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We consider the coupled Schr�odinger{Korteweg{de Vries system

i(ut + c1ux ) + ¯ 1uxx = ¬ uv;

vt + c2vx + ¯ 2 vxxx + ® (v2 )x = ­ (juj2)x ;

which arises in various physical contexts as a model for the interaction of long and
short nonlinear waves. Ground states of the system are, by de¯nition, minimizers of
the energy functional subject to constraints on conserved functionals associated with
symmetries of the system. In particular, ground states have a simple time
dependence because they propagate via those symmetries. For a range of values of
the parameters ¬ , ­ , ® , ¯ i , ci , we prove the existence and stability of a two-parameter
family of ground states associated with a two-parameter family of symmetries.

1. Introduction

In this paper we prove existence and stability results for ground-state solutions to
the system of equations

i(ut + c1ux) + ¯ 1uxx = ¬ uv;

vt + c2vx + ¯ 2vxxx + ® (v2)x = ­ (juj2)x;

)

(1.1)

where u is a complex-valued function of the real variables x and t, v is a real-valued
function of x and t, and the constants ci, ¯ i, ¬ , ­ , ® are real. We consider here only
the pure initial-value problem for (1.1), in which initial data (u(x; 0); v(x; 0)) =
(u0(x); v0(x)) are posed for ¡ 1 < x < 1, and a solution (u(x; t); v(x; t)) is sought
for ¡ 1 < x < 1 and t > 0. Well-posedness results for the pure initial-value
problem for (1.1) and certain variants have appeared in [7, 21, 34]; we cite below
in x 5 the speci­ c results we will need here.

Systems of the form (1.1) appear as models for interactions between long and
short waves in a variety of physical settings. For example, Kawahara et al . [23]
derived (1.1) as a model for the interaction between long gravity waves and cap-
illary waves on the surface of shallow water, in the case when the group velocity
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of the capillary wave coincides with the velocity of the long wave. In [30, 32], a
system of equations is derived for resonant ion-sound/Langmuir-wave interactions
in plasmas, which reduces to (1.1) under the assumption that the ion-sound wave
is unidirectional. Similarly, one can obtain (1.1) as the unidirectional reduction of
a model for the resonant interaction of acoustic and optical modes in a diatomic
lattice [38].

In the applications mentioned in the preceding paragraph, all the constants
appearing in (1.1) are typically non-zero. On the other hand, system (1.1) with
¯ 2 = ® = 0 was derived in [16, 20] as a model for the interaction between long
and short water waves, and appears as well in the plasma physics literature (see,
for example, [22,37]). The presence or absence of the terms containing ¯ 2 and ® is
determined by the scaling assumptions made in the derivation of the equations. For
a discussion of the role of the scaling assumptions in the derivation of equations
such as (1.1), the reader may consult [10] or [17].

If ¯ 2 6= 0 in (1.1), then, by making appropriate use of the transformations x ! ³ x,
t ! ³ t, x ! x + t, u ! ³ u, u ! ·u and u ! ei(³ x¡ ³ 2t)u, where ³ 2 R, we can
reduce (1.1) to either

iut + uxx = ¡ uv;

vt + 2vxxx + 3q(v2)x = ¡ (juj2)x

)

(1.2)

or
iut + uxx = ¡ uv;

vt ¡ 2vxxx + 3q(v2)x = ¡ (juj2)x;

)

(1.3)

where q 2 R. System (1.3) is of the form that arises in [5,30,32]; in these references,
one can ­ nd, in particular, explicit ground-state solutions. The analysis of (1.3),
however, is complicated by the fact that the associated energy functional, analogous
to the energy E(u; v) de­ ned below, is not positive-de­ nite. In this paper we only
consider (1.2), and we further restrict consideration to the case when q is positive
in (1.2). (When (1.2) is used to model interactions between internal and surface-
gravity waves in a two-layer ®uid, the assumption that q is positive corresponds
to the assumption that the ratio of the depth of the upper layer to the depth
of the lower layer is less than a certain critical value [17].) For technical reasons,
the argument used in this paper to prove existence and stability of ground states
for (1.2) does not apply to the case when q is negative. We note, however, that the
explicit one-parameter family of ground states for (1.2) given below in (2.8) does
continue to negative values of q.

We will also have occasion below to consider the case when ¯ 2 = ® = 0 in (1.1).
In this case, system (1.1) can be reduced to the form

iut + uxx = ¡ uv;

vt = ¡ (juj2)x:

)

(1.4)

System (1.4) is of independent mathematical interest because it has been found to
have a completely integrable structure. In particular, it has an inverse-scattering
transform and explicit N -soliton solutions [28,29,37]. (By contrast, equations (1.2)
and (1.3) do not have N -soliton solutions [9].)
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The system (1.2) can be written in Hamiltonian form as

(ut; vt) = J ¯ E(u; v); (1.5)

where J is the antisymmetric operator de­ ned by J(w; z) = ( ¡ 1
2 iw; zx) and E(u; v),

the Hamiltonian functional, is de­ ned by

E(u; v) =

Z 1

¡1
(juxj2 + v2

x ¡ vjuj2 ¡ qv3) dx:

The notation ¯ E in (1.5) refers to the Fŕechet derivative, or generalized gradient, of
E. Since the Hamiltonian E is invariant under time translations, it is a conserved
functional for the ®ow de­ ned by (1.2), i.e. when applied to su¯ ciently regular
solutions u(x; t), v(x; t) of (1.2), E is independent of t. There are also two other
conserved functionals of (1.2) associated with symmetries, namely,

G(u; v) =

Z 1

¡1
v2 dx ¡ 2 Im

Z 1

¡1
u·ux dx;

which arises from the invariance of (1.2) under space translations x ! x + ³ , and

H(u) =

Z 1

¡1
juj2 dx;

which arises from the invariance of (1.2) under phase shifts u ! ei³ u.
Equations (1.4) can also be rewritten in Hamiltonian form as

(ut; vt) = J ¯ K(u; v); (1.6)

where J is as above and K is de­ ned by

K(u; v) =

Z 1

¡1
(juxj2 ¡ vjuj2) dx:

The functionals G(u; v) and H(u) de­ ned above are conserved functionals for (1.4)
as well.

Bound-state solutions of (1.2) or (1.4) are, by de­ nition, solutions of the form

u(x; t) = ei!th(x ¡ ct); v(x; t) = g(x ¡ ct); (1.7)

where h and g are functions that vanish at in­ nity in some sense (usually h and
g are in H1(R)), and ! and c are real constants. It is easy to see that u(x; t) and
v(x; t), as de­ ned in (1.7), are solutions of (1.2) if and only if (h; g) is a critical point
for the functional E(u; v), when u(x) and v(x) are varied subject to the constraints
that G(u; v) and H(u) be held constant (see x 5 below). If (h; g) is not only a critical
point, but, in fact, a global minimizer of the constrained variational problem for
E(u; v), then (1.7) is called a ground-state solution of (1.2). The same comments
also apply to (1.4), except that the functional being varied in this case is K(u; v).
In this paper, our main concern is with ground-state solutions. For a discussion
of what is currently known about bound-state solutions of (1.2) in general, see x 2
below.
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The terms `bound state’ and `ground state’ are traditional in the literature con-
cerning the nonlinear Schr�odinger equation

iut + uxx = ¡ ujuj2: (1.8)

Bound-state solutions of (1.8) are solutions of the form u(x; t) = ei!th(x ¡ ct), or,
equivalently, minimizers of the Hamiltonian functional

Z 1

¡1
(juxj2 ¡ 1

2
juj4) dx

subject to the constraints that H(u) and
R 1

¡1 u·ux dx be held constant. It is easy to
see that any bound-state solution of (1.8) must have a pro­ le function of the form

h(x) = ei(cx=2+ ³ )
p

2 ¼ sech(
p

¼ x + x0);

where ¼ = ! ¡ 1
4 c2 > 0, and x0; ³ 2 R. In fact, these bound states are actually

ground states [12]. Since jh(x)j decays monotonically to zero as x tends away from
x0 to 1 or ¡ 1, bound-state solutions of (1.8) are often called solitary waves. By
extension, the term `solitary wave’ is often used to refer to bound-state solutions
of equations that are related to (1.8), such as (1.2) or (1.4). This usage, however, is
usually eschewed for bound states that are known not to have monotonic pro­ les,
such as the excited bound states known to exist for generalizations of (1.8) to
higher dimensions (see, for example, [11]). Since, for system (1.2), we do not know,
in general, whether the ground-state solutions we ­ nd have pro­ les that decay
monotonically to zero away from a single extremum, we have here avoided calling
them solitary waves.

Our main results are as follows. We prove below (see theorem 4.5 and corol-
lary 5.2) that, for a certain range of values of q, equation (1.2) has, for every s > 0
and t 2 R, a non-empty set of ground-state solutions (1.7) with pro­ les (h; g) satis-
fying H(h) = s and G(h; g) = t. Moreover, for a given pair of values of s and t, the
set Fs;t of pro­ les of these solutions is stable, in the sense that if (h; g) 2 Fs;t and
a slight perturbation of (h; g) is taken as initial data for (1.2), then the resulting
solution of (1.2) can be said to have a pro­ le that remains close to Fs;t for all time
(see theorem 5.4).

Besides the main results, we also include an existence result for ground-state
solutions of (1.2), which is valid for all q > 0 (theorem 3.27) and an existence and
stability result for ground-state solutions of (1.4) (theorem 5.6). Concerning the
latter result, we note that existence of bound-state solutions is obvious, since it
is easy to explicitly ­ nd all solutions of the equations that result from substitut-
ing (1.7) into (1.4) (see lemma 2.2 below). Also, the stability of these solutions has
been proved by Lauren¹cot in [24]. However, the method used by Lauren¹cot did not
establish whether these bound states were, in fact, ground states.

The results in the present paper are complementary to those contained in an
earlier paper of one of us [4], where di¬erent techniques were used. In particular, it
follows from the results of x 3 of [4] that, for every q > 0, we can ­ nd, for arbitrary
c > 0 and arbitrary ! 2 ( 1

4
c2; 1), a bound-state solution (1.7) of (1.2) such that

h(x) = eicx=2f (x), where f is real valued. Moreover, a stability result for certain
sets of such bound states is proved when ! is near 1

4c2. We also note that Chen [14]
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has proved the orbital stability of a two-parameter family of explicit bound-state
solutions (see x 2 below) in the special case q = 2. Finally, we mention the elegant
proof in Ohta [33] of the stability of solitary-wave solutions of the Zakharov system,

iut + uxx = ¡ uv;

vtt ¡ vxx = ¡ (juj2)xx;

)

(1.9)

by means of an argument that is related to the arguments used below in x 4.
The proofs below follow the lines of many other proofs of existence and stability

of solitary-wave solutions to dispersive equations that have appeared over the last
couple of decades. The common elements in these proofs are the reduction of the
stability problem to the problem of showing that minimizing sequences of a con-
strained variational problem are necessarily relatively compact, and the solution of
this latter problem by the method of concentration compactness (see [13] for what
may be the ­ rst example of such a stability proof).

In the present situation, however, application of the concentration compactness
method is considerably complicated by the fact that, for a given choice of q in (1.2),
we are interested in ­ nding a true two-parameter family of bound-state solutions
(parametrized by c and !). In all the applications of the method to solitary waves
that we are aware of, the variational problem has consisted of ­ nding the extremum
of a real-valued functional E(f ) subject to a single constraint of the form Q(f) = ¶ ,
where Q is another real-valued functional and ¶ 2 R is a constant. This leads to
a result concerning a one-parameter family of solitary waves. (In some cases, such
as that of the nonlinear Schr�odinger equation (1.8) or the Zakharov system (1.9),
there at ­ rst appear to be two solitary-wave parameters, but it turns out that they
are not independent.) Here, on the other hand, we are led to consider a variational
problem in which there are not one, but two real-valued constraint functions.

Now, as was already noted in the original papers introducing the concentration
compactness method (see, for example, [26, x IV]), the general outline of the method
lends itself just as easily to problems in which there are more than one constraint
function as to problems with a single constraint functional. But putting the method
into practice requires proving the subadditivity of the variational problem with
respect to the constraint parameters, and this turns out to be considerably more
complicated in the case of two parameters. The task of proving the subadditivity
of the relevant two-parameter variational problem will occupy us through most
of x 3.

The outline of this paper is as follows. In x 2, we collect some basic facts con-
cerning the properties of bound-state solutions of (1.2) and (1.4). Sections 3 and 4
contain the proof of the relative compactness of minimizing sequences for the vari-
ational problems that de­ ne ground-state solutions of (1.2) and (1.4). Finally, x 5
discusses the existence and properties of ground-state solutions, including their
stability properties.

Notation. We shall denote by f̂ the Fourier transform of f , de­ ned as

f̂ ( ¹ ) =

Z 1

¡1
f (x)e¡i¹ x dx:
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For 1 6 p 6 1, we denote by Lp = Lp(R) the space of all measurable functions f
on R for which the norm jf jp is ­ nite, where

jf jp =

µZ 1

¡1
jf jp dx

¶1=p

for 1 6 p < 1

and jf j1 is the essential supremum of jf j on R. Whether we intend the functions
in Lp to be real or complex valued will be clear from the context. For s > 0, we
denote by Hs

C = Hs
C(R) the Sobolev space of all complex-valued functions f in L2

for which the norm

kfks =

µZ 1

¡1
(1 + j ¹ j2)sjf̂ ( ¹ )j2 d ¹

¶1=2

is ­ nite. We will always view Hs
C as a vector space over the reals, with inner product

given by

hf1; f2i = Re

Z 1

¡1
(1 + j ¹ j2)sf̂1

·̂
f2 dx:

The space of all real-valued functions f in Hs
C will be denoted simply by Hs. In

particular, we use kfk to denote the L2 or H0 norm of a function f . If I is an
open interval in R, we use Hs(I) to denote the set of all functions f on I such that
f ² 2 Hs for every smooth function ² with compact support in I. We de­ ne the
space X to be the Cartesian product H1

C £ L2, and the space Y to be H1
C £ H1,

each provided with the product norm. Finally, if T > 0 and Z is any Banach space,
we denote by C ([0; T ]; Z) the Banach space of continuous maps f : [0; T ] 7! Z, with
norm given by

kfk C ([0;T ];Z) = sup
t 2 [0;T ]

kf (t)kZ :

The letter C will frequently be used to denote various constants whose actual value
is not important for our purposes.

2. Bound states

We record here some general results concerning bound-state solutions of (1.2) and
related equations. We also include a list of explicit formulae for solutions in a few
special cases, for purposes of comparison with the more general solutions we study
in later sections.

Recall that a bound-state solution of (1.2) is, by de­ nition, a solution of the
form given in (1.7). In what follows, we further require that h 2 H1

C and g 2 H1.
If we substitute (1.7) into (1.2), we can integrate the second of the resulting two
equations, using the fact that g 2 H1 to evaluate the constant of integration. We
thus see that (u(x; t); v(x; t)) is a bound-state solution of (1.2) if and only if h and g
satisfy the equations

h00 ¡ !h ¡ ich0 = ¡ hg;

2g00 ¡ cg = ¡ 3qg2 ¡ jhj2:

)

(2.1)
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We can further simplify (2.1) by putting h(x) = eicx=2f(x), thus obtaining the
system

f 00 ¡ ¼ f = ¡ fg;

2g00 ¡ cg = ¡ 3qg2 ¡ jf j2;

)

(2.2)

where ¼ = ! ¡ 1
4c2. We can thus consider (2.2) to be the de­ ning equations for

bound-state solutions of (1.2).

Theorem 2.1. Suppose (f; g) 2 Y is a solution of (2.2), in the sense of distribu-
tions. Then we have the following.

(i) (f; g) 2 H 1
C £ H 1 .

(ii) If c > 0, then either f and g are both identically zero or g(x) > 0 for all
x 2 R.

(iii) f (x) = ’(x)ei³ 0 for x 2 R, where ³ 0 is a real constant and ’ is real valued.

(iv) If ¼ > 0 and c > 0, there exist constants ° 1; ° 2 > 0 such that e° 1jxjf(x) and
e ° 2 jxjg(x) are in L 1 .

Proof. For any s > 0, de­ ne the function Ks(x) by

Ks(x) =
1

2
p

s
e¡

p
sjxj:

Then K̂s( ¹ ) = (s + ¹ 2)¡1, so the operation of convolution with Ks takes Hs
C

to Hs + 2
C , and is, in fact, the inverse of the operator (s ¡ @xx) in the sense that

(s ¡ @xx)(Ks ¤ f ) = f for all f 2 Hs
C. Now we can rewrite (2.2) in the form

f = K ¼ + a1
¤ (fg + a1f );

g = Kc=2+ a2
¤ ( 3

2qg2 + 1
2
jf j2 + a2g);

)

(2.3)

where a1 and a2 are real numbers chosen so that ¼ + a1 > 0 and 1
2 c + a2 > 0.

From (2.3), statement (i) follows by a standard bootstrap argument. Since f and
g are in H1

C, and H1
C is an algebra, then g2, jf j2 = f ·f and fg are also in H1

C.
Hence (2.3) implies that f and g are in H3

C. But then g2, jf j2 and fg are in H3
C,

so (2.3) implies that f and g are in H5
C, and so on.

To prove (ii), observe that if c > 0, then we can take a2 = 0 in (2.3). But since
Kc=2 is strictly positive on R and g2 + jf j2 is everywhere non-negative, it then
follows from the second equation in (2.3) that if either f or g is non-zero on a set
of positive measure, then g(x) > 0 everywhere.

For (iii), we ­ rst observe that, by (i) and the standard uniqueness theory for
ordinary di¬erential equations, f(x) and f 0(x) cannot both vanish at any point
x 2 R. Moreover, if the zeros of f accumulate at any point x 2 R, then, by
Rolle’s theorem, the zeros of Ref 0 and Im f 0 accumulate at x also, leading to the
contradictory result that f (x) = f 0(x) = 0. Therefore, the zeros of f must be
isolated.
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Let x1 and x2 be any two consecutive zeros of f , where x1 < x2, and possibly
x1 = ¡ 1 or x2 = 1 or both. Then we can ­ nd in­ nitely di¬erentiable functions r
and ³ on (x1; x2), with r(x) > 0 on (x1; x2) and

lim
x ! x

+
1

r(x) = lim
x ! x ¡

2

r(x) = 0;

such that, for all x 2 (x1; x2),

f (x) = r(x)ei³ (x):

From the ­ rst equation in (2.2), we get

r00 ¡ ¼ r ¡ r( ³ 0)2 = ¡ rg;

2r0 ³ 0 + r³ 00 = 0:

)

(2.4)

Multiplying the second equation in (2.4) by r(x) and integrating, we obtain

r2(x) ³ 0(x) = K

for all x 2 (x1; x2), where K is a constant. Now, by (i), jf 0j2 = (r0)2 + r2( ³ 0)2 is
bounded on R, so r2( ³ 0)2 = K2=r2 is bounded on (x1; x2). But since r ! 0 as
x ! x1, this implies that K = 0 on (x1; x2). Hence ³ is constant on (x1; x2).

The preceding argument shows that f (x) = r(x)ei³ (x) on R, where ³ (x) is de­ ned
and constant on each of the intervals separating the zeros of r(x). Now suppose that
x0 2 R is such that r(x0) = 0, and de­ ne

³ ¡ = lim
x ! x ¡

0

³ (x); t¡ = lim
x ! x ¡

0

r0(x);

³ + = lim
x ! x

+
0

³ (x); t + = lim
x ! x

+
0

r0(x):

Then ei ³ ¡
t¡ = f 0(x0) = ei³ +

t + , and since f 0(x0) 6= 0, both t¡ and t + are non-zero.
Therefore, ei(³ +¡ ³ ¡ ) = t¡=t+ 2 R, from which it follows that ei(³ + ¡ ³ ¡ ) is either 1
or ¡ 1. Hence we can arrange that f (x) = ’(x)ei³ 0 on both sides of x0, where ’(x)
is real valued, by taking ³ 0 = ³ ¡ and de­ ning ’(x) = r(x) for x to the left of x0

and ’(x) = r(x)ei(³ + ¡ ³ ¡ ) to the right of x0. Stepping through the intervals between
zeros of r(x) one at a time, both rightward and leftward from x0, and iterating this
procedure, one obtains the desired result.

To prove (iv), we borrow an argument from the proof of theorem 8.1.1 (iv) of [12].
For each ° > 0 and ² > 0, de­ ne a function ± by ± (x) = e° jxj=(1+ ² jxj). Multiply the
­ rst equation in (2.2) by ± ·f and add the result to its complex conjugate to get

Re

Z 1

¡1
f 0( ± ·f )0 dx + ¼

Z 1

¡1
± jf j2 dx =

Z 1

¡1
± gjf j2 dx:

Since ± 0 6 ° ± , we can deduce that

¼

Z 1

¡1
± jf j2 dx 6

Z 1

¡1
± gjf j2 dx ¡

Z 1

¡1
± jf 0j2 dx + °

Z 1

¡1
± jff 0j dx: (2.5)
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Now using the Cauchy{S chwarz inequality with ° chosen to be su¯ ciently small,
we deduce from (2.5) that

Z 1

¡1
± jf j2 dx 6 C°

Z 1

¡1
± gjf j2 dx; (2.6)

where C ° does not depend on ² . Since g 2 H1, we can ­ nd R > 0 such that
jg(x)j 6 1=(2C ° ) for jxj > R. It then follows from (2.6) that

Z 1

¡1
± jf j2 dx 6 2C°

Z

jxj6R

e° jxjg(x)jf(x)j2 dx;

and taking ² ! 0 gives Z 1

¡1
e ° jxjjf (x)j2 dx < 1: (2.7)

Now, since f 2 H1, then f (x) ! 0 as jxj ! 1 and f is uniformly Lipschitz on R.
From these two properties of f and (2.7), it follows easily that e° 1jxjf (x) is bounded
on R for some ° 1 2 (0; ° ) (for details, see the proof of theorem 8.1.7 (iv) in [12]).

The decay estimate for g is obtained in the same way as that for f . Multiplying
the second equation in (2.2) by ± g leads, as above, to the estimate

Z 1

¡1
± g2 dx 6 C°

Z 1

¡1
± (g3 + jf j2g) dx:

Choosing ° < 2° 1, and using the decay result just proved for f , we ­ nd, as before,
that

R 1
¡1 ± g2 dx can be bounded by a constant that is independent of ² . Taking

² ! 0 allows us to conclude that
Z 1

¡1
e ° jxjjg(x)j2 dx < 1;

and from here the proof proceeds as it did for f(x).

Funakoshi and Oikawa, in [17], list the following explicit one-parameter families
of bound-state solutions to (1.2). For q 6 2

3 , de­ ne

f (x) = §6B2
p

2 ¡ 3q sech2(Bx);

g(x) = 6B2 sech2(Bx);

)

(2.8)

where B > 0 is arbitrary. Then (f; g) satisfy (2.2) with ¼ = 4B2 and c = 8B2. If,
on the other hand, q > 2

3 , then we have that

f (x) = §6B2
p

3q ¡ 2 sech(Bx) tanh(Bx);

g(x) = 6B2 sech2(Bx)

)

(2.9)

is a solution of (2.2) with ¼ = B2 and c = 2B2(9q ¡ 2). When q = 2
3
, of course,

these solutions coincide, with the obvious solution given by

f = 0 and g =

µ
4B2

q

¶
sech2(Bx);

which satis­ es (2.2) with c = 8B2 for all q 6= 0.
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In [14], Chen considered (1.2) in the special case when q = 2, and found a two-
parameter family of explicit solutions, given by

f (x) = §
p

2B2(c ¡ 8B2) sech(Bx);

g(x) = 2B2 sech2(Bx);

)

(2.10)

where B2 = ¼ , and c > 0 and ¼ 2 (0; 1
8c) are arbitrary. Then, using the stability

theory of [19], he went on to show that if h(x) = eicx=2f (x), ! = ¼ + 1
4
c2 and (u; v) is

the bound-state solution of (1.2) de­ ned by (2.10) and (1.7), then (u; v) is orbitally
stable provided c 6 1 and ¼ 2 (0; 1

12 c) (see [14, theorem 2]). Here, orbital stability
of (u; v) means that if F , the orbit of (f; g), is de­ ned as the set of all ( ~f ; ~g) 2 Y
such that ~f (x) = ei ³ 0 f (x + x0) and ~g(x) = g(x + x0) for some ³ 0; x0 2 R, then F is
stable in the sense of theorem 5.2 below.

In theorem 5.1 below, it is shown that if (f; g) is a solution of (2.2) corresponding
to a ground-state solution of (1.2), then, up to a multiplicative constant of absolute
value one, f is a positive function on R. Therefore, the bound state given by (2.9)
is not a ground state. In fact, in the case q = 2, it is not hard to show (see
remark 3.18 below) that there is, up to translation and phase shift, a unique ground-
state solution of (2.2), and that this solution is given by (2.10). We do not know,
however, whether ground states are unique for q 6= 2.

In later sections, we will need the following uniqueness results for certain equa-
tions related to (2.2).

Lemma 2.2. Suppose (f; g) 2 X is a non-zero solution of the equations

f 00 + fg = ¶ f;

jf j2 = · g;

)

(2.11)

where ¶ ; · 2 R. Then ¶ > 0 and · > 0, and

f (x) = ei³ 0 f1(x + x0) and g(x) = g1(x + x0);

where ³ 0; x0 2 R and

f1(x) =
p

2 ¶ · sech(
p

¶ x);

g1(x) = 2 ¶ sech2(
p

¶ x):

)

(2.12)

Lemma 2.3. Suppose g 2 H1 is a non-zero solution of the equation

¡ g00 ¡ 3
2 qg2 = µg; (2.13)

where µ 2 R. Then µ > 0 and g = g2(x + x0), where x0 2 R and

g2(x) =
µ

q
sech2( 1

2

p
µx): (2.14)

To prove these well-known results, one begins by using a bootstrap argument to
establish that any solution must, in fact, be in­ nitely di¬erentiable. Equation (2.13)
can then be integrated twice (after ­ rst multiplying by g0) to yield (2.14). For
equation (2.11), we can argue as in the proof of theorem 2.1 (iii) to show that
f (x) = ei³ 0x’(x), where ’ is real valued, and then eliminate g to obtain a single
equation for ’, which may be solved by integrating twice. We omit the details.
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3. The reduced variational problem

In this section we consider the problem of ­ nding

I(s; t) = inffE(f; g) : (f; g) 2 Y; kfk2 = s and kgk2 = tg; (3.1)

where s; t > 0. Our approach will be to split the functional E into two parts and
consider the variational problem associated with each part. De­ ne K : X ! R by

K(f; g) =

Z 1

¡1
(jf 0j2 ¡ gjf j2) dx;

and J : H1 ! R by

J(g) =

Z 1

¡1
((g0)2 ¡ qg3) dx:

Then
E(f; g) = K(f; g) + J(g):

Hence, if we de­ ne M : H1 ! R by

M (g) = inffK(f; g) : f 2 H1
C and kfk = 1g; (3.2)

then
I(s; t) = inffsM (g) + J(g) : g 2 H1 and kgk2 = tg: (3.3)

This expression for I(s; t) suggests analysing the subsidiary variational problems
de­ ned by

I1(s; t) = inffK(f; g) : (f; g) 2 X; kfk2 = s and kgk2 = tg
= inffsM (g) : g 2 H1 and kgk2 = tg (3.4)

and

I2(t) = inffJ(g) : g 2 H1 and kgk2 = tg: (3.5)

Lemma 3.1. If (f; g) 2 X , then (jf j; g) 2 X also, and K(jf j; g) 6 K(f; g).

Proof. What has to be proved is that if f 2 H1
C, then F (x) = jf (x)j is in H1,

with kFk1 6 kfk1. We do not prove this elementary fact here, but remark that a
proof can be given, which, by working with f̂ and F̂ instead of f and F , avoids the
annoying question of the di¬erentiability of F at points where F = 0. Such a proof
is easily constructed by adapting the proof of lemma 3.4 in [3].

Lemma 3.2. For all s; t > 0, I1(s; t) and I2(t) are ¯nite.

Proof. Let (f; g) 2 X with kfk2 = s and kgk2 = t. Then, from the Cauchy{S chwarz
inequality and the Sobolev embedding theorem, we have

¯̄
¯̄
Z 1

¡1
gjf j2 dx

¯̄
¯̄ 6 Ckfk1kfkkgk 6

Z 1

¡1
jf 0j2 dx + Cs(1 + t)

and
¯̄
¯̄
Z 1

¡1
g3 dx

¯̄
¯̄ 6 Ckgk1kgk2 6

Z 1

¡1
(g0)2 dx + Cs2:
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Hence I1(s; t) > ¡ Cs(1 + t) > ¡ 1 and I2(t) > ¡ Cs2 > ¡ 1.

Lemma 3.3. For all s; t > 0, we have I1(s; t) < 0 and I2(t) < 0. Also, I1(s; 0) = 0
for all s > 0, I1(0; t) = 0 for all t > 0 and I2(0) = 0.

Proof. When s; t > 0, we can choose (f; g) 2 X such that

kfk2 = s; kgk2 = t;

Z 1

¡1
gjf j2 dx > 0;

Z
g3 dx > 0:

Then, for each ³ > 0, the functions f ³ (x) = ³ 1=2f( ³ x) and g ³ (x) = ³ 1=2g( ³ x) satisfy
kf³ k2 = s, kg ³ k2 = t,

K(f³ ; g ³ ) = ³ 2

Z 1

¡1
jf 0j2 dx ¡ ³ 1=2

Z 1

¡1
gjf j2 dx

and

J(g ³ ) = ³ 2

Z 1

¡1
(g0)2 dx ¡ ³ 1=2

Z 1

¡1
g3 dx:

Hence, by taking ³ su¯ ciently small, we get K(f³ ; g ³ ) < 0 and J(g ³ ) < 0, proving
that I1(s; t) < 0 and I2(t) < 0.

If s > 0, then, choosing any f 2 H1 with kfk = s and de­ ning f ³ as in the
preceding paragraph, we get

K(f³ ; 0) = ³ 2

Z 1

¡1
jf 0j2 dx > I1(s; 0) > 0:

Then, by letting ³ tend to zero, we see that I1(s; 0) = 0.
Finally, the equalities I1(0; t) = 0 and I2(0) = 0 are obvious.

Lemma 3.4. Suppose ¼ > 0, and de¯ne a map g ! g ¤ from H1 onto H1 by

g ¤ (x) = ¼ 2=3g( ¼ 1=3x):

Then, for each g 2 H1,

M (g ¤ ) = ¼ 2=3M (g) (3.6)

and

J(g ¤ ) = ¼ 5=3J(g): (3.7)

Proof. A simple change of variables in the integral proves (3.7). To prove (3.6), for
each f 2 H1

C such that kfk = 1, de­ ne ~f by

~f (x) = ¼ 1=6f ( ¼ 1=3x):

Then k ~fk = 1 and K( ~f ; g ¤ ) = ¼ 2=3K(f; g), whence (3.6) follows by taking in­ ma
on both sides.

Lemma 3.5. For all s; t > 0, we have

I1(s; t) = st2=3I1(1; 1) (3.8)
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and

I2(t) = t5=3I2(1) (3.9)

Proof. We may assume s; t > 0. Let (f; g) 2 X be such that kfk2 = s and kgk2 = t,
and let ~f and g ¤ be as de­ ned in lemma 3.4 and its proof, with ¼ = t¡1. De­ ne
z = s¡1=2 ~f . Then kzk2 = 1, kg ¤ k2 = 1,

K(f; g) = st2=3K(z; g ¤ ); (3.10)

and

J(g) = t5=3J(g ¤ ): (3.11)

The equality (3.8) follows by taking the in­ mum of both sides of (3.10) with respect
to f and g, while (3.9) follows by taking the in­ mum of both sides of (3.11) with
respect to g.

Lemma 3.6. Suppose s1; t1; s2; t2 > 0. If t1=t2 = s1=s2 = ¼ , then

I(s1; t1) = ¼ 5=3I(s2; t2):

Proof. For g 2 H1, let g ¤ be as de­ ned in lemma 3.4. Then

I(s1; t1) = inffs1M (g ¤ ) + J(g ¤ ) : g ¤ 2 H1 and kg ¤ k2 = t1g
= inff ¼ 5=3(s2M (g) + J(g)) : g 2 H1 and kgk2 = t2g

= ¼ 5=3I(s2; t2):

Lemma 3.7. Let s1; s2; t1; t2 > 0, and suppose that s1 + s2 > 0, t1 + t2 > 0,
s1 + t1 > 0 and s2 + t2 > 0. Then

I1(s1 + s2; t1 + t2) < I1(s1; t1) + I1(s2; t2): (3.12)

Also, if t1; t2 > 0, then

I2(t1 + t2) < I2(t1) + I2(t2): (3.13)

Proof. To prove (3.12), we consider three cases: when s1 = 0; when t1 = 0; and
when neither s1 nor t1 is 0. In the ­ rst case, we must have s2 > 0 and t1 > 0, so

s2(t1 + t2)2=3 > s2t
2=3
2 :

Since I1(1; 1) < 0 and I1(s1; t1) = 0 by lemma 3.3, multiplying both sides by I(1; 1)
and using lemma 3.5 gives the desired inequality. Similarly, in the second case, we
must have s1 > 0 and t2 > 0, so

(s1 + s2)(t1 + t2)2=3 > s1t
2=3
1 + s2t

2=3
2 ;

and again multiplying by I1(1; 1) gives the desired inequality. Finally, in the third
case, when s1 > 0 and t1 > 0, we must have either s2 > 0 or t2 > 0. If s2 > 0, then
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we write

(s1 + s2)(t1 + t2)2=3 = s1(t1 + t2)2=3 + s2(t1 + t2)2=3

> s1(t1 + t2)2=3 + s2t
2=3
2

> s1t
2=3
1 + s2t

2=3
2 :

If t2 > 0, we can write the same string of inequalities, with the penultimate expres-
sion replaced by s1t

2=3
1 + s2(t1 + t2)2=3. In either case, we have established that

(s1 + s2)(t1 + t2)2=3 > s1t
2=3
1 + s2t

2=3
2 ;

which, when multiplied by I1(1; 1) < 0, gives the desired result.
To prove (3.13), we merely observe that

(t1 + t2)5=3 > t
5=3
1 + t

5=3
2

for t1; t2 > 0, and apply lemmas 3.3 and 3.5.

The next result, which we state here without proof, is taken from [15, lemma 2.4].
For a proof, see [26, lemma I.1].

Lemma 3.8. Suppose p; r 2 [1; 1), ffng is a bounded sequence in Lr and ff 0
ng is

bounded in Lp. If, for some ! > 0,

lim
n ! 1

sup
y 2 R

Z y + !

y¡!

jfnjr dx = 0;

then, for every s > r,

lim
n! 1

Z 1

¡1
jfnjs dx = 0:

We will now prove the existence of minimizing pairs for problems (3.4) and (3.5).
Actually, we accomplish somewhat more: using the method of concentration com-
pactness [25,26], we show that, in fact, every minimizing sequence for these varia-
tional problems has a subsequence that converges, after suitable translations, to a
solution of the problem. From this property of minimizing sequences, there easily
follow stability results for the evolution equations (1.2) and (1.4) (see theorems 5.4
and 5.6 below).

Let us ­ rst consider minimizing sequences for (3.4), which are, by de­ nition,
sequences f(fn; gn)g in X satisfying

lim
n! 1

kfnk2 = s; lim
n! 1

kgnk2 = t; lim
n! 1

K(fn; gn) = I1(s; t):

(Note that we do not require the elements (fn; gn) of a minimizing sequence to
satisfy exactly the constraints in (3.4). This convention will be useful later, in the
proof of theorem 5.4.) To each such sequence, we associate a sequence of non-
decreasing functions Qn(!), de­ ned for ! > 0 by

Qn(!) = sup
y 2 R

Z y + !

y¡!

(jfnj2(x) + g2
n(x)) dx:
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Since kfnk and kgnk remain bounded, then fQng comprises a uniformly bounded
sequence of non-decreasing functions on [0; 1). A standard argument then implies
that fQng must have a subsequence, which we denote again by fQng, which con-
verges pointwise and uniformly on compact sets to a non-decreasing limit function
on [0; 1). Let Q be this limit function, and de­ ne

¬ = lim
! ! 1

Q(!): (3.14)

From the assumption that kfnk2 + kgnk2 ! s + t, it follows that 0 5 ¬ 5 s + t. The
concentration-compactness method distinguishes three cases: ¬ = s + t, called the
case of compactness ; ¬ = 0, called the case of vanishing ; and 0 < ¬ < s + t, called
the case of dichotomy. Our goal is to show that, for minimizing sequences of (3.4),
only the case of compactness can occur. It will follow, by a standard argument,
that every minimizing sequence is relatively compact, after suitable translations
(cf. theorem 3.12 below). Later, we will show that this compactness property is
also enjoyed by problem (3.1).

Lemma 3.9. Suppose s; t > 0. If f(fn; gn)g is a minimizing sequence for I1(s; t),
then f(fn; gn)g is bounded in X.

Proof. From standard Sobolev embedding and interpolation theorems, we have
¯̄
¯̄
Z 1

¡1
gnjfnj2 dx

¯̄
¯̄ 6 jfnj24kgnk 6 Ckfnk1=2

1 kfnk3=2kgnk:

But, for a minimizing sequence, kfnk and kgnk stay bounded, so it follows that
¯̄
¯̄
Z 1

¡1
gnjfnj2 dx

¯̄
¯̄ 6 Ckfnk1=2

1 ;

where C is independent of n. Hence, since fK(fn; gn)g is a bounded sequence, we
obtain

kfnk2
1 = K(fn; gn) +

Z 1

¡1
gnjfnj2 dx + kfnk2 6 C(1 + kfnk1=2

1 );

from which it follows that kfnk1 is bounded. Therefore,

k(fn; gn)k2
X = kfnk2

1 + kgnk2 6 C;

and we are done.

Lemma 3.10. Suppose s; t > 0, and let f(fn; gn)g be any minimizing sequence for
I1(s; t). Let ¬ be as de¯ned in (3.14). Then there exist numbers s1 2 [0; s] and
t1 2 [0; t] such that

s1 + t1 = ¬ (3.15)

and

I1(s1; t1) + I1(s ¡ s1; t ¡ t1) 6 I1(s; t): (3.16)
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Proof. Let ° be an arbitrary positive number. From the de­ nition of ¬ , it follows
that, for ! su¯ ciently large, we have ¬ ¡ ° < Q(!) 5 Q(2!) 5 ¬ . By taking ! larger
if necessary, we may also assume that 1=! < ° . Now, according to the de­ nition
of Q, we can choose N so large that, for every n > N ,

¬ ¡ ° < Qn(!) 6 Qn(2!) 5 ¬ + ° : (3.17)

Hence, for each n = N , we can ­ nd yn such that

Z yn + !

yn¡!

(jfnj2 + g2
n) dx > ¬ ¡ ° and

Z yn + 2!

yn¡2!

(jfnj2 + g2
n) dx < ¬ + ° : (3.18)

Now choose smooth functions p and r on R such that

p(x) =

(
1 for x 2 [ ¡ 1; 1];

0 for x =2 [ ¡ 2; 2];

r(x) =

(
1 for x =2 [ ¡ 2; 2];

0 for x 2 [ ¡ 1; 1];

and p2(x) + r2(x) = 1 for all x 2 R. De­ ne p!(x) = p(x=!) and r!(x) = r(x=!),
and let

(’n(x); hn(x)) = (p!(x ¡ yn)fn(x); p!(x ¡ yn)gn(x))

and

(ln(x); jn(x)) = (r!(x ¡ yn)fn(x); r!(x ¡ yn)gn(x)):

From lemma 3.9, it follows that the sequences f’ng, fhng, flng and fjng are
bounded in L2. So, by passing to subsequences, we may assume that there exist
s1 2 [0; s] and t1 2 [0; t] such that

Z 1

¡1
j’nj2 dx ! s1 and

Z 1

¡1
h2

n dx ! t1;

whence it follows also that
Z 1

¡1
jlnj2 dx ! s ¡ s1 and

Z 1

¡1
j2

n dx ! t ¡ t1:

Now

s1 + t1 = lim
n ! 1

Z 1

¡1
(j’nj2 + h2

n) dx = lim
n! 1

Z 1

¡1
p2

!(jfnj2 + g2
n) dx:

Here and below we have suppressed the arguments of p! and r! for brevity of
notation. From (3.18) it follows that, for every n 2 N,

¬ ¡ ° <

Z 1

¡1
p2

!(jfnj2 + g2
n) dx < ¬ + ° :

Hence
j(s1 + t1) ¡ ¬ j < ° :
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Next observe that

jp0
!j1 + jr0

!j 1 5 1

!
(jp0j1 + jr0j 1 ) 6 C

!
;

and, by lemma 3.9, kfnk1 6 C, where C denotes constants that are independent of
! and n. Hence

K(’n; hn) 6
Z 1

¡1
(p2

!jf 0
nj2 ¡ p2

!gnjfnj2) dx +

Z 1

¡1
(p2

! ¡ p3
!)gnjfnj2 dx +

C

!
(3.19)

and

K(ln; jn) 6
Z 1

¡1
(r2

!jf 0
nj2 ¡ r2

!gnjfnj2) dx +

Z 1

¡1
(r2

! ¡ r3
!)gnjfnj2 dx +

C

!
: (3.20)

On the other hand, from (3.18), we get
¯̄
¯̄
Z 1

¡1
((p2

! ¡ p3
!) + (r2

! ¡ r3
!))gnjfnj2 dx

¯̄
¯̄ 6 2jfnj 1

Z

!5 jx¡ynj52!

(jfnj2 + g2
n) dx

6 C° :

Therefore, adding (3.19) and (3.20) and using p2
! + r2

! = 1, we get

K(’n; hn) + K(ln; jn) 6 K(fn; gn) + C

µ
° +

1

!

¶
6 K(fn; gn) + C° : (3.21)

For any given value of ° , each of the terms in (3.21) is bounded independently
of n, so, by passing to subsequences, we may assume that K(’n; hn) ! K1 and
K(ln; jn) ! K2, where

K1 + K2 6 I1(s; t) + C° :

Combining the results of the preceding paragraphs, and recalling that ° can be
taken arbitrarily small and ! arbitrarily large, we see that, for every k 2 N, we can
­ nd sequences

f(’(k)
n ; h(k)

n )g and f(l(k)
n ; j(k)

n )g in X

such that

k’(k)
n k2 ! s1(k);

kh(k)
n k2 ! t1(k);

kl(k)
n k2 ! s ¡ s1(k);

kj(k)
n k2 ! t ¡ t1(k)

and

K(’(k)
n ; h(k)

n ) ! K1(k);

K(l(k)
n ; j(k)

n ) ! K2(k);

where s1(k) 2 [0; s], t1(k) 2 [0; t],

js1(k) + t1(k) ¡ ¬ j 6 1

k
(3.22)
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and

K1(k) + K2(k) 6 I1(s; t) +
1

k
: (3.23)

By passing to subsequences, we may assume that s1(k), t1(k), K1(k) and K2(k)
converge to numbers s1 2 [0; s], t1 2 [0; t], K1 and K2. Moreover, by rede­ ning
(’n; gn) and (hn; jn) as the diagonal subsequences

(’n; gn) = (’(n)
n ; g(n)

n ) and (hn; jn) = (h(n)
n ; j(n)

n );

we may assume that

k’nk2 ! s1;

khnk2 ! t1;

klnk2 ! s ¡ s1;

kjnk2 ! t ¡ t1

and

K(’n; gn) ! K1;

K(hn; jn) ! K2:

Now letting k ! 1 in (3.22) gives (3.15), and similarly (3.23) will imply (3.16),
provided we can show that

K1 > I1(s1; t1) (3.24)

and

K2 > I1(s ¡ s1; t ¡ t1): (3.25)

To prove (3.24), we consider three cases: (i) s1 > 0 and t1 > 0; (ii) s1 = 0; and
(iii) t1 = 0. In case (i), for n su¯ ciently large, we have k’nk > 0 and khnk > 0, so
we may de­ ne

­ n =

p
s1

k’nk and ³ n =

p
t1

khnk :

Then k­ n’nk2 = s1 and k³ nhnk2 = t1, so

K(­ n’n; ³ nhn) > I1(s1; t1):

But since ­ n and ³ n approach 1 as n ! 1, we have K(­ n’n; ³ nhn) ! K1, from
which (3.24) follows. In case s1 = 0, we have k’nk ! 0, so

¯̄
¯̄
Z 1

¡1
hnj’nj2 dx

¯̄
¯̄ 6 k’nk1k’nkkhnk ! 0; (3.26)

whence

K1 = lim
n ! 1

K(’n; hn) = lim
n ! 1

Z 1

¡1
(j’0

nj2 ¡ hnj’nj2) dx > 0: (3.27)
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Since I1(s1; t1) = I1(0; t1) = 0, this proves (3.24) in case (ii). Finally, if t1 = 0, then
khnk ! 0, so (3.26) and (3.27) again hold, which proves (3.24) in this case since
I1(s1; 0) = 0. Therefore, equation (3.24) has been proved in all cases. The proof
of (3.25) is similar, with s ¡ s1 and t ¡ t1 playing the roles of s1 and t1.

Lemma 3.11. Suppose s; t > 0, and let f(fn; gn)g be any minimizing sequence for
I1(s; t). If ¬ is as de¯ned in (3.14), then ¬ = s + t.

Proof. First we show that ¬ 6= 0. If ¬ = 0, then

sup
y 2 R

Z y + !

y¡!

jfnjq dx ! 0

for every ! > 0, so lemma 3.8 implies that fn ! 0 in L4. But then, since
¯̄
¯̄
Z 1

¡1
gnjfnj2 dx

¯̄
¯̄ 6 jfnj1=2

4 kgnk

and kgnk stays bounded, we have that

Z 1

¡1
gnjfnj2 dx ! 0 as n ! 1:

Therefore,

I1(s; t) = lim
n ! 1

K(fn; gn) = lim inf
n ! 1

Z 1

¡1
jf 0

nj2 dx = 0;

which contradicts lemma 3.3.
It remains then to show that ¬ cannot lie in (0; s + t). Suppose to the contrary

that 0 < ¬ < s + t. Let s1 and t1 be as de­ ned in lemma 3.10, and let s2 = s ¡ s1,
t2 = t ¡ t1. Then (3.15) implies both that s1+t1 = ¬ > 0 and s2+t2 = (s+t) ¡ ¬ > 0.
Since s1 + s2 = s > 0 and t1 + t2 = t > 0, we conclude from lemma 3.7 that (3.12)
holds. But this contradicts (3.16).

Theorem 3.12. Let s; t > 0, and let f(fn; gn)g be any minimizing sequence for
I1(s; t). Then there is a subsequence f(fnk ; gnk )g and a sequence of real numbers
fykg such that

(fnk
(¢ + yk); gnk

(¢ + yk))

converges strongly in X to some (f; g). The pair (f; g) is a minimizer for I1(s; t),
i.e. kfk2 = s, kgk2 = t and K(f; g) = sM(g) = I1(s; t).

Proof. The proof is a variation on that of the fundamental lemma I.1 (i) of [25].
For any minimizing sequence f(fn; gn)g of I1(s; t), de­ ne ¬ as in (3.14), and let
f(fn; gn)g continue to denote the subsequence associated with ¬ . From lemma 3.11,
we have that ¬ = s + t. Hence there exists !0 such that, for n su¯ ciently large,
Qn(!0) > 1

2(s + t). For such n, we choose yn such that

Z yn + !0

yn¡!0

(jfnj2 + g2
n) dx > 1

2
(s + t):
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Now let ¼ be an arbitrary number in the interval ( 1
2
(s + t); s + t). Then we can

­ nd !1 such that, for n su¯ ciently large, Qn(!1) > ¼ , and so we can choose ~yn

such that Z ~yn + !1

~yn¡!1

(jfnj2 + g2
n) dx > ¼ :

Since Z 1

¡1
(jfnj2 + g2

n) dx ! s + t as n ! 1;

it follows that, for large n, the intervals [~yn ¡ !1; ~yn +!1] and [yn ¡ !0; yn +!0] must
overlap. Therefore, de­ ning ! = 2!1 + !0, we have that, for n su¯ ciently large,

[~yn ¡ !1; ~yn + !1] » [yn ¡ !; yn + !]:

Hence Z yn + !

yn¡!

(jfnj2 + g2
n) dx > ¼ :

In particular, we may take ¼ = s + t ¡ 1=k, and thus we have shown that, for every
k 2 N, there exists !k 2 R such that, for all su¯ ciently large n,

Z yn + !k

yn¡!k

(jfnj2 + g2
n) dx > s + t ¡ 1

k
: (3.28)

Let us now de­ ne wn(x) = fn(x + yn) and zn(x) = gn(x + yn). Then, by (3.28),
for every k 2 N, we have

Z !k

¡!k

(jwnj2 + z2
n) dx > s + t ¡ 1

k
; (3.29)

provided n is su¯ ciently large. Now, by lemma 3.9, f(wn; zn)g is bounded in X, so
there exists a subsequence, denoted again by f(wn; zn)g, which converges weakly
in X to a limit (f; g) 2 X. By Fatou’s lemma, kfk2 5 s and kgk2 5 t. For each
k 2 N, the inclusion of H1( ¡ !k; !k) into L2( ¡ !k; !k) is compact, so, by passing to
a subsequence, we may assume that wn ! f strongly in L2( ¡ !k; !k). Furthermore,
by using a diagonalization argument, we may assume that a single subsequence of
fwng has been chosen which has this property for every k. Now

lim sup
n ! 1

Z !k

¡!k

z2
n dx 6 t;

so taking n ! 1 in (3.29) gives
Z 1

¡1
jf j2 dx >

Z !k

¡!k

jf j2 dx = lim
n! 1

Z !k

¡!k

jwnj2 dx > s ¡ 1

k
:

Since kfk2 6 s and k 2 N is arbitrary, this implies that kfk2 = s. Hence wn ! f
strongly in L2.

Next, observe that
Z 1

¡1
(znjwnj2 ¡ gjf j2) dx =

Z 1

¡1
zn(jwnj2 ¡ jf j2) dx +

Z 1

¡1
(zn ¡ g)jf j2 dx; (3.30)
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and consider separately the behaviour of the integrals on the right-hand side as
n ! 1. For the ­ rst integral, we have

¯̄
¯̄
Z 1

¡1
zn(jwnj2 ¡ jf j2) dx

¯̄
¯̄ 6 kznkkwn ¡ fk(kwnk1 + kfk1);

and the right-hand side goes to zero since f(wn; zn)g is bounded in X, f is in H1

and wn ! f in L2. The second integral on the right-hand side of (3.30) converges to
zero because f 2 2 L2 and zn converges to g weakly in L2. It follows then from (3.30)
that

lim
n! 1

Z 1

¡1
znjwnj2 dx =

Z 1

¡1
gjf j2 dx: (3.31)

Since, by Fatou’s lemma,
Z 1

¡1
jf 0j2 dx 6 lim inf

n! 1

Z 1

¡1
jw0

nj2 dx;

it follows that

I1(s; t) = lim
n! 1

K(wn; zn) >
Z 1

¡1
(jf 0j2 ¡ gjf j2) dx = K(f; g): (3.32)

We now claim that kgk2 = t. To see this, ­ rst observe that lemma 3.3 and (3.32)
imply that Z 1

¡1
gjf j2 dx > 0: (3.33)

In particular, equation (3.33) gives that kgk 6= 0. So 0 < kgk2 5 t, and we can
de­ ne ² > 1 by ² =

p
t=kgk. Then k ² gk2 = t, so, by (3.32),

I1(s; t) 5 K(f; ² g)

= K(f; g) + (1 ¡ ² )

Z 1

¡1
gjf j2 dx

5 I1(s; t) + (1 ¡ ² )

Z 1

¡1
gjf j2 dx:

But then (3.33) implies that (1 ¡ ² ) = 0, so ² = 1 and kgk2 = t, as was claimed.
It follows that fzng converges strongly to g, and that (f; g) is a minimizer for

I1(s; t). To complete the proof of the lemma, it remains only to observe that since
equality holds in (3.32), then

Z 1

¡1
jw0

nj2 dx !
Z 1

¡1
jf 0j2 dx as n ! 1;

and therefore wn converges to f strongly in H1.

The variational problem in (3.5) can also be solved by the method of concen-
tration compactness, and indeed this has already been done in several places in
the literature (see, for example, [1, theorem 2.9]). However, in the results above,
we have already done most of the work involved in the proof, so, for the reader’s
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convenience, we sketch here the remainder of the proof. Assuming t > 0, one lets
fgng be any minimizing sequence for I2(t), and de­ nes

~Qn(!) = sup
y 2 R

Z y + !

y¡!

g2
n(x) dx:

Again, we may assume that ~Qn converges pointwise to a non-decreasing function
~Q on [0; 1), and we de­ ne

~¬ = lim
! ! 1

~Q(!):

The same arguments as in the proofs of lemmas 3.9 and 3.10 show that kgnk1

remains bounded, and that

I2(~¬ ) + I2(t ¡ ~¬ ) 6 I2(t):

But it then follows from (3.13) that ~¬ =2 (0; t), and, as before, we see from lemma 3.8
that ~¬ 6= 0. Hence ~¬ = t, and, using the same argument as in the proof of theo-
rem 3.12, we deduce the following result.

Theorem 3.13. Let t > 0, and let fgng be any minimizing sequence for I2(t). Then
there is a subsequence fgnk

g and a sequence of real numbers fykg such that

gnk (¢ + yk)

converges strongly in H1 to some g 2 H1. The limit g is a minimizer for I2(t),
i.e. kgk2 = t and J(g) = I2(t).

As consequences of theorems 3.12 and 3.13, we obtain explicit values for the
constant I1(1; 1) and I2(1).

Corollary 3.14. For every s; t > 0,

I1(s; t) = A1st2=3;

where A1 = I1(1; 1) = ¡ ( 3
16 )2=3.

Proof. We may assume s; t > 0. Let (f; g) 2 X be a minimizer for I1(s; t), whose
existence is guaranteed by theorem 3.12. Then f and g satisfy the Lagrange multi-
plier equations (2.11), in which ¶ and · are the multipliers. Therefore, up to a phase
factor and a translation, f = f1 and g = g1, where f1 and g1 are given in (2.12).

To determine the values of ¶ and · , we substitute f1 and g1 into the constraint
equations kfk2 = s and kgk2 = t. Using the formula

Z 1

¡1
sech2n(x) dx =

¡ ( 1
2
) ¡ (n)

¡ ( 1
2
(2n + 1))

; (3.34)

one ­ nds that ¶ = ( 3
16 t)2=3, · = s(12t)¡1=3 and

K(f1; g1) = ¡ 4 ¶ 3=2 · = ¡ s( 3
16 t)2=3:

Since I1(s; t) = K(f1; g1), this completes the proof.
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Corollary 3.15. For every t > 0,

I2(t) = A2t5=3;

where A2 = I2(1) = ¡ 8
5 ( 3

8)5=3q4=3.

Proof. We may assume t > 0. Let g be a minimizer for I2(t), whose existence is guar-
anteed by theorem 3.13. Then g satis­ es the Lagrange multiplier equation (2.13),
in which µ is the multiplier. Therefore, up to translation, g = g2, where g2 is given
in (2.14). From kg2k2 = t and (3.34), we deduce that

µ = ( 3
8 q2t)2=3:

The statement of the corollary then follows from the substitution of the formulae
for g2(x) and µ into the expression

I2(t) = J(g2) =

Z 1

¡1
((g0

2)2 ¡ qg3
2) dx;

and using again (3.34).

Lemma 3.16. Suppose s; t > 0. Let (f1; g1) be a minimizer for I1(s; t) and let g2 be
a minimizer for I2(t). Then

M (g2) = A3t2=3;

where

A3 =
¡ 2 ¢ 32=3q1=3

q + 8 +
p

q2 + 16q
: (3.35)

Proof. The proof of (3.35) depends on being able to ­ nd explicitly the minimizing
function f for K(f; g2) on the constraint set fk fk = 1g. The Lagrange multiplier
equation for this variational problem is

¡ f 00 ¡ fg2 = ¶ f; (3.36)

so we see that the minimizer f is an eigenfunction for the Schr�odinger operator
L = ¡ d2=dx2 ¡ g2 with potential g2, and the Lagrange multiplier ¶ is the eigenvalue
corresponding to f . Further, multiplying (3.36) by f and integrating over R, we see
that the constant C being sought is actually the same as the least or ground-state
eigenvalue ¶ , so that f is a ground-state eigenfunction.

Now, g2(x) = a sech2(bx), where a and b are constants, and for such potentials,
with arbitrary positive values of a and b, the complete solution of the spectral
problem for L is well known (see, for example, [31, p. 768]). It turns out that the
ground-state eigenfunction is a constant multiple of sechp(bx), where

p =

sµ
a

b2

¶
+

1

4
¡ 1

2
; (3.37)

and the corresponding eigenvalue is

¶ = ¡ b2p2: (3.38)
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In the proof of corollary 3.15, we saw that the particular values of a and b corre-
sponding to our potential g2 are a = µ=q and b = 1

2

p
µ, where µ = ( 3

8
q2t)2=3. Using

these values to compute p and ¶ from (3.37) and (3.38), we obtain the asserted
value for A3 = ¶ =t2=3.

Corollary 3.17. For s; t > 0, we have

A1st2=3 + A2t5=3 6 I(s; t) (3.39)

and

I(s; t) 6 A3st2=3 + A2t5=3: (3.40)

Proof. From (3.3), we have

I1(s; t) + I2(t) 6 I(s; t);

which, in view of corollaries 3.14 and 3.15, yields (3.39). To prove (3.40), let g2 be
as in lemma 3.16. Then lemma 3.16 and (3.3) give

I(s; t) 6 sM (g2) + J(g2) 6 A3st2=3 + A2t5=3:

Remark 3.18. The case when q = 2 is special, because then the function g1 de­ ned
in corollary 3.14 coincides with the function g2 de­ ned in corollary 3.15. It follows
that, in this case, A1 = A3, and hence

I(s; t) = A1st2=3 + A2t5=3:

Moreover, the pair (f1; g1) de­ ned in corollary 3.14 is an explicit minimizer for
the problem (3.1). In fact, it follows from the uniqueness of the solutions of (3.4)
and (3.5) that (f1; g1) is the unique minimizer for (3.1) (up to a translation in x and
a multiplication of f1 by a constant of absolute value 1). This is the case analysed
by Chen in [14].

Our next goal is to investigate the subadditivity of I(s; t). The preceding corollary
and remark suggest the strategy of comparing I(s; t) with a function of the type
At5=3 + Bst2=3, which, as was seen in the proof of lemma 3.7, is subadditive when
A and B are negative constants. The next few lemmas are devoted to showing
that I(s; t) is close enough to a function of this type to inherit the property of
subadditivity.

Lemma 3.19. Suppose s; t > 0. Then we can ¯nd a sequence fgs;t
n g in H1 such that

limn! 1 M(gs;t
n ) = M0(s; t) and limn! 1 J(gs;t

n ) = J0(s; t) exist and satisfy

(i) sM0(s; t) + J0(s; t) = I(s; t);

(ii) A1st2=3 6 sM0(s; t) 6 A3st2=3; and

(iii) A2t5=3 6 J0(s; t) 6 A2t5=3 + (A3 ¡ A1)st2=3.
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Proof. Let fgs;t
n g be any minimizing sequence for I(s; t) in the strict sense, i.e. a

sequence in H1 such that kgs;t
n k2 = t and

lim
n! 1

(sM (gs;t
n ) + J(gs;t

n )) = I(s; t): (3.41)

Since fM (gs;t
n )g and fJ(gs;t

n )g are bounded sequences of real numbers, by passing to
a subsequence, we may assume that the limits M0(s; t) and J0(s; t) exist as de­ ned
above. Then (i) follows immediately from (3.41).

Next, observe that corollaries 3.14 and 3.15 imply that

A1st2=3 6 sM0(s; t) (3.42)

and

A2t5=3 6 J0(s; t): (3.43)

From (i), (3.40) and (3.42), we get

A1st2=3 + J0(s; t) 6 A3st2=3 + A2t5=3;

which implies the upper bound in (iii). From (i), (3.40) and (3.43), we get

sM0(s; t) + A2t5=3 6 A3st2=3 + A2t5=3;

which implies the upper bound in (ii).

Remark 3.20. As de­ ned above in lemma 3.19, the quantities M0(s; t) and J0(s; t)
could depend on the choice of the minimizing sequence fgs;t

n g, as well as on s and t.
This ambiguity of notation will not a¬ect the validity of the statements that follow.

Lemma 3.21. Suppose s1; s2; t1; t2 > 0 with s2t1 > s1t2. Then

t
5=3
2 J0(s1; t1) 6 t

5=3
1 J0(s2; t2) (3.44)

and

t
2=3
2 M0(s1; t1) > t

2=3
1 M0(s2; t2): (3.45)

Proof. The inequalities are obvious when t2 = 0, so we may assume that t2 > 0,
and hence also t1 > 0. Let ¼ = t1=t2, and for any g 2 H1 de­ ne g ¤ as in lemma 3.4.
Then, for all n 2 N, k(gs2 ;t2

n ) ¤ k2 = t1, so, by (3.3), lemma 3.4 and lemma 3.19(i),
we have

s1M0(s1; t1) + J0(s1; t1) = I(s1; t1)

= inffs1M (g) + J(g) : kgk2 = t1g
6 s1M ((gs2;t2

n ) ¤ ) + J((gs2;t2
n ) ¤ )

= s1 ¼ 2=3M (gs2;t2
n ) + ¼ 5=3J(gs2 ;t2

n ):

Taking n ! 1 then gives

s1M0(s1; t1) + J0(s1; t1) 6 s1 ¼ 2=3M0(s2; t2) + ¼ 5=3J0(s2; t2): (3.46)
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Similarly, we obtain

s2M0(s2; t2) + J0(s2; t2) 6 s2 ¼ ¡2=3M0(s1; t1) + ¼ ¡5=3J0(s1; t1): (3.47)

Multiplying (3.46) by s2 and (3.47) by s1 ¼ 2=3, and adding the results, we obtain

¼ ¡5=3J0(s1; t1)(s2 ¼ ¡ s1) 6 J0(s2; t2)(s2 ¼ ¡ s1):

Since s2 ¼ ¡ s1 > 0, this implies (3.44). Similarly, multiplying (3.47) by ¼ 5=3, adding
to (3.47) and rearranging, we obtain

¼ 2=3M0(s2; t2)(s2 ¼ ¡ s1) 6 M0(s1; t1)(s2 ¼ ¡ s1);

which implies (3.45).

Lemma 3.22. Suppose s1; s2; t1; t2 > 0. Let ² = t1=t2.

(i) If
² > jA1=A3j3=2 ¡ 1; (3.48)

then
(1 + 1=² )2=3M0(s1; t1) < M0(s2; t2): (3.49)

(ii) Let ¬ ( ² ) = ((1 + ² )2=3 ¡ 1)² ¡5=3. If

¬ ( ² ) > jA1=A3j ¡ 1; (3.50)

then

s2[(1+ ² )2=3 ¡ 1]M0(s2; t2) < J0(s1; t1)+J0(s2; t2) ¡ (1+ ² )5=3J0(s2; t2): (3.51)

Proof. Since s1 > 0, we can use lemma 3.19 (ii) to write

(1 + 1=² )2=3M0(s1; t1) 6 (1 + 1=² )2=3A3t
2=3
1 = (t1 + t2)2=3A3

and

A1t
2=3
2 6 M(s2; t2):

Combining these inequalities with (3.48), we obtain (3.49). This proves (i).
To prove (ii), use lemma 3.19 (ii) to write

s2[(1 + ² )2=3 ¡ 1]M0(s2; t2) 6 s2[(1 + ² )2=3 ¡ 1]A3t
2=3
2 ;

and use lemma 3.19(iii) to write

J0(s1; t1) + J0(s2; t2) ¡ (1 + ² )5=3J0(s2; t2)

> J0(s1; t1) ¡ ² 5=3J0(s2; t2)

> A2t
5=3
1 ¡ ² 5=3(A2t

5=3
2 + s2(A3 ¡ A1)t

2=3
2 )

= ¡ s2 ² 5=3jA3 ¡ A1jt2=3
2 :

Also, equation (3.50) implies that

A3((1 ¡ ² )2=3 ¡ 1) < jA3 ¡ A1j ² 5=3:

Combining these inequalities gives (3.51).
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Now de­ ne ² 1(q) = (jA1=A3j3=2 ¡ 1), and de­ ne ² 2(q) to be the value of ² for
which the right- and left-hand sides of (3.50) are equal. (When the right-hand side
is zero, we can take ² 2(q) = 1.) If ² 2(q) > ² 1(q), then any positive real number ²
satis­ es at least one of the inequalities (3.48) or (3.50). Analysis of the functions ² 1

and ² 2 shows that there does exist a non-empty interval (q1; q2) of values of q for
which the inequality ² 2(q) > ² 1(q) is valid. In fact, when q = 2, one has A1 = A3

(see remark 3.18), so ² 1(2) = 0, while ² 2(2) = 1. Therefore, the interval (q1; q2)
contains at least a neighbourhood of q = 2. On the other hand, as q ! 0 or q ! 1,
one has ² 1(q) ! 1 and ² 2(q) ! 0, so the interval (q1; q2) is bounded above and
bounded away from zero.

We can now prove that I(s; t) is subadditive, at least when q 2 (q1; q2).

Theorem 3.23. Suppose that q 2 (q1; q2). Let s1; s2; t1; t2 > 0, and suppose that
s1 + s2 > 0, t1 + t2 > 0, s1 + t1 > 0 and s2 + t2 > 0. Then

I(s1 + s2; t1 + t2) < I(s1; t1) + I(s2; t2): (3.52)

Proof. We may assume, without loss of generality, that s2t1 > s1t2. If s2t1 = s1t2,
then our assumptions imply that s1, s2, t1 and t2 must all be positive, and since
(t1 + t2)=t2 = (s1 + s2)=s2, we can write

I(s1 + s2; t1 + t2) =

µ
t1 + t2

t2

¶5=3

I(s2; t2) =

µ
1 +

t1

t2

¶5=3

I(s2; t2)

<

·
1 +

µ
t1

t2

¶5=3¸
I(s2; t2) = I(s2; t2) + I(s1; t1):

Here we have twice used lemma 3.6, and have also used the fact that I(s2; t2) < 0,
which is a consequence of lemma 3.17.

We may therefore assume that s2t1 > s1t2, and, in particular, that s2 > 0 and
t1 > 0. For now, we assume also that t2 > 0, and we de­ ne ² = t1=t2. From our
hypothesis on q, we know that ² satis­ es either (3.48) or (3.50); we consider the
two cases separately.

In the case when (3.48) holds, de­ ne ¼ = 1 + 1=² and hn(x) = ¼ 2=3gs1;t1
n ( ¼ 1=3x).

By passing to a subsequence if necessary, we may assume that J(hn) and M (hn)
converge as n ! 1. Then, using lemma 3.4 and (3.44), we get

lim
n ! 1

J(hn) = ¼ 5=3J0(s1; t1)

6 J0(s1; t1) +

µ
t2

t1

¶5=3

J0(s1; t1)

6 J0(s1; t1) + J0(s2; t2): (3.53)

Next, suppose that s1 > 0. Then, from lemma 3.4 and (3.49), we have

(s1 + s2) lim
n! 1

M (hn) = (s1 + s2) ¼ 2=3M0(s1; t1)

6 s1M0(s1; t1) + s2 ¼ 2=3M0(s1; t1)

< s1M0(s1; t1) + s2M0(s2; t2): (3.54)
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Now, since khnk2 = t1 + t2, we get from (3.53) and (3.54) that

I(s1 + s2; t1 + t2) 5 (s1 + s2) lim
n ! 1

M (hn) + lim
n ! 1

J(hn)

< s1M0(s1; t1) + s2M0(s2; t2) + J0(s1; t1) + J0(s2; t2)

= I(s1; t1) + I(s2; t2);

as desired.
If, on the other hand, s1 = 0, then we cannot use the above argument, since (3.54)

does not hold. Instead, we use corollary 3.17 and (3.48) to write

I(0 + s2; t1 + t2) 6 A3s2(t1 + t2)2=3 + A2(t1 + t2)5=3

6 A3s2(1 + 1=² )2=3t
2=3
2 + A2t

5=3
1 + A2t

5=3
2

< A1s2t
2=3
2 + A2t

5=3
2 + A2t

5=3
1

6 I(s2; t2) + I2(t1)

= I(s2; t2) + I(0; t1);

which again gives (3.52).
In the case when (3.50) holds, we de­ ne

jn(x) = ¼ 2=3gs2;t2
n ( ¼ 1=3x); where ¼ = 1 + ² :

Again, we may assume that M (jn) and J(jn) converge, and since kjnk2 = t1 + t2,
we have

I(s1 + s2; t1 + t2) 6 (s1 + s2) lim
n ! 1

M (jn) + lim
n ! 1

J(jn):

It follows from lemma 3.4 that

I(s1 + s2; t1 + t2) 6 (s1 + s2) ¼ 2=3M0(s2; t2) + ¼ 5=3J0(s2; t2):

Now, from (3.45), we have

¼ 2=3M0(s2; t2) < ² 2=3M0(s2; t2) 6 M0(s1; t1);

so
I(s1 + s2; t1 + t2) < s1M0(s1; t1) + s2 ¼ 2=3M0(s2; t2) + ¼ 5=3J0(s2; t2):

Also, from (3.51), we have

s2 ¼ 2=3M0(s2; t2) + ¼ 5=3J0(s2; t2) < s2M0(s2; t2) + J0(s1; t1) + J0(s2; t2):

Combining the last two inequalities, we get (3.52).
Finally, it remains to consider the case when t2 = 0, which implies I(s2; t2) = 0

by corollary 3.17. If s1 > 0, then M0(s1; t1) < 0 by lemma 3.19 (ii), so, letting
hn = gs1;t1

n , we have

I(s1 + s2; t1) 6 (s1 + s2) lim
n! 1

M(hn) + lim
n! 1

J (hn)

= (s1 + s2)M0(s1; t1) + J0(s1; t1)

< s1M0(s1; t1) + J0(s1; t1)

= I(s1; t1)

= I(s1; t1) + I(s2; t2):
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If, on the other hand, s1 = 0, then we use corollary 3.17 to write

I(s2; t1) 6 A3s2t
2=3
1 + A2t

5=3
1 < A2t

5=3
1 = I2(t1) = I(0; t1) = I(0; t1) + I(s2; 0);

and we are done.

Lemma 3.24. Suppose s; t > 0. If f(fn; gn)g is a minimizing sequence for I(s; t),
then f(fn; gn)g is bounded in Y .

Proof. For a minimizing sequence, kfnk and kgnk stay bounded, so that, as in the
proof of lemma 3.9, we have that

¯̄
¯̄
Z 1

¡1
gnjfnj2 dx

¯̄
¯̄ 6 Ckfnk1=2

1 ;

where C is independent of n. Also, Sobolev embedding and interpolation theorems
give ¯̄

¯̄
Z 1

¡1
g3

n dx

¯̄
¯̄ 6 jgnj33 6 Ckgnk3

1=6 6 Ckgnk1=2
1 kgnk5=2 6 Ckgnk1=2

1 :

Hence

k(fn; gn)k2
Y = kfnk2

1 + kgnk2
1

= E(fn; gn) +

Z 1

¡1
gnjfnj2 dx +

Z 1

¡1
g3

n dx + kfnk2 + kgnk2

6 C(1 + kfnk1=2
1 + kgnk1=2

1 )

6 C(1 + k(fn; gn)k1=2
Y );

from which the desired conclusion follows.

Now we establish the relative compactness, up to translations, of minimizing
sequences for I(s; t). The idea again is to use the method of concentration com-
pactness. Let f(fn; gn)g be a minimizing sequence for I(s; t), and let Pn(!) be the
sequence of non-decreasing functions de­ ned for ! > 0 by

Pn(!) = sup
y 2 R

Z y + !

y¡!

(jfnj2(x) + g2
n(x)) dx:

Then fPng has a pointwise convergent subsequence on [0; 1), which we denote
again by fPng. Let P be the non-decreasing function to which Pn converges, and
de­ ne

¬ 0 = lim
! ! 1

P (!): (3.55)

Then, as was true for ¬ in (3.14), we have 0 5 ¬ 0 5 s + t.

Lemma 3.25. Suppose s; t > 0, and let f(fn; gn)g be any minimizing sequence for
I(s; t). Let ¬ 0 be as de¯ned in (3.55). Then there exist numbers s1 2 [0; s] and
t1 2 [0; t] such that

s1 + t1 = ¬ 0 (3.56)
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and

I(s1; t1) + I(s ¡ s1; t ¡ t1) 6 I(s; t): (3.57)

Proof. As in the proof of lemma 3.10, we can de­ ne sequences f(’n; hn)g and
f(ln; jn)g in Y such that k’nk2 ! s1, khnk2 ! t1, klnk2 ! s ¡ s1, kjnk2 ! t ¡ t1,
E(’n; hn) ! E1 and E(ln; jn) ! E2, where s1 2 [0; s] and t1 2 [0; t] satisfy (3.56)
and

E1 + E2 6 I(s; t):

The only change that has to be made is that in place of the estimates (3.19), (3.20)
and (3.21) for the functional K, we must put similarly obtained estimates for the
functional E.

To complete the proof of the lemma, it only remains to show that E1 > I(s1; t1)
and E2 > I(s ¡ s1; t ¡ t1). We need only prove the ­ rst of these inequalities, since
the proof of the second is similar. As in the proof of (3.24), we consider separately
the three cases when s1 > 0 and t1 > 0, when s1 = 0 and t1 > 0 and when t1 = 0.
When s1 > 0 and t1 > 0, we use the same argument as was used in this case
for (3.24). When s1 = 0, then k’nk ! 0, so (3.26) is established by the same proof
as before. Then we have, as in (3.27),

E1 = lim
n! 1

E(’n; hn) = lim
n! 1

(K(’n; hn) + J(hn)) > lim inf
n! 1

J(hn):

Also, since khnk > 0 for n large, we can put ³ n =
p

t1=khnk, and we have

I(0; t1) = J(t1) 6 J( ³ nhn) 6 lim inf
n! 1

J(hn);

since ³ n ! 1. Therefore, E1 > I(0; t1). Finally, if t1 = 0, then khnk ! 0, so (3.26)
still holds, and, moreover,

¯̄
¯̄
Z 1

¡1
h3

n dx

¯̄
¯̄ 6 khnk1khnk2 ! 0:

Therefore,

E1 = lim
n ! 1

Z 1

¡1
(j’0

nj2 ¡ hnj’nj2 + (h0
n)2 ¡ h3

n) dx > 0 = I(s1; 0):

Theorem 3.26. Suppose q 2 (q1; q2), and let s; t > 0. Then every minimizing
sequence f(fn; gn)g for I(s; t) is relatively compact in Y up to translations, i.e. there
is a subsequence f(fnk ; gnk )g and a sequence of real numbers fykg such that

(fnk (¢ + yk); gnk (¢ + yk))

converges strongly in Y to some (f; g), which is a minimizer for I(s; t).

Proof. If ¬ 0 = 0, then, as in the proof of lemma 3.11, we get jfnj4 ! 0 and jgnj3 ! 0
as n ! 1, whence

I(s; t) = lim
n! 1

E(fn; gn) > lim inf
n! 1

Z
(jf 0

nj2 + (g0
n)2) dx > 0;
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contradicting corollary 3.17. Hence ¬ 0 > 0. On the other hand, if ¬ 0 2 (0; s + t),
then it follows from theorem 3.23 that

I(s; t) < I(s1; t1) + I(s ¡ s1; t ¡ t1);

which contradicts (3.57). Therefore, we must have ¬ 0 = s + t.
It now follows, as in the proof of theorem 3.12, that we can ­ nd real numbers

fyng such that, if wn(x) = fn(x + yn) and zn(x) = gn(x + yn), then, for every
k 2 N, there exists !k 2 R such that

Z !k

¡!k

(jwnj2 + z2
n) dx > s + t ¡ 1

k
; (3.58)

provided n is su¯ ciently large (cf. (3.29)). Since the sequence f(wn; zn)g is bounded
in Y , there exists a subsequence, denoted again by f(wn; zn)g, which converges
weakly in Y to a limit (f; g). Then Fatou’s lemma implies that

kfk2 + kgk2 6 lim inf
n ! 1

Z 1

¡1
(jwnj2 + z2

n) dx = s + t:

Moreover, for ­ xed k, (wn; zn) converges weakly in H1( ¡ !k; !k) £ H1( ¡ !k; !k)
to (f; g), and therefore has a subsequence, denoted again by f(wn; zn)g, which
converges strongly to (f; g) in L2( ¡ !k; !k) £ L2( ¡ !k; !k). By a diagonalization
argument, we may assume that the subsequence has this property for every k simul-
taneously. It then follows from (3.58) that

Z 1

¡1
(jf j2 + g2) dx =

Z !k

¡!k

(jf j2 + g2) dx = s + t ¡ 1

k
:

Since k was arbitrary, we get
Z 1

¡1
(jf j2 + g2) dx = s + t;

which implies that (wn; zn) converges strongly to (f; g) in L2 £ L2.
Now we have that

Z 1

¡1
znjwnj2 dx !

Z 1

¡1
gjf j2 dx as n ! 1;

by the same argument used to establish (3.31), or by an even simpler argument
that uses the strong convergence of zn to g in L2. Moreover,

jzn ¡ gj3 6 Ckzn ¡ gk1=6
1 kzn ¡ gk5=6 6 Ckzn ¡ gk5=6;

so Z 1

¡1
z3

n dx !
Z 1

¡1
g3 dx:

Therefore, by another application of Fatou’s lemma, we get

I(s; t) = lim
n! 1

E(wn; zn) = E(f; g); (3.59)
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whence E(f; g) = I(s; t). Thus (f; g) is a minimizer for the variational problem (3.1).
Finally, since equality holds in (3.59), then

lim
n ! 1

Z 1

¡1
(jw0

nj2 + (z0
n)) dx =

Z 1

¡1
(jf 0j2 + (g0)2) dx;

so (wn; zn) converges strongly to (f; g) in Y .

For each s > 0 and t > 0, de­ ne Gs;t to be the set of solutions to the variational
problem (3.1), that is,

Gs;t = f(f; g) 2 Y : E(f; g) = I(s; t); kfk2 = s and kgk2 = tg:

As a consequence of theorem 3.26, we have that Gs;t is non-empty for all s; t > 0,
provided q 2 (q1; q2). As will be seen below in x 5, this translates into an existence
result for ground-state solutions of (1.2).

We next present a somewhat weaker version of theorem 3.26 that is valid for all
q > 0. For ® > 0, de­ ne Q ® : Y ! R by

Q ® (f; g) =

Z 1

¡1
(jf j2 + ® g2) dx;

and for each ­ > 0, de­ ne

R(­ ; ® ) = inffE(f; g) : (f; g) 2 Y and Q ® (f; g) = ­ g: (3.60)

Theorem 3.27. Suppose q > 0 and let ­ ; ® > 0. Then every minimizing sequence
f(fn; gn)g for R(­ ; ® ) is relatively compact in Y up to translations, i.e. there is a
subsequence f(fnk

; gnk
)g and a sequence of real numbers fykg such that

(fnk (¢ + yk); gnk (¢ + yk))

converges strongly in Y to some (f; g), which is a minimizer for R(­ ; ® ).

Proof. This theorem follows from the proof of theorem 2.1 in [2]. First note that,
if we decompose f into its real and imaginary parts as f = ² + i³ , and de­ ne
z : R ! R3 by z = ( ² ; ³ ; g), then, in the notation of [2], we have

E(f; g) =

Z 1

¡1
( 1

2
hz; Lzi ¡ N (z)) dx

and

Q® (f; g) =

Z 1

¡1

1
2
hz; Dzi dx;

where Lz = ¡ 2zxx, N (z) = g( ² 2 + ³ 2 + qg2) and Dz = 2( ² ; ³ ; ® g). Also, in the
notation of [2], we have ¼ 0 = 0. Therefore, the variational problem (3.60) is the
same as the problem that de­ nes I­ in [2], and R(­ ; ® ) = I­ . It is easily veri­ ed
that L, N and D satisfy the conditions in [2, x 2]. To check that I­ < 0 for all
­ > 0, we can either use the identity

R(­ ; ® ) = inffI(s; t) : s > 0; t > 0 and s + ® t = ­ g (3.61)

https://doi.org/10.1017/S030821050000278X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050000278X


Ground-state solutions of a Schr�odinger{KdV system 1019

in conjunction with (3.17), or use [2, theorem 2.2]. Therefore, all the hypotheses
of [2, theorem 2.1] are veri­ ed, and we conclude from the proof of that Theorem that
every minimizing sequence for R(­ ; ® ) is relatively compact in Y up to translations.

To compare the results in theorems 3.26 and 3.27, let us consider the sets

Q­ ;® =

½
(f; g) 2 Y : E(f; g) = R(­ ; ® ) and

Z 1

¡1
(jf j2 + ® g2) dx = ­

¾

of solutions to problem (3.60). A consequence of theorem 3.27 is that Q­ ;® is non-
empty for all ­ ; ® > 0, regardless of the value of q > 0. In particular, from (3.61), it
follows that if Q­ ;® is non-empty, then so is Gs;t, for some values of s and t satisfying
s + ® t = ­ . One drawback, however, is that we do not know whether the sets Q­ ;®

constitute a true two-parameter family of disjoint sets. In particular, it is not clear
whether every pair s; t > 0 corresponds to a pair ­ , ® such that Q­ ;® ³ Gs;t. A
related drawback to theorem 3.27 is that it does not lend itself as easily as does
theorem 3.26 to a result on ground-state solutions of (1.2) (see remark 4.6 below).

4. The full variational problem

We consider the problem of ­ nding, for any s > 0 and t 2 R,

W (s; t) = inffE(h; g) : (h; g) 2 Y; H(h) = s and G(h; g) = tg: (4.1)

Following our usual convention, we de­ ne a minimizing sequence for W (s; t) to be
a sequence (hn; gn) in Y such that H(hn) ! s, G(hn; gn) ! t and E(hn; gn) !
W (s; t) as n ! 1.

Lemma 4.1. Suppose s > 0 and t 2 R. If f(hn; gn)g is a minimizing sequence for
W (s; t), then f(hn; gn)g is bounded in Y .

Proof. For a minimizing sequence, khnk =
p

H(hn) stays bounded, and since

kgnk2 = G(hn; gn) + 2 Im

Z 1

¡1
hn(·hn)x dx;

it follows that kgnk2 6 C(1 + khnk1), where C is independent of n. Arguing as in
the proofs of lemmas 3.9 and 3.24, we deduce that

¯̄
¯̄
Z 1

¡1
gnjhnj2 dx

¯̄
¯̄ 6 Ckhnk1=2

1 kgnk 6 C(1 + khnk1)

and
¯̄
¯̄
Z 1

¡1
g3

n dx

¯̄
¯̄ 6 Ckgnk1=2

1 kgnk5=2 6 Ckgnk1=2
1 (1 + khnk5=4

1 ):

Hence, as in the proof of lemma 3.24, we get

k(hn; gn)k2
Y 6 C(1 + khnk1 + kgnk1=2

1 (1 + khnk5=4
1 )) 6 C(1 + k(hn; gn)k7=4

Y );

which is su¯ cient to bound k(hn; gn)kY .
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Lemma 4.2. Suppose k; ³ 2 R and h 2 H1
C. If f (x) = ei(kx + ³ )h(x), then

E(f; g) = E(h; g) + k2H(h) ¡ 2k Im

Z 1

¡1
h·hx dx

and

G(f; g) = G(h; g) + 2kH(h):

We omit the proof, which is elementary.
Now we can establish a relation between problems (4.1) and (3.1).

Lemma 4.3. Suppose s > 0 and t 2 R, and de¯ne b = b(a) = (a ¡ t)=(2s) for a > 0.
Then

W (s; t) = inf
a>0

fI(s; a) + b(a)2sg (4.2)

and

W (s; t) < I(s; 0) + b(0)2s: (4.3)

Proof. First, suppose a > 0, and let (h; g) 2 Y be given such that khk2 = s and
kgk2 = a. Let

b = b(a) and c = Im

Z 1

¡1
h·hx dx;

and put f (x) = eikxh(x) with k = (c=s) ¡ b. Then, from lemma 4.2, we deduce that

E(f; g) = E(h; g) ¡ c2

s
+ b2s 6 E(h; g) + b2s

and

G(f; g) = kgk2 ¡ 2bs = t:

Since H(f ) = s, we conclude that

W (s; t) 6 E(f; g) 6 E(h; g) + b2s:

Taking the in­ mum over h and g gives

W (s; t) 6 I(s; a) + b2s;

and now taking the in­ mum over a gives

W (s; t) 6 inf
a>0

fI(s; a) + b(a)2sg: (4.4)

Next, suppose (h; g) 2 Y is given such that H(h) = s and G(h; g) = t. De­ ne

a = t + 2 Im

Z 1

¡1
h·hx dx and f (x) = eibxh(x);
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where b = b(a). Then, by lemma 4.2,

E(f; g) = E(h; g) + b2s ¡ b(a ¡ t) = E(h; g) ¡ b2s;

and since kfk2 = s and kgk2 = a, we have a > 0 and I(s; a) 6 E(f; g). Hence

E(h; g) > I(s; a) + b2s > inf
a>0

fI(s; a) + b(a)2sg;

and taking the in­ mum over h and g gives

W (s; t) > inf
a>0

fI(s; a) + b(a)2sg: (4.5)

Combining (4.4) and (4.5) gives (4.2).
To prove (4.3), we see from (4.4) that it su¯ ces to show there exists a > 0 for

which I(s; a) + b(a)2s < I(s; 0) + b(0)2s, or

I(s; a) <
a(2t ¡ a)

4s
:

For a > 0 su¯ ciently small, we have a(2t ¡ a)=(4s) > ¡ Ca, where we can take

C =

8
><

>:

jtj=s if t < 0;

1 if t = 0;

0 if t > 0:

On the other hand, from (3.40), we have

I(s; a) 6 A3sa2=3 + A2a5=3 6 A3sa2=3:

Choosing a > 0 so small that jA3jsa2=3 > Ca, we obtain the desired result.

Lemma 4.4. Suppose s > 0 and t 2 R, and de¯ne b(a) = (a ¡ t)=(2s) for a > 0.
If f(hn; gn)g is a minimizing sequence for W (s; t), then there exist a positive num-
ber a and a subsequence f(hnk

; gnk
)g such that f(eib(a)xhnk

; gnk
)g is a minimizing

sequence for I(s; a), and

W (s; t) = I(s; a) + b(a)2s: (4.6)

Proof. For each n 2 N, de­ ne an > 0 by

an =

Z 1

¡1
g2

n dx = G(hn; gn) + 2 Im

Z 1

¡1
hn(·hn)x dx:

Then an remains bounded by lemma 4.1, so, by passing to a subsequence, we may
assume that an converges to a limit a > 0. Let b = b(a), and de­ ne fn(x) =
eibxhn(x). Then

lim
n! 1

E(fn; gn) = lim
n! 1

(E(hn; gn) + b2H(hn) ¡ b(an ¡ G(hn; gn)))

= W (s; t) + b2s ¡ b(a ¡ t)

= W (s; t) ¡ b2s 6 I(s; a); (4.7)

where we have used lemmas 4.2 and 4.3.
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Next we claim that
lim

n! 1
E(fn; gn) > I(s; a): (4.8)

For a > 0, we prove (4.8) by de­ ning

­ n =

p
s

kfnk and ³ n =

p
a

kgnk ;

so that ­ n ! 1 and ³ n ! 1 as n ! 1, and observing that

lim
n ! 1

E(fn; gn) = lim
n ! 1

E(­ nfn; ³ ngn);

while E(­ nfn; ³ ngn) > I(s; a) for all n. For a = 0, we have kgnk ! 0, and since
kgnk1 and kfnk1 remain bounded by lemma 4.1, it follows as in the proofs of
lemmas 3.10 and 3.25 that

Z 1

¡1
g3

n dx ! 0 and

Z 1

¡1
gnjfnj2 dx ! 0:

Therefore,
lim

n ! 1
E(fn; gn) > 0 = I(s; 0);

as desired.
It now follows from (4.7) and (4.8) that (4.6) holds, and that E(fn; gn) ! I(s; a),

which shows that f(fn; gn)g is a minimizing sequence for I(s; a). Finally, equa-
tions (4.6) and (4.3) imply that a > 0.

Theorem 4.5. Suppose q 2 (q1; q2), and let s > 0 and t 2 R be given. Then
every minimizing sequence f(hn; gn)g for W (s; t) is relatively compact in Y up to
translations, i.e. there is a subsequence f(hnk ; gnk )g and a sequence of real numbers
fykg such that

(hnk (¢ + yk); gnk (¢ + yk))

converges strongly in Y to some (h; g), which is a minimizer for W (s; t).

Proof. By lemma 4.4, given a minimizing sequence f(hn; gn)g for W (s; t), we may
assume, on passing to a subsequence, that feibxhn(x); gn(x)g is a minimizing se-
quence for I(s; a), where a > 0, b = b(a) and (4.6) holds. Then theorem 3.26 allows
us to conclude, again after passing to a subsequence, that there exist numbers yn

such that
(eib(x+ yn)hn(x + yn); gn(x + yn))

converges in Y to some (f; g) that minimizes I(s; a). By passing to a subsequence
yet again, we may assume that eibyn ! ei ³ for some ³ 2 [0; 2 º ). We then have that

(hn(¢ + yn); gn(¢ + yn)) ! (h; g) in Y;

where h(x) = e¡i(bx + ³ )f (x). Now lemma 4.2 gives

I(s; a) = E(f; g) = E(h; g) + b2H(h) ¡ 2b Im

Z 1

¡1
h·hx dx

= E(h; g) + b2s + b(G(h; g) ¡ kgk2)

= E(h; g) ¡ b2s: (4.9)
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From (4.6) and (4.9), we get E(h; g) = W (s; t), so (h; g) is a minimizer for W (s; t).

As a consequence of theorem 4.5, we can now assert the existence of a two-
parameter family of ground-state solutions of (1.2), when q 2 (q1; q2). For s > 0
and t 2 R, de­ ne

Fs;t = f(h; g) 2 Y : E(h; g) = W (s; t); H(h) = s and G(h; g) = tg:

From theorem 4.5, we see, in particular, that Fs;t is non-empty. In the next section
we will see that Fs;t is also stable.

Remark 4.6. It is natural to ask whether theorem 3.27, which is valid for all q > 0,
can be used to establish a result on ground-state solutions similar to theorem 4.5.
In fact, although lemma 4.4 is valid for all q > 0, it turns out that one can not
obtain a compactness result for minimizing sequences of W (s; t) from theorem 3.27
without a ­ ner knowledge of the function I(s; a). We do not pursue this topic here,
and limit ourselves to stating an extra assumption that would lead to such a result.
Suppose it could be shown that (4.6) uniquely de­ nes a as a function of s and t.
Then the above arguments allow us to deduce the following from theorem 3.27: if
(s0; t0) is such that, for some ­ ; ® > 0,

I(s0; a(s0; t0)) = inffI(s; a) : s > 0; a > 0 and s + ® a = ­ g;

then every minimizing sequence for W (s0; t0) is relatively compact in Y up to
translations. Moreover, the set of minimizers for W (s0; t0) is stable, in the sense of
theorem 5.4 below.

5. Ground-state solutions

We begin this section with a couple of results showing that the qualitative descrip-
tion of bound states in theorem 2.1 can be improved when the solutions in question
are ground states.

Theorem 5.1. Suppose s; t > 0. If (f; g) 2 Gs;t, then there exist ¼ > 0 and c > 0
such that (2.2) holds. Moreover, g(x) > 0 for all x 2 R, and there exist ³ 2 R and
’ : R ! R such that f (x) = ’(x)ei ³ and ’(x) > 0 for all x 2 R.

Proof. If (f; g) 2 Gs;t, then, by the Lagrange-multiplier principle (cf. [27, theo-
rem 7.7.2]), (f; g) is a solution of the Euler{Lagrange equation

¯ E(f; g) = ¶ ¯ H(f; g) + · ¯ H1(f; g); (5.1)

where H , H1 are de­ ned as operators on Y by H(f; g) = kfk2 and H1(f; g) = kgk2,
¯ denotes the Fŕechet derivative and ¶ ; · 2 R are the Lagrange multipliers. Com-
puting the Fŕechet derivatives involved, we see that (5.1) becomes

¡ f 00 ¡ gf = ¶ f;

¡ 2g00 ¡ 3qg2 ¡ jf j2 = 2 · g;

)

(5.2)

which is (2.2) with ¼ = ¡ ¶ and c = ¡ 2 · .
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We claim that ¶ < 0 and · < 0. To see this, multiply the ­ rst equation in (5.2)
by ·f and integrate over R to obtain that

¶ s = K(f; g); (5.3)

and multiply the second equation in (5.2) by g and integrate over R to obtain that

· t =

Z 1

¡1
((g0)2 ¡ 1

2 gjf j2 ¡ 3
2 qg3) dx 6 1

2K(f; g) + 3
2J(g): (5.4)

Now, from I(s; t) = E(f; g), it follows that K(f; g) = sM (g), and from the proof of
parts (ii) and (iv) of lemma 3.19, we see that M (g) < 0 and J(g) < 0. Therefore,
equations (5.3) and (5.4) imply that ¶ < 0 and · < 0.

We have now proved that (f; g) satis­ es (2.2) with ¼ > 0 and c > 0. The remain-
ing assertions of the theorem then follow from theorem 2.1, except for the positivity
of ’. To prove this, let w = j’j and observe that since K(’; g) = K(w; g) = sM (g)
by lemma 3.1, then (’; g) and (w; g) are both in Gs;t. Hence, as shown above, we
have

¡ ’00 ¡ g’ = ¶ ’;

¡ w00 ¡ gw = ¶ w;

)

(5.5)

where ¶ = M (g). Multiplying the ­ rst equation in (5.5) by w and the second by
’ and adding, we see that the Wronskian W = ’w0 ¡ ’0w is constant. But since
W ! 0 as x ! 1 by theorem 2.1, we must have W (x) = 0 for all x 2 R. Hence
’ and w are linearly dependent, so ’ must be of one sign on R and, by changing
the value of ³ if necessary, we may assume that ’(x) > 0 on R. Finally, since
¼ = ¡ ¶ > 0, system (5.5) implies that K ¼ ¤ (g’) = ’, where K ¼ is as de­ ned in
the proof of theorem 2.1. It follows that ’ > 0 on R.

Corollary 5.2. Suppose s > 0 and t 2 R. If (h; g) 2 Fs;t, then there exist c > 0
and ! > 1

4c2 such that (2.1) holds. Moreover, g(x) > 0 for all x 2 R, and there
exist ³ ; b 2 R and ’ : R ! R such that h(x) = ei ³ e¡ibx’(x) and ’(x) > 0 for all
x 2 R.

Proof. If (h; g) 2 Fs;t, then, as in the proof of theorem 5.1, we have the Lagrange
multiplier equation

¯ E(h; g) = ¶ ¯ H(h; g) + · ¯ G(h; g): (5.6)

Computation of the Fŕechet derivatives shows that (5.6) is equivalent to (2.1), with
! = ¡ ¶ and c = ¡ 2· .

On the other hand, the sequence f(hn; gn)g de­ ned by (hn; gn) = (h; g) for all
n 2 N is a minimizing sequence for W (s; t), so, from lemma 4.4, it follows that
(eibxh(x); g(x)) 2 Gs;a, where a > 0 and b 2 R. Letting f (x) = eibxh(x), we then
have, from theorem 5.1, that (f; g) satis­ es (2.2) for some ¼ > 0 and some c > 0.
Substituting f(x) = eibxh(x) into (2.2) and comparing with (2.1), we see that
b = ¡ 1

2c and ! = ¼ + b2 = ¼ + 1
4c2. Therefore, ! > 1

4 c2. The remaining assertions
of the corollary follow immediately from theorem 5.1.

Next we show that the set Fs;t is stable with regard to the ®ow generated by sys-
tem (1.2). Concerning the well posedness of (1.2), a variety of results have appeared,
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showing that (1.2) can be posed, at least locally in time, in Sobolev spaces of low
order [7, 34]. For our purposes, the following result, due to Guo and Miao [21], is
most convenient because it is set in the energy space Y .

Theorem 5.3. Assume q 6= 0 in (1.2). Suppose (’; Á) 2 Y . Then, for every T > 0,
system (1.2) has a unique solution (u; v) 2 C ([0; T ]; Y ) satisfying

(u(x; 0); v(x; 0)) = (’(x); Á(x)):

The map (’; Á) 7! (u; v) is a locally Lipschitz map from Y to C ([0; T ]; Y ). Moreover,
E(u(¢; t); v(¢; t)), G(u(¢; t); v(¢; t)) and H(u(¢; t)) are independent of t 2 [0; T ].

In particular, we note that the regularity result in theorem 5.3 is enough to allow
one to prove the invariance of the functionals E, G and H along the solutions being
considered. This may be done in the usual way, by ­ rst establishing the invariance
of the functionals for smooth solutions, and then using the continuity of solutions
with respect to their initial data to extend the result to solutions in C ([0; T ]; Y ).
We omit the details of this argument.

Theorem 5.4. Suppose s > 0 and t 2 R. For every ° > 0, there exists ¯ > 0 with
the following property. Suppose (’; Á) 2 Y and

inf
(h;g) 2 Fs;t

k(’; Á) ¡ (h; g)kY < ¯ ;

and let (u(x; t); v(x; t)) be the unique solution of (1.2) with

(u(x; 0); v(x; 0)) = (’(x); Á(x));

guaranteed by theorem 5.3 to exist in C ([0; T ]; Y ) for every T > 0. Then

inf
(h;g) 2 Fs;t

k(u(¢; t); v(¢; t)) ¡ (h; g)kY < °

for all t > 0.

Proof. Suppose that Fs;t is not stable. Then there exists ° > 0 such that, for every
n 2 N, we can ­ nd (’n; Án) 2 Y and tn > 0 such that

inf
(h;g) 2 Fs;t

k(’n; Án) ¡ (h; g)kY <
1

n
(5.7)

and

inf
(h;g) 2 Fs;t

k(un(¢; tn); vn(¢; tn)) ¡ (h; g)kY > ° ; (5.8)

where (un(x; t); vn(x; t)) solves (1.2) with initial data

(un(x; 0); vn(x; 0)) = (’n(x); Án(x)):

For brevity, let us denote un(¢; tn) by © n and vn(¢; tn) by ª n.
From (5.7), it follows that

lim
n! 1

E(’n; Án) = W (s; t); lim
n ! 1

H(’n) = s; lim
n ! 1

G(’n; Án) = t:
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By theorem 5.3, this implies that

lim
n ! 1

E( © n; ª n) = W (s; t); lim
n ! 1

H( © n) = s; lim
n ! 1

G( © n; ª n) = t:

Therefore, f( © n; ª n)g is a minimizing sequence for W (s; t).
Now, by theorem 4.5, there exists a subsequence f( © nk

; ª nk
)g and a sequence of

real numbers fykg such that ( © nk (¢ + yk); ª nk (¢ + yk)) converges strongly in Y to
some (h0; g0) 2 Fs;t. In particular, there exists k large enough that

k( © nk (¢ + yk); ª nk (¢ + yk)) ¡ (h0; g0)kY < ° :

But this implies

k( © nk ; ª nk ) ¡ (h0(¢ ¡ yk); g0(¢ ¡ yk))kY < ° ;

and the invariance under translations of the functionals E, H and G implies that
(h0(¢ ¡ yk); g0(¢ ¡ yk)) is also in Fs;t. Therefore,

inf
(h;g) 2 Fs;t

k( © nk ; ª nk ) ¡ (h; g)kY < ° ;

contradicting (5.8).

We conclude with a result on the ground-state solutions of (1.4). By de­ nition,
(u(x; t); v(x; t)) is a bound-state solution of (1.4) if u and v are of the form given
by (1.7). Equivalently, h and g in (1.7) must satisfy the equations

h00 ¡ !h ¡ ich0 = ¡ hg;

cg = jhj2;

)

(5.9)

which are the Euler{Lagrange equations for the variational problem

W1(s; t) = inffK(h; g) : (h; g) 2 X; H(h) = s and G(h; g) = tg: (5.10)

If we put h(x) = eicx=2f (x) in (5.9), we obtain the system

f 00 ¡ ¼ f = ¡ fg;

cg = jf j2;

)

(5.11)

where ¼ = ! ¡ 1
4c2. From lemma 2.2, we see that the only solutions of (2.2) are

given by f (x) = ei³ 0 f1(x + x0), g(x) = g1(x + x0), where ³ 0; x0 2 R, and f1, g1

are as given in (2.12) with ¶ = ¼ > 0 and · = c > 0. Therefore, these are all the
bound-state solutions of (1.4).

Well-posedness results for (1.4) have appeared in [6, 8, 24, 35, 36]. The following
result is a consequence of proposition 1.3 in [18].

Theorem 5.5. For every T > 0 and every (u0; v0) 2 X, there is a unique solution
(u(x; t); v(x; t)) to (1.4) in C ([0; T ]; X) such that (u(x; 0); v(x; 0)) = (u0; v0). More-
over, the map from (u0; v0) to (u; v) is a continuous map from X to C ([0; T ]; X),
and we have

K(u(¢; t); v(¢; t)) = K(u0; v0)

for all t 2 [0; T ].
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In [24], Lauren¹cot established a stability result for bound-state solutions of (1.4).
Here we recover Lauren¹cot’s stability result (see theorem 5.6 (iii)), and we also
obtain the additional fact that the bound-state solutions of (1.4) are, in fact, ground
states. That is, any critical point for the variational problem (5.10) is actually a
global minimizer or, in other words, an element of the set

F 1
s;t = f(h; g) 2 X : K(h; g) = W1(s; t); H(h) = s and G(h; g) = tg

for some s > 0 and t 2 R.

Theorem 5.6. Suppose s > 0 and t 2 R. Then we have the following.

(i) Every minimizing sequence f(hn; gn)g for W1(s; t) is relatively compact in X
up to translations, i.e. there is a subsequence f(hnk ; gnk )g and a sequence of
real numbers fykg such that

(hnk (¢ + yk); gnk (¢ + yk))

converges strongly in X to some (h; g), which is a minimizer for W1(s; t).

(ii) In particular, F 1
s;t is non-empty, and consists of all pairs (f; g) with

f (x) = ei³ 0 f1(x + x0) and g(x) = f1(x + x0);

where ³ 0; x0 2 R and f1, g1 are as given in (2.12) with ¶ = ( 3
16

t)2=3 and
· = s(12t)¡1=3.

(iii) F 1
s;t is stable, in the sense that, for every ° > 0, there exists ¯ > 0 with the

following property. Suppose (’; Á) 2 X and

inf
(h;g)2 F 1

s;t

k(’; Á) ¡ (h; g)kX < ¯ ;

and let (u(x; t); v(x; t)) be the unique solution of (1.4) with

(u(x; 0); v(x; 0)) = (’(x); Á(x));

guaranteed by theorem 5.5 to exist in C ([0; T ]; X) for every T > 0. Then

inf
(h;g) 2 F 1

s;t

k(u(¢; t); v(¢; t)) ¡ (h; g)kX < °

for all t > 0.

Proof. To prove (i), we need make only minor modi­ cations to the proof of theo-
rem 4.5. In fact, the statements and proofs of lemmas 4.1, 4.2, 4.3 and 4.4 continue
to be valid if we replace throughout E by K, W by W1 and I by I1, except that we
can use (3.10) instead of (3.40) at the end of lemma 4.4. The statement and proof
of theorem 4.5 also remain valid once the same modi­ cations are made, except that
we use theorem 3.12 instead of theorem 3.26.

Since every ground state in F 1
s;t is also a bound state, statement (ii) follows

from (i) and the remarks concerning bound states that were made after (5.11).
Finally, the proof of (iii) is identical to that of theorem 5.4, once the obvious

modi­ cations are made.
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