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Abstract

We studied the radiolysis of a wide variety of N-heterocycles, including many of biological
importance, and find that the majority are remarkably stable in the solid-state when subjected
to large doses of ionizing gamma radiation from a 60Co source. Degradation of N-heterocycles
as a function of dose rate and total dose was measured using high-performance liquid
chromatography with UV detection. Many N-heterocycles show little degradation when
γ-irradiated up to a total dose of ∼1 MGy, which approximates hundreds of millions of
years’ worth of radiation emitted in meteorite parent bodies due to slow radionuclide decay.
Extrapolation of these results suggests that these N-heterocyclic compounds would be stable
in dry parent bodies over solar system timescales. We suggest that the abundance of these
N-heterocycles as measured presently in carbonaceous meteorites is largely reflective of their
abundance at the time aqueous alteration stopped in their parent bodies and the absence of
certain compounds in present-day samples is either due to the formation mechanisms or deg-
radation which occurred during periods of aqueous alteration or thermal metamorphism.

Introduction

Carbonaceous chondrites are meteorites that contain abundant indigenous organic com-
pounds, including many of biological significance such as amino acids and nucleobases
(Sephton, 2002; Burton et al., 2012). Meteorites are continuously delivered to the Earth
today (Halliday et al., 1989) and were likely delivered at a much higher rate early in its history
(Schoenberg et al., 2002; Gomes et al., 2005). Thus, these materials are significant in that they
represent major initial inputs of organic materials to early solar system planetary surfaces and
may have contributed to the origins of life on Earth (Oró, 1961; Chyba and Sagan, 1992). One
generally accepted scheme for the synthesis of these meteoritic organics is that they are derived
from the energetic processing of simpler compounds that had condensed on dust grains.
Eventually, these grains were incorporated into larger parent bodies such as asteroids.
Pre-terrestrial aqueous alteration, which is attributed to radiogenic heating and melting of
ice on the parent asteroid shortly after accretion, likely influenced the organics found in
meteorites as well (Browning et al., 1996; Wilson et al., 1999).

In modern analyses of meteorites, the distribution and abundance of indigenous organic
compounds may not necessarily reflect those originally present billions of years ago when
carbonaceous chondrites were delivered to the prebiotic Earth. One potential reason for this
is the prolonged radiolysis of organic compounds while in the dry state (after the aqueous alter-
ation phase) since long-lived radionuclides likely contributed significant doses of high-energy
radiation within meteorite parent bodies over their entire lifetimes (Urey, 1955, 1956). The
early solar system contained a variety of radionuclides, which are well-documented inmeteorites
(Lee et al., 1976, 1998; McKeegan et al., 2000; Huss et al., 2001). Though 26Al is relatively short-
lived (t1/2 ∼ 7.2 × 105 y), it may have been especially abundant in early solar system materials
(Diehl et al., 1995; Macpherson et al., 1995; Russell et al., 1996). 40K, 235U, 238U and 232Th
have long half-lives and undergo complex decay resulting in the emission of high-energy
particles and γ-rays. These γ-rays are of sufficient energy to interact with matter via Compton
scattering, effectively transferring photon energy to electrons and creating positive ion radicals,
which then could lead to degradation or possibly complexification of organic compounds.
Cosmic rays are also prevalent; however, they are not deeply penetrating and the absorbed energy
would affect only the surface layers (on the range of meters) in asteroids (Draganic et al., 1984).

There has been a long history of research to understand how organic compounds can be
synthesized and survive in harsh cosmic environments through laboratory experiments
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using radiolytic and photolytic processing (Bernstein et al., 1995;
Hudson and Moore, 2001). Multiple investigations have examined
the effect of ionizing radiation on the survival and racemization of
amino acids (Cataldo et al., 2011b, 2011a, Iglesias-Groth et al.,
2011) in an effort to explain the non-racemic mixtures of
amino acids observed in meteorites (Cronin and Pizzarello,
1997; Pizzarello and Cronin, 2000; Glavin and Dworkin, 2009).

Here, various nitrogen heterocycles in the solid-state were
exposed to γ-radiation from a 60Co source to investigate the sta-
bility of these compounds with respect to total radiation dose
and dose rate. The nitrogen heterocycles studied (see Fig. 1)
included the canonical nucleobases, which are universal to nucleic
acids and closely related purines and pyrimidines that have been
identified in cyanide reactions (Sanchez et al., 1967; Ferris et al.,
1978; Ferris and Hagan, 1984; Miyakawa et al., 2002) and/or
extraterrestrial meteorites (Vandervelden and Schwartz, 1977;
Stoks and Schwartz, 1979, 1981, 1982; Martins et al., 2008;
Callahan et al., 2011) and thought to be important for prebiotic
chemistry and the origin of life on early Earth. Simulating hun-
dreds of millions of years of radiation over the course of a few
months raises reasonable questions about the realism of such
simulations. As it is impossible to carry out such experiments on
solar system timescales, we have designed our experiments as
efficiently and practically as possible to investigate the radiolytic
stability of nitrogen heterocycles and to better understand what
the distribution and abundance of these compounds may have
been in meteorites delivered to Earth approximately 4 billion
years ago.

Methods

Sample preparation of γ-irradiated samples and controls

All glassware used in these experiments was wrapped in alumi-
num foil and baked at 500 °C for 24 h under air to remove organic
contaminants. Ultrapure water (18.2 MΩ·cm) produced by a
water purification system was used for this study.

Individual solutions of nitrogen heterocycles were prepared
by dissolving the reference standard with 0.1 M NH4OH to a
concentration in the low millimolar range. 400 µl of each nitrogen
heterocycle solution was added to individual glass ampoules and
heated to dryness at 60 °C using an oven. Once dry, these ampoules
were sealed under vacuum on a glass Schlenk line using a hand-
held butane torch. For each nitrogen heterocycle, 11 ampoules
were prepared: four non-irradiated controls and seven samples
for radiolysis.

A 60Co source at the Research Laboratory for Nuclear Reactors
at the Tokyo Institute of Technology was used to provide
γ-radiation for this study. One set of ampoules for each hetero-
cycle was placed at a distance of 30 cm from a 60Co source in
order to receive a dose rate of ∼350 Gy h−1. These ampoules were
placed around the γ-radiation source (Fig. 2) and one ampoule
from each set was removed from the source at ∼17-day intervals
in order to produce sets of samples with increasing doses of
γ-radiation (see Table 1). The maximum total dose was
∼0.992 MGy, which took 119 days to complete. Additionally,
sets of canonical nucleobases were placed at varying distances
from the radiation source (Fig. 2) in order to receive a total
dose of ∼250 kGy, but with different dose rates (see Table 2). A
slower dose rate, corresponding to a sample placed further away
from the 60Co source, means a longer time on the source in
order for the samples to receive the same total dose of

∼250 kGy. Irradiation experiments took place at room tempera-
ture. After irradiation of samples was complete, samples and non-
irradiated controls were carefully packaged and shipped to Boise
State University for work-up and sample analysis.

To prepare samples for high-performance liquid chromatog-
raphy (HPLC) analysis, sealed ampoules were cracked open using
disposable ampoule openers (a popping sound was observed upon
opening ampoules, which indicated that the vacuum seal had not
been compromised). 400 µl 0.1 M NH4OH was placed inside each
ampoule and mixed using a vortex mixer on low setting for 30 s.
The ampoules were then allowed to stand for 20 min in order to
dissolve the individual nitrogen heterocycle before transferring to
an HPLC vial. An additional 400 µl 0.1 M NH4OH was added to
the ampoule and the process was repeated: vortex mix, let stand
for 20 min, rinse the sides and then solution transfer. A final volume
of 200 µl 0.1 M NH4OH was added and the procedure was per-
formed one last time to ensure quantitative transfer. These steps
provided a 1 ml sample. Typically, a 100-fold dilution for nitrogen
heterocycle sample solutions was performed before HPLC analysis
for accurate quantitation using a standard concentration curve.

Guanine does not readily dissolve in 0.1 M NH4OH; therefore,
guanine samples were dissolved in 1 M NH4OH according to a
slightly modified procedure from that used for the above samples.
Two 400 µl and one 200 µl aliquots of 1 M NH4OH were used as
outlined above. After this, nine successive 1 ml volumes of 1 M
NH4OH were used to quantitatively rinse the ampoules for sample
transfer into a 25 ml glass vial. From this guanine in 1 M NH4OH
solution (10 ml), a 1:10 dilution using ultrapure water was per-
formed, which resulted in the same 100-fold dilution as described
earlier. Sample solutions were analysed immediately by HPLC.

High performance liquid chromatography

Irradiated samples, non-irradiated controls and reference stand-
ard solutions were analyzed using a Thermo Scientific Accela
HPLC/UHPLC coupled to an Accela photodiode array detector
(PDA). Nitrogen heterocycle separation was achieved by injecting
10 µl sample solution onto a Phenomenex Synergi 4 µ Fusion
reverse phase column (2 mm × 150 mm; 80 Å pore size). The
flow rate was 200 µl min−1 and the column temperature was
maintained at 30 °C. Mobile phase A was composed of 20 mM
ammonium acetate buffer at pH 4.5 and mobile phase B was
acetonitrile. The ammonium acetate buffer was prepared via
NH4OH titration of 20 mM acetic acid solution to pH 4.5. The
following HPLC gradient was used: 0–10 min 0–45% B, 10–
12 min 45–100% B, 12–17 min 100% B, 17–19 min 100–0% B
and 19–29 min 0% B (equilibration of column). The PDA
detector recorded the UV spectrum from 200–400 nm, although
260 nm was typically used for nitrogen heterocycle analysis. All
samples were analysed in triplicate.

To prepare reference standard solutions, nitrogen heterocycles
were dissolved in 0.1 M NH4OH to produce ∼3 mM stock solu-
tions. Serial dilutions were then performed to prepare 1, 10, 50
and 100 µM working solutions. Four-point calibration curves
for each nitrogen heterocycle were measured and determined to
be linear (R2 > 0.99) in this concentration range.

Recovery of irradiated nitrogen heterocycles was calculated in
two ways: (1) HPLC peak area of the irradiated nitrogen het-
erocycle compared with HPLC peak area of the non-irradiated
control and (2) mole ratio of the irradiated nitrogen heterocycle
to the non-irradiated control using the corresponding calibration
curve. These two methods gave nearly identical results. Per cent
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recoveries shown in Tables 3–5 are based on the first method
using the equation below:

%Recovery = HPLCPeak Area (Irradiated Sample)
HPLCPeak Area (Control) × 100

Results and discussion

For all irradiated samples, only one peak was detected in the UV
chromatogram, which corresponded to the nitrogen heterocycle
of interest. Furthermore, no degradation products were detected
in UV chromatograms using the full spectral range from 200 to
400 nm. This may be due to non-volatile degradation products
lacking a chromophore in this UV detection range or that,

more likely, degradation products were volatile and lost during
the sample work-up. As an example, UV chromatograms of
irradiated adenine and guanine along with their controls
(non-irradiated adenine and guanine) are shown in Fig. 3.

In the solid state, most of the purines and pyrimidines in this
study appear to be remarkably stable to γ-radiation up to doses of

Fig. 1. Structures of nitrogen heterocycles that under-
went γ-irradiation studies. These nitrogen heterocycles
are considered important for prebiotic chemistry leading
to the origin of life (i.e. they are identified in plausible
prebiotic reactions and/or extraterrestrial meteorites) or
are essential for biology.

Fig. 2. Photograph of sample placement around the 60Co source. Samples of solid-
state nitrogen heterocycles in vacuum-sealed glass ampoules are specifically placed
for two separate studies: the effect of total dose (in blue circle) and dose rate (in red
circle).

Table 1. Total dose and irradiation time for N-heterocycles

Sample set Days (h) Total dose (Gy)

1 17 (408) 141 739

2 34 (816) 283 478

3 51 (1224) 425 218

4 68 (1632) 566 957

5 85 (2040) 708 696

6 102 (2448) 850 435

7 119 (2856) 992 174

Table 2. Dose rate data

Sample
set Days (h)

Distance
(cm)

Dose rate
(Gyh−1)

Total
dose (Gy)

1 34 (816) 32 304 241 252

2 51 (1224) 39 207 249 533

3 68 (1632) 45.5 154 249 043

4 85 (2040) 51 123 251 225

5 102 (2448) 56 103 252 886

6 119 (2856) 61 87 251 236
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1 MGy (see Tables 3 and 4). All of the canonical nucleobases, with
the exception of guanine, were extremely stable to γ-radiation,
which always showed >90% recoveries. Similar stability of nucleo-
bases was also observed by Pilling et al. who used soft X-rays at
150 eV to irradiate solid-state adenine and uracil and concluded
that only small reductions were measured by in situ Fourier trans-
form infrared spectroscopy (Pilling et al., 2011). Past studies have
also shown that nucleobases are much more resistant to ionizing
radiation than amino acids, another class of organic compounds
necessary for life as we know it (Pilling et al., 2011; Cataldo et al.,
2011a, 2011b; Iglesias-Groth et al., 2011; Cherubini et al., 2014).

Purine is very stable to γ-radiation. Adenine (6-aminopurine),
2,6-diaminopurine and 6,8-diaminopurine are also very stable
to γ-radiation, which demonstrates that adding basic amine
groups in different positions to purine does not reduce or enhance
resistance to γ-irradiative decomposition. Hypoxanthine, a
deamination product (replacement of an amino group with a
carbonyl group) of adenine, was extremely stable to γ-radiation,

which suggests that purines substituted at the 6-position are
also relatively stable.

The recovery of guanine decreases as the radiation dose
increases. Also, guanine displays the highest decomposition of
all the compounds studied here, a reduction of 53% at ∼1 MGy.
Xanthine remained very stable to γ-radiation with the exception
of the last data point (992 kGy), which showed a 31% decrease
compared with its control. The exact reason for this decrease is
unknown, although we may draw some insight by comparing
xanthine to guanine. Xanthine is a deamination product of guan-
ine and their structural similarity may explain their response to
γ-radiation; guanine and xanthine were the two nitrogen hetero-
cycles with the highest degree of decomposition. Methylation
of xanthine does not alter its high radiolytic stability. In a previ-
ous study, theobromine (3,7-dimethylxanthine), theophylline
(1,3-dimethylxanthine) and caffeine (1,3,7-trimethylxanthine)
showed very little degradation to ionizing radiation (9.96 MeV
electron beam) up to doses of 400 kGy (Marciniec et al., 2013).

Table 3. Percent recovery of γ-irradiated purines

Dose (kGy) Purine Adenine Hypoxanthine Guanine Xanthine 2,6-diaminopurine 6,8-diaminopurine

142 98 ± 3 102 ± 1 99.6 ± 0.6 108.0 ± 0.9 98.6 ± 0.9 103 ± 1 98.3 ± 0.2

283 93 ± 2 102 ± 1 96.7 ± 0.6 91.1 ± 0.1 94 ± 1 95 ± 2 101.1 ± 0.9

425 94 ± 3 102 ± 1 98.2 ± 0.4 89 ± 1 94 ± 1 98 ± 3 100 ± 1

567 93 ± 5 95.7 ± 5 98 ± 1 87 ± 1 99 ± 2 98 ± 2 94 ± 2

709 96 ± 2 97.1 ± 0.9 95.8 ± 0.8 83.6 ± 0.9 99 ± 2 99 ± 4 97.1 ± 0.7

850 94 ± 3 96 ± 3 100.4 ± 0.3 76 ± 1 97 ± 2 99 ± 3 89.3 ± 0.6

992 94 ± 2 102 ± 3 102.5 ± 0.7 47 ± 3 69 ± 3 102 ± 3 99 ± 2

Table 4. Percent recovery of γ-irradiated pyrimidines

Dose (kGy) Cytosine Uracil Thymine Orotic acid 2,4-diaminopyrimidine

142 104 ± 2 96 ± 1 105 ± 3 99.9 ± 0.8 102 ± 0.4

283 99 ± 5 97.5 ± 0.8 100 ± 3 93 ± 2 100 ± 1

425 108 ± 4 98.0 ± 0.9 100 ± 6 98 ± 1 103 ± 1

567 94 ± 2 92.8 ± 0.9 101 ± 5 87.6 ± 0.2 99.6 ± 0.5

709 100 ± 1 97 ± 1 99 ± 5 99.3 ± 0.3 99.5 ± 1

850 106 ± 3 97 ± 1 99 ± 3 95 ± 1 96.1 ± 0.5

992 97 ± 8 91 ± 1 101 ± 7 97.9 ± 0.5 NS

NS indicates no sample (ampoule was broken during shipping).

Table 5. Percent recovery of γ-irradiated nucleobases using different dose rates. Total dose was ∼250 kGy

Dose rate (Gy h−1) Adenine Guanine Cytosine Thymine Uracil

87 91 ± 5 98 ± 1 99 ± 3 96 ± 6 99 ± 1

103 97 ± 3 85.2 ± 0.8 96 ± 3 101 ± 6 98.2 ± 0.5

123 98 ± 1 83.9 ± 0.7 96 ± 4 103 ± 9 98.8 ± 0.2

154 99 ± 1 80 ± 1 100 ± 3 90 ± 5 97.2 ± 0.8

207 98 ± 2 71 ± 0.5 99 ± 2 101 ± 5 96 ± 1

304 NS 82 ± 1 NS 109 ± 3 96.0 ± 0.9

NS indicates no sample at this dose rate.
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All five pyrimidines studied here were also very stable to
γ-radiation and methyl, amine and carboxylic acid substitutions
did little to alter this stability.

The second part of our study investigated the effect of dose
rate on the degradation of the canonical nucleobases. Percent
recoveries of γ-irradiated nucleobases were determined at differ-
ent dose rates (between 87 and 304 Gy h−1) while the total dose
remained constant (∼250 kGy), which is shown in Table 5. For
adenine, cytosine, thymine and uracil, the percent recoveries of
γ-irradiated nucleobases were relatively high, ranging from 91 to
109%, which suggested that the radiolysis of these canonical
nucleobases in the solid-state did not significantly depend on
the dose rate. The lower recovery of adenine at a dose rate of
∼87 Gy h−1 is calculated as an outlier at 95% confidence using
a Dixon’s Q-test; however, we cannot completely rule out that a
lower dose rate does not have an effect on adenine.

Guanine is a different story. At a total dose of ∼250 kGy, the
recovery of guanine steadily declines from 98% to 71% as the
dose rate increases from 87 to 207 Gy h−1; however, at the highest
dose rate of 304 Gy h−1, the recovery of guanine is around 82%.
Nonetheless, the effect of dose rate on guanine is readily apparent
when compared with the other canonical nucleobases. It is also
interesting to note that the canonical nucleobases (adenine, cytosine,
thymine and uracil) that were most stable to the highest doses of
γ-radiation seemed to be the least affected by different dose rates.
For guanine, appreciable decomposition due to γ-radiation may
indicate greater sensitivity to dose rate. Further investigation of
more nitrogen heterocycles would be necessary to see if these trends
are consistent. Finally, these results suggest that both total dose and
dose rate should be examined with each particular compound for a
full understanding of its radiation chemistry.

Comparison of results with estimated cosmic radiation doses

Draganic et al. have estimated that a cometary nucleus of 10 km
radius would contain radionuclides that would emit ∼14 MGy
of radiation over 4.5 billion years (the age of the Solar System);
the majority of this radiation (11 MGy) occurring in the first

tens of millions of years due to 26Al decay (Draganic et al.,
1984). Many other studies investigating the radiolysis of organic
compounds have adopted this dose of 14 MGy for asteroids and
comets in general (Cataldo et al., 2011a, 2011b; Iglesias-Groth
et al., 2011; Cherubini et al., 2014). Our total dose of ∼1 MGy
approximates hundreds of million years’ worth of γ-radiation
emitted in meteorite parent bodies due to slow radionuclide decay.
Linear extrapolation of our results suggests that there would be
only small differences, less than an order of magnitude, between
the purine nitrogen heterocycle abundances measured in carbon-
aceous chondrites today with those from the early solar system
(with the exception of guanine). It is important to point out
that our experiments involve the radiolysis of pure nitrogen het-
erocycles only and do not take into account other organics and
mineral matrices that co-exist within asteroids. Therefore, we
would consider any extrapolation to organic abundance as a
first approximation only. Nonetheless, we conclude that nitrogen
heterocycles would be very stable in dry parent bodies and persist
for billions of years, hence their detection in carbonaceous chon-
drites today (Callahan et al., 2011; Smith et al., 2014).

Conclusions

Many purine and pyrimidine nitrogen heterocycles in the solid
state are remarkably stable when γ-irradiated to ∼1 MGy, which
is the dose equivalent of γ-radiation released by radionuclide
decay in asteroids in ∼350 million years (assuming a total radi-
ation dose of 14 MGy and simple linear decay only). The effect
of dose rate on the survival of nitrogen heterocycles may be com-
pound dependent; however, we observed that different dose rates
influenced the recovery of guanine, which turned out to be the
nitrogen heterocycle most prone to decomposition. From our
radiolysis data, we suggest that the abundance of these purine
nitrogen heterocycles, with the exception of guanine, as measured
presently in CM2 carbonaceous chondrites is largely reflective of
their abundance at the time aqueous alteration stopped in the par-
ent bodies. The absence of other nitrogen heterocycles (derived
from NH4CN chemistry) in carbonaceous chondrites may be

Fig. 3. UV chromatograms at 260 nm of γ-irradiated adenine and guanine at increasing doses along with their control samples (0 kGy).
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due to degradation that occurred during the period of aqueous
alteration. Finally, we suggest that guanine may have been more
abundant in young parent bodies of carbonaceous chondrites
(compared with guanine found in carbonaceous chondrites
today) and that increased abundances may have made this
nucleobase particularly favourable for prebiotic chemistry leading
to a primitive genetic material.
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