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In this paper, we study wave transmission in a rotating fluid with multiple alternating
convectively stable and unstable layers. We have discussed wave transmissions in two
different circumstances: cases where the wave is propagative in each layer and cases
where wave tunnelling occurs. We find that efficient wave transmission can be achieved
by ‘resonant propagation’ or ‘resonant tunnelling’, even when stable layers are strongly
stratified, and we call this phenomenon ‘enhanced wave transmission’. Enhanced wave
transmission only occurs when the total number of layers is odd (embedding stable layers
are alternatingly embedded within clamping convective layers, or vice versa). For wave
propagation, the occurrence of enhanced wave transmission requires that the clamping
layers have similar properties, the thickness of each clamping layer is close to a multiple
of the half-wavelength of the corresponding propagative wave and the total thickness of
the embedded layers is close to a multiple of the half-wavelength of the corresponding
propagating wave (resonant propagation). For wave tunnelling, we have considered two
cases: tunnelling of gravity waves and tunnelling of inertial waves. In both cases, efficient
tunnelling requires that the clamping layers have similar properties, the thickness of each
embedded layer is much smaller than the corresponding e-folding decay distance and the
thickness of each clamping layer is close to a multiple-and-a-half of the half-wavelength
(resonant tunnelling).

Key words: rotating flows, stratified flows, waves in rotating fluids

1. Introduction

Inertial and gravito-inertial waves are important phenomena in rotating stars and planets.
Wave propagation can transport momentum and energy, therefore it may have significant
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impact on stellar or planetary structures and evolutions. For example, internal-gravity
waves (IGWs) play an important role in transporting angular momentum when they
propagate in the radiative zones of stars (Belkacem et al. 2015a, ; Pinçon et al. 2017;
Aerts, Mathis & Rogers 2019). Study reveals that IGWs can reduce differential rotation
in low mass stars in a short time scale (Rogers et al. 2013). They can also explain the
misalignment of exoplanets around hot stars (Rogers, Lin & Lau 2012). Apart from IGWs,
inertial waves can also be generated in rotating planets (Ogilvie & Lin 2004; Wu 2005a;
Goodman & Lackner 2009). It has been found that the resonantly excited inertial wave has
an important impact on the tidal dissipation in planets (Wu 2005b).

It is quite common for a star or planet to have a multi-layer structure. For example,
a superadiabatic region embedded in radiative layers may appear in a neutron star’s
atmosphere because of the ionization of 56Fe (Miralles, Urpin & Van Riper 1997). Waves
generated by convective motions can transport energy to the chromosphere and corona,
which may drive the stellar wind. In A-type stars, it is possible for them to have complex
internal structures with multiple convection zones. Interaction between these convective
zones has important implications in material mixing and energy transport (Silvers &
Proctor 2007). It is also known that layered semiconvection zones can be formed in
stars in the process of double-diffusive convection (Mirouh et al. 2012; Wood, Garaud
& Stellmach 2013; Garaud 2018). For main sequence stars slightly more massive than
the Sun, it has been found that the efficiency of mixing in layered semiconvection zones
sensitively depends on the layer height (Moore & Garaud 2016). Layered convection zones
also exist in planets. Multi-layer structure has been detected in a region several hundred
metres below the surface of the Arctic ocean (Rainville & Winsor 2008). Observation
shows that a shallow convective region is embedded within stable layers in the atmosphere
of Venus (Tellmann et al. 2009). Seismology on Saturn’s ring reveals the layered stable
stratification in the deep interior of Saturn (Fuller 2014). If stable stratification exists
in the deep interior of Saturn, then the g-mode can be excited in this region. Layered
convection probably also exists in Jupiter. A new model with layered convection on Jupiter
and Saturn indicates that the heavy elements in our Jovian planets are more enriched
than previously thought (Leconte & Chabrier 2012). One interesting question is whether
g-mode waves can transmit to the surface, so that they can be possibly captured by
observations.

Wave can transmit in a double barrier system through a tunnelling process. Sutherland &
Yewchuk (2004) studied transmissions of internal wave tunnelling for both N2-barrier (low
N2 layer embedded in high N2 layers and horizontal mean density varies continuously)
and mixed-N2 (low N2 layer embedded in high N2 layers but horizontal mean density
varies discontinuously) profiles, where N2 is the square of the buoyancy frequency. They
found that wave transmission can be efficient for resonant transfers. Sutherland (2016)
investigated the transmission of internal waves in a multi-layer structure separated by
discontinuous density jumps. He deduced an analytical solution for wave transmission
when the steps are evenly spaced, and predicted that waves with longer horizontal
wavelength and larger frequencies are more likely to transmit in the density staircase
profile. Sutherland (1996) considered wave propagation in profiles of piecewise linear
stratified layers with weaker stratification at the top. He discovered that large-amplitude
IGWs incident from the bottom can partially transmit energy into the top layer by the
generation of a lower frequency wave packet. Resonant tunnelling of electron transmission
in double barriers is familiar in quantum physics, and has been widely used in designing
semiconductor devices, such as tunnel diodes, NPN (negative–positive–negative) and
PNP (positive–negative–positive) triodes (Singh 2010). In comparison with tunnelling
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of electron transmission, it is expected that resonant tunnelling also occurs for wave
transmission in multi-layer structures.

Wave transmission in a three-layer structure with rotational effects has been considered
by Gerkema & Exarchou (2008). They compared wave transmissions with and without
traditional approximations (the horizontal component of rotation is neglected when the
traditional approximation is adopted on an f -plane). For a three-layer structure with a
convective layer embedded in strongly stratified layers, waves cannot survive in both
convective and stratified layers under the traditional approximation, while it is possible if
non-traditional effects are taken into account. They also showed that near-inertial waves are
always transmitted efficiently for stratified layers of any stratification. Belyaev, Quataert
& Fuller (2015) investigated the free modes of a multi-layer structure wave propagation
with rotation at the poles and equator. They found that g-modes with vertical wavelengths
smaller than the layer thickness are evanescent. André, Barker & Mathis (2017) studied
the effects of rotation on free modes and wave transmission in a multi-layer structure at a
general latitude. They showed that transmission can be efficient when the incident wave
is resonant with waves in adjacent layers with half-wavelengths equal to the layer depth.
They also discovered that perfect wave transmission can be obtained at the critical latitude.
Pontin et al. (2020) studied the wave propagation in semiconvective regions of non-rotating
giant planets in the full sphere. They found that wave transmissions are efficient for very
large wavelength waves.

In previous works (Wei 2020a,b; Cai, Yu & Wei 2021), we have discussed the efficiency
of inertial and gravito-inertial wave transmissions in a two-layer structure on f -planes.
For a step stratification near the interface, we have found that the transmission generally is
not efficient if the stable layer is strongly stratified. In this paper, we investigate the wave
transmission in a multi-layer structure on f -planes. Specifically, we will consider wave
transmissions via two different mechanisms: wave propagation and wave tunnelling. We
find that wave transmission in a multi-layer structure can be significantly different from
that in a two-layer structure.

2. The model and result

For the Boussinesq flow in a rotating f -plane, the hydrodynamic equations can be
synthesized into a partial differential equation on vertical velocity w (Gerkema & Shrira
2005b)

∇2wtt + ( f · ∇)2w + N2(z)∇2
h w = 0, (2.1)

where f = (0, f̃ , f ) is the vector of Coriolis parameters, N2 is the square of the buoyancy
frequency, ∇2 is Laplacian operator, ∇2

h is its horizontal component and the subscript t
represents taking the derivative with respect to time. By letting w = W(χ, z) exp(−iσ t),
Gerkema & Shrira (2005b) found (2.1) can be transformed into the following equation:

AWχχ + 2BWχz + CWzz = 0, (2.2)

where A = f̃ 2
s − σ 2 + N2, where σ is the time frequency, B = f f̃s,C = f 2 − σ 2, f̃s =

f̃ sinα, where α is the angle between the direction of the plane wave and the x-direction,
and χ is a variable satisfying x = χ cosα and y = χ sinα. Here, x, y, z are the west–east,
south–north and vertical directions, respectively. We define A0 = f̃ 2

s − σ 2, so that A =
A0 + N2. Taking advantage of plane waves and assuming W(χ, z) = ψ(z) exp(iδz +
ikχ), Gerkema & Shrira (2005b) have further simplified (2.2) into an equation of
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wave amplitude ψ

ψzz + k2 B2 − AC
C2 ψ = 0, (2.3)

where δ = −kB/C, with k is the horizontal wavenumber. A wave solution then requires
B2 − AC > 0, and the squared wavenumber is r2 = k2(B2 − AC)/C2. If B2 − AC > 0,
then r is a real number and the flow propagates along the vertical direction as a wave.
On the other hand, if B2 − AC < 0, then r is a pure imaginary number, and the wave
amplitude increases or decreases exponentially.

In previous works (Wei 2020a; Cai et al. 2021) we have investigated wave transmission
in a two-layer setting f -plane (a convective layer with N2 = 0 and a convectively stable
layer with N2 > 0). Note that the actual N2 should be smaller than zero. In real stars,
however, convection is generally efficient in transporting energy, leading to a nearly
adiabatic thermal structure. Thus, N2 values in convective layers are only slightly smaller
than zero. For this reason, we choose N2 = 0 for convective layers in our model. In this
paper, we extend previous works to study the wave transmission in a multi-layer setting
f -plane. At this beginning stage, we use an ideal model by assuming N2 is constant in
each layer. In all convective layers, N2 values are equal and set to zero. In stable layers, N2

values can be different but remain constant in each layer, with minimum and maximum
values of N2

min and N2
max, respectively. We also assume that the propagation of inertial

waves is not affected by convection. The validity of this assumption requires that the
nonlinear and viscous effects are small. Detailed discussion on relations and differences
between convection and inertial waves can be found in Zhang & Liao (2017). Here, we
attempt to use a toy model to gain some insights into wave transmissions in a multi-layer
structure. Cai et al. (2021) have made a detailed discussion on the frequency domain of
wave solutions. If a wave is to survive in a convective layer, then the following condition
must be satisfied:

Δc = B2 − A0C > 0. (2.4)

Similarly, the condition for wave propagation in a stable layer is

Δs = B2 − A0C − N2
s C > 0. (2.5)

Let us define

σ 2
1,4 =

[
( f 2 + f̃ 2

s )∓
√
( f 2 + f̃ 2

s )
2
]/

2, (2.6)

σ 2
2,5 =

[
( f 2 + f̃ 2

s + N2
min)∓

√
( f 2 + f̃ 2

s + N2
min)

2 − 4N2
min f 2

]/
2, (2.7)

σ 2
3,6 =

[
( f 2 + f̃ 2

s + N2
max)∓

√
( f 2 + f̃ 2

s + N2
max)

2 − 4N2
max f 2

]/
2, (2.8)

where σ1 = 0 and σ4 = f 2 + f̃ 2
s are roots ofΔc = 0, and σ2,5 and σ3,6 are roots ofΔs = 0

when N2
s = N2

min and N2
s = N2

max, respectively. It is not difficult to verify that the relation
σ1 ≤ σ2 ≤ σ3 ≤ σ4 ≤ σ5 ≤ σ6 holds.

Figure 1(a) shows the frequency ranges for different waves in convectively unstable
and stable layers, respectively. In the green region (σ 2

3 < σ 2 < σ 2
4 ), waves can survive

and propagate in both convective and stable layers, and we term this phenomenon
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σ1
2 = 0 σ2

2 σ3
2 σ4

2 σ5
2 σ6

2

Convective layers

Stable layers

Gravity wave

Inertial wave

Figure 1. Plot of wave propagations in multiple convectively stable and unstable layers. Wave frequency ranges
are shown above and below the middle arrow for convective and stable layers, respectively. Wave propagation
occurs in the green region, tunnelling of inertial wave occurs in the blue region and tunnelling of gravity wave
occurs in the purple region.

(b)(a) Configuration 1

Stable layer

Convective layer

Stable layer

Configuration 2

Convective layer

Stable layer

Convective layer

Transmitted wave Transmitted wave

Incident wave Ref lected wave Incident wave Ref lected wave

mth

(m+1)th

(m+1/2)th

mth

(m+1)th

(m+1/2)th
Z ′
m

N 2
N 2

Zm
Z ′
m

Zm

Figure 2. Plots of wave propagations in multiple convectively stable and unstable layers. (a) The convective
layer is embedded between two stable layers. (b) The stable layer is embedded between two convective layers.
Structure of the square of buoyancy frequency N2 is shown by the side.

‘wave propagation’. In the blue region σ 2
1 < σ 2 < σ 2

2 , inertial waves can survive in
convective layers but gravity waves cannot survive in stable layers. Inertial waves can
transmit through a tunnelling process, and we term this phenomenon ‘tunnelling of inertial
wave’. In the purple region σ 2

4 < σ 2 < σ 2
5 , gravity waves can survive in stable layers but

inertial waves cannot survive in convective layers. Similarly, gravity waves can transmit
through a tunnelling process, and we term this phenomenon ‘tunnelling of gravity wave’.

In Cai et al. (2021), we have also deduced that cp0cg has the same sign as C, where cp0 is
the modified vertical component of wave phase velocity and cg is the vertical component of
the wave group velocity. The vertical component of phase velocity should be computed by
σ/(δ ± r), but here the tilted effect is excluded in the modified one cp0 = σ/(±r). Since
the wave direction of energy propagation is determined by cg, a proper choice of wave
direction depends on whether the wave is sub-inertial (C > 0) or super-inertial (C < 0).

2.1. Wave propagation
In this section, we discuss wave propagation in both convective and stable layers,
which requires that the frequency is in the range σ 2

3 < σ 2 < σ 2
4 . We consider different

configurations with different combinations of layer structures and wave directions. The
incident wave can propagate from the convective layer or stable layer, and the wave
propagating direction can be upward or downward. Since up/down symmetry holds in
Boussinesq flow, it is sufficient to discuss the cases with waves incident from the bottom.
The cases with waves incident from the top can be inferred from the up/down symmetry.
Figure 2 shows plots of the two configurations in a three-layer setting f -plane. Structures
with more layers are similar. At each interface, two boundary conditions have to be
satisfied: the vertical velocity is continuous; and the first derivative of the vertical velocity
is continuous (Wei 2020a; Cai et al. 2021).

We start the discussion on configuration 1 (figure 2a), and assume that the number of
interfaces is even. We label the convective layer with the half-grid number (m + 1/2).
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For the (m + 1/2)th convective layer, we label its lower and upper neighbouring stable
layers the mth and (m + 1)th stable layers, respectively; and we set the locations of the
lower and upper interfaces at zm and z′

m, respectively. The thickness of the convective
layer is Δz′

m = z′
m − zm, and the thickness of the stable layer is Δzm = zm − z′

m−1. For
the mth stable layer, we define its wavenumber square as s2

m = k2(B2 − A0C − N2
mC)/C2.

For the (m + 1/2)th convective layer, we define its wavenumber square as q2
m = k2(B2 −

A0C)/C2. In this paper, we only consider a simple case, in which the square of the
buoyancy frequency is a constant within each convective or stable layer. Under this
assumption, we find wave solutions in the mth stable layer

ψm(z) = am e−ismz + bm eismz, z ∈ (z′
m−1, zm), (2.9)

and in the (m + 1/2)th convective layer

ψm+1/2(z) = cm e−iqmz + dm e−iqmz, z ∈ (zm, z′
m), (2.10)

respectively. As mentioned earlier, cp0cg has the same sign as C, from which we conclude
Sgn(cg) = Sgn(C)Sgn(cp0). The sign of the modified vertical phase velocity cp0 is
determined by the sign of qm or sm. If Sgn(C)Sgn(cp0) > 0, then the vertical group velocity
cg is positive (wave direction is outgoing); on the other hand, if Sgn(C)Sgn(cp0) < 0, then
cg is negative (wave direction is incoming). We choose qm > 0 for C > 0, and qm < 0 for
C < 0. For either case, the waves with wavenumbers qm and sm are outgoing waves, and
the waves with wavenumbers −qm and −sm are incoming waves. Note that all qm and sm
always have the same sign. Matching the boundary conditions at the interfaces zm and z′

m,
we have

am e−ismzm + bm eismzm = cm e−iqmzm + dm eiqmzm, (2.11)

(−am e−ismzm + bm eismzm)sm = (−cm e−iqmzm + dm eiqmzm)qm, (2.12)

cm e−iqmz′m + dm eiqmz′m = am+1 e−ism+1z′m + bm+1 eism+1z′m, (2.13)

(−cm e−iqmz′m + dm eiqmz′m)qm = (−am+1 e−ism+1z′m + bm+1 eism+1z′m)sm+1. (2.14)

Wave propagations in multi-layer structures have been investigated in Belyaev et al.
(2015), André et al. (2017) and Pontin et al. (2020). A useful approach to modelling
wave propagations in a multi-layer structure is to build on relations of wave amplitudes
by transfer matrices. From the above boundary conditions, we can derive the following
transfer relations (see Appendix A):[

am
bm

]
= T m,m+1

[
am+1
bm+1

]
=
[

T̂ 11 T̂ 12
T̂ 21 T̂ 22

] [
am+1
bm+1

]
, (2.15)

where

T̂ 11 = 1
4

ei(smzm−sm+1z′m)
[(

1 + qm

sm
+ sm+1

sm
+ sm+1

qm

)
eiqmΔz′m

+
(

1 − qm

sm
+ sm+1

sm
− sm+1

qm

)
e−iqmΔz′m

]
, (2.16)

T̂ 12 = 1
4

ei(smzm+sm+1z′m)
[(

1 + qm

sm
− sm+1

sm
− sm+1

qm

)
eiqmΔz′m

+
(

1 − qm

sm
− sm+1

sm
+ sm+1

qm

)
e−iqmΔz′m

]
, (2.17)
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with T̂ 21 = T̂ ∗
12 and T̂ 22 = T̂ ∗

11. Here, the asterisk symbol represents the conjugate of a
complex number.

2.1.1. The three-layer case
If we consider the special three-layer case (outgoing transmitted wave requires a2 = 0),
we can quickly obtain [

a1
b1

]
=
[

T 11 T 12
T 21 T 22

] [
0
b2

]
, (2.18)

where [
T 11 T 12
T 21 T 22

]
= T 1,2. (2.19)

Thus we have

a1 = T 12b2, (2.20)

a2 = T 22b2. (2.21)

In Cai et al. (2021), we found that the averaged energy flux of a wave is

〈F〉 = CIm(ψz/ψ)

2k2σ
|ψ |2, (2.22)

where Im denotes the imaginary part of a complex number. Let us define the overall
transmission ratio as

η = |〈F〉t|
|〈F〉i| , (2.23)

where 〈F〉i is the averaged energy flux of the incident wave at the lowermost interface, and
〈F〉t is the averaged energy flux of the transmitted wave at the uppermost interface. For
this three-layer case, we have

η =
∣∣∣∣s2

s1

∣∣∣∣ |b2|
|a2| =

∣∣∣∣s2

s1

∣∣∣∣ 1
|T 22|2 . (2.24)

From (2.16) and the relation between T 22 and T 11, we obtain

|T 22|2 = 1
4

[(
1 + s2

s1

)2

cos2(q1Δz′
1)+

(
q1

s1
+ s2

q1

)2

sin2(q1Δz′
1)

]

= 1
4

(
1 + s2

s1

)2

cos2(q1Δz′
1)+ 1

4

(
q1

s1
+ s2

q1

)2

sin2(q1Δz′
1). (2.25)

Therefore, the overall transmission ratio is

η =

⎡⎢⎣1
4

(√
s1

s2
+
√

s2

s1

)2

cos2(q1Δz′
1)+ 1

4

⎛⎝√ q2
1

s1s2
+
√

s1s2

q2
1

⎞⎠2

sin2(q1Δz′
1)

⎤⎥⎦
−1

.

(2.26)

Note that the terms inside square roots are always positive, no matter what direction of
the propagating wave is. It is easy to prove (

√
s1/s2 + √

s2/s1)
2/4 ≥ 1, and so is the
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term before sin2(q1Δz′
1). Thus, we can show η ≤ [cos2(q1Δz′

1)+ sin2(q1Δz′
1)]

−1 = 1,
which means that η is always smaller than or equal to 1. Gerkema & Exarchou (2008)
have obtained a similar formula in their study on internal-wave transmission in weakly
stratified layers. Their (38) is a special case of our formula (2.26) with s1 = s2. Some
interesting conclusions can readily be drawn from (2.26). In the previous investigation of a
two-layer structure (Wei 2020a; Cai et al. 2021), it has been found that wave transmission
is hindered (because vertical wavelengths vary significantly across the interface) when
the stable layer is strongly stratified (N2/(2Ω)2 � 1). However, this is not always the
case in the three-layer structure. For example, when |q1|Δz′

1 → 
π (
 is a positive integer
number) and s1/s2 → 1, we see that η → 1. For this case, there is no reflection and all
of the incident wave is transmitted. This result is independent of N2/(2Ω)2, and it holds
for both weakly (N2/(2Ω)2 � 1) and strongly (N2/(2Ω)2 � 1) stratified rotating fluids.
To better understand the behaviour of η, we separate η into two parts: the first part is the
solution at sin2(q1Δz′

1) = 0 and the second part is the solution at cos2(q1Δz′
1) = 0. The

transmission ratio η of the general case is a weighted harmonic mean of η1 and η2.
For the first part, the condition sin2(q1Δz′

1) = 0 is equivalent to Δz′
1 = 
π/|q1|. In other

words, it requires that the thickness of the middle convective layer is a multiple of the
half-wavelength of the propagating wave. In such a case, the overall transmission ratio is

η1 =
[

1
4

(√
s1

s2
+
√

s2

s1

)2
]−1

. (2.27)

From this equation, we see that η1 only depends on the wavenumber ratio s2/s1 of the
stable layers. The value of η1 decreases with s2/s1 when s2/s1 > 1, and increases with
s2/s1 when s2/s1 < 1. The maximum value η1 = 1 is achieved at s2/s1 = 1. Thus the
transmission is efficient when |N2

1 − N2
2 |/(2Ω)2 is small, or when the wave is at a critical

colatitude θc = cos−1 ±σ/(2Ω) (because C → 0 when θ → θc), or when both stable
layers are weakly stratified (because N2

1,2C � B2 − A0C). The latter two points have also
been observed in the two-layer structure (Cai et al. 2021), while the first point is new
to the three-layer structure. Enhancement of (near-inertial) wave transmission near the
critical colatitude was also reported in Gerkema & Exarchou (2008) and André et al.
(2017). Efficient wave transmission at critical colatitude and weakly stratified flow can
be explained by a common reason: the inertial and gravity waves separated by an interface
have almost the same vertical wavelengths, and thus these waves are ‘resonant’ at the
interface. Similar reasoning can be used to explain the enhanced transmission when
the degrees of stratification in both clamping layers (in configuration 1, the embedding
convective layer is embedded within two neighbouring clamping stable layers) are similar:
the incident wave is ‘resonant’, with waves in adjacent layers with wavelengths equal to
free modes of the multi-layer structure (André et al. 2017).

Figure 3 shows the transmission ratio η1 at three different combinations of N2
1 and

N2
2 . In figure 3(a–c), both stable layers are strongly stratified, but N2

1/(2Ω)
2 is equal to

N2
2/(2Ω)

2. This clearly shows that the transmission is enhanced. Figure 3(d– f ) shows
the result of the cases with one weakly and one strongly stratified layer. Apparently, the
transmission is not as efficient as the cases shown panels (a,b,c). Figure 3(g–i) presents
the result of the cases with two weakly stratified stable layers. The transmission is efficient
because the rotational effect is important. In a previous study on wave transmission in
a two-layer structure (Cai et al. 2021), it has been shown that a wave can be efficiently
transmitted when the stable layer is weakly stratified. From figure 3, we also observe
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Figure 3. Transmission coefficient η1 (the first part of (2.26)) for different N2
1,2/(2Ω)

2 and sin2 α in a
three-layer structure (one middle convective layer and two upper and lower neighbouring stable layers). The
horizontal axis is cos2 θ , and the vertical axis is σ 2/(2Ω)2. From the left to the right panels, sin2 α increases
from 0.1 to 1.0. (a–c) Both stable layers are strongly stratified. (d– f ) One stable layer is strongly stratified and
the other is weakly stratified. (g–i) Both stable layers are weakly stratified. Wave propagation can only occur in
coloured regions. Regions are left white if wave propagation is prohibited.

that sin2 α has important effect on the frequency range. Frequency range increases with
increasing sin2 α. When stable layers (or any of them) are strongly stratified, a wave can
only survive in a very thin region if sin2 α is small. In the extreme case sin2 α = 0, the
surviving frequency range vanishes.

For the second part, the condition cos2(q1Δz′
1) = 0 is equivalent to Δz′

1 = (
+
1/2)π/|q1|, which requires that the thickness of the middle convective layer is a
multiple-and-a-half of the half-wavelength of the propagating wave. In such a case, the
overall transmission ratio is

η2 =

⎡⎢⎣1
4

⎛⎝√ q2
1

s1s2
+
√

s1s2

q2
1

⎞⎠2
⎤⎥⎦

−1

. (2.28)

Similarly, η2 only depends on the wavenumber ratio s1s2/q2
1. It decreases with s1s2/q2

1
when s1s2/q2

1 > 1 and increases with s1s2/q2
1 when s1s2/q2

1 < 1. Let us consider two
cases C > 0 and C < 0. For the first case we have |s1,2| < |q1|, while for the second case
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Figure 4. Transmission coefficient η2 (the second part of (2.26)) for different N2
1,2/(2Ω)

2 and sin2 α in a
three-layer structure (one middle convective layer and two upper and lower neighbouring stable layers). The
horizontal axis is cos2 θ , and the vertical axis is σ 2/(2Ω)2. From the left to the right panels, sin2 α2 increases
from 0.1 to 1.0. (a–c) Both stable layers are strongly stratified. (d– f ) One stable layer is strongly stratified and
the other is weakly stratified. (g–i) Both stable layers are weakly stratified. Wave propagation can only occur in
coloured regions. Regions are left white if wave propagation is prohibited.

we have |s1,2| > |q1|. Thus, for C > 0, we obtain s1s2/q2
2 < 1 and η2 always increases

with s1s2/q2
1. While for the other case, C < 0, we obtain s1s2/q2

2 > 1 and η2 always
decreases with s1s2/q2

1. Efficient transmission can occur if s1s2/q2
1 → 1, which basically

requires both N2
1C/(B2 − A0C) and N2

2C/(B2 − A0C) to be small. This indicates that the
transmission ratio will decrease if both N2

1/(2Ω)
2 and N2

2/(2Ω)
2 increase, no matter what

the sign of C is. Figure 4 gives an example of such case. Apparently, it can be seen that
the transmission ratio decreases when the stable layers are varied from weakly stratified
(g,h,i) to strongly stratified (a,b,c). Also apparent is that transmission is efficient near the
critical colatitudes, where N2

1,2C/(B2 − A0C) → 0.
Although the deduced transmission ratio (2.26) is for configuration 1, it can be

generalized to other configurations. For configuration 2 (figure 2b), the stable layer is
embedded between two convective layers. We label the stable layer as m + 1/2, and
the neighbouring convective layers as m and m + 1. The neighbouring upper and lower
interfaces of the stable layer m + 1/2 are at zm and z′

m. In this setting, the transmission
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ratio can be deduced by simply interchanging qm with sm in (2.26). Therefore, we obtain
the overall transmission ratio in configuration 2 as

η =

⎡⎢⎣1
4

(√
q1

q2
+
√

q2

q1

)2

cos2(s1Δz′
1)+ 1

4

⎛⎝√ s2
1

q1q2
+
√

q1q2

s2
1

⎞⎠2

sin2(s1Δz′
1)

⎤⎥⎦
−1

.

(2.29)

The wavenumbers in the convective layers are all the same, thus we have

η =
[

cos2(s1Δz′
1)+ 1

4

(∣∣∣∣ s1

q1

∣∣∣∣+ ∣∣∣∣q1

s1

∣∣∣∣)2

sin2(s1Δz′
1)

]−1

. (2.30)

Again, we can show that wave transmission is enhanced when the thickness of the middle
stable layer is a multiple of the half-wavelength of the propagating wave.

2.1.2. The multiple-layer case
Now we consider the structure with more alternating layers. Here, we first discuss the case
of 2M + 1 alternating layers (M + 1 stable layers and M convective layers), and both the
lowermost and uppermost layers are stable. From the recursive relation (2.15), we have[

a1
b1

]
=

M∏
m=1

T m,m+1

[
aM+1
bM+1

]
=
[

T 11 T 12
T 21 T 22

] [
aM+1
bM+1

]
. (2.31)

Letting aM+1 = 0, we obtain that the wave amplitude of the transmitted wave in the
uppermost layer is bM+1 = T−1

22 b1, and the transmission ratio is

η =
∣∣∣∣sM+1

s1

∣∣∣∣ 1
|T 22|2 . (2.32)

Now we discuss the case of 2M alternating layers (M stable layers and M convective
layers), and the lowermost layer is stable and the uppermost layer is convective. Using the
recursive relation (2.15) and combining it with the boundary conditions at the uppermost
interface, we have[

a1
b1

]
=
(M−1∏

m=1

T m,m+1

)
S−1

M ΛM,MQM,M

[
cM
dM

]
=
[

T ′
11 T ′

12
T ′

21 T ′
22

] [
cM
dM

]
, (2.33)

where T ′
ij, i, j ∈ {1, 2} is defined by the matrix multiplications shown in the middle of

(2.33). Letting cM = 0, we obtain that the wave amplitude of the transmitted wave in the
uppermost layer is dM+1 = T ′

22b1, and the transmission ratio is

η =
∣∣∣∣qM

s1

∣∣∣∣ 1
|T ′

22|2
. (2.34)

Again, following similar procedures, we can deduce the transmission ratio of configuration
2 by interchanging qm with sm.

We have shown that the transmission can be enhanced in the three-layer structure of
configuration 1. Now we investigate whether the enhancement occurs in a structure with
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more layers. For the sake of simplicity, we assume that all convective layers have the same
thickness Δzc and wavenumber q, and all stable layers have the same thickness Δzs and
wavenumber s.

We first discuss the case when the number of layers (2M + 1) is odd. When sm = s,
qm = q and Δz′

m = Δzc, the transfer matrix T m,m+1 = T is

T̂ 11 = 1
4

e−isΔzc

{[
2 +

(
q
s

+ s
q

)]
eiqΔzc +

[
2 −

(
q
s

+ s
q

)]
e−iqΔzc

}
, (2.35)

T̂ 12 = 1
4

ei(szm+sz′m)
[(

q
s

− s
q

)
eiqΔzc −

(
q
s

− s
q

)
e−iqΔzc

]
, (2.36)

with T̂ 22 = T̂ ∗
11 and T̂ 21 = T̂ ∗

12. The eigenvalue satisfies the following equation:

(T̂ 11 − λ)(T̂ 22 − λ) = T̂ 12T̂ 21. (2.37)

After some manipulations, the equation can be written as

λ2 − 2Re(T̂ 11)λ+ 1 = 0, (2.38)

or in an explicit form

λ2 − 2
[

cos(qΔzc) cos(sΔzc)+ 1
2

(
q
s

+ s
q

)
sin(qΔzc) sin(sΔzc)

]
λ+ 1 = 0, (2.39)

where Re denotes the real part of a complex number. Let λ1,2 be the two roots of the
equation. Obviously, we have λ1λ2 = 1. Let

Δλ =
[

cos(qΔzc) cos(sΔzc)+ 1
2

(
q
s

+ s
q

)
sin(qΔzc) sin(sΔzc)

]2

− 1 (2.40)

=
{

cos[(q − s)Δzc] + 1
2

(
q
s

+ s
q

− 2
)

sin(qΔzc) sin(sΔzc)

}2

− 1. (2.41)

Then, the eigenvalues λ1,2 are real when Δλ > 0, and are complex when Δλ < 0.
If λ1,2 are real and λ1 /= λ2, then the maximum of |λ1,2| must be greater than one.
For a multi-layer structure, the transfer matrix T M ∝ max(|λ1,2|)M , which yields η ∝
max(|λ1,2|)−M . Since max(|λ1,2|) is greater than one, the transmission ratio decays with
the number of layers.

To ensure that the transmission does not decay, the solution λ1,2 must be on the unit
circle of the complex plane. This condition can be achieved when λ1 = λ2 = ±1, or λ1,2
are a complex pair. Therefore, a necessary condition (not sufficient) for efficient wave
transmission is Δλ ≤ 0.

It should be emphasized that the condition Δλ ≤ 0 is not a sufficient condition. The
transmission ratio is actually determined by |T 22|, which could possibly be much greater
than one even though the eigenvalues λ1,2 are on the unit circle. Here, we take a further
step to discuss when the value |T 22| will be close to one, so as to ensure an efficient wave
transmission.

Let us further define z = 0 at the lowest interface, and α1 = exp(−isΔzs) and α2 =
exp(−isΔzc). With such definitions, we have zm + z′

m = (2m − 2)Δzs + (2m − 1)Δzc and
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exp[−is(zm + z′
m)] = α2m−2

1 α2m−1
2 . The transfer matrix can be rewritten as

T m,m+1 =
[

α2T̃ 11 α∗
1

2m−2α∗
2

2m−1T̃ 12

α1
2m−2α2

2m−1T̃∗
12 α∗

2 T̃∗
11

]
, (2.42)

where

T̃ 11 = 1
4

{[
2 +

(
q
s

+ s
q

)]
eiqΔzc +

[
2 −

(
q
s

+ s
q

)]
e−iqΔzc

}
, (2.43)

T̃ 12 = 1
4

[(
q
s

− s
q

)
eiqΔzc −

(
q
s

− s
q

)
e−iqΔzc

]
. (2.44)

When m = 1, we note that the transfer matrix T 1,2 can be formulated as

T 1,2 =
[
α2T̃ 11 α∗

2 T̃ 12

α2T̃ ∗
12 α∗

2 T̃ ∗
11

]
= A

[
α2 0
0 α∗

2

]
, (2.45)

where

A =
[

T̃ 11 T̃ 12

T̃ ∗
12 T̃ ∗

11

]
. (2.46)

Here, we consider a special case with α2
1 = α∗

1
2 = 1, which can be achieved by letting

|s|Δzs = 
′π, where 
′ is a non-negative integer. For this special case, it can be proved
that

M∏
m=1

T m,m+1 = AM

[
α2

M 0

0 α2
∗M

]
. (2.47)

Now we try to derive the explicit form of AM . It is obvious that T̃ 12 is a pure imaginary
number, thus we can write A as

A =
[

Re(T̃ 11)+ iIm(T̃ 11) iIm(T̃ 12)

−iIm(T̃ 12) Re(T̃ 11)− iIm(T̃ 11)

]
= cos(qΔzc)I + iU, (2.48)

where

U =
[

Im(T̃ 11) Im(T̃ 12)

−Im(T̃ 12) −Im(T̃ 11)

]
, (2.49)

and it is easy to verify
U2 = sin2(qΔzc)I. (2.50)

If sin(qΔzc) = 0, we can show A = cos(qΔzc)I and AM = cosM(qΔzc)I . If
sin(qΔzc) /= 0, then we obtain

AM = (cos(qΔzc)I + iU)M (2.51)

= I
∑

k∈even

CM
k cosM−k(qΔzc)ik sink(qΔzc)

+ U[sin(qΔzc)]−1
∑

k∈odd

CM
k cosM−k(qΔzc)ik sink(qΔzc) (2.52)

= cos(MqΔzc)I + i sin(MqΔzc)[sin(qΔzc)]−1U, (2.53)
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where CM
k = M!/((M − k)!k!) is the combination function. From the above calculation,

the analytical solution of the transmission ratio can be obtained. If sin(qΔzc) = 0, we have

T 22 = α∗
2

M cosM(qΔzc), (2.54)

and the transmission ratio is
η = 1. (2.55)

If sin(qΔzc) /= 0, we have

T 22 = α∗
2

M
[

cos(MqΔzc)− i
1
2

(
q
s

+ s
q

)
sin(MqΔzc)

]
, (2.56)

and the transmission ratio is

η =
[

cos2(MqΔzc)+ 1
4

(
q
s

+ s
q

)2

sin2(MqΔzc)

]−1

. (2.57)

Equation (2.55) can be synthesized into (2.57), since sin(qΔzc) = 0 implies
sin2(MqΔzc) = 0 and cos2(MqΔzc) = 1. Therefore, we conclude that, under the condition
|s|Δzs = 
′π, the wave transmission ratio can be described by (2.57). Comparing with the
result of three-layer structure case, we see that (2.26) is just a special case of (2.57) when
M = 1. The discussion on efficiency of wave transmission based on (2.57) is similar to that
in three-layer structure case, and here we will not repeat it. From the analytical solution, it
is clear that the wave will be totally transmitted when M|q|Δzc = 
π and |s|Δzs = 
′π.

Analytical solution of the general cases of |s|Δzs /= 
′π is more difficult, but some
insights can be provided from the discussion of the eigenvalues of the transmission matrix.
It is worth mentioning that, for the special case when sin qΔzc → 0 and sin sΔzc → 0, the
eigenvalues |λ1,2| → 1. In this limit, it can be shown that

Δλ ∼ [mod((q − s)Δzc,π)]4

12
> 0, (2.58)

where mod is the modulo function. The eigenvalues are real numbers, and one of |λ1,2|
is slightly greater than 1. The transmission decays slowly as the wave crosses each layer.
The wave transmission can be efficient when the number of layers is not too large. The
eigenvalues can be estimated as

λ1,2 =
√

1 +Δλ ±
√
Δλ ∼ 1 ± [mod((q − s)Δzc,π)]2

3
√

2
. (2.59)

Thus, the decay rate of the transmission ratio is approximately λ−M
2 ∼ {1 −

12−1/2M[mod((q − s)Δzc,π)]2}−1. The transmission can be efficient when M � Mc =
[mod((q − s)Δzc,π)]−2. When mod((q − s)Δzc,π) → 0, the critical value Mc is very
large. As a result, the transmission can be approximately efficient in this case. From the
above discussion, we infer that the transmission can be efficient when sin(qΔzc) � 1 or
sin(sΔzc) � 1. This conclusion is useful when embedded convective layers are very thin.

When the total number of layers is even (2M), we can consider the case as one of
(2M − 1) layers plus an additional layer. The best scenario for transmission for (2M − 1)
layers is that the incident wave is totally transmitted to the (2M − 1)th layer. Now the wave
is incident from the (2M − 1)th layer to the (2M)th layer, and it can be considered as a
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Figure 5. Transmission ratios in multi-layer structures. For all the cases, N2
m/(2Ω)

2 = 10 and sin2 α = 1,
and the lowermost layer is stable; Δzs = π/|s| for (a– f ) but Δzs = 0.5π/|s| for (g–i). In each case, all
the convective layers have the same thickness Δzc and wavenumber q, and all the stable layers have the
same thickness Δzs and wavenumber s. (a–c) The transmission ratio for a 101-layer structure with Δzc =
(1, 0.35, 0.1)π/|q|. (d– f ) The transmission ratio for a 102-layer structure with Δzc = (1, 0.35, 0.1)π/|q|. (g–i)
Similar to (a–c) but with different Δzs. Wave propagation can only occur in coloured regions. Regions are left
white if wave propagation is prohibited.

two-layer problem. For a two-layer problem, wave transmission is generally not efficient
when the stable layer is strongly stratified (Wei 2020a; Cai et al. 2021).

Figure 5 plots the transmission ratios in a 101-layer structure (a,b,c) and a 102-layer
structure (d,e,f ). In all the cases, we choose N2

m/(2Ω)
2 = 10, sin2 α = 1 and the

lowermost layer is stable. Thus, in all cases, the stable layers are strongly stratified. This
clearly shows that the transmission is enhanced in figure 5(a,c), where the total number
of layers is odd and Δzc and Δzs satisfy the conditions M|q|Δzc = 
π and |s|Δzs = 
′π.
The transmission in figure 5(b) is not enhanced because M|q|Δzc /= 
π. For the case of
102-layer structure (figure 5d, f ), the transmission is not enhanced even when the above
conditions are satisfied. For these two cases, the wave is almost totally transmitted from
the first layer to 101st layer (see figure 5a,c). Wave transmission from the 101st layer to
102nd layer can be viewed as a two-layer problem, and it is generally not efficient when
the stable layer is strongly stratified. Therefore, if the stable layer is strongly stratified, the
enhancement of transmission only takes place when the number of alternating layers is
odd. In other words, enhanced wave transmission only occurs in a multi-layer structure
with stable layers embedded within convective layers, or convective layers embedded
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Figure 6. Two configurations of tunnelling of gravity and inertial waves. (a) Tunnelling of a gravity wave. Both
top and bottom layers are stable. Gravity wave can propagate in the stable layer, but wave cannot propagate in
the convective layer. (b) Tunnelling of an inertial wave. Both top and bottom layers are convective. Gravity
wave can propagate in the convective layer, but wave cannot propagate in the stable layer.

within stable layers. The enhancement of transmission also depends on the thicknesses
of embedded layers Δzs. Figure 5(g–i) presents results of three cases with |s|Δzs = 0.5π
and different values of |q|Δzc. It can be seen that the transmission of the case |q|Δzc = π
is enhanced, while the transmission of the case |q|Δzc = 0.1π is only partially enhanced.

The result obtained in the configuration 1 is also true in the configuration 2. Here, we do
not repeat the discussion on configuration 2. André et al. (2017) have also observed that
wave transmission can be enhanced in a multi-layer structure. They provided a physical
explanation for the enhancement in wave transmission when the incident wave is resonant
with waves in adjacent layers with half-wavelengths equal to the layer depth. Our analysis
verifies this phenomenon from a mathematical point of view.

2.2. Wave tunnelling
In the previous section, we have considered wave transmissions in multiple convective
and radiative (stable) layers when the condition B2 − AC > 0 is satisfied everywhere in
the domain. Here, we consider wave transmissions in two other configurations: (i) wave
solution exists in stable layers but not in convective layers; (ii) wave solution exists in
convective layers but not in stable layers. For the first configuration, a gravity wave can
propagate in stable layers; and for the second configuration, an inertial wave can propagate
in convective layers. Figure 6 shows the plots of a three-layer structure for the two
configurations. In figure 6(a), the convective layer is embedded within two stable layers.
In figure 6(b), the stable layer is embedded within two convective layers. For multiple
layer structures in figure 6, although the wave cannot propagate in the whole domain,
it still can transmit through a tunnelling process (Sutherland & Yewchuk 2004; Mihalas
& Mihalas 2013). In the following, we will discuss the tunnelling of gravity and inertial
waves, respectively.

2.2.1. Tunnelling of gravity waves
For configuration 3 in figure 6(a), the wave can propagate in the stable layer but cannot
propagate in the convective layer. Thus the wave frequency must be in the range σ 2

4 <

σ 2 < σ 2
5 . The width of the frequency domain can be written as

σ 2
5 − σ 2

4 = 1
2

[
(N2

min − f 2 − f̃ 2
s )+

√
(N2

min − f 2 − f̃ 2
s )

2 + 4N2
minf̃ 2

s

]
. (2.60)

For the sake of convenience, we only discuss waves at the northern hemisphere
(θ ∈ [0,π/2]). The result at the southern hemisphere can be inferred from the
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symmetry property. From (2.60), it can be proved that σ 2
5 − σ 2

4 always increases with
θ, sin2 α, and N2

min/(2Ω)
2 (see Appendix B). Therefore, the frequency domain is wider at

the equatorial regions than at the polar regions. Also, it is wider when the meridional
wavenumber dominates the zonal wavenumber, and it is wider when the degree of
stratification is stronger.

Now we discuss the wave tunnelling in configuration 3. We use the same setting as
that discussed in wave propagation. The derivation of wave transmission by tunnelling
is similar to that of wave propagation. The only difference is that now the wave cannot
propagate in the convective layer, and thus qm = iq̂m is a pure imaginary number. Then
the transfer relation from the mth layer to the (m + 1)th layer can be easily obtained by
replacing qm with iq̂m in (2.15).

Replacing qm with iq̂m in (2.15), we can obtain the transfer matrix. In this configuration,
we always have C = f 2 − σ 2 < 0 (since σ 2

4 > f 2). Hence, for an outgoing transmitted
wave, we have bM+1 = 0 (modified phase velocity has an opposite sign to the group
velocity). Again, let us first discuss the transmission ratio for a three-layer structure. In
such a case, we have a1 = T 11a2 and

T 11 = 1
4

e−i(s1z1−s2z′1)
[
(1 + iq̂1

s1
+ s2

s1
+ s2

iq̂1
) e−q̂1Δz′1 + (1 − iq̂1

s1
+ s2

s1
− s2

iq̂1
) eq̂1Δz′1

]
.

(2.61)

Thus the wave transmission ratio is

η =
∣∣∣∣s2

s1

∣∣∣∣ 1
|T 11|2 (2.62)

= 16

[(√
s1

s2
+
√

s2

s1

)2

(e−q̂1Δz′1 + eq̂1Δz′1)2

+
⎛⎝√ q̂2

1
s1s2

−
√

s1s2

q̂2
1

⎞⎠2

(e−q̂1Δz′1 − eq̂1Δz′1)2

⎤⎥⎦
−1

(2.63)

= 16

⎧⎪⎨⎪⎩
(√

s1

s2
+
√

s2

s1

)2

(e−q̂1Δz′1 + eq̂1Δz′1)2

+

⎡⎢⎣
⎛⎝√ q̂2

1
s1s2

+
√

s1s2

q̂2
1

⎞⎠2

− 4

⎤⎥⎦ [(e−q̂1Δz′1 + eq̂1Δz′1)2 − 4]

⎫⎪⎬⎪⎭
−1

. (2.64)

Obviously, η depends on the values of s1/s2, q̂2
1/(s1s2) and |q̂1|Δz′

1. It increases with
s1/s2 when s1/s2 < 1, and decreases with s1/s2 when s1/s2 > 1. Similarly, we see
that it increases with q̂2

1/(s1s2) when q̂2
1/(s1s2) < 1, and decreases with q̂2

1/(s1s2)

when q̂2
1/(s1s2) > 1. It is also noted that it decreases with |q̂1|Δz′

1. Thus, an efficient
transmission ratio can be achieved when s1 → s2, q̂2

1 → s1s2 and |q̂1|Δz′
1 → 0. The

condition q̂2
1 → s1s2 can be relaxed if |q̂1|Δz′

1 → 0. Therefore, efficient transmission
requires that the wavenumbers (s1 and s2) in the stable layers are similar in magnitude,
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Figure 7. Contour plots of transmission ratios for the tunnelling of a gravity wave in a three-layer structure.
(a–c) Transmission ratios when the buoyancy frequency N2

min = 10, and Δz′
1 = (0.1, 1, 10)/|q̂1|. (d– f )

Transmission ratios when the buoyancy frequency N2
min = 1, and Δz′

1 = (0.1, 1, 10)/|q̂1|. (g–i) Transmission
ratios when the buoyancy frequency N2

min = 0.1, and Δz′
1 = (0.1, 1, 10)/|q̂1|. tunnelling of gravity waves can

only occur in coloured regions. Regions are left white if tunnelling of gravity waves is prohibited.

and the thickness of the convective layer (Δz′
1) is much smaller than the e-folding decay

distance (1/|q̂1|). Figure 7 shows contour plots of the transmission ratios for different N2
min

and Δz′
1. In all cases, we set s1 = s2 and sin2 α = 1. First, the figure clearly shows that the

frequency domain increases with N2
min and θ . This is consistent with the previous analysis

on the width of the frequency domain. Second, we see that the transmission ratio is mainly
affected by the thickness of the convective layer Δz′

1. The shallower the convective layer is,
the higher the transmission ratio is. We also note that the transmission ratio is insensitive
to N2

min. The effect of degree of stratification on the transmission ratio is insignificant.
Now we consider the wave transmission in configuration 3 with more layers. Again, we

assume that all of the stable layers have the same degree of stratification (N2
1 ) and thickness

(Δzs). Similarly, we assume that all of the convective layers have the same thickness Δzc.
With these conditions, sm = s and qm = iq̂ are constants in the stable and convective
layers, respectively. When sm = s, qm = iq̂ and Δz′

m = Δzc, the transfer matrix T m,m+1
in (2.15) can be written as

T̂ 11 = 1
4

e−isΔzc

{[
2 + i

(
q̂
s

− s
q̂

)]
e−q̂Δzc +

[
2 − i

(
q̂
s

− s
q̂

)]
eq̂Δzc

}
, (2.65)
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T̂ 12 = 1
4

eis(zm+z′m)
{[(

q̂
s

+ s
q̂

)]
e−q̂Δzc −

[(
q̂
s

+ s
q̂

)]
eq̂Δzc

}
, (2.66)

with T̂ ∗
22 = T̂ 11 and T̂ 21 = T̂∗

12. The eigenvalues of T m,m+1 are the roots of the following
equation:

λ2 − 2Re(T̂ 11)λ+ 1 = 0. (2.67)

Similarly, we can obtain a sufficient condition for efficient wave tunnelling if

Δλ =
[

1
2
(e−q̂Δzc + eq̂Δzc) cos(sΔzc)+ 1

4

(
q̂
s

− s
q̂

)
(e−q̂Δzc − eq̂Δzc) sin(sΔzc)

]2

− 1,

(2.68)
andΔλ ≤ 0. It should be noted thatΔλ ≤ 0 is only a necessary but not sufficient condition
for efficient transmission. If |q̂|Δzc � 0, then Δλ is likely to be greater than zero.
Therefore, the probability is higher at small |q̂|Δzc for efficient transmission to take place.

By using similar technique as mentioned in § 2.1.2, we can find an analytical solution for
the transmission ratio for the special case |s|Δzs = (
′ + 1/2)π (so that |s|Δzs − π/2 =

′π and T̂ 12/ exp(π/2) is a pure imaginary number, and the problem is analogous to that
in § 2.1.2). Here, we only give the result without showing the details. Under the condition
|s|Δzs = (
′ + 1/2)π, the transmission ratio in the multi-layer structure for tunnelling of
a gravity wave is

η =
{

cos2 Mβ + 1
4

[(
q̂
s

− s
q̂

)
(e−q̂Δzc + eq̂Δzc)

]2
[(

q̂
s

+ s
q̂

)2

− (e−q̂Δzc + eq̂Δzc)2
]−1

sin2 Mβ

}−1

, (2.69)

where

β = arg

⎛⎝(e−q̂Δzc + eq̂Δzc)+ i

[(
q̂
s

+ s
q̂

)2

− (e−q̂Δzc + eq̂Δzc)2

]1/2
⎞⎠ , (2.70)

and arg is the argument function operating on complex numbers. Note that sin2 Mβ ∝
(q̂/s + s/q̂)2 − (e−q̂Δzc + eq̂Δzc)2, and there is no singularity problem in (2.69). From
(2.69), we see that efficient tunnelling of gravity waves generally requires |q̂|Δzc to be
small. In the limit |q̂|Δzc → 0, we find η → 1. Thus, enhanced transmission of wave
tunnelling can occur at |q̂|Δzc → 0 and |s|Δzs = (
′ + 1/2)π. We call this phenomenon
‘resonant tunnelling’.

Figure 8 shows contour plots of the transmission ratios for different N2
min in a 101-layer

structure (M = 50). In this calculation, all of the stable layers are assumed to have the same
degree of stratification (N2

min) and thickness (Δzs), and the convective layers are assumed
to have the same thickness (Δzc). The analysis of the three-layer structure shows that
efficient transmission only occurs when Δzc is small. The mathematical analysis on the
eigenvalues of the transfer matrices also indicates that efficient transmission is more likely
to take place when Δzc is small. For this reason, we set Δzc = 0.1/|q̂| for all the computed
cases. From the figure, we see that the transmission ratio is insensitive to the degree
of stratification. Instead, the thickness of Δzs is more important. In our calculations,

915 A125-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.178


T. Cai, C. Yu and X. Wei

(e)

(b)(a) (c)

(d ) ( f )

2

0.2 0.4 0.6 0.8 1.0

4

6

σ
2
/(

2
Ω

)2 8

10
1.0

0.8

0.6

0.4

0.2

0

N2
min = 10 & �zs = 0.5π/ |s| & �zc = 0.1/|q̂|

1.2

1.0
0.20 0.4 0.6 0.8 1.0

1.4

1.6

1.8

2.0 1.0

0.8

0.6

0.4

0.2

0

N2
min = 1 & �zs = 0.5π/ |s| & �zc = 0.1/|q̂|

1.02

1.00
0 0.5 1.0

1.04

1.06

1.08

1.10 1.0

0.8

0.6

0.4

0.2

0

N2
min = 0.1 & �zs = 0.5π/|s| & �zc = 0.1/|q̂|

2

0.20 0.4 0.6 0.8 1.0

4

6

σ
2
/(

2
Ω

)2 8

10
1.0

0.8

0.6

0.4

0.2

0

N2
min = 10 & �zs = 1π/ |s| & �zc = 0.1/|q̂|

1.2

1.0
0.20 0.4 0.6 0.8 1.0

1.4

1.6

1.8

2.0 1.0

0.8

0.6

0.4

0.2

0

N2
min = 1 & �zs = 1π/ |s| & �zc = 0.1/|q̂|

1.02

1.00
0 0.5 1.0

1.04

1.06

1.08

1.10 1.0

0.8

0.6

0.4

0.2

0

N2
min = 0.1 & �zs = 1π/|s| & �zc = 0.1/|q̂|

cos2θ cos2θ cos2θ

Figure 8. Contour plots of transmission ratios for the tunnelling of a gravity wave in a multi-layer structure.
The buoyancy frequency and thicknesses of the convective layers are all the same with the values of N2

min and
Δzc, and the thicknesses of the stable layers are all the same with the value of Δzs. (a–c) Transmission ratios
when the buoyancy frequency N2

min = 10, 1, 0.1,Δzc = 0.1/|q̂|, and Δzs = 0.5π/|ŝ|. (d– f ) Transmission
ratios when the buoyancy frequency N2

min = 10, 1, 0.1,Δzc = 0.1/|q̂|, and Δzs = π/|ŝ|. Tunnelling of gravity
waves can only occur in coloured regions. Regions are left white if tunnelling of gravity waves is prohibited.

we find that the transmission is efficient when Δzs = (
+ 0.5)π/|s|, and inefficient
when zs = 
π/|s|, where 
 is an integer. Therefore, the tunnelling of a gravity wave is
efficient when each convective layer Δzc is much shallower than the e-folding decay
distance 1/|q̂| and the thickness of each stable layer is close to a multiple-and-a-half of
the half-wavelength.

2.2.2. Tunnelling of inertial waves
In this section, we discuss the tunnelling of inertial waves. Similarly, we consider a (2M +
1)-layer structure with alternating M + 1 convective layers and M stable layers. The plot
is shown for configuration 4 in figure 6(b). For this configuration, an inertial wave can
propagate in convective layers but no wave could propagate in stable layers, and thus the
frequency range is σ 2

1 < σ 2 < σ 2
2 . The width of the frequency domain is

σ 2
2 − σ 2

1 = 1
2

[
( f 2 + f̃ 2

s + N2
min)−

√
( f 2 + f̃ 2

s + N2
min)

2 − 4N2
minf 2

]
. (2.71)

Analysis shows that σ 2
2 − σ 2

1 decreases with θ and sin2 α, and increases with N2
min/(2Ω)

2

(see Appendix C). Therefore, the frequency domain is wider at polar regions than
equatorial regions. Also it is wider when the zonal wavenumber dominates the meridional
wavenumber, and it is wider when the degree of stratification is stronger.

Now, we discuss the wave transmission of the tunnelling of an inertial wave. Again,
we first consider a three-layer structure. It is not difficult to obtain the transmission
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Figure 9. Contour plots of transmission ratios for the tunnelling of an inertial wave: (a,b,c) are for the
three-layer structure; and (d–i) are for the multi-layer structures. (a–c) Transmission ratios for N2

min = 10
and Δz′

1 = (0.1, 1, 10)/|ŝ| in a three-layer structure. (d–f ) Transmission ratios for N2
min = (10, 1, 0.1),Δzc =

0.5π/|q̂| and Δzs = 0.1/|s| in a 101-layer structure. (g–i) Transmission ratios for N2
min = (10, 1, 0.1),Δzc =

π/|q̂| and Δzs = 0.1/|s| in a 101-layer structure. Tunnelling of inertial waves can only occur in coloured
regions. Regions are left white if Tunnelling of gravity waves is prohibited.

ratio

η = 16

⎧⎨⎩4(e−ŝ1Δz′1 + eŝ1Δz′1)2 +
⎡⎣(√ ŝ2

1

q2
1

+
√

q2
1

ŝ2
1

)2

− 4

⎤⎦[(e−ŝ1Δz′1 + eŝ1Δz′1)2 − 4
]⎫⎬⎭

−1

.

(2.72)

Again, we can show that efficient transmission requires that the thickness of the stable
layer is much smaller than the e-folding decay distance 1/|ŝ1|. Figure 9(a–c) shows the
transmission ratios in the three-layer structure when the stable layer is strongly stratified.
It clearly shows that the transmission is only efficient when ŝ1Δz′

1 is small.
Now we discuss the tunnelling of an inertial wave in a structure with more layers.

Similarly, we can use the recursive relations to calculate the transmission ratio. Here,
we only give the result without showing details. Under the condition |q|Δzc = (
′ +
1/2)π, we find the transmission ratio of the tunnelling of inertial waves in a multi-layer
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structure is

η =
{

cos2 Mβ + 1
4

[(
ŝ
q

− q
ŝ

)
(e−ŝΔzs + eŝΔzs)

]2
[(

ŝ
q

+ q
ŝ

)2

−(e−ŝΔzs + eŝΔzs)2
]−1

sin2 Mβ

}−1

, (2.73)

where

β = arg

⎛⎝(e−ŝΔzs + eŝΔzs)+ i

[(
ŝ
q

+ q
ŝ

)2

− (e−ŝΔzs + eŝΔzs)2

]1/2
⎞⎠ . (2.74)

Figure 9(d–i) shows the transmission ratios in a 101-layer structure. Again, we see that
the efficiency of transmission mainly depends on the thicknesses of the convective and
stable layers. For the transmission to be efficient, it requires that the thickness of stable
layer (Δzs) is much smaller than the e-folding decay distance 1/|ŝ|, and the thickness of
each convective layer is close to a multiple-and-a-half of the half-wavelength. This result
is similar to that obtained in the tunnelling of gravity waves.

3. Non-traditional effects

Sutherland (2016) has discussed wave transmission in a multi-layer structure in traditional
approximation. It is necessary to investigate the non-traditional effects on wave
transmission in the multi-layer structure. Under the traditional approximation (f 2

s = 0),
the critical frequencies can be written as

σ 2
1 = 0, σ 2

4 = f 2, (3.1)

σ 2
2 = min( f 2,N2

min), σ 2
5 = max( f 2,N2

min), (3.2)

σ 2
3 = min( f 2,N2

max), σ 2
6 = max( f 2,N2

max). (3.3)

If stable layers are strongly stratified with f 2 < N2
min, then σ 2

2 = σ 2
3 = σ 2

4 = f 2, σ 2
5 =

N2
min and σ 2

6 = N2
max. In such a case, a wave cannot propagate in both convective and

stable layers, while tunnelling of gravity waves occurs at f 2 < σ 2 < N2
min and tunnelling

of inertial waves occurs at 0 < σ 2 < f 2 (see the upper panel of figure 10).
If stable layers are weakly stratified with f 2 > N2

max, then σ 2
4 = σ 2

5 = σ 2
6 = f 2, σ 2

2 =
N2

min and σ 2
3 = N2

max. In such a case, tunnelling of gravity waves cannot occur, while a
wave can propagate in both convective and stable layers at N2

max < σ 2 < f 2, and tunnelling
of inertial waves occurs at 0 < σ 2 < N2

min (see the lower panel of figure 10).
If the traditional approximation is made, wave propagation only occurs in weakly

stratified flow, tunnelling of gravity waves only occurs in strongly stratified flow and
tunnelling of inertial waves can occur in both strongly and weakly stratified flows.
When non-traditional effects are included, however, no similar restriction is obtained
in wave propagation or tunnelling. The non-traditional effects on wave propagation
can already be seen by comparing figure 3(a,d,g) with figure 3(b,c,e,f,h,i). In the
traditional approximation, f̃s is set to zero and this can be achieved by setting sinα = 0.
Figure 3(a,d,g) shows transmission ratios with small f̃s, which are similar to situations with
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f 2 < N 2
min (strongly stratified)

f 2 > N 2
max (weakly stratified)

Inertial wave

Inertial wave

Convective layers

Convective layers

Stable layers

Stable layers

Gravity wave

Gravity wave

σ1
2 = 0

σ1
2 = 0

σ2
2,3,4 = f 2

σ2
4,5,6 = f 2

σ2
5 = N 2

min

σ2
2 = N 2

min
σ2

3 = N 2
max

σ2
6 = N 2

max

Figure 10. Plots of wave propagation in multiple convectively stable and unstable layers. Wave frequency
ranges are shown above and below the middle arrow for convective and stable layers, respectively. Wave
propagation occurs in the green region, tunnelling of inertial wave occurs in the blue region and tunnelling
of gravity wave occurs in the purple region.

traditional approximation. If f̃s = 0, the coloured regions in figure 3(a,d) vanish because
wave propagation is prohibited when N2

max ≥ f 2; and the coloured region in figure 3(c) will
shrink into a triangle region below the diagonal line σ 2/(2Ω)2 = cos2 θ (see figure 11a).
For weakly stratified flow (N2

max < f 2), only sub-inertial waves (σ 2 < f 2) can propagate
with the traditional approximation. However, super-inertial waves (σ 2 > f 2) can propagate
if non-traditional effects are taken into account.

With the traditional approximation, tunnelling of gravity waves can only occur when
stable layers are strongly stratified (N2

min > f 2), and the wave frequency is smaller than
buoyancy frequency (σ 2 < N2

min). When non-traditional effects are present, we see from
figure 8 that tunnelling of gravity waves can occur when stable layers are weakly stratified.
Also, tunnelling of gravity waves is possible for super-buoyancy-frequency waves.

For tunnelling of inertial waves, comparing figure 11(c–e) with figure 9(d– f ), we see
that frequency ranges are overestimated in the traditional approximation. This is especially
true when stable layers are weakly stratified. From figures 11(c) and 9(d), we also see that
the traditional approximation has a moderate effect on the transmission ratio in the small
frequency range.

4. Summary

In this paper, we have investigated wave transmissions in rotating stars or planets with
multiple radiative and convective zones. Two situations have been considered: wave
propagation and wave tunnelling. For wave propagation, waves could propagate in both
convective and stable layers. Previous studies on wave propagation in a two-layer structure
with a step function of stratification (Wei 2020a; Cai et al. 2021) have shown that
wave transmission is generally not efficient when the stable layer is strongly stratified
(this is a typical behaviour despite the fact that transmission can be efficient under certain
conditions, such as at the critical latitude). In this work, however, we find that the wave
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(a) �zs = 0.5π/ |s| & �zc = 1π/|q| N2

min = 10 & �zc = 0.1/ |q̂| & �zs = 0.5π/|s|

N2
min = 10 & �zc = 0.5π/ |q̂| & �zs = 0.1/|s| N2

min = 1 & �zc = 0.5π/ |q̂| & �zs = 0.1/|s|
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Figure 11. Wave transmissions with the traditional approximation. (a) Transmission for wave propagation. The
setting is identical to that of figure 3(g) except that f̃ 2

s = 0 here. (b) Tunnelling of gravity waves. The setting is
the same as that in figure 8(a) except that f̃ 2

s = 0 here. (c–e) Tunnelling of inertial waves. The settings are the
same as those in figure 9(d– f ) except that f̃ 2

s = 0 here. Coloured and white regions have similar meanings as
those mentioned in previous contour plots.

transmission can be enhanced in a multiple-layer structure even though the stable layers
are strongly stratified. We call this phenomenon ‘enhanced wave transmission’. Enhanced
wave transmission can only occur when the top and bottom layers are both convective
layers or stable layers. We have the following major findings on wave propagation:
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Enhancement of wave transmissions

(i) In a three-layer structure, transmission can be enhanced when the top and bottom
layers (clamping layers) have a similar buoyancy frequency, and the thickness of the
middle layer is close to a multiple of the half-wavelength of the propagating wave
inside this layer.

(ii) Enhancement of transmission can also take place in a multi-layer structure under
similar conditions when clamping layers have similar properties, the thickness of
each clamping layer is close to a multiple of the half-wavelength of the propagating
wave and the total thickness of each embedded layer is close to a multiple of
the half-wavelength of the propagating wave. Efficient transmission can take place
even when stable layers are strongly stratified. We call this phenomenon ‘resonant
propagation’.

For wave tunnelling, there are two cases: the tunnelling of a gravity wave, and the
tunnelling of an inertial wave. In the first case, waves can propagate in stable layers but
are evanescent in convective layers. In the second case, on the other hand, waves can
propagate in convective layers but are evanescent in stable layers. We have the following
major findings on wavetunnelling:

(i) The tunnelling of a gravity wave can be efficient when stable layers have similar
buoyancy frequencies, the thickness of each embedded convective layer is much
smaller than the corresponding e-folding decay distance and the thickness of each
stable layer is close to a multiple-and-a-half of the half-wavelength. The latter
condition is unnecessary if the structure is three layered. We call this ‘resonant
tunnelling of gravity waves’.

(ii) The tunnelling of an inertial wave can be efficient when stable layers have similar
buoyancy frequencies, the thickness of each stable layer is much smaller than the
corresponding e-folding decay distance and each convective layer thickness is close
to a multiple-and-a-half of the half-wavelength. The latter condition is unnecessary
if the structure is three layered. We call this ‘resonant tunnelling of inertial waves’.

(iii) The efficiency of the tunnelling mainly depends on the layer thicknesses, the
wavelengths and the e-folding decay distances.

It would be interesting to investigate the tunnelling of gravity waves in a non-rotating
fluid. This is a special case with f = 0 and f̃s = 0. In such a case, we can easily obtain
that q̂2

m = k2 and s2
m = (N2

m/σ
2 − 1)k2, where σ 2 < N2

m. Then the conclusion (i) can be
directly applied to this special case.

Table 1 summarizes conditions for efficient transmissions of wave propagation and
tunnelling when all stable layers have similar buoyancy frequencies. For tunnelling waves,
clamping layers should have similar properties. Table 1 only lists the conditions in such
structures. The first column of table 1 lists four types of wave transmission: propagation
with convective layers embedded, propagation with stable layers embedded, tunnelling of
gravity waves and tunnelling of inertial waves. The second column gives the frequency
ranges. The third and fourth columns show the conditions for efficient transmission. From
the table, we see that the conditions for efficient wave transmission are significantly
different among tunnelling and propagative waves.

Our findings have interesting implications for gaseous planets. In a multi-layer structure,
Belyaev et al. (2015) found that the g-mode with vertical wavelengths smaller than
the layer thickness are evanescent in gaseous planets. This is true for tunnelling of
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σ 2 Δzc Δzs

Propagation with CLs embedded in SLs (σ 2
3 , σ

2
4 ) MΔzc ∼ 
λc/2 Δzs ∼ 
′λs/2

Propagation with SLs embedded in CLs (σ 2
3 , σ

2
4 ) Δzc ∼ 
′λc/2 MΔzs ∼ 
λs/2

tunnelling of GWs (σ 2
4 , σ

2
5 ) Δzc � λc Δzs ∼ (
+ 1/2)λs/2

tunnelling of IWs (σ 2
1 , σ

2
2 ) Δzc ∼ (
+ 1/2)λc/2 Δzs � λs

Table 1. Summary on efficient wave transmissions in a multi-layer structure.
Note: λc is the wavelength or decay distance in the convective layer; λs is the wavelength or decay distance in

the stable layer; Δzc and Δzs are the thicknesses of the convective and stable layers, respectively; M is the
number of embedded layers; 
 and 
′ are non-negative integers. IW and GW denote inertial and gravity waves,

respectively. CLs and SLs denote convective and stable layers, respectively. Here, we only consider the
situation that all stable layers have similar buoyancy frequencies, and clamping layers have similar properties.

g-mode waves. However, if considering wave propagation, g-mode waves can transmit
efficiently even when the wavelength is smaller than the layer thickness. André et al.
(2017) have made promising progress in the study of wave transmission in multi-layer
structures, which reveals that wave transmission can be enhanced when the incident wave
is resonant with waves in adjacent layers with half-wavelengths equal to the layer depth.
Their result is consistent with our derivations. By deriving a group of exact solutions
for wave transmission coefficients in multi-layer structures, we provide a mathematical
explanation for why the transmission can be enhanced in a multi-layer structure. In
addition, our analysis shows that wave transmission can also be enhanced in tunnelling
of gravity waves or inertial waves. Conditions on ‘resonant propagation’ and ‘resonant
tunnelling’ have been provided. Pontin et al. (2020) have conducted interesting research
on wave propagation in a multi-layer structure in a non-rotating sphere, and found that
wave transmissions are efficient for very large wavelength waves. This already shares some
similarities with our analysis on the tunnelling of gravity waves in the f -plane. It has
to be emphasized that our model is derived under the assumptions in the local f -plane.
Application of the results to a global sphere should be performed with caution for the
following reasons. First, only short wavelengths are considered in the local model. Wave
transmissions of global scale waves have not been discussed. Second, the geometrical
effect has not been taken into account. This is important for waves propagating in a
global sphere. For example, super-inertial waves propagating from the equator to the
poles may change to sub-inertial waves across critical colatitudes, where waves can also
be transmitted or reflected in the meridional direction (Rieutord & Valdettaro 1997;
Rieutord, Georgeot & Valdettaro 2001; Gerkema & Shrira 2005a; Shrira & Townsend
2010). Extending our work to a full spherical geometry will be a direction of improvement
in the future.

Our findings may also have implications for the Earth’s oceans, and in stars. It has
been observed that there exists a multi-layer structure in theArctic Ocean, with thin
stratified layers separated by mixed layers created by double diffusion (Rainville & Winsor
2008). By performing a joint theoretical and experimental study, Ghaemsaidi et al. (2016)
revealed that the Arctic Ocean has a rich transmission behaviour. With their data, we
can have a simple estimation on wave transmission in the Arctic Ocean by using our
model. For the structure of the Arctic Ocean presented in Ghaemsaidi et al. (2016),
N in stratified layers is approximately 1.6 × 10−3 − 3.2 × 10−3 s−1; the inertial frequency
f is approximately 1.4 × 10−4 s−1; the thicknesses of embedded convective layers are
of O(1); the total depth of the multi-layer structure is approximately 30 m, which is

915 A125-26

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.178


Enhancement of wave transmissions

approximately separated into 14 stable layers. Since N � f , gravity waves are expected
to transport across the multi-layer structure by tunnelling. From table 1, we see that
waves with wavelength λs ∼ 8.6 m can be transmitted efficiently by resonant tunnelling.
Near-inertial waves with wavelengths 10–50 m can also transmit efficiently. This has been
verified in Ghaemsaidi et al. (2016). Double diffusion also occurs in stars. Our model
may also provide some insights into wave transmission in stars. The interior structures are
different for different types of stars. For example, as studied in Cai (2014), late-type stars
have a convectively stable–unstable–stable three-layer structure; A–F type stars generally
have complicated internal structures with two separated convectively unstable layers (for
example, some of them have a unstable–stable–unstable three-layer structure, and some
of them have a stable–unstable–stable–unstable–stable five-layer structure), and massive
stars have a unstable–stable two-layer structure. For waves excited at the innermost layer,
resonant wave propagation from the innermost to the outermost layers can probably take
place in late-type and A–F stars since the top and bottom layers are both convectively
stable or unstable. However, if waves are excited in the second innermost layer, enhanced
wave transmission is unlikely to occur from this layer to the outermost layer, because the
bottom and top layers of the interested region are different. For massive stars, enhanced
wave transmission is unlikely to take place because the properties of the top and bottom
layers are different. We have to mention that the stratified structure specified in our
model is ideal. In our Boussinesq model, density variation and viscous effects have been
ignored. In real stars, however, density variation and viscous effects may be important.
In addition, our model assumes that the buoyancy frequency changes abruptly across
interfaces between convective and stable layers. For real stars, the change is likely to
be smoother. Previous investigations of wave transmission in two-layer structures with
smoothly varying buoyancy frequencies have shown significant differences. Models with
more realistic settings are desirable in the future.
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Appendix A

Equations (2.11)–(2.14) can be written in a matrix form

Sm

[
am
bm

]
= ΛmQm

[
cm
dm

]
, (A1)
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Λ̃mQ̃m

[
cm
dm

]
= S̃m

[
am+1
bm+1

]
, (A2)

where

Sm =
[

e−ismzm eismzm

−e−ismzm eismzm

]
, Qm =

[
e−iqmzm eiqmzm

−e−iqmzm eiqmzm

]
,

Λm =
[

1 0
0 qm/sm

]
, (A3)

S̃m =
[

e−ism+1z′m eism+1z′m

−e−ism+1z′m eism+1z′m

]
, Q̃m =

[
e−iqmz′m eiqmz′m

−e−iqmz′m eiqmz′m

]
,

Λ̃m =
[

1 0
0 qm/sm+1

]
. (A4)

Synthesizing these equations, we obtain the recursive relation[
am
bm

]
= T m,m+1

[
am+1
bm+1

]
, (A5)

where the transfer matrix

T m,m+1 = S−1
m ΛmQmQ̃−1

m Λ̃−1
m S̃m =

[
T̂ 11 T̂ 12
T̂ 21 T̂ 22

]
, (A6)

and

T̂ 11 = 1
4

ei(smzm−sm+1z′m)
[(

1 + qm

sm
+ sm+1

sm
+ sm+1

qm

)
eiqmΔz′m

+
(

1 − qm

sm
+ sm+1

sm
− sm+1

qm

)
e−iqmΔz′m

]
, (A7)

T̂ 12 = 1
4

ei(smzm+sm+1z′m)
[(

1 + qm

sm
− sm+1

sm
− sm+1

qm

)
eiqmΔz′m

+
(

1 − qm

sm
− sm+1

sm
+ sm+1

qm

)
e−iqmΔz′m

]
, (A8)

with T̂ 21 = T̂ ∗
12 and T̂ 22 = T̂∗

11.

Appendix B

For the tunnelling of a gravity wave, the width of the frequency domain is

σ 2
5 − σ 2

4 = 1
2

[
(N2

min − f 2 − f̃ 2
s )+

√
(N2

min − f 2 − f̃ 2
s )

2 + 4N2
min f̃ 2

s

]
. (B1)

The monotonicity of the frequency width is equivalent to that of the function

G(θ, μ1, μ2) = G1(θ, μ1, μ2)+
√

G2
1(θ, μ1, μ2)+ 4G2(θ, μ1, μ2), (B2)
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where G1(θ, μ1, μ2) = μ2 − cos2 θ − μ1 sin2 θ,G2(θ, μ1, μ2) = μ1μ2 sin2 θ, μ1 = sin2

α and μ2 = N2
min/(2Ω)

2. To analyse the monotonicity of G(θ, μ1, μ2) on θ , we compute

Gθ = G1θ + G1G1θ + 2G2θ√
G2

1 + 4G2

. (B3)

Because G1θ = sin 2θ(1 − μ1) > 0 and G2θ = μ1μ2 sin 2θ > 0, we have

Gθ =

(√
G2

1 + 4G2 + G1

)
G1θ + 2G2θ√

G2
1 + 4G2

≥ 0. (B4)

Therefore, the frequency width always increases with θ .
To analyse the monotonicity of G on μ1, we compute

Gμ1 = G1μ1 + G1G1μ1 + 2G2μ1√
G2

1 + 4G2

(B5)

= − sin2 θ +
√

G2
1 + 4G2 + 4μ2 cos2 θ√

G2
1 + 4G2

sin2 θ ≥ 0. (B6)

Therefore, the frequency width always increases with μ1.
To analyse the monotonicity of G on μ2, we compute

Gμ2 = G1μ2 + G1G1μ2 + 2G2μ2√
G2

1 + 4G2

(B7)

=
√

G2
1 + 4G2 + G1 + 2μ1 sin2 θ√

G2
1 + 4G2

> 0. (B8)

Therefore, the frequency width always increases with μ2.

Appendix C

For the tunnelling of an inertial wave, the width of the frequency domain is

σ 2
2 − σ 2

1 = 1
2

[
( f 2 + f̃ 2

s + N2
min)−

√
( f 2 + f̃ 2

s + N2
min)

2 − 4N2
min f 2

]
. (C1)

The monotonicity of the frequency width is equivalent to that of the function

H(θ, μ1, μ2) = H1(θ, μ1, μ2)−
√

H2
1(θ, μ1, μ2)− 4H2(θ, μ1, μ2), (C2)

where H1(θ, μ1, μ2) = μ2 + cos2 θ + μ1 sin2 θ,H2(θ, μ1, μ2) = μ2 cos2 θ, μ1 = sin2 α
and μ2 = N2

min/(2Ω)
2. The derivative of H(θ, μ1, μ2) to θ is

Hθ = H1θ − H1H1θ − 2H2θ√
H2

1 − 4H2

. (C3)
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Since H1θ = (μ1 − 1) sin 2θ and H2θ = −μ2 sin 2θ , we have

Hθ =

(√
H2

1 − 4H2 − H1

)
H1θ + 2H2θ√

H2
1 − 4H2

≤ 0. (C4)

Therefore, the width of the frequency domain decreases with θ . The derivative of
H(θ, μ1, μ2) to μ1 is

Hμ1 = H1μ1 − H1H1μ1 − 2H2μ1√
H2

1 − 4H2

. (C5)

Since H1μ1 = sin2 θ and H2μ1 = 0, we have

Hμ1 =

(√
H2

1 − 4H2 − H1

)
sin2 θ√

H2
1 − 4H2

≤ 0. (C6)

Therefore, the width of the frequency domain decreases with μ1. The derivative of
H(θ, μ1, μ2) to μ2 is

Hμ2 = H1μ2 − H1H1μ2 − 2H2μ2√
H2

1 − 4H2

. (C7)

Since H1μ2 = 1 and H2μ2 = cos2 θ , we have

Hμ2 =
√

H2
1 − 4H2 − H1 + 2 cos2 θ√

H2
1 − 4H2

. (C8)

It is found that
H2

1 − 4H2 − (H1 − 2 cos2 θ)2 = μ1 sin2 2θ ≥ 0, (C9)

then we have
Hμ2 ≥ 0. (C10)

Thus, the width of the frequency domain increases with μ2.
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