then f(x) — 0 as |z| — oo and f is uniformly Lipschitz on R.
From these two properties of f and (2.7), it follows easily that e**l f(z) is bounded
on R for some ¢; € (0,€) (for details, see the proof of theorem 8.1.7 (iv) in [12]).

The decay estimate for g is obtained in the same way as that for f. Multiplying
the second equation in (2.2) by (g leads, as above, to the estimate

/ngm C/ C(g® +1fPg) du

Choosing € < 2¢;, and using the decay result just proved for f, we find, as before,
that f Cg? dx can be bounded by a constant that is independent of 7. Taking
n—0 allows us to conclude that

/ el?lg(2)? da < oo,

and from here the proof proceeds as it did for f(x). O

Funakoshi and Oikawa, in [17], list the following explicit one-parameter families
of bound-state solutions to (1.2). For ¢ < £, define

f(z) = +6B%*\/2 — 3¢ sechQ(Bx),}

g(x) = 6B sech®(Bu), (2.8)

where B > 0 is arbltrary Then (f,g) satisfy (2.2) with ¢ = 4B? and ¢ = 8B2. If,
on the other hand, ¢ > > , then we have that

f(iU) = +6B?/3q — 2sech(Bx) tanh(Bx),}

g(x) = 6B* sech®(Bx) (2.9)

is a solution of (2.2) with 0 = B? and ¢ = 2B?*(9¢ — 2). When ¢ = £, of course,
these solutions coincide, with the obvious solution given by

4B?
f=0 and g¢g= (T) sech?(Bz),
which satisfies (2.2) with ¢ = 8B2 for all ¢ # 0.
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In [14], Chen considered (1.2) in the special case when ¢ = 2, and found a two-
parameter family of explicit solutions, given by

f(z) = £/2B2(c — 8B?) sech(Bx),} (2.10)

g(x) = 2B%sech?(Bx),

where B2 = o, and ¢ > 0 and o € (0,2 sc) are arbitrary. Then, using the stability
theory of [19], he went on to show that if h(z) = e'°*/2 f(z), w = o+3c? and (u,v) is
the bound-state solution of (1.2) deﬁned by (2.10) and (1.7), then (u v) is orbitally
stable provided ¢ < 1 and o € (0, 5¢) (see [14, theorem 2]). Here, orbital stability
of (u,v) means that if F', the orbit of (f,g), is defined as the set of all (f,§) € Y
such that f(z) = e f(z + x0) and §(z) = g(z + x0) for some 0y, zo € R, then F is
stable in the sense of theorem 5.2 below.

In theorem 5.1 below, it is shown that if (f, g) is a solution of (2.2) corresponding
to a ground-state solution of (1.2), then, up to a multiplicative constant of absolute
value one, f is a positive function on R. Therefore, the bound state given by (2.9)
is not a ground state. In fact, in the case ¢ = 2, it is not hard to show (see
remark 3.18 below) that there is, up to translation and phase shift, a unique ground-
state solution of (2.2), and that this solution is given by (2.10). We do not know,
however, whether ground states are unique for g # 2.

In later sections, we will need the following uniqueness results for certain equa-
tions related to (2.2).

LEMMA 2.2. Suppose (f,g) € X is a non-zero solution of the equations

fHJrfg:/\f’} (2.11)
12 = g,
where A\, € R. Then A > 0 and p > 0, and
flz)=e®fi(x+x0) and g(z) = g1(z + x0),
where Oy, xo € R and
fi(z) = \/msech(\/xx),} (2.12)
g1(z) = 2A sechz(\/Xx).
LEMMA 2.3. Suppose g € H' is a non-zero solution of the equation
_q" — %QQQ = kg, (2.13)
where k € R. Then k > 0 and g = ga2(x + z¢), where x9 € R and
ga2(z) = 7 sech2( VET). (2.14)

To prove these well-known results, one begins by using a bootstrap argument to
establish that any solution must, in fact, be infinitely differentiable. Equation (2.13)
can then be integrated twice (after first multiplying by ¢’) to yield (2.14). For
equation (2.11), we can argue as in the proof of theorem 2.1 (iii) to show that
f(x) = el%%p(z), where ¢ is real valued, and then eliminate g to obtain a single
equation for ¢, which may be solved by integrating twice. We omit the details.
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3. The reduced variational problem
In this section we consider the problem of finding
I(s,t) = inf{E(f,9) : (f,9) € Y, |fII* = 5 and ||g* = 1}, (3.1)

where s,t > 0. Our approach will be to split the functional E into two parts and
consider the variational problem associated with each part. Define K : X — R by

K(9)= | 1FP=glfP)as.
and J : H* — R by
10 = [ (@7~

Then
E(f.9) = K(f.9)+ J(9).
Hence, if we define M : H' — R by

M(g) = inf{K(f,g): f € Hg and || f|| = 1}, (32)

then
I(s,t) =inf{sM(g) + J(g): g € H' and ||g|* = t}. (3.3)
This expression for I(s,t) suggests analysing the subsidiary variational problems

defined by
Li(s,t) = inf{K(f.g) : (f,9) € X, If|I* = s and [|g||* = ¢}

=inf{sM(g) : g € H' and ||g|* = t} (3.4)

and
I(t) = inf{J(g) : g € H' and ||g|* = t}. (3.5)

LeEmMA 3.1. If (f,9) € X, then (|f],9) € X also, and K(|f],9) < K(f,g).

Proof. What has to be proved is that if f € H{, then F(z) = |f()| is in H',
with [|F||1 < ||f|l1. We do not prove this elementary fact here, but remark that a
proof can be given, which, by working with f and F instead of f and F'; avoids the
annoying question of the differentiability of F' at points where F' = 0. Such a proof
is easily constructed by adapting the proof of lemma 3.4 in [3]. O

LEMMA 3.2. For all s,t >0, I1(s,t) and I5(t) are finite.

Proof. Let (f,g) € X with || f||?> = s and ||g|> = t. Then, from the Cauchy-S chwarz
inequality and the Sobolev embedding theorem, we have

U‘mﬂ%x
‘/ g% dz
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Hence I;(s,t) = —Cs(1 +t) > —co and Ir(t) = —Cs? > —oc. |

LEMMA 3.3. For all s,t > 0, we have I1(s,t) < 0 and I5(t) < 0. Also, I1(s,0) =0
for all s 20, I;(0,t) = 0 for allt = 0 and I5(0) = 0.

Proof. When s,t > 0, we can choose (f,g) € X such that
1= o=t [ giPae=o. [gtarso.

Then, for each > 0, the functions fq(z) = 6'/2f(0z) and go(x) = 01/2g(0z) satisty
Ifoll? = s, llgoll* = ¢,

Kmﬂw=%/ U?M—MQ/ glf 1P de

and
J(g9) = 92/ (¢)?dx — 91/2/ g> dz.

Hence, by taking 6 sufficiently small, we get K(fp,g9) < 0 and J(gg) < 0, proving
that I1(s,t) < 0 and Iz(t) < 0.

If s > 0, then, choosing any f € H' with ||f|| = s and defining fy as in the
preceding paragraph, we get

Mhm=ﬁ/‘UVm>hwm>0

—0o0

Then, by letting 6 tend to zero, we see that I1(s,0) = 0.
Finally, the equalities I;(0,%) = 0 and I3(0) = 0 are obvious. O

LEMMA 3.4. Suppose o > 0, and define a map g — g* from H' onto H' by
g*(z) = 0**g(c/?2).
Then, for each g € H',
M(g") = o**M(g) (3.6)
and
J(g") = a*J(g). (3.7)

Proof. A simple change of variables in the integral proves (3.7). To prove (3.6), for
each f € H¢ such that | f|| = 1, define f by

f(z) =o'/Of (o).

Then || f|| = 1 and K(f,g*) = 02/3K(f,g), whence (3.6) follows by taking infima
on both sides. O

LEMMA 3.5. For all s,t > 0, we have

L(s,t) = st?31,(1,1) (3.8)

https://doi.org/10.1017/5S030821050000278X Published online by Cambridge University Press


https://doi.org/10.1017/S030821050000278X

Ground-state solutions of a Schridinger-KdV system 999

and
L(t) = t°/31,(1) (3.9)

Proof. We may assume s,t > 0. Let (f,g) € X be such that || f[|* = s and ||g[|* = ¢,
and let f and g* be as defined in lemma 3.4 and its proof, with o = t~!. Define
z=s"'/2f Then |2[]* = 1, g*|* = 1,

K(f.g) = st’*K(z,g"), (3.10)
and
J(g) = t7J(g"). (3.11)

The equality (3.8) follows by taking the infimum of both sides of (3.10) with respect
to f and g, while (3.9) follows by taking the infimum of both sides of (3.11) with
respect to g. O

LEMMA 3.6. Suppose s1,t1,82,ta > 0. If t1/ta = s1/s2 = o, then
I(s1,t1) = 0731 (s,t2).
Proof. For g € H', let ¢* be as defined in lemma 3.4. Then
I(s1.t1) = inf{si M(g") + J(g") - g" € H' and ||g"|> = 2}
= inf{o%/3(soM(g) + J(g)) : g € H" and [|g]|* = t2}
= 053] (s9,t).
O

LEMMA 3.7. Let s1,89,t1,t2 = 0, and suppose that s1 + s > 0, t1 +t2 > 0,
s1+t1 >0 and sg+ts > 0. Then

I1(31 + so,t1 + tg) < Il(sl,tl) + Il(SQ,tg). (312)
Also, if t1,t2 > 0, then
Ig(tl + tg) < Ig(tl) + Ig(tg). (313)

Proof. To prove (3.12), we consider three cases: when s; = 0; when ¢; = 0; and
when neither sy nor t; is 0. In the first case, we must have s, > 0 and t; > 0, so

sa(ty + t2)2/3 > Sgtg/B.

Since I1(1,1) < 0 and I;(s1,t1) = 0 by lemma 3.3, multiplying both sides by I(1,1)
and using lemma 3.5 gives the desired inequality. Similarly, in the second case, we

must have s; > 0 and t5 > 0, so
/ 2/3

2/3 3 + 82t2 s

2
(s1 + s2)(t1 + t2) > s1t;

and again multiplying by I1(1,1) gives the desired inequality. Finally, in the third
case, when s; > 0 and t; > 0, we must have either so > 0 or to > 0. If s5 > 0, then

https://doi.org/10.1017/5S030821050000278X Published online by Cambridge University Press


https://doi.org/10.1017/S030821050000278X

1000 J. Albert and J. Angulo

we write

(514 s2)(t1 + £2)%/3 = s1(t1 + 12)%/% + so(t1 + t9)?/3
> Sl(tl + t2)2/3 + Sgtg/B
> 5167"% + soty/°.

If to > 0, we can write the same string of inequalities, with the penultimate expres-
sion replaced by slt?/B + sa(t1 + t2)2/3. In either case, we have established that

(514 s2)(t1 +t2)*3 > 5182 + sot3/®,
which, when multiplied by I;(1,1) < 0, gives the desired result.
To prove (3.13), we merely observe that

(t1 +12)%/3 > /3 4 £3/3
for t1,t> > 0, and apply lemmas 3.3 and 3.5. O

The next result, which we state here without proof, is taken from [15, lemma 2.4].
For a proof, see [26, lemma I.1].

LEMMA 3.8. Suppose p,r € [1,00), {fn} is a bounded sequence in L™ and {f}} is
bounded in LP. If, for some w > 0,

y+tw
lim sup/ |fnl" dx =0,
Yy—w

then, for every s > r,

lim | fn]® dz = 0.

We will now prove the existence of minimizing pairs for problems (3.4) and (3.5).
Actually, we accomplish somewhat more: using the method of concentration com-
pactness [25,26], we show that, in fact, every minimizing sequence for these varia-
tional problems has a subsequence that converges, after suitable translations, to a
solution of the problem. From this property of minimizing sequences, there easily
follow stability results for the evolution equations (1.2) and (1.4) (see theorems 5.4
and 5.6 below).

Let us first consider minimizing sequences for (3.4), which are, by definition,
sequences {(fn,gn)} in X satisfying

lim ||fn||2 =S, lim ||gn||2 =1, lim K(fn:gn) = Il(sat)‘

(Note that we do not require the elements (f,,¢gn) of a minimizing sequence to
satisfy exactly the constraints in (3.4). This convention will be useful later, in the
proof of theorem 5.4.) To each such sequence, we associate a sequence of non-
decreasing functions @, (w), defined for w > 0 by

y+tw
Quw) =5 [ (1P o)+ g2(e) do

yeR Jq
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Since ||f.|| and ||g,|| remain bounded, then {Q,,} comprises a uniformly bounded
sequence of non-decreasing functions on [0,00). A standard argument then implies
that {Q,,} must have a subsequence, which we denote again by {Q,}, which con-
verges pointwise and uniformly on compact sets to a non-decreasing limit function
on [0,00). Let @ be this limit function, and define

a= lim Qw). (3.14)

w—00

From the assumption that || f,,[|? + ||g.||*> — s+, it follows that 0 < a < s+¢. The
concentration-compactness method distinguishes three cases: @ = s + t, called the
case of compactness; a = 0, called the case of vanishing; and 0 < a < s + t, called
the case of dichotomy. Our goal is to show that, for minimizing sequences of (3.4),
only the case of compactness can occur. It will follow, by a standard argument,
that every minimizing sequence is relatively compact, after suitable translations
(cf. theorem 3.12 below). Later, we will show that this compactness property is
also enjoyed by problem (3.1).

LEMMA 3.9. Suppose s,t = 0. If {(fn,gn)} is a minimizing sequence for Ii(s,t),
then {(fn,gn)} is bounded in X.

Proof. From standard Sobolev embedding and interpolation theorems, we have

‘/ gl ful? do

But, for a minimizing sequence, || f,|| and ||g, || stay bounded, so it follows that

\/ gl ful? da

where C' is independent of n. Hence, since {K(f,,gn)} is a bounded sequence, we
obtain

1/2
< faldllgall < ClEIY 21 £l gnll

<Ol falli?,

1£allf = K (£ gn) +/ gulful? dz + 1 £al® < COL+ [1£111%),

from which it follows that || f,||1 is bounded. Therefore,

1(Frs g 1% = 1 fallf + llgall® < C

and we are done. O

LEMMA 3.10. Suppose s,t > 0, and let {(fn,gn)} be any minimizing sequence for
Ii(s,t). Let o be as defined in (3.14). Then there exist numbers s; € [0,s] and
t1 € [0,t] such that

s1+t1 =« (3.15)
and

Il(sl,tl)-i-ll(s—sl,t—tl)<I1(s,t). (316)
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Proof. Let € be an arbitrary positive number. From the definition of «, it follows
that, for w sufficiently large, we have a—e < Q(w) = Q(2w) £ a. By taking w larger
if necessary, we may also assume that 1/w < e. Now, according to the definition
of (), we can choose N so large that, for every n > N,

a—€e<Qnw) <Qn(2w)Sa+te (3.17)

Hence, for each n = N, we can find y,, such that

Yn+w Yn +2w
/ (|ful* +¢2)dz > a—€ and / (|ful? +¢2)dz < a+e (3.18)

Yn —w Yn —2w

Now choose smooth functions p and r on R such that

1 forze[-1,1],
0 forx¢[-2,2],

1 forz ¢ [-2,2],
0 forxe[-1,1],

and p?(x) + r%(z) = 1 for all z € R. Define p,(z) = p(z/w) and r,(z) = r(z/w),
and let

(L,On(l'), hn(m)) = (pw(m - yn)fn(m):pw(m - yn)gn(m))
and
(In (@), n (@) = (rw(@ = yn) fr(@), 70 (2 = yn)gn(2))-

From lemma 3.9, it follows that the sequences {¢,}, {h,}, {l.} and {j,} are
bounded in L?. So, by passing to subsequences, we may assume that there exist
s1 €0, s] and t; € [0,¢] such that

oo oo
/ lonl?dz — 51 and / h2 dx — tq,
—00

—0o0

whence it follows also that

oo oo
/ ll,]?dz — s —s; and / j2de —t—t;.
— 00

—0o0

Now
sith = nILH;O/ (nl® + h3) dz = ,}LH;O/ P2 (Ifal® + g7) de.

Here and below we have suppressed the arguments of p, and r, for brevity of
notation. From (3.18) it follows that, for every n € N,

oo
a—e</ pi(|fn|2+gi)dm<a+e.
— 00

Hence
[(s1+t1) —al <e.
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Next observe that
1 C
|pZu|oo + |7ﬂ¢1u|<>0 g Z(|plloo + |rl|oo) < ;:
and, by lemma 3.9, || f»|l1 < C, where C' denotes constants that are independent of
w and n. Hence

Kigntn) < [~ QRIS = danlful?) o+ [

o0

C
(P% = PL)gnl fal? dz + = (3.19)

and
oo oo C
Knin) < [ 0202 = 2galfaPrae+ [ 02 = iglfalPdo+ =, (320

On the other hand, from (3.18), we get

G a2+ 0 = il as

< 2|fn|oo/ (ful? + g2) dz
wS |z—yn|S 2w
< Ce.

Therefore, adding (3.19) and (3.20) and using p? + r2 = 1, we get

K (9 ) + K (s ) < K (fasgn) + G(e + %) <K (farg0)+Ce. (3:21)

For any given value of ¢, each of the terms in (3.21) is bounded independently
of n, so, by passing to subsequences, we may assume that K(p,,h,) — K; and
K(ly, jn) — Ko, where

K1+ Ky < I1(s,t) + Ce.

Combining the results of the preceding paragraphs, and recalling that € can be
taken arbitrarily small and w arbitrarily large, we see that, for every k£ € N, we can

find sequences
{(et?,ngN} and {05, 50)} in X

such that
eI — s1.(k),
1RGP — ta (k),
E? — s — s1.(k),
1SN — ¢ = ta (k)
and

K (P, nP) — Ki(k),
K1, i) — Ko (k),
where s1(k) € [0, s], t1(k) € [0, ],

[s1(k) +t1(k) — ol < (3.22)

> =
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and

By passing to subsequences, we may assume that s;(k), t1(k), K1(k) and Ky(k)
converge to numbers s; € [0,s], t; € [0,t], Ky and K,. Moreover, by redefining
(¢ns gn) and (hy, j,) as the diagonal subsequences

(Pnsgn) = (P, 90) and (b, ja) = (R, 55),
we may assume that

”4»071”2_)31:

n — U1,
1hn]* — t
[Eall? — s = s1,

[nll* = ¢ =t
and

K(Lpn:gn) - Kl:
K(hnajn) - Kg.

Now letting k — oo in (3.22) gives (3.15), and similarly (3.23) will imply (3.16),
provided we can show that

Ky 2 Ii(s1,t1) (3.24)
and
K2 > Il(s—sl,t—tl). (325)

To prove (3.24), we consider three cases: (i) s; > 0 and t; > 0; (ii) s; = 0; and
(iii) t1 = 0. In case (i), for n sufficiently large, we have ||¢,] > 0 and || h,| > 0, so

we may define
2V Vit
Vo and 6, = AT
llonl (72l

Then ||Bnenl|? = s1 and [|0,h,||? = t1, so

K(Bnn,0nhn) = I1(s1,t1).

B

But since (3, and 6,, approach 1 as n — oo, we have K(8,¢n, Onh,) — K1, from
which (3.24) follows. In case s; = 0, we have ||¢,| — 0, so

‘/ hnlonl® dz| < lenllill@nllllhnll — 0, (3.26)
whence
Ky = lim K(gn,h,) = lim / (|l |* = hnlnl?) dz > 0. (3.27)
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Since I (s1,t1) = I1(0,t1) = 0, this proves (3.24) in case (ii). Finally, if t; = 0, then
[lhnll — 0, so (3.26) and (3.27) again hold, which proves (3.24) in this case since
I1(s1,0) = 0. Therefore, equation (3.24) has been proved in all cases. The proof
of (3.25) is similar, with s — s; and ¢ — ¢; playing the roles of s; and ¢;. O

LEMMA 3.11. Suppose s,t > 0, and let {(fn,g.)} be any minimizing sequence for
Ii(s,t). If a is as defined in (3.14), then a = s +t.

Proof. First we show that a # 0. If @ = 0, then

y+tw
sup/ |fnl¢dz — 0
yeR Jy—w

for every w > 0, so lemma 3.8 implies that f,, — 0 in L*. But then, since

‘/ gul ful? do

and || g || stays bounded, we have that

1/2
< fali? N gnll

o0
/ Inlfnl>dz — 0 asn — oo.
—0o0

Therefore,

Rls0) = T K(fgn) 2 Tininf [ IfiPde 20,
which contradicts lemma 3.3.

It remains then to show that a cannot lie in (0, s + t). Suppose to the contrary
that 0 < a < s+ t. Let s; and t; be as defined in lemma 3.10, and let so = s — s,
to = t—t7. Then (3.15) implies both that s1+¢; = a > 0 and sa+t2 = (s+t)—a > 0.
Since s1 + s2 = s > 0 and 1 + t2 = ¢t > 0, we conclude from lemma 3.7 that (3.12)
holds. But this contradicts (3.16). O

THEOREM 3.12. Let s,t > 0, and let {(fn,gn)} be any minimizing sequence for
I1(s,t). Then there is a subsequence {(fn,,gn,)} and a sequence of real numbers
{yr} such that

(f’ﬂk( + yk)’g’ﬂk ( + yk))

converges strongly in X to some (f,g). The pair (f,g) is a minimizer for I;(s,t),
ie |IfI?=s, llgl? =t and K(f,9) = sM(g) = I1(s,1).

Proof. The proof is a variation on that of the fundamental lemma I.1 (i) of [25].
For any minimizing sequence {(f,,g.)} of I1(s,t), define o as in (3.14), and let
{(fn, gn)} continue to denote the subsequence associated with a. From lemma 3.11,
we have that a = s + t. Hence there exists wy such that, for n sufficiently large,
Qn(wo) > 3(s +t). For such n, we choose y,, such that

Yn+wo ) )
/ (ful? +g2)dz > L(s + 1).
Yn —WoO
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Now let ¢ be an arbitrary number in the interval (3(s +t), s +t). Then we can
find wq such that, for n sufficiently large, @, (w1) > o, and so we can choose g,
such that

Yntwi
[l gy s o
Yn—wi

Since -
/ (|fal? +g2)dz — s+t asn — oo,
— 00

it follows that, for large n, the intervals [§, —w1, §n+w1]| and [y, —wo, Yn +wp] must
overlap. Therefore, defining w = 2w 4+ wg, we have that, for n sufficiently large,

[gn _wlagn +w1] C [yn — W, Yn +w]

Hence
YnFw
[P+ gyae> o
Yn—w

In particular, we may take 0 = s+t —1/k, and thus we have shown that, for every
k € N, there exists wy € R such that, for all sufficiently large n,

Yn +Wk 1
/ (Ifal?+g2)dz > s+t — = (3.28)
Yn —Wk

Let us now define wy,(z) = fn(z + yn) and 2z, (z) = gn(z + yn). Then, by (3.28),
for every k € N, we have

Wk 1
/ (|wn|2+z,21)dx>s+t—%, (3.29)
Con

provided n is sufficiently large. Now, by lemma 3.9, {(w,,, z,,)} is bounded in X, so
there exists a subsequence, denoted again by {(wp, z,)}, which converges weakly
in X to a limit (f,g9) € X. By Fatou’s lemma, ||f]|> < s and ||g||> < ¢. For each
k € N, the inclusion of H'(—wy,wy) into L?(—wg, wy,) is compact, so, by passing to
a subsequence, we may assume that w,, — f strongly in L?(—wy,, wy). Furthermore,
by using a diagonalization argument, we may assume that a single subsequence of
{w,} has been chosen which has this property for every k. Now

n—oo

Wk
lim sup/ 22dx < t,
—wk

so taking n — oo in (3.29) gives

o0 [ Wk
/ |f|2dm>/ |f|2dx:7}Ln;O/ lwp|?de > s — —.
— — Wk

0o —Wk

| =

Since || f]|> < s and k € N is arbitrary, this implies that || f||> = s. Hence w,, — f
strongly in L2.
Next, observe that

| Galwal = gliPyae = [~ atwaP =Pzt [ o - g)lsP de, (3.30)

—0o0
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and consider separately the behaviour of the integrals on the right-hand side as
n — o0. For the first integral, we have

‘/ zn(fwal? = |f1?) dz| < llznllllwn = £l (lwnlls + [1£11),

and the right-hand side goes to zero since {(wp, z,)} is bounded in X, f is in H*
and w, — f in L% The second integral on the right-hand side of (3.30) converges to
zero because f2 € L? and z,, converges to g weakly in L2. It follows then from (3.30)
that

lim zn|wn|2dx:/ glf|? da. (3.31)

Since, by Fatou’s lemma,

o0 o0
/ If'|? de < lirninf/ lw! |? de,
—o0 =0 J

it follows that

n—oo

I(s,8) = lim K (wn, 2n) > / (£ - gl fP) de = K(f. g). (3.32)

We now claim that ||g||> = ¢. To see this, first observe that lemma 3.3 and (3.32)
imply that

/fo glf|? dz > 0. (3.33)

In particular, equation (3.33) gives that ||g]| # 0. So 0 < ||g||*> < ¢, and we can
define 7 > 1 by n = V#/||g. Then [Ing||* = ¢, so, by (3.32),

Il(s,t) § K(f: 779)

_K(fg)+ (1 —n>[ glfI? do
< L(s,t) + (1— 1) /OO glf? de.

But then (3.33) implies that (1 —7) = 0,s0 7 =1 and | g||* = ¢, as was claimed.

It follows that {z,} converges strongly to g, and that (f,g) is a minimizer for
I1(s,t). To complete the proof of the lemma, it remains only to observe that since
equality holds in (3.32), then

o0 o0
/ |w;|2dx—>/ If'|?dz  as n — oo,
—0o0 —0o0

and therefore w,, converges to f strongly in H'. O

The variational problem in (3.5) can also be solved by the method of concen-
tration compactness, and indeed this has already been done in several places in
the literature (see, for example, [1, theorem 2.9]). However, in the results above,
we have already done most of the work involved in the proof, so, for the reader’s
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convenience, we sketch here the remainder of the proof. Assuming t > 0, one lets
{gn} be any minimizing sequence for I5(t), and defines

- Yytw
Qo) =sup [ g2 a.
yeR Jy—w

Again, we may assume that Qn converges pointwise to a non-decreasing function
Q on [0,00), and we define

&= lim Q(w).

The same arguments as in the proofs of lemmas 3.9 and 3.10 show that ||g,|1
remains bounded, and that

L&) + I:(t — &) < Ix(t).

But it then follows from (3.13) that & ¢ (0,t), and, as before, we see from lemma 3.8
that & # 0. Hence & = t, and, using the same argument as in the proof of theo-
rem 3.12, we deduce the following result.

THEOREM 3.13. Lett > 0, and let {g,} be any minimizing sequence for Is(t). Then
there is a subsequence {gn, } and a sequence of real numbers {yr} such that

gnk(' + yk)

converges strongly in H' to some g € H'. The limit g is a minimizer for I5(t),
i.e. |gl|? =t and J(g) = Ix(t).

As consequences of theorems 3.12 and 3.13, we obtain explicit values for the
constant [7(1,1) and Io(1).

COROLLARY 3.14. For every s,t = 0,
Il (S,t) = A18t2/3,
where Ay = I;(1,1) = —()%/3.

Proof. We may assume s,t > 0. Let (f,g) € X be a minimizer for I(s,t), whose
existence is guaranteed by theorem 3.12. Then f and g satisfy the Lagrange multi-
plier equations (2.11), in which A and p are the multipliers. Therefore, up to a phase
factor and a translation, f = f1 and g = g1, where f; and g; are given in (2.12).

To determine the values of A and pu, we substitute f; and g; into the constraint
equations || f||> = s and ||g||?> = t. Using the formula

/OO sech®(z) dz = M, (3.34)
o I'(3(2n+1))
one finds that A = (£1)%/3, p = s(12t)~/% and
K(f1,01) = =4X"?p = —s(E1)*/%.
Since I (s,t) = K(f1,¢1), this completes the proof. O
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COROLLARY 3.15. For everyt > 0,
IQ(t) = A2t5/33
where Ay = Ir(1) = —£(2)5/3¢%/3.

Proof. We may assume t > 0. Let g be a minimizer for I5(t), whose existence is guar-
anteed by theorem 3.13. Then g satisfies the Lagrange multiplier equation (2.13),
in which k is the multiplier. Therefore, up to translation, g = g2, where go is given
in (2.14). From ||g2||> =t and (3.34), we deduce that

k= (§¢°)°°.

The statement of the corollary then follows from the substitution of the formulae
for go(x) and « into the expression

B0 =) = [ () - asd)a

and using again (3.34). O

LEMMA 3.16. Suppose s,t > 0. Let (f1,91) be a minimizer for I1(s,t) and let go be
a minimizer for Is(t). Then
M(go) = Ast®/?,

where 23 1/
—2-3
As = d . (3.35)
q+8++/q*+ 16g

Proof. The proof of (3.35) depends on being able to find explicitly the minimizing
function f for K(f, g2) on the constraint set {|| f|| = 1}. The Lagrange multiplier
equation for this variational problem is

—f" = fg2 = M, (3.36)

so we see that the minimizer f is an eigenfunction for the Schrédinger operator
L = —d?/dz? — g, with potential go, and the Lagrange multiplier ) is the eigenvalue
corresponding to f. Further, multiplying (3.36) by f and integrating over R, we see
that the constant C' being sought is actually the same as the least or ground-state
eigenvalue A, so that f is a ground-state eigenfunction.

Now, ga2(z) = asechQ(bac), where a and b are constants, and for such potentials,
with arbitrary positive values of a and b, the complete solution of the spectral
problem for £ is well known (see, for example, [31, p. 768]). It turns out that the
ground-state eigenfunction is a constant multiple of sech? (bz), where

a 1 1
= — -— = 3.37
P (w>+4 5 (3.37)
and the corresponding eigenvalue is

A= —b%p?. (3.38)
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In the proof of corollary 3.15, we saw that the particular values of a and b corre-
sponding to our potential go are a = k/q and b = % k, where Kk = (%th)Q/B. Using
these values to compute p and A from (3.37) and (3.38), we obtain the asserted
value for Az = \/t?/3. a

COROLLARY 3.17. For s,t > 0, we have
Ayst?/3 4 Agt®/® < I(s,1) (3.39)

and
I(s,t) < Agst®3 + Agt®/3, (3.40)

Proof. From (3.3), we have
I(s,8) + Io(t) < I(s,),

which, in view of corollaries 3.14 and 3.15, yields (3.39). To prove (3.40), let g2 be
as in lemma 3.16. Then lemma 3.16 and (3.3) give

I(s,t) < sM(g2) + J(g2) < Agst?/® + Aqgt/3.
O

REMARK 3.18. The case when g = 2 is special, because then the function g; defined
in corollary 3.14 coincides with the function go defined in corollary 3.15. It follows
that, in this case, A1 = Az, and hence

I(s,t) = Ayst?/3 4+ Ayt°/3,

Moreover, the pair (fi,g1) defined in corollary 3.14 is an explicit minimizer for
the problem (3.1). In fact, it follows from the uniqueness of the solutions of (3.4)
and (3.5) that (f1, ¢1) is the unique minimizer for (3.1) (up to a translation in x and
a multiplication of f; by a constant of absolute value 1). This is the case analysed
by Chen in [14].

Our next goal is to investigate the subadditivity of I(s,t). The preceding corollary
and remark suggest the strategy of comparing I(s,t) with a function of the type
At5/3 + Bst?/3, which, as was seen in the proof of lemma 3.7, is subadditive when
A and B are negative constants. The next few lemmas are devoted to showing
that I(s,t) is close enough to a function of this type to inherit the property of
subadditivity.

LEMMA 3.19. Suppose s,t > 0. Then we can find a sequence {g5'} in H' such that
lim,, oo M(g2") = My(s,t) and lim,,_o J(g5") = Jo(s,t) exist and satisfy

(1) sMo(s,t) + Jo(s,t) = I(s,t);
(i) Ayst?/? < sMy(s,t) < Asst?/3; and

(iil) Agt®/3 < Jo(s,t) < Agt®/3 + (A3 — Ay)st?/3.
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Proof. Let {g5'} be any minimizing sequence for I(s,t) in the strict sense, i.e. a
sequence in H! such that [|g5t]|?> = ¢ and

lim (sM(gy") + J(g2")) = I(s,t). (3.41)

n—oo

Since {M (g5")} and {J(g5")} are bounded sequences of real numbers, by passing to
a subsequence, we may assume that the limits My(s,t) and Jy(s,t) exist as defined
above. Then (i) follows immediately from (3.41).

Next, observe that corollaries 3.14 and 3.15 imply that

Ay st?/3 < sMy(s,t) (3.42)
and
Ast®? < Jo(s, ). (3.43)
From (i), (3.40) and (3.42), we get
Ay st?® 4 Jo(s,t) < Asst®/3 + Axt/?,
which implies the upper bound in (iii). From (i), (3.40) and (3.43), we get
sMoy(s,t) + Agt®® < Agst?/3 + Agt®/3,
which implies the upper bound in (ii). O

REMARK 3.20. As defined above in lemma 3.19, the quantities My(s,t) and Jo(s,t)
could depend on the choice of the minimizing sequence {g3*}, as well as on s and ¢.
This ambiguity of notation will not affect the validity of the statements that follow.

LEMMA 3.21. Suppose s1, So,t1,ts = 0 with sot; > si1ty. Then

tg/BJo(sl,tl) < t?/gjo(SQ, tg) (344)
and

tg/BMo(Sl,tl) 2 t?/BMo(Sg,tg). (345)

Proof. The inequalities are obvious when t5 = 0, so we may assume that t; > 0,
and hence also t; > 0. Let o = t;/t5, and for any g € H' define g* as in lemma 3.4.
Then, for all n € N, [|(gs2%2)*||? = t4, so, by (3.3), lemma 3.4 and lemma 3.19 (i),
we have
s1Mo(s1,t1) + Jo(s1,t1) = I(s1,11)
= inf{s1M(9) + J(g) : gl = t:}
<stM((g72%)%) + T((9721%)7)
= s10%PM (g2 ") + 02T (g7 ")

Taking n — oo then gives

SlMo(sl,tl) + Jo(sl, tl) < 8102/3M0(82,t2) + 05/3J0(82,t2). (3.46)
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Similarly, we obtain
s9Mo(s9,t2) + Jo(s2,t2) < sa0 2/ 3Mo(s1,t1) + 0~/ Jo(s1,11). (3.47)
Multiplying (3.46) by s and (3.47) by s10%/3, and adding the results, we obtain
073 J0(s1,t1) (520 — 51) < Jo(52,12) (520 — 51).

Since sy —s1 > 0, this implies (3.44). Similarly, multiplying (3.47) by ¢°/3, adding
to (3.47) and rearranging, we obtain

023 Mo (s9,t2) (520 — s1) < Mo(s1,t1)(s20 — 51),

which implies (3.45). O
LEMMA 3.22. Suppose s1,82,t1,t2 > 0. Let n = t1/ta.
(i) If
n> A1/ A322 -1, (3.48)
then
(14 1/n)*3Mo(s1,t1) < Mo(sa, t2). (3.49)
(it) Let a(n) = ((1+n)** = 1)n=>/. If
a(n) > [A1/As] — 1, (3.50)
then

o[ (147)2/3 =1 Mo (52, t2) < Jo(s1,t1)+Jo(s9, t2)—(141)°2 Ty (s, ). (3.51)
Proof. Since s; > 0, we can use lemma 3.19 (ii) to write
(14 1/m3 My (s1,t1) < (1+1/m 2 A3ty® = (11 + 12)*/* Ay
and
At2® < M (59, ts).

Combining these inequalities with (3.48), we obtain (3.49). This proves (i).
To prove (ii), use lemma 3.19 (ii) to write

sal(1+1)%/% = 1My (s2,12) < so[(1+)*/® — 1] 43857,
and use lemma 3.19 (iii) to write
Jo(s1,t1) 4 Jo(s2, t2) — (1 + )%/ Jo(s9, t2)

> Jo(s1,t1) = 17/ Jo(sa, t2)
> Agty? —iP3 (Anty® + s5(As — A1)EY?)
= —so1°/3| A3 — A |13°.

Also, equation (3.50) implies that

Ag((1=n)*? = 1) <Az — A4|n°/?.
Combining these inequalities gives (3.51). O
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Now define 7;(q) = (|A1/A3]?/? — 1), and define 75(q) to be the value of 7 for
which the right- and left-hand sides of (3.50) are equal. (When the right-hand side
is zero, we can take 72(q) = 00.) If 12(q) > n1(q), then any positive real number 7
satisfies at least one of the inequalities (3.48) or (3.50). Analysis of the functions n;
and 72 shows that there does exist a non-empty interval (g1, g2) of values of ¢ for
which the inequality 72(q) > n1(¢) is valid. In fact, when ¢ = 2, one has 4; = A3
(see remark 3.18), so 11(2) = 0, while 72(2) = oco. Therefore, the interval (¢1,¢2)
contains at least a neighbourhood of ¢ = 2. On the other hand, as ¢ — 0 or ¢ — oo,
one has n1(¢) — oo and n2(¢) — 0, so the interval (g1, ¢2) is bounded above and
bounded away from zero.

We can now prove that I(s,t) is subadditive, at least when ¢ € (g1, ¢2).

THEOREM 3.23. Suppose that q € (q1,¢2). Let s1,89,t1,t2 = 0, and suppose that
s1+82>0,t1+1t2>0, s+t >0 and sg +t3 > 0. Then

I(Sl + so,t1 + tg) < I(Sl,tl) + I(Sg,tg). (352)

Proof. We may assume, without loss of generality, that sot1 > s1to. If sot1 = s1to,
then our assumptions imply that sq, so, t1 and t2 must all be positive, and since
(t1 + ta)/ta = (s1 + s2)/s2, we can write

5/3 5/3
t1 + ¢ t
I(Sl + 52,11 -l—tg) = (1t_22> I(Sg,tg) = (1 + é) I(Sg,tg)

" 5/3
< |:1 + (g) :| I(Sg,tg) = I(Sg,tg) + I(Sl,tl).
Here we have twice used lemma 3.6, and have also used the fact that I(ss,t5) < 0,
which is a consequence of lemma 3.17.

We may therefore assume that sot; > s1ts, and, in particular, that s > 0 and
t; > 0. For now, we assume also that to > 0, and we define 1 = t1/t2. From our
hypothesis on ¢, we know that n satisfies either (3.48) or (3.50); we consider the
two cases separately.

In the case when (3.48) holds, define o = 1+ 1/n and h,(z) = 0?/3g51t (o1 /32).
By passing to a subsequence if necessary, we may assume that J(h,) and M (h,,)
converge as n — 00. Then, using lemma 3.4 and (3.44), we get

lim J(h,) = o®2Jo(s1,11)

n—00 t 5/3
Jo(s1,t1) + (a) Jo(s1,t1)

<
< Jo(s1,t1) + Jo(s2,ta). (3.53)
Next, suppose that s; > 0. Then, from lemma 3.4 and (3.49), we have

(s1+ s2) lim M (hn) = (51 + 52)0™/* Mo (s1, t1)
< s1Mo(s1,t1) + 52022 Mo (s1, 1)
< SlMo(Sl,tl) + SgMo(Sg,tg). (354)
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Now, since ||h,||? = t; + 2, we get from (3.53) and (3.54) that
I(s1 4 s2,t1 +t2) < (s1+ 82) nhﬂrgo M (hy,) + nhﬂrgo J(hp)
< s1Mo(s1,t1) + saMo(s2,t2) + Jo(s1,t1) + Jo(s2,t2)
= I(s1,t1) + I(s2,t2),
as desired.

If, on the other hand, s; = 0, then we cannot use the above argument, since (3.54)
does not hold. Instead, we use corollary 3.17 and (3.48) to write

T(0 4 sg,t1 + to) < Agsa(ty +12)%/3 + Ag(ty + t2)*/3

< Asso(1+ 1/n)236° + A8 4+ Ayt)°

< Ay Sgtg/g + Agtg/g + Agt?/g
< I(Sg, tg) + Ig(tl)
= I(Sg, tg) + I(O, tl),
which again gives (3.52).
In the case when (3.50) holds, we define
gn(x) = 023g322 (6 32),  where 0 = 1+1.

Again, we may assume that M (j,) and J(j,) converge, and since ||j,||? = t1 + to,
we have
I(31 + 59,1 + tz) < (81 + 82) lim M(jn) + lim J(jn)
n—oo n—oo

It follows from lemma 3.4 that
I(s1+ s2,t1 +t2) < (51 + 52)02 3 Mo (2, t2) + 0™/ 2 Jo (52, 12).
Now, from (3.45), we have
0?3 Mo(s2,t2) < 1?3 Mo (s2,t2) < Mo(s1,t1),

SO
I(Sl + so,t1 + tg) < SlMo(Sl, tl) + 8202/3M0(82, tg) + 05/3J0(82, tg).

Also, from (3.51), we have
8202/3M0(82,t2) + 05/3J0(82,t2) < SgMo(Sg,tz) + Jo(sl, tl) + Jo(Sg, tg).

Combining the last two inequalities, we get (3.52).

Finally, it remains to consider the case when to = 0, which implies I(s2,t2) = 0
by corollary 3.17. If s; > 0, then My(s1,¢1) < 0 by lemma 3.19 (ii), so, letting
hyp = g3ttt we have

I(Sl -I-Sg,tl) < (81 + 82) lim M(hn) + lim J(hn)
= (81 + s2)Mo(s1,t1) + Jo(s1,t1)
< s1Mo(s1,t1) + Jo(s1,t1)
= I(Sl,tl)
= I(Sl,t1)+I(82,t2).

https://doi.org/10.1017/5S030821050000278X Published online by Cambridge University Press


https://doi.org/10.1017/S030821050000278X

Ground-state solutions of a Schridinger-KdV system 1015
If, on the other hand, s; = 0, then we use corollary 3.17 to write
[(s2,11) < Agsat?® 4+ Aoty/® < Agt?® = Iy(t1) = 1(0,11) = 1(0,£1) + I(s2,0),
and we are done. O

LEMMA 3.24. Suppose s,t > 0. If {(fn,9n)} is a minimizing sequence for I(s,t),
then {(fn,gn)} is bounded in Y.

Proof. For a minimizing sequence, || f»| and ||g.|| stay bounded, so that, as in the
proof of lemma 3.9, we have that

‘/ gul ful? do

where C' is independent of n. Also, Sobolev embedding and interpolation theorems

1/2
<Cllfa IV,

give
> 1/2 1/2
‘/ g dz| < |gnl3 < Clignll3 )6 < Cllgally*llgnll’? < Cligally.
Hence
1(frs )13 = 1l + llgnll?
= Blfg) + [ gl et [ gldet L+ lonl?
1/2 1/2
SO+ [1£077 + llgnlli®)
1/2
< CA+ (g IV,
from which the desired conclusion follows. O

Now we establish the relative compactness, up to translations, of minimizing
sequences for I(s,t). The idea again is to use the method of concentration com-
pactness. Let {(fn,gn)} be a minimizing sequence for I(s,t), and let P,(w) be the
sequence of non-decreasing functions defined for w > 0 by

y+tw ) )

Pate) =sup [ (1fuf@) + g2 ) do
yeER Jy—w

Then {P,} has a pointwise convergent subsequence on [0,00), which we denote

again by {P,}. Let P be the non-decreasing function to which P, converges, and

define

ap = lim P(w). (3.55)

Then, as was true for « in (3.14), we have 0 < o < s+ ¢.

LEMMA 3.25. Suppose s,t > 0, and let {(fn,gn)} be any minimizing sequence for
I(s,t). Let ap be as defined in (3.55). Then there exist numbers s; € [0,s] and
t1 € [0,t] such that

s1+1t1 =aqp (356)
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and
I(si,t1) +1I(s—s1,t—1t1) <I(s,t). (3.57)

Proof. As in the proof of lemma 3.10, we can define sequences {(¢,,h,)} and
{(ln,jn)} n Y such that [lpnl|* = s1, [hall® = t1, [Lall® = s = s1, [hall® = t = 14,
E(on, hn) — E1 and E(l,, jn) — E2, where s1 € [0, s] and t; € [0, ] satisfy (3.56)
and

E1 +E2 < I(S,t).

The only change that has to be made is that in place of the estimates (3.19), (3.20)
and (3.21) for the functional K, we must put similarly obtained estimates for the
functional F.

To complete the proof of the lemma, it only remains to show that Ey > I(sqy,t1)
and Fo > I(s — s1,t — t1). We need only prove the first of these inequalities, since
the proof of the second is similar. As in the proof of (3.24), we consider separately
the three cases when s; > 0 and t; > 0, when s; = 0 and ¢; > 0 and when t; = 0.
When s; > 0 and t; > 0, we use the same argument as was used in this case
for (3.24). When s1 = 0, then |[¢,|| — 0, so (3.26) is established by the same proof
as before. Then we have, as in (3.27),

Ey = lim E(pn, hy) = nlim (K (¢n, hn) + J(hy)) = liminf J(hy,).

Also, since ||k, || > 0 for n large, we can put 6,, = /%1 /||hn], and we have
I(0,t1) = J(t1) < J(Onhy) < liminf J(hy,),

since 6, — 1. Therefore, Fy > I(0,¢1). Finally, if ¢; = 0, then ||h,|| — 0, so (3.26)
still holds, and, moreover,

‘/ h3 dx

By = lim (Inl? = hulon|? + (h7)? = hy) da > 0 = I(s1,0).

n—oo J_

< hallillral? — 0.

Therefore,

o0

O

THEOREM 3.26. Suppose q¢ € (q1,¢2), and let s,t > 0. Then every minimizing
sequence {(fn,gn)} for I(s,t) is relatively compact in' Y up to translations, i.e. there
is a subsequence {(fn.,dn,)} and a sequence of real numbers {yi} such that

(fr (- + Yr)s G (- + yr))
converges strongly in'Y to some (f,g), which is a minimizer for I(s,t).

Proof. If ag = 0, then, as in the proof of lemma 3.11, we get | f|4 — 0 and |gn|s — 0
as n — 0o, whence

I(s,t) = lim E(fn,gn) > liminf/(|f,'1|2 + (g,)%)dz > 0,

n—oo
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contradicting corollary 3.17. Hence oy > 0. On the other hand, if ag € (0,s + t),
then it follows from theorem 3.23 that
I(S,t) < I(Sl,tl) +I(S — 81,t— tl),

which contradicts (3.57). Therefore, we must have ag = s +t.

It now follows, as in the proof of theorem 3.12, that we can find real numbers
{yn} such that, if w,(z) = fu(z + yn) and z,(x) = gn(x + yn), then, for every
k € N, there exists wi € R such that

Wk 1
/ (|wn|2+z,21)dx>s+t—%, (3.58)
o

provided n is sufficiently large (cf. (3.29)). Since the sequence {(wy, z,)} is bounded
in Y, there exists a subsequence, denoted again by {(wn,2,)}, which converges
weakly in Y to a limit (f, g). Then Fatou’s lemma implies that

o0
1712+ Dl < timint [ (4 22) do = s+t
—0o0

Moreover, for fixed k, (wn,2,) converges weakly in H'(—wy,wi) X H(—wy,ws)
to (f,g), and therefore has a subsequence, denoted again by {(w,,z,)}, which
converges strongly to (f,g) in L?(—wy,wy) X L?(—wy,wy). By a diagonalization
argument, we may assume that the subsequence has this property for every k simul-
taneously. It then follows from (3.58) that

oo Wk
[ iz [T e darzs i1
—00 —Wk
Since k was arbitrary, we get
/ (1f1* +¢%) do = s +1,

which implies that (w,, 2,) converges strongly to (f,g) in L? x L2.
Now we have that

o0 o0
/ zn|wn|2dx—>/ glf)?dz asn — oo,
—0o0 —0o0

by the same argument used to establish (3.31), or by an even simpler argument
that uses the strong convergence of z, to g in L?. Moreover,

1/6
|2n — gls < Cllzn — glli®llzn — glI*/® < Cllza - gll>'°,

/ 23 dw — / g dz.

Therefore, by another application of Fatou’s lemma, we get

SO

I(s,t) = lim E(wn,z,) 2 E(f,9), (3.59)

n—oo
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whence E(f,g) = I(s,t). Thus (f, ¢g) is a minimizer for the variational problem (3.1).
Finally, since equality holds in (3.59), then

tiw [ (i P+ )de = [ (7P + () d
SO (Wn, zn,) converges strongly to (f,g) in Y. O

For each s > 0 and ¢t > 0, define G, to be the set of solutions to the variational
problem (3.1), that is,

Gus={(f.9) €Y : E(f.9) = I(s,), |[f]> = s and [|g]* = ¢}.

As a consequence of theorem 3.26, we have that G, is non-empty for all s,t > 0,
provided ¢ € (g1,¢2). As will be seen below in § 5, this translates into an existence
result for ground-state solutions of (1.2).

We next present a somewhat weaker version of theorem 3.26 that is valid for all
g > 0. For v > 0, define @ : Y — R by

Q(f,9) = [ (I£1? + vg?) da,
and for each 8 > 0, define
R(B,7) =inf{E(f,9) : (f,g) € Y and Q,(f, g) = B}. (3.60)

THEOREM 3.27. Suppose ¢ > 0 and let 3, > 0. Then every minimizing sequence
{(frn,gn)} for R(B,v) is relatively compact in' Y up to translations, i.e. there is a
subsequence {(fn,.,gn,)} and a sequence of real numbers {y} such that

(fr (- + Yr)s G (- + yr))
converges strongly in'Y to some (f,g), which is a minimizer for R(3,7).

Proof. This theorem follows from the proof of theorem 2.1 in [2]. First note that,
if we decompose f into its real and imaginary parts as f = n 4+ if, and define
z:R — R3 by 2 = (n,0,g), then, in the notation of [2], we have

E(f,q9) = /:)O (%(z,Lz) —N(z))dz
and
@ (9)= [ 3aDa)a

where Lz = —2z,,, N(2) = g(n* + 0 + q¢®) and Dz = 2(n,60,vg). Also, in the
notation of [2], we have gp = 0. Therefore, the variational problem (3.60) is the
same as the problem that defines Ig in [2], and R(f,~) = Ig. It is easily verified
that L, N and D satisfy the conditions in [2, §2]. To check that Iz < 0 for all
B > 0, we can either use the identity

R(B,v) =inf{I(s,t): s> 0, t >0 and s + vt = 3} (3.61)
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in conjunction with (3.17), or use [2, theorem 2.2]. Therefore, all the hypotheses
of [2, theorem 2.1] are verified, and we conclude from the proof of that Theorem that
every minimizing sequence for R(, ) is relatively compact in Y up to translations.

O

To compare the results in theorems 3.26 and 3.27, let us consider the sets

Qs = {(f, 9 €Y B(f0) = BB and [ (1P 477 du = ﬂ}

of solutions to problem (3.60). A consequence of theorem 3.27 is that Qg is non-
empty for all 8,y > 0, regardless of the value of ¢ > 0. In particular, from (3.61), it
follows that if Qg , is non-empty, then so is G ¢, for some values of s and ¢ satisfying
s+ 7t = 3. One drawback, however, is that we do not know whether the sets Qg
constitute a true two-parameter family of disjoint sets. In particular, it is not clear
whether every pair s,£ > 0 corresponds to a pair 3, v such that Qg, C G,;. A
related drawback to theorem 3.27 is that it does not lend itself as easily as does
theorem 3.26 to a result on ground-state solutions of (1.2) (see remark 4.6 below).

4. The full variational problem
We consider the problem of finding, for any s > 0 and ¢t € R,
W (s,t) = inf{E(h,g) : (h,g) €Y, H(h) = s and G(h, g) = t}. (4.1)

Following our usual convention, we define a minimizing sequence for W (s, t) to be
a sequence (hy,gn) in Y such that H(hy,) — s, G(hyn, gn) — t and E(hy, gn) —
W(s,t) as n — oo.

LEMMA 4.1. Suppose s > 0 and t € R. If {(hy,,gn)} s a minimizing sequence for
W (s,t), then {(hn,gn)} is bounded in Y.

Proof. For a minimizing sequence, ||h,| = / H (h;) stays bounded, and since
90 = Gllnsga) + 21 [ () o

it follows that ||g,[|> < C(1+ ||h,||1), where C is independent of n. Arguing as in
the proofs of lemmas 3.9 and 3.24, we deduce that

‘/ gnlhn|? dz

‘/ gz dx

Hence, as in the proof of lemma 3.24, we get

< Ol lgnll < C(L + [hnlly)

and

1/2 1/2 5/4
< Cllgnlli?llgnll?’? < Clignlly > (1 + 1hall}).

(s )12 < O+ Bl + llgally >+ 12205) < CQ+ 1 (s g) 175,

which is sufficient to bound ||(hn, gn)|ly- O
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LEMMA 4.2. Suppose k,0 € R and h € HE. If f(z) = e/ h(z), then

E(f,9) = E(h,g) + k*H(h) — 2k Im /OO hh, dz

and

G(f,g9) = G(h,g) + 2kH(h).

We omit the proof, which is elementary.
Now we can establish a relation between problems (4.1) and (3.1).

LEMMA 4.3. Suppose s > 0 andt € R, and define b =b(a) = (a—1)/(2s) fora > 0.
Then

W(s,t) = Lilgf(’){l(s, a) + b(a)?s} (4.2)

and

W (s, t) < I(s,0) + b(0)?s. (4.3)

Proof. First, suppose a > 0, and let (h,g) € Y be given such that ||h[|?> = s and
lgll* = a. Let

b="b(a) and c= Im/ hh, dz,
and put f(x) = e**h(x) with k = (c¢/s) —b. Then, from lemma 4.2, we deduce that

E(f,9)=E(h,g) — %2 +b%s < E(h, g) + b%s
and

G(f.9) = llgll* —2bs = ¢.
Since H(f) = s, we conclude that

W(s,t) < B(f.9) < B(h, g) + b%.
Taking the infimum over h and g gives
W (s, t) < I(s,a) + b’s,
and now taking the infimum over a gives
W (s, t) < ig%{[(s, a) + b(a)?s}. (4.4)

Next, suppose (h,g) € Y is given such that H(h) = s and G(h, g) = t. Define

a:t+21m/ hhydz and f(z) = e"h(z),
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where b = b(a). Then, by lemma 4.2,
E(f,g) = E(h,g) + b*s — b(a — t) = E(h, g) — b%s,
and since ||f]|? = s and ||g||?> = a, we have a > 0 and I(s,a) < E(f, g). Hence

E(h,g) > I(s,a) + b2s > igf(’){[(s,a) + b(a)QS},

and taking the infimum over h and g gives

W (s, t) = Lizgf(’){l(s, a) + b(a)?s}. (4.5)

Combining (4.4) and (4.5) gives (4.2).
To prove (4.3), we see from (4.4) that it suffices to show there exists a > 0 for
which I(s,a) + b(a)?s < I(s,0) + b(0)%s, or

I(s,a) < %.

For a > 0 sufficiently small, we have a(2t — a)/(4s) > —Ca, where we can take

[t|/s ift <0,
C=141 ift =0,
0 ift > 0.

On the other hand, from (3.40), we have
I(s,a) < Azsa?/3 + Asa®/® < Agsa®/®.
Choosing a > 0 so small that |A3|sa®/? > Ca, we obtain the desired result. O

LEMMA 4.4. Suppose s > 0 and t € R, and define b(a) = (a —t)/(2s) for a = 0.
If {(hy, gn)} is a minimizing sequence for W (s, t), then there exist a positive num-
ber a and a subsequence {(hn,,gn, )} such that {(e®D®h, g, )} is a minimizing
sequence for I(s,a), and

W (s, t) = I(s,a) + b(a)?s. (4.6)

Proof. For each n € N, define a,, = 0 by

an = / 9721 dz = G(hp, gn) + 2Im/ hn(ﬁn)w dx.

Then a, remains bounded by lemma 4.1, so, by passing to a subsequence, we may
assume that a, converges to a limit @ > 0. Let b = b(a), and define f,(z) =
e'®h,, (x). Then

=W(s,t) 4+ b%s —b(a — 1)
=W(s,t) — b*s < I(s,a), (4.7)

where we have used lemmas 4.2 and 4.3.
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Next we claim that
lim E(fn,gn) = I(s,a). (4.8)

n—oo

For a > 0, we prove (4.8) by defining

:ﬁ and 6, = \/E,
[l £nll llgnl

so that 8, — 1 and #,, — 1 as n — o0, and observing that

lim E(fn,gn) = lim E(ﬂnfnaangn):

B

while E(Bnfn,0ngn) = I(s,a) for all n. For a = 0, we have ||g,|| — 0, and since
lgnlli and || f.|l1 remain bounded by lemma 4.1, it follows as in the proofs of
lemmas 3.10 and 3.25 that

/ g>dr — 0 and / gnlfnl?dz — 0.

—0o0

Therefore,
lim E(fn,gn) 2 0=1(s,0),

as desired.

It now follows from (4.7) and (4.8) that (4.6) holds, and that E(f,,gn) — I(s,a),
which shows that {(f»,gn)} is a minimizing sequence for I(s,a). Finally, equa-
tions (4.6) and (4.3) imply that a > 0. O

THEOREM 4.5. Suppose q¢ € (q1,q2), and let s > 0 and t € R be given. Then
every minimizing sequence {(hn, gn)} for W(s,t) is relatively compact in' Y up to
translations, i.e. there is a subsequence {(hn,,gn,)} and a sequence of real numbers
{yr} such that

(A, 4 k), g (- + Yi)

converges strongly in'Y to some (h,g), which is a minimizer for W (s,t).

Proof. By lemma 4.4, given a minimizing sequence {(h,,g,)} for W(s,t), we may
assume, on passing to a subsequence, that {e*”h,(z), gn(z)} is a minimizing se-
quence for I(s,a), where a > 0, b = b(a) and (4.6) holds. Then theorem 3.26 allows
us to conclude, again after passing to a subsequence, that there exist numbers ¥,
such that

(€ by (@ 4 Yn), g (T + yn))

converges in Y to some (f, g) that minimizes I(s, a). By passing to a subsequence
yet again, we may assume that e'®¥» — €' for some 0 € [0,27). We then have that

(hn( +yn):gn(' +yn)) - (h7g) inY,

where h(z) = e71®*%9) f(z). Now lemma 4.2 gives
I(s,a) = E(f,g9) = E(h,g) + bV*H(h) — 2bIm/ hh, dx

= E(h,g) + b%s + b(G(h, 9) — llg]*)
= E(h, g) — b’s. (4.9)
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From (4.6) and (4.9), we get E(h, g) = W(s,t), so (h, g) is a minimizer for W (s, t).
O

As a consequence of theorem 4.5, we can now assert the existence of a two-
parameter family of ground-state solutions of (1.2), when ¢ € (q1,¢2). For s > 0
and t € R, define

Foy={(h,9) €Y : E(h,g) = W(s,t), H(h) = s and G(h,g) = t}.

From theorem 4.5, we see, in particular, that F§ ; is non-empty. In the next section
we will see that F; is also stable.

REMARK 4.6. It is natural to ask whether theorem 3.27, which is valid for all ¢ > 0,
can be used to establish a result on ground-state solutions similar to theorem 4.5.
In fact, although lemma 4.4 is valid for all ¢ > 0, it turns out that one can not
obtain a compactness result for minimizing sequences of W (s, t) from theorem 3.27
without a finer knowledge of the function I(s,a). We do not pursue this topic here,
and limit ourselves to stating an extra assumption that would lead to such a result.
Suppose it could be shown that (4.6) uniquely defines a as a function of s and ¢.
Then the above arguments allow us to deduce the following from theorem 3.27: if
(so,to) is such that, for some 3,y > 0,

I(sp,a(so,t0)) = inf{I(s,a):5>0, a >0and s +~ya= G},

then every minimizing sequence for W (so,to) is relatively compact in ¥ up to
translations. Moreover, the set of minimizers for W (sg, to) is stable, in the sense of
theorem 5.4 below.

5. Ground-state solutions

We begin this section with a couple of results showing that the qualitative descrip-
tion of bound states in theorem 2.1 can be improved when the solutions in question
are ground states.

THEOREM 5.1. Suppose s,t > 0. If (f,g) € G5+, then there exist ¢ > 0 and ¢ > 0
such that (2.2) holds. Moreover, g(z) > 0 for all x € R, and there exist 0 € R and
¢ : R — R such that f(z) = ¢(x)e'? and ¢(x) > 0 for all z € R.

Proof. If (f,g) € Gsy4, then, by the Lagrange-multiplier principle (cf. [27, theo-
rem 7.7.2]), (f, g) is a solution of the EulerLagrange equation

SE(f,9) = NH(f,g) + pdHi(f, g), (5.1)

where H, H; are defined as operators on Y by H(f,g) = || f||? and H1(f,9) = |lgl|?
0 denotes the Fréchet derivative and A, u € R are the Lagrange multipliers. Com-
puting the Fréchet derivatives involved, we see that (5.1) becomes

—f"=gf =\,
5.2
29" = 3q9° — |fI* = 2#97} 52)

which is (2.2) with ¢ = =X and ¢ = —2p.
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We claim that A < 0 and p < 0. To see this, multiply the first equation in (5.2)
by f and integrate over R to obtain that

As=K(f,g), (5.3)

and multiply the second equation in (5.2) by g and integrate over R to obtain that
pt= [ ()= holiP ~ Jag) o < 3K (L) + 3000 )

Now, from I(s,t) = E(f,g), it follows that K(f,g) = sM(g), and from the proof of
parts (ii) and (iv) of lemma 3.19, we see that M (g) < 0 and J(g) < 0. Therefore,
equations (5.3) and (5.4) imply that A < 0 and p < 0.

We have now proved that (f, g) satisfies (2.2) with o > 0 and ¢ > 0. The remain-
ing assertions of the theorem then follow from theorem 2.1, except for the positivity
of ¢. To prove this, let w = |¢| and observe that since K(p,g) = K(w,g) = sM(g)
by lemma 3.1, then (¢, g) and (w, g) are both in Gs;. Hence, as shown above, we

have
—" —gp = /\cp,}

9.5
_wll_gw:Aw, ( )

where A = M (g). Multiplying the first equation in (5.5) by w and the second by
¢ and adding, we see that the Wronskian W = pw’ — ¢’w is constant. But since
W — 0 as x — oo by theorem 2.1, we must have W(x) = 0 for all x € R. Hence
¢ and w are linearly dependent, so ¢ must be of one sign on R and, by changing
the value of 6 if necessary, we may assume that p(z) > 0 on R. Finally, since
o = —X> 0, system (5.5) implies that K, * (g¢) = ¢, where K, is as defined in
the proof of theorem 2.1. It follows that ¢ > 0 on R. O

COROLLARY 5.2. Suppose s > 0 andt € R. If (h,g) € Fs+, then there exist ¢ > 0
and w > %c* such that (2.1) holds. Moreover, g(z) > 0 for all z € R, and there
exist 0,b € R and ¢ : R — R such that h(x) = ee™%p(z) and ¢(x) > 0 for all
x €R.

Proof. If (h,g) € F4, then, as in the proof of theorem 5.1, we have the Lagrange
multiplier equation
6E(h, g) = A0oH (h, g) + péG(h, g). (5.6)

Computation of the Fréchet derivatives shows that (5.6) is equivalent to (2.1), with
w=—Xand ¢ = —2pu.

On the other hand, the sequence {(h,,g,)} defined by (h,,g,) = (h,g) for all
n € N is a minimizing sequence for W (s,t), so, from lemma 4.4, it follows that
(e h(z),g(z)) € Gs.q, where a > 0 and b € R. Letting f(z) = e!®h(x), we then
have, from theorem 5.1, that (f,g) satisfies (2.2) for some ¢ > 0 and some ¢ > 0.
Substituting f(x) = e®®h(x) into (2.2) and comparing with (2.1), we see that
b= —%c and w=0+b>=0+ icQ. Therefore, w > icQ. The remaining assertions
of the corollary follow immediately from theorem 5.1. O

Next we show that the set F ; is stable with regard to the flow generated by sys-
tem (1.2). Concerning the well posedness of (1.2), a variety of results have appeared,
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showing that (1.2) can be posed, at least locally in time, in Sobolev spaces of low
order [7,34]. For our purposes, the following result, due to Guo and Miao [21], is
most convenient because it is set in the energy space Y.

THEOREM 5.3. Assume q # 0 in (1.2). Suppose (p, ) € Y. Then, for every T > 0,
system (1.2) has a unique solution (u,v) € C([0,T],Y) satisfying

(u(z,0),v(x,0)) = (p(x), ¥ (2)).

The map (@, ) — (u,v) is a locally Lipschitz map from'Y to C([0,T],Y). Moreover,
E(u(-,t),v(1)), (u( t),v(-t)) and H(u(:,t)) are independent of t € [0,T].

In particular, we note that the regularity result in theorem 5.3 is enough to allow
one to prove the invariance of the functionals F'; G and H along the solutions being
considered. This may be done in the usual way, by first establishing the invariance
of the functionals for smooth solutions, and then using the continuity of solutions
with respect to their initial data to extend the result to solutions in C([0,T],Y).
We omit the details of this argument.

THEOREM 5.4. Suppose s > 0 and t € R. For every € > 0, there exists 6 > 0 with
the following property. Suppose (p,v) € Y and

i ) — (b olly <6
i e ) = (hg)lly

and let (u(x,t),v(x,t)) be the unique solution of (1.2) with
(u(z,0),0(2,0)) = (p(2), (),

guaranteed by theorem 5.3 to exist in C([0,T],Y) for every T > 0. Then

inf ) ol ) — (R
(hxgl)ner,t ”(u(’ )’U(’ )) ( 7g)||Y < €

for allt > 0.

Proof. Suppose that Fy; is not stable. Then there exists € > 0 such that, for every
n € N, we can find (p,,¥,) €Y and ¢, > 0 such that

1
. m ¥n) — (B < 5.7
(hxgl)ner,t ||(£P 1/} ) ( g)”Y " ( )
and
inf ||(un(-’tn)ﬂv’ﬂ(-ﬂt’ﬂ)) - (h7g)||y 2 €, (5.8)

(hxg)er,t
where (u,,(z,t),v,(z,t)) solves (1.2) with initial data

(un(2,0),vn(2,0)) = (Pn(2), Yn(2)).

For brevity, let us denote uy,(+,t,) by @, and v, (-, t,) by ¥p.
From (5.7), it follows that

lim E(pn, ¥n) = W(s,t), lim H(en) =s, lim G(pn, ¥n) = t.

n—oo n—oo
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By theorem 5.3, this implies that

lim E(®,,¥,) =W(s,t), lim H(P,) = s, lim G(®,,¥,) =t.

n—oo n—oo n—oo

Therefore, {(®,,¥,)} is a minimizing sequence for W (s, t).

Now, by theorem 4.5, there exists a subsequence {(®y, , ¥, )} and a sequence of
real numbers {yy} such that (@, (- + yx), ¥, (- + yx)) converges strongly in Y to
some (ho, go) € Fs¢. In particular, there exists k large enough that

[(@ni (- 4 yr)s Uni (- + k) = (ho, go)ly <e.
But this implies

||(¢nk’!pnk) - (ho( _yk):go(' _yk))”Y <€

and the invariance under translations of the functionals E, H and G implies that
(ho(- —yk), 90(- —yx)) is also in Fjs ;. Therefore,

inf D,V ) — (h, <e
(h,;)ner,t”( o) = (R g)lly <e

contradicting (5.8). O

We conclude with a result on the ground-state solutions of (1.4). By definition,
(u(z,t),v(x,t)) is a bound-state solution of (1.4) if u and v are of the form given
by (1.7). Equivalently, h and ¢ in (1.7) must satisfy the equations

' —wh —ich’ = —hg,
5 (5.9)
cg = |hl°,
which are the Euler-Lagrange equations for the variational problem
Wi(s,t) = inf{K(h,g): (h,g) € X, H(h) = s and G(h,g) = t}. (5.10)
If we put h(z) = e“*/2 f(z) in (5.9), we obtain the system
" gf — — 7
f'—of fzg } (5.11)
cg = |fI7,

where 0 = w — icQ. From lemma 2.2, we see that the only solutions of (2.2) are
given by f(z) = e fi(z + x9), g(x) = g1 (2 + xo), where by, z9 € R, and f1, g1
are as given in (2.12) with A = ¢ > 0 and p = ¢ > 0. Therefore, these are all the
bound-state solutions of (1.4).

Well-posedness results for (1.4) have appeared in [6,8,24,35,36]. The following
result is a consequence of proposition 1.3 in [18].

THEOREM 5.5. For every T > 0 and every (uo,vo) € X, there is a unique solution
(u(z,t),v(x,t)) to (1.4) in C([0,T], X) such that (u(z,0),v(x,0)) = (uo,vo). More-
over, the map from (ug,vo) to (u,v) is a continuous map from X to C([0,T],X),
and we have

K(u(, t), U(-, t)) = K(UO: UO)
for allt € 10,T].
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In [24], Laurengot established a stability result for bound-state solutions of (1.4).
Here we recover Laurencot’s stability result (see theorem 5.6 (iii)), and we also
obtain the additional fact that the bound-state solutions of (1.4) are, in fact, ground
states. That is, any critical point for the variational problem (5.10) is actually a
global minimizer or, in other words, an element of the set

Fly={(h,g) € X : K(h,g) = Wi(s, 1), H(h) = 5 and G(h, g) =t}
for some s > 0 and ¢t € R.
THEOREM 5.6. Suppose s > 0 and t € R. Then we have the following.

(i) Every minimizing sequence {(hn,gn)} for Wi(s,t) is relatively compact in X
up to translations, i.e. there is a subsequence {(hn, ,gn,)} and a sequence of
real numbers {yi} such that

(g (- + Yk ), Gnic (- + Y1)
converges strongly in X to some (h,g), which is a minimizer for Wi (s,t).

(ii) In particular, Fsl,t is non-empty, and consists of all pairs (f,g) with

flx)=ef(x+x0) and g(z)= fi(z+ x0),

where 6y,z9 € R and f1, g1 are as given in (2.12) with A = (1—36t)2/3 and
p=s(12t)"1/3,

(iii) Fsl,t is stable, in the sense that, for every e > 0, there exists § > 0 with the
following property. Suppose (p,v) € X and

inf ) — (h, < 6,
(h,;iéF;J'(LP ¥) = (h, 9)llx

and let (u(z,t),v(x,t)) be the unique solution of (1.4) with

(u(w,0),v(x,0)) = (p(), ¢ (x)),
guaranteed by theorem 5.5 to exist in C([0,T], X) for every T > 0. Then

. f -’t, .’t _ h, <
oL, 1, 0,06,0) = (hg)llx <

for allt > 0.

Proof. To prove (i), we need make only minor modifications to the proof of theo-
rem 4.5. In fact, the statements and proofs of lemmas 4.1, 4.2, 4.3 and 4.4 continue
to be valid if we replace throughout E by K, W by Wy and I by Iy, except that we
can use (3.10) instead of (3.40) at the end of lemma 4.4. The statement and proof
of theorem 4.5 also remain valid once the same modifications are made, except that
we use theorem 3.12 instead of theorem 3.26.

Since every ground state in Fsl,t is also a bound state, statement (ii) follows
from (i) and the remarks concerning bound states that were made after (5.11).

Finally, the proof of (iii) is identical to that of theorem 5.4, once the obvious
modifications are made. O
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