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Abstract. In this paper, we give a family of rational maps whose Julia sets are Cantor
circles and show that every rational map whose Julia set is a Cantor set of circles must
be topologically conjugate to one map in this family on their corresponding Julia sets.
In particular, we give the specific expressions of some rational maps whose Julia sets
are Cantor circles, but they are not topologically conjugate to any McMullen maps on
their Julia sets. Moreover, some non-hyperbolic rational maps whose Julia sets are Cantor
circles are also constructed.

1. Introduction
The study of the topological properties of the Julia sets of rational maps is a central problem
in complex dynamics. For each polynomial of degree at least two with a disconnected Julia
set, it was proved in [QY] that all but countably many components of the Julia set are single
points. For rational maps, the Julia sets may exhibit more complex topological structures.
Pilgrim and Tan proved that if the Julia set of a hyperbolic (more generally, geometrically
finite) rational map is disconnected, then, with the possible exception of finitely many
periodic components and their countable collection of preimages, every Julia component
is either a point or a Jordan curve [PT, Theorem 1.2]. In this paper, we will consider one
class of rational maps whose Julia sets possess simple topological structure: each Julia
component is a Jordan curve.

A subset of the Riemann sphere C is called a Cantor set of circles (sometimes Cantor
circles in short) if it consists of uncountably many closed Jordan curves homeomorphic to
C × S1, where C is the middle third Cantor set and S1 is the unit circle. The first example of
a rational map whose Julia set is a Cantor set of circles was discovered by McMullen (see
[Mc, §7]). He showed that if f (z)= z2

+ λ/z3 and λ is small enough, then the Julia set
of f is a Cantor set of circles. Later, many authors have focused on the following family,
which is commonly referred as the McMullen maps:

gη(z)= zk
+ η/zl , (1.1)
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where k, l ≥ 2 and η ∈ C\{0} (see [DLU, St, QWY] and the references therein). These
special rational maps can be viewed as a perturbation of the simple polynomial g0(z)= zk

if η is small. It is known that when 1/k + 1/ l < 1, there exists a punched neighborhood M
centered at the origin in parameter space, which is called the McMullen domain, such that
when η ∈M, then the Julia set of gη is a Cantor set of circles (see [Mc, §7] for k = 2, l = 3
and [DLU, §3] for the general case).

The following three questions arise naturally. (1) Besides McMullen maps, do there
exist any other rational maps whose Julia sets are Cantor circles? (2) If the answer to
the first question is yes, what do they look like? Or, in other words, can we find specific
expressions for them? (3) Can we find all rational maps whose Julia sets are Cantor circles
in some sense? This paper will give affirmative answers to these questions.

By quasiconformal surgery, we can obtain many new rational maps after perturbing
the immediate super-attracting basin centered at ∞ of gη into a geometric one. Fix
one of them, then this map is not topologically conjugate to gη on the whole C. But
they are topologically conjugate to each other on their corresponding Julia sets. In
particular, hc,η(z)= (1/z) ◦ (zk

+ c) ◦ (1/z)+ (η/zl) is an example, where 1/k + 1/ l <
1 and c, η ∈ C\{0} are both small enough. However, these types of rational maps can also
be regarded as McMullen maps essentially, which are not what we want to find since they
can be obtained by doing a surgery only on the Fatou sets of the genuine McMullen maps.
So it will be very interesting to find other types of rational maps with Cantor circles Julia
sets which are not topologically conjugate to any McMullen maps on their corresponding
Julia sets.

The existence of types of rational maps ‘essentially’ different from McMullen maps was
known previously (see [HP, §§1,2]). Here, ‘essentially’ means there exists no topological
conjugacy between the Julia sets of McMullen maps and the rational maps whose Julia sets
are Cantor circles. In this paper, we will give specific expressions for these types of rational
maps, not only including the cases discussed in [HP], but also covering all the rational
maps whose Julia sets are Cantor circles ‘essentially’ (see Theorem 1.2). Let p ∈ {0, 1},
n ≥ 2 be an integer and d1, . . . , dn be n positive integers such that

∑n
i=1(1/di ) < 1. We

define

f p,d1,...,dn (z)= z(−1)n−pd1

n−1∏
i=1

(zdi+di+1 − adi+di+1
i )(−1)n−i−p

, (1.2)

where a1, . . . , an−1 are n − 1 small complex numbers satisfying 0< |a1|< · · ·<

|an−1|< 1. In particular, if n = 2, then f1,d1,d2(z)= zd2 − ad1+d2
1 /zd1 is the McMullen

map that has been well studied by many authors. Moreover, f0,d1,d2(z)= zd1/(zd1+d2 −

ad1+d2
1 ) is conformally conjugate to the McMullen map z 7→ zd1 + η/zd2 for some η 6= 0.

The degrees of f p,d1,...,dn at 0 and ∞ are d1 and dn respectively and deg( f p,d1,...,dn )=∑n
i=1 di . For each element in the family (1.2), it is easy to check that 0 and∞ belong to

the Fatou set of f p,d1,...,dn . Let D0 and D∞ be the Fatou components containing 0 and∞
respectively. There are four cases:
(1) if p = 1 and n is odd, then f (D0)= D0 and f (D∞)= D∞;
(2) if p = 1 and n is even, then f (D0)= D∞ and f (D∞)= D∞;
(3) if p = 0 and n is odd, then f (D0)= D∞ and f (D∞)= D0;
(4) if p = 0 and n is even, then f (D0)= D0 and f (D∞)= D0.
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FIGURE 1. The Julia set of f1,5,5,5,5 (left picture), which is not topologically conjugate to that of the McMullen
map gη(z)= z3

+ 0.001/z3 (right picture). The two Julia sets are both Cantor circles.

Firstly we will find suitable parameters ai in (1.2), where 1≤ i ≤ n − 1, such the Julia
set of each f p,d1,...,dn in the four cases stated above is a Cantor set of circles.

THEOREM 1.1. For each given p ∈ {0, 1}, n ≥ 2 and d1, . . . , dn satisfying
∑n

i=1(1/di ) <

1, there exist suitable parameters ai , where 1≤ i ≤ n − 1, such that the Julia set of
f p,d1,...,dn is a Cantor set of circles.

The specific value ranges of ai are given in §2, where 1≤ i ≤ n − 1 (see (2.1), (2.2)
and Theorem 2.5). These rational maps can be seen as the perturbations of zdn or z−dn

(according to whether p = 1 or 0) since each ai can be arbitrarily small (see Theorem 2.5).
Moreover, it will be shown that if n ≥ 3, then each f p,d1,...,dn is not topologically conjugate
to any McMullen maps on their corresponding Julia sets (see Theorem 2.7). This means
that we have found the specific expressions of rational maps whose Julia sets are Cantor
circles which are ‘essentially’ different from McMullen maps.

For example, let p = 1, n = 4, d1 = d2 = d3 = d4 = 5 and define

f1,5,5,5,5(z)=
(z10
− a10

1 )(z
10
− a10

3 )

z5(z10 − a10
2 )

, (1.3)

where a1 = 0.000 25, a2 = 0.005 and a3 = 0.1. By a straightforward calculation or using
Theorem 2.5 and Remark 2.6, one can show that the Julia set of f1,5,5,5,5 is a Cantor set
of circles (see Figure 1). The dynamics on the set of Julia components of f1,5,5,5,5 is
conjugate to the one-sided shift on four symbols 64 := {0, 1, 2, 3}N while the set of Julia
components of gη is conjugate to the one-sided shift on only two symbols 62 := {0, 1}N.
This means that f1,5,5,5,5 cannot be topologically conjugate to gη on their corresponding
Julia sets.

Note that if the Julia set J ( f ) of a rational map f is a Cantor set of circles, then there
exist no critical points in J ( f ) since each Julia component is a Jordan closed curve (see
Lemma 3.1). This means that every periodic Fatou component of f must be attracting or
parabolic. In fact, we have the following theorem.
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THEOREM 1.2. Let f be a rational map whose Julia set is a Cantor set of circles. Then
there exist p ∈ {0, 1}, positive integers n ≥ 2, and d1, . . . , dn satisfying

∑n
i=1(1/di ) < 1,

such that f is topologically conjugate to f p,d1,...,dn on their corresponding Julia sets for
suitable parameters ai , where 1≤ i ≤ n − 1.

Since the dynamics on the Fatou set can be perturbed freely, it follows from Theorem 1.2
that we have found ‘all’ the possible rational maps whose Julia sets are Cantor circles. A
rational map is hyperbolic if all critical points are attracted by attracting periodic orbits.
For the regularity of the Julia components of f p,d1,...,dn , it can be shown that each Julia
component of f p,d1,...,dn is a quasicircle if f p,d1,...,dn is hyperbolic (see Corollary 3.3).

If η is small enough, then gη is hyperbolic (see [DLU]). Now we construct some non-
hyperbolic rational maps whose Julia sets are Cantor circles. Let m, n ≥ 2 be two positive
integers satisfying 1/m + 1/n < 1 and λ ∈ C\{0}, we define

Pλ(z)=
(1/n)[(1+ z)n − 1] + λm+nzm+n

1− λm+nzm+n . (1.4)

It is straightforward to verify that zero is a parabolic fixed point of Pλ with multiplier one.
We then have the following theorem.

THEOREM 1.3. If 0< |λ| ≤ 1/(210mn3), then Pλ is non-hyperbolic and its Julia set is a
Cantor set of circles.

Inspired by Theorem 1.1, we can construct more non-hyperbolic rational maps whose
Julia sets are Cantor circles. For simplicity, for each n ≥ 2, we only consider the case
di = n + 1 for every 1≤ i ≤ n. For every n ≥ 2, we define

Pn(z)= An
(n + 1)z(−1)n+1(n+1)

nzn+1 + 1

n−1∏
i=1

(z2n+2
− b2n+2

i )(−1)i−1
+ Bn, (1.5)

where b1, . . . , bn−1 are n − 1 small complex numbers satisfying 1> |b1|> · · ·>

|bn−1|> 0 and

An =
1

1+ (2n + 2)Cn

n−1∏
i=1

(1− b2n+2
i )(−1)i , Bn =

(2n + 2)Cn

1+ (2n + 2)Cn

and Cn =

n−1∑
i=1

(−1)i−1b2n+2
i

1− b2n+2
i

. (1.6)

The terms An and Bn here can guarantee that Pn(1)= 1 and P ′n(1)= 1. Namely, 1 is a
parabolic fixed point of Pn with multiplier one (see Lemma 5.1).

THEOREM 1.4. For every n ≥ 2 and 1≤ i ≤ n − 1, if |bi | = si for 0< s ≤ 1/(25n2), then
Pn is non-hyperbolic and its Julia set is a Cantor set of circles.

It will be seen later that the dynamics of Pn on their Julia sets are conjugate to those of
fn for every n ≥ 2 (p = 1). One of the differences between their dynamics on the Fatou
sets is that the super-attracting basin of fn at∞ is replaced by a parabolic basin of Pn .

This paper is organized as follows: in §2, we do some estimates and prove Theorem 1.1.
In §3, we prove Theorem 1.2. In §4, we show that the Julia set of Pλ is a Cantor set of
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circles if λ is small enough and prove Theorem 1.3. We will prove Theorem 1.4 in §5 and
leave a key lemma to the last section.

Notation. We will use the following notation throughout the paper. Let C be the complex
plane and C= C ∪ {∞} the Riemann sphere. For r > 0 and a ∈ C, let D(a, r) := {z ∈
C : |z − a|< r} be the Euclidean disk centered at a with radius r . In particular, let
Dr := D(0, r) be the disk centered at the origin with radius r and Tr := ∂Dr be the
boundary of Dr . As usual, D := D1 and S1

:= T1 denote the unit disk and the unit circle,
respectively. For 0< r < R <+∞, let Ar,R := {z ∈ C : r < |z|< R} be the round annulus
centered at the origin.

2. Location of the critical points and the hyperbolic case
First we give some basic and useful estimations.

LEMMA 2.1. Let n ≥ 2 be an integer, a ∈ C\{0} and 0< ε < 1/2.
(1) If |z − a| ≤ ε|a|, then |zn

− an
| ≤ [(1+ ε)n − 1] |a|n .

(2) If |zn
− an
| ≤ ε|a|n , then |a/z|n < 1+ 2ε and |z − ae2π i j/n

|< ε|a| for some 1≤
j ≤ n.

(3) If 0< ε < 1/n, then nε < (1+ ε)n − 1< 3nε and nε/3< 1− (1− ε)n < nε.

Proof. Let z = a(1+ reiθ ) for 0≤ r ≤ ε and 0≤ θ < 2π , then

|zn
− an
| = |(1+ reiθ )n − 1| · |a|n ≤ [(1+ ε)n − 1] |a|n .

This proves (1). The first statement in (2) follows from |a/z|n ≤ 1/(1− ε) < 1+ 2ε if 0<
ε < 1/2. For the second statement, let zn

= an(1+ reiθ ) for 0≤ r ≤ ε and 0≤ θ < 2π ,
then z = ae2π i j/n(1+ reiθ )1/n for some 1≤ j ≤ n and we have

|z − ae2π i j/n
| = |(1+ reiθ )1/n

− 1| · |a| ≤ [(1+ ε)1/n
− 1] · |a|< ε|a|

if n ≥ 2. The claim (3) can be proved by applying Lagrange’s mean value theorem to
x 7→ xn on the intervals [1, 1+ ε] and [1− ε, 1] respectively. The proof is complete. 2

Fix n ≥ 2 and let d1, . . . , dn ≥ 2 be n positive numbers such that ξ =
∑n

i=1(1/di ) < 1.
We use K ≥ 3 to denote the maximal number among d1, . . . , dn . Let u1 = s1 K−5 and
v1 = s1 K−2, where

0< s1 ≤min{K−5ξ/(1−ξ), K 5−2K
}< 1. (2.1)

Let u0 = s1+(1/dn)+2(1−ξ)/3
0 , v0 = s(1/dn)+(1−ξ)/3

0 , where

0< s0 ≤min{2−(1−ξ)
−1
[1+(1/dn)−(2ξ/3)]−1

, (4K )−3/(1−ξ), K−2K [1+(1/dn)+2(1−ξ)/3]−1
}< 1.
(2.2)

For p ∈ {0, 1}, let |an−1,p| = v
1/dn
p and |ai,p| = u1/di+1

p |ai+1,p| be the n − 1 parameters
in the family f p,d1,...,dn , where 1≤ i ≤ n − 2. Since the cases p = 0 and p = 1 can be
discussed uniformly in general, we use s, u, v and ai , respectively, to denote sp, u p, vp

and ai,p for simplicity when the situation is clear, where 1≤ i ≤ n − 1.

LEMMA 2.2.
(1) u2/K

≤ K−4.
(2) If 1≤ j ≤ i ≤ n − 1, then |a j/ai | ≤ u(i− j)/K .
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(3) If p = 1, then:
(3a) (s/|a1|)

d1 < su/(2v)= sK−3/2; and
(3b) (|a1|/s)d1v/2> K .

(4) If p = 0, then:
(4a) 2K u/v < s and 1/(2Kv) > (2/s)1/dn ;
(4b) (s/|a1|)

d1 < sv/2< u1/2/2; and
(4c) (|a1|/s)d1u/(2v) > (2/s)1/dn .

Proof. (1) From (2.1) and (2.2), we have s1 ≤ K 5−2K and s0 ≤ K−2K {1+(1/dn)+2(1−ξ)/3}−1
.

This means that u2/K
1 = (s1 K−5)2/K

≤ K−4 and u2/K
0 ≤ K−4.

(2) If j = i , then (2) is trivial. Suppose that 1≤ j < i ≤ n − 1, then

|a j/ai | = u(1/d j+1)+···+(1/di ) ≤ u(i− j)/K

since K ≥ di for 1≤ i ≤ n. This proves (2).
(3) If p = 1, then u = sK−5 and v = sK−2. Since s ≤ K−5ξ/(1−ξ), we have s1−ξK 5ξ

≤

1, so

s1−(1/d1)s−[(1/d2)+···+(1/dn)]K 5[(1/d2)+···+(1/dn−1)]+(2/dn)21/d1 K 3/d1 < 1.

This is equivalent to s1−(1/d1)21/d1 K 3/d1/|a1|< 1 since

|a1| = u(1/d2)+···+(1/dn−1)v1/dn = s(1/d2)+···+(1/dn)/K 5[(1/d2)+···+(1/dn−1)]+(2/dn).

So we have (s/|a1|)
d1 < su/(2v)= sK−3/2 and (3a) is proved. Moreover, (3b) can be

derived from (3a) directly since (|a1|/s)d1 > 2K 3/s = 2K/v.
(4) If p = 0, then

u = s1+(1/dn)+2(1−ξ)/3, v = s(1/dn)+(1−ξ)/3.

From (2.2), we know 4K s(1−ξ)/3 ≤ 1, which means 2K u/v = 2K s1+[(1−ξ)/3] < s. Note
that 21+(1/dn)K s(1−ξ)/3 < 1, which is equivalent to 1/(2Kv) > (2/s)1/dn . This ends the
proof of (4a).

From (2.2), we know that

1 ≥ 2s(1−ξ)[1+(1/dn)−2ξ/3] > 21/d1s(1−ξ)[1+(1/dn)−2ξ/3]

=
21/d1s1−(1/d1)

s[(1/d2)+···+(1/dn−1)]+(1/dn)[(1/d1)+···+(1/dn)]+2ξ(1−ξ)/3

>
21/d1s1−(1/d1)

s[(1/d2)+···+(1/dn−1)]+(1/dn)[(1/d1)+···+(1/dn)]+[(1−ξ)/3]{(1/d1)+2[(1/d2)+···+(1/dn−1)]+(1/dn)}

= s1−(1/d1)(2/v)1/d1/|a1|.

This means that (s/|a1|)
d1 < sv/2= u1/2s[1+(1/dn)]/2/2< u1/2/2. So (4b) holds.

The proof of (4c) is similar to (4b). We just need to note that

1 ≥ 2s(1−ξ)[1+(1/dn)−2(ξ/3)] > 2(1/d1)[1+(1/dn)]s(1−ξ)[1+(1/dn)−2(ξ/3)]

> (s/|a1|)(2v/u)1/d1(2/s)1/d1dn .

This means that (|a1|/s)d1u/(2v) > (2/s)1/dn . 2
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In the following, we use f to denote f p,d1,...,dn for simplicity. Note that 0 and∞ are
critical points of f with multiplicity d1 and dn respectively, and the degree of f is

∑n
i=1 di .

Denoting Di = di + di+1, we have 5≤ Di ≤ 2K , where 1≤ i ≤ n − 1. Besides 0 and∞,
the rest of the

∑n−1
i=1 Di critical points of f are the solutions of

(−1)pz
f ′(z)

f (z)
=

n−1∑
i=1

(−1)n−i Di zDi

zDi − aDi
i

+ (−1)nd1 = 0. (2.3)

For 1≤ i ≤ n − 1, let C̃ P i := {w̃i, j = ri ai exp(π i((2 j − 1)/Di )) : 1≤ j ≤ Di } be the
collection of Di points lying on the circle Tri |ai | uniformly, where ri =

Di
√

di/di+1. The
following lemma shows that the

∑n−1
i=1 Di free critical points of f are very ‘close’ to⋃n−1

i=1 C̃ P i .

LEMMA 2.3. For every w̃i, j ∈ C̃ P i , where 1≤ i ≤ n − 1 and 1≤ j ≤ Di , there exists
wi, j , which is a solution of (2.3), such that |wi, j − w̃i, j |< u2/K

|ai |. Moreover, wi1, j1 =

wi2, j2 if and only if (i1, j1)= (i2, j2).

Proof. Note that the right side of equation (2.3) is equivalent to

(−1)n−i
(

Di zDi

zDi − aDi
i

− di

)
+ Gi (z)= 0, (2.4)

where

Gi (z)=
∑

1≤ j≤n−1, j 6=i

(−1)n− j D j zD j

zD j − a
D j
j

+ (−1)nd1 + (−1)n−i di . (2.5)

After multiplying both sides of (2.4) by (zDi − aDi
i )/di+1, where 1≤ i ≤ n − 1, we have

(−1)n−i (zDi + di a
Di
i /di+1)+ (z

Di − aDi
i )Gi (z)/di+1 = 0. (2.6)

Let �i = {z : |zDi + di a
Di
i /di+1| ≤ ε|ai |

Di }, where ε = u2/K and 1≤ i ≤ n − 1. For
every z ∈�i , since ε ≤ K−4 by Lemma 2.2(1), we have

K−1 < di/di+1 − ε ≤ |z/ai |
Di ≤ di/di+1 + ε < K − 1< K . (2.7)

This means that

K−1 < |ai/z|
Di < K and therefore K−1 < |ai/z|

5 < K . (2.8)

If 1≤ j < i and z ∈�i , we have

|a j/z|
Di ≤ |ai/z|

Di |ai−1/ai |
Di < K u1+di+1/di < 1. (2.9)

Therefore, |a j/z|< 1. By a similar argument it can be shown that |z/a j |< 1 if i < j ≤
n − 1 and z ∈�i . If 1≤ j < i , by Lemma 2.2(1) and (2) and (2.8), we have

|a j/z|
D j ≤ |ai/z|

5
|a j/ai |

5 < K ε5(i− j)/2
≤ K−9. (2.10)

Similarly, if i < j ≤ n − 1, we have

|z/a j |
D j ≤ |z/ai |

5
|ai/a j |

5 < K ε5( j−i)/2
≤ K−9. (2.11)
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By definition, we have∑
1≤ j<i

(−1)n− j D j + (−1)nd1 + (−1)n−i di = 0. (2.12)

From (2.5), (2.10), (2.11) and (2.12), we have

|Gi (z)|

=

∣∣∣∣ ∑
1≤ j<i

(−1)n− j D j

1− (a j/z)D j
+

∑
i< j≤n−1

(−1)n− j−1 D j (z/a j )
D j

1− (z/a j )
D j

+ (−1)nd1 + (−1)n−i di

∣∣∣∣
≤ 2K

∣∣∣∣ ∑
1≤ j<i

(−1)n− j (a j/z)D j

1− (a j/z)D j
+

∑
i< j≤n−1

(−1)n− j−1(z/a j )
D j

1− (z/a j )
D j

∣∣∣∣
<

4K 2

1− K−9

n−1∑
k=1

ε5k/2 <
4K 2

1− K−9

ε5/2

1− ε5/2 < 5K 2ε5/2

since ε5/2
≤ K−10. This means that if z ∈�i , we have

|zDi − aDi
i | · |Gi (z)|/di+1 < 3K 3ε5/2

|ai |
Di < ε|ai |

Di (2.13)

by (2.7) and Lemma 2.2(1).
From (2.6) and by Rouché’s theorem, there exists a solution wi, j of (2.3) such

that wi, j ∈�i for every 1≤ j ≤ Di . In particular, |wi, j − w̃i, j |< ε|ai | by the second
statement of Lemma 2.1(2). Note that for 1≤ i ≤ n − 2, we have

|ai+1| − |ai | − 2ε|ai | − 2ε|ai+1|> |ai+1|[1− 2ε − (1+ 2ε)K−2
]> 0. (2.14)

By Lemma 2.2(1) and ri =
Di
√

di/di+1 ≤ (K/2)1/5, we have,

ri |ai | sin(π/Di )

ε|ai |
≥ K 4

(
2
K

)1/5

·
2
π
·
π

2K
> K 2 > 1. (2.15)

This means that wi1, j1 = wi2, j2 if and only if (i1, j1)= (i2, j2). The proof is complete. 2

For 1≤ i ≤ n − 1, let C Pi := {wi, j : 1≤ j ≤ Di } be the collection of Di free critical
points of f which lie close to the circle Tri |ai | and denote CVi = f (C Pi ).

LEMMA 2.4. For every 1≤ i ≤ n − 1, there exists an annular neighborhood Ai

containing C Pi ∪ Tri |ai | ∪ T|ai |, such that:
(1) if p = 1, then f (Ai )⊂ Ds for odd n − i and f (Ai )⊂ C\DK for even n − i . In

particular, the set of critical values of f satisfies
⋃n−1

i=1 CVi ⊂ Ds ∪ C\DK . The
disks Ds and C\DK lie in the Fatou set of f and f −1(As,K )⊂ As,K ;

(2) if p = 0, then f (Ai )⊂ Ds for even n − i and f (Ai )⊂ C\DM for odd n − i , where
M = (2/s)1/dn . In particular, the set of critical values of f satisfies

⋃n−1
i=1 CVi ⊂

Ds ∪ C\DM . The disks Ds and C\DM lie in the Fatou set of f and f −1(As,M )⊂

As,M .

Proof. Let ε = u2/K
≤ K−4 be the number that appeared in Lemma 2.3. For every

1≤ i ≤ n − 1, define the annulus

Ai = {z : (min{ri , 1} − 2ε)|ai |< |z|< (max{ri , 1} + 2ε)|ai |}, (2.16)
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where ri =
Di
√

di/di+1. Obviously, Ai ⊃ C Pi ∪ Tri |ai | ∪ T|ai |. By the definition, we have

(2/K )1/Di ≤min{ri , 1} ≤max{ri , 1} ≤ (K/2)1/Di . (2.17)

If z ∈ Ai , we have

|ai/z| ≤
1

(2/K )1/Di − 2ε
≤

(K/2)1/Di

1− 2K−4(K/2)1/5
< (K/2)1/Di (1+ 4/K 19/5) (2.18)

and

|z/ai | ≤ (K/2)1/Di + 2ε ≤ (K/2)1/Di + 2/K 4 < (K/2)1/Di (1+ 1/K 3). (2.19)

This means that

|ai/z|
5 < (K/2)5/Di (1+ 4/K 19/5)5 < (K/2)e20/K 19/5

< (K/2)e20/319/5
< 7K/10

(2.20)
and also

|z/ai |
5 < (K/2)5/Di (1+ 1/K 3)5 < (K/2)e5/K 3

< (K/2)e5/27 < 7K/10. (2.21)

Moreover, similar to the argument of (2.20) and (2.21), we have

|ai/z|
di + |z/ai |

di+1 < 7K/5. (2.22)

Recall that |ai/ai+1|
di+1 = u for every 1≤ i ≤ n − 2 and |an−1|

dn = v. Letting 1≤ i1 ≤

i2 ≤ n − 1 and p ∈ {0, 1}, we have

i2∏
j=i1

|a j |
(−1)n− j−p D j = |ai1 |

(−1)n−i1−pdi1 |ai2 |
(−1)n−i2−pdi2+1

i2−1∏
j=i1

∣∣∣∣ a j

a j+1

∣∣∣∣(−1)n− j−pd j+1

= |ai1 |
(−1)n−i1−pdi1 |ai2 |

(−1)n−i2−pdi2+1u[(−1)n−i1−p
−(−1)n−i2−p

]/2

=

{
(|a1|

d1u/v)(−1)p
if i1 = 1 and i2 = n − 1 is even,

(|a1|
−d1/v)(−1)p

if i1 = 1 and i2 = n − 1 is odd.
(2.23)

By (1.2) and the second equation of (2.23), we have

| f (z)|

= |zDi − aDi
i |

(−1)n−i−p
|z|(−1)n−pd1

i−1∏
j=1

|z|(−1)n− j−p D j

n−1∏
j=i+1

|a j |
(−1)n− j−p D j · Qi (z)

= |1− (z/ai )
Di |

(−1)n−i−p
|z/ai |

(−1)n−i−p+1di

× |an−1|
(−1)1−pdn u[(−1)n−i−p

−(−1)1−p
]/2
· Qi (z)

= v(−1)1−p
u[(−1)n−i−p

−(−1)1−p
]/2
|(ai/z)

di − (z/ai )
di+1 |

(−1)n−i−p
· Qi (z){

≤ v(−1)1−p
u[1−(−1)1−p

]/2(|ai/z|di + |z/ai |
di+1)Qi (z) if n − i − p is even,

≥ v(−1)1−p
u[−1−(−1)1−p

]/2(|ai/z|di + |z/ai |
di+1)−1 Qi (z) if n − i − p is odd,

(2.24)

where

Qi (z)=
i−1∏
j=1

|1− (a j/z)
D j |

(−1)n− j−p
n−1∏

j=i+1

|1− (z/a j )
D j |

(−1)n− j−p
. (2.25)
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For 1≤ i ≤ n − 1, consider z ∈ Ai . If 1≤ j < i , by (2.20), we have

|a j/z|
D j ≤ |ai/z|

5
|a j/ai |

5 < 7K ε5(i− j)/2/10< K−9. (2.26)

If i < j ≤ n − 1, then

|z/a j |
D j ≤ |z/ai |

5
|ai/a j |

5 < 7K ε5(i− j)/2/10< K−9 (2.27)

by (2.21). Since ex < 1+ 2x if 0< x ≤ 1 and ε ≤ K−4, by (2.25)–(2.27) we have

Qi (z) <
∞∏

k=1

(1+ 7K ε5k/2/5)2 ≤ exp
(

14K ε5/2/5

1− ε5/2

)
< 1+ K−5 < 1.01 (2.28)

and

Qi (z) >
∞∏

k=1

(1+ 7K ε5k/2/5)−2 > 1/1.01> 0.99. (2.29)

For p = 1, by Lemma 2.2(2) and (3a), for every 1≤ i ≤ n − 1, if |z| ≤ s, we have

|zDi /aDi
i | ≤ |s/a1|

Di |a1/ai |
Di ≤ (sK−3/2)5/K u5(i−1)/K . (2.30)

If we notice Lemma 2.2(1), then

n−1∑
i=1

|zDi /aDi
i | ≤

(sK−3/2)5/K

1− u5/K
≤

K (10/K )−10

1− K−10 < 1/200. (2.31)

For p = 0, by Lemma 2.2(2) and (4b), for every 1≤ i ≤ n − 1, if |z| ≤ s, we have

|zDi /aDi
i | ≤ |s/a1|

Di |a1/ai |
Di ≤ (u1/2/2)5/K u5(i−1)/K . (2.32)

By Lemma 2.2(1), then

n−1∑
i=1

|zDi /aDi
i | ≤

(u1/2/2)5/K

1− u5/K
≤

K−5

1− K−10 < 1/200. (2.33)

Since (1+ 2|a|)−1
≤ |1+ a|±1

≤ 1+ 2|a| if 0≤ |a| ≤ 1/2, by (2.31) and (2.33) we
know that

n−1∏
i=1

|1− zDi /aDi
i |

(−1)n−i−p
≤

n−1∏
i=1

(1+ 2|z/ai |
Di ) < e1/100 < K . (2.34)

Therefore,

n−1∏
i=1

|1− zDi /aDi
i |

(−1)n−i−p
≥

n−1∏
i=1

(1+ 2|z/ai |
Di )−1 > e−1/100 > 1/K . (2.35)

(1) We first consider the case p = 1. If n − i is odd, by (2.22), (2.24) and (2.28), if
z ∈ Ai we have

| f (z)| ≤ v · (7K/5) · 1.01< 2Kv < s. (2.36)

If n − i is even, by (2.22), (2.24) and (2.29), for z ∈ Ai we have

| f (z)| ≥ (v/u) · (7K/5)−1
· 0.99> v/(2K u) > K . (2.37)
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If n is odd, by Lemma 2.2(3a), (2.23) and (2.34), for every z such that |z| ≤ s, we have

| f (z)| = |z|d1

n−1∏
i=1

|ai |
Di (−1)n−i−1

n−1∏
i=1

∣∣∣∣1− zDi

aDi
i

∣∣∣∣(−1)n−i−1

< |s/a1|
d1vu−1

· 1.02< s.

It follows that f (Ds)⊂ Ds for odd n. If n is even and |z| ≤ s, by Lemma 2.2(3b), (2.23)
and (2.35), we have

| f (z)| = |a1/z|
d1v

n−1∏
i=1

∣∣∣∣1− zDi

aDi
i

∣∣∣∣(−1)n−i−1

> |a1/s|
d1v/1.02> K .

Therefore f (Ds)⊂ C\DK for even n.
Note that f is very ‘close’ to z 7→ zdn on the outside of DK since |ai |

Di is extremely
small, where 1≤ i ≤ n − 1. This means that f may exhibit some dynamics of z 7→ zdn if
|z| ≥ K . More specifically, by arguments completely similar to those for (2.34)–(2.35), if
|z| ≥ K , then

| f (z)| ≥ |z|dn

n−1∏
i=1

(
1+ 2

|ai |
Di

|z|Di

)−1

> K . (2.38)

This means that f (C\DK )⊂ C\DK . Then we have f −1(As,K )⊂ As,K for every n ≥ 2
(see Figure 2).

(2) Now we consider the case p = 0. If n − i is even, by (2.22), (2.24), (2.28) and
Lemma 2.2(4a), if z ∈ Ai we have

| f (z)| ≤ v−1u · (7K/5) · 1.01< 2K u/v < s. (2.39)

If n − i is odd, by (2.22), (2.24), (2.29) and Lemma 2.2(4a), for z ∈ Ai we have

| f (z)| ≥ v−1
· (7K/5)−1

· 0.99> 1/(2Kv) > M, (2.40)

where M = (2/s)1/dn .
If n is even, by Lemma 2.2(4b), (2.23) and (2.34), for each z such that |z| ≤ s, we have

| f (z)| = |z|d1

n−1∏
i=1

|ai |
Di (−1)n−i

n−1∏
i=1

∣∣∣∣1− zDi

aDi
i

∣∣∣∣(−1)n−i

< |s/a1|
d1v−1

· e1/100 < s.

It follows that f (Ds)⊂ Ds for even n. If n is odd and |z| ≤ s, by Lemma 2.2(4c), (2.23)
and (2.35), we have

| f (z)| = |a1/z|
d1uv−1

n−1∏
i=1

∣∣∣∣1− zDi

aDi
i

∣∣∣∣(−1)n−i

≥ |a1/s|
d1uv−1

· e−1/100 > M.

Therefore f (Ds)⊂ C\DM for odd n.
If |z| ≥ M , then

| f (z)| = |z|−dn

n−1∏
i=1

∣∣∣∣1− aDi
i

zDi

∣∣∣∣(−1)n−i

≤ M−dn

n−1∏
i=1

(
1+

2|ai |
Di

|z|Di

)
< 2M−dn = s. (2.41)

This means that f (C\DM )⊂ Ds . Then we have f −1(As,M )⊂ As,M for every n ≥ 2. 2
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V1

U1 U1

Vn

Un – 1 Un – 1

VnV1

s a1 an – 1
1

K
> K < s< s s a1 an 2 an – 1

1 K
> K

FIGURE 2. Sketch illustrating the mapping relation of f1,d1,...,dn , where n is odd and even respectively (from left
to right). The small stars denote the critical points and critical values, and the numbers shown at the bottom of

the figures denote the approximate coordinates.

THEOREM 2.5. If |an−1| = (s1 K−2)1/dn and |ai | = (s1 K−5)1/di+1 |ai+1| for 1≤ i ≤
n − 2, where s1 > 0 is small enough, then the Julia set of f1,d1,...,dn is a Cantor set

of circles. If |an−1| = (s
(1/dn)+(1−ξ)/3
0 )1/dn and |ai | = (s

1+(1/dn)+2(1−ξ)/3
0 )1/di+1 |ai+1| for

1≤ i ≤ n − 2, where s0 > 0 is small enough, then the Julia set of f0,d1,...,dn is a Cantor set
of circles.

Proof. We only focus on the case p = 1 since a similar proof can be used for the case
p = 0 by using Lemma 2.4(2). We also use f to denote f1,d1,...,dn for simplicity. Let Ui

be the component of f −1(D) containing ai , where D = Ds if n − i is odd and D = C\DK

if n − i is even. By Lemma 2.4(1), it follows that the set of critical points C Pi ⊂Ui

and Ui is a connected domain containing the annulus Ai . Moreover, Ui ∩Ui+1 = ∅

since f (Ui ) ∩ f (Ui+1)= ∅ by Lemma 2.4(1), where 1≤ i < n − 2. This means that
Ui ∩U j = ∅ for different i, j . Suppose that Ui has mi boundary components. Since there
are exactly Di critical points in Ui and f :Ui → D is a branched covering with degree
Di , then the Riemann–Hurwitz formula tells us χUi = 2− mi = DiχD − Di = 0, where
χ denotes the Euler characteristic. This means that mi = 2 and therefore Ui is an annulus
surrounding the origin for every 1≤ i ≤ n − 1.

For 1≤ i ≤ n − 2, let Vi+1 be the annulus domain between Ui and Ui+1. It is easy to
see that f : Vi+1→ As,K is a covering map with degree di+1. Note that every component
of f −1(As,K ) is an annulus since As,K is doubly connected and contains no critical values.
It follows that there exist two annuli V1 and Vn , which lie between 0 and U1, Un−1 and
∞ respectively, such that f : V1, Vn→ As,K are covering maps with degree d1 and dn

respectively. In fact, the restriction of f on ∂U1 and ∂Un−1 has degrees d1 and dn ,
respectively, and there are no critical points in V1 and Vn (see Figure 2).
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The Julia set of f is J =
⋂

k≥0 f −k(As,K ). By construction, the components of J
are compact sets nested between 0 and ∞ since each inverse branch f −1

: As,K → V j

is conformal for every 0≤ j ≤ n. Since the component of J cannot be a point and f is
hyperbolic, every component of J is a Jordan curve (actually quasicircle) by Theorem 1.2
in [PT]. The dynamics on the set of Julia components of f is isomorphic to the one-
sided shift on n symbols 6n := {0, 1, . . . , n − 1}N. In particular, J is homeomorphic to
6n × S1, which is a Cantor set of circles as desired. This ends the proof of Theorem 2.5
and hence Theorem 1.1. 2

Remark 2.6. Since f is hyperbolic, the Julia set of f is also a Cantor set of circles if we
perturb some ai gently, where 1≤ i ≤ n − 1. In the first version of our manuscript of this
paper, only di = n + 1 for every 1≤ i ≤ n was considered. In this case, it was shown that
for every n ≥ 2 and 1≤ i ≤ n − 1, if |an−i | = [n/(n + 1)]i−1si for 0< s ≤ 1/10, then the
Julia set of f1,n+1,...,n+1 is a Cantor set of circles.

THEOREM 2.7. Suppose that ai is chosen as in Theorem 1.1 such that the Julia set of
f p,d1,...,dn is a Cantor set of circles for n ≥ 3, then f p,d1,...,dn is not topologically conjugate
to any McMullen maps on their corresponding Julia sets.

Proof. Since the dynamics on the set of Julia components of f p,d1,...,dn is conjugate to the
one-sided shift on n symbols 6n := {0, 1, . . . , n − 1}N and, in particular, the set of Julia
components of gη is isomorphic to the one-sided shift on only two symbols 62 := {0, 1}N,
this means that f p,d1,...,dn cannot be topologically conjugate to gη on their corresponding
Julia sets if n ≥ 3. 2

3. Topological conjugacy between the Cantor circle Julia sets
In this section we show that, for any given rational map whose Julia set is a Cantor set
of circles, there exists a map f p,d1,...,dn in (1.2) such that these two rational maps are
topologically conjugate on their corresponding Julia sets.

LEMMA 3.1. If f is a rational map whose Julia set is a Cantor set of circles, then there
exist no critical points in J ( f ).

Proof. Suppose there exists a Julia component J0 of f containing a critical point c0 of f
with multiplicity d. Then f is not one-to-one in any small neighborhood of c0. It is known
that f (J0) is a Julia component containing f (c0) [Be, Lemma 5.7.2]. Choose a small
topological disk neighborhood U of f (c0) such that U ∩ f (J0) is a simple curve. The
component of f −1(U ) containing c0 is mapped onto U in the manner of (d + 1)-to-one.
Note that the component J ′ of f −1(U ∩ f (J0)) containing c0 is connected and contained
in J0. However, J ′ possesses star-like structure and hence is not a simple curve. This
contradicts the assumption that J0 is a Jordan closed curve since J ( f ) is a Cantor set of
circles. 2

We say that a compact set X ⊂ C separates 0 and∞ if 0 and∞ lie in the two different
components of C\X respectively. Let X and Y be two disjoint compact sets that both
separate 0 and∞ respectively. We say X ≺ Y if X is contained in the component of C\Y
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which contains 0. Let A be an annulus whose closure separates 0 and∞, we use ∂−A and
∂+A to denote the two components of the boundary of A such that ∂−A ≺ ∂+A.

THEOREM 3.2. Let f be a rational map whose Julia set is a Cantor set of circles. Then
there exist p ∈ {0, 1}, positive integers n ≥ 2 and d1, . . . , dn satisfying

∑n
i=1(1/di ) < 1

such that f is topologically conjugate to f p,d1,...,dn on their corresponding Julia sets.

Proof. Let J ( f ) be the Julia set of f which is a Cantor set of circles, then every periodic
Fatou component of f must be attracting or parabolic by Lemma 3.1. We only prove the
attracting (hyperbolic) case in detail and explain the parabolic case by using the work of
Cui [Cui].

In the following, we suppose that f is hyperbolic. There exist exactly two simply
connected Fatou components of f and all other Fatou components are annuli. Let D and
A be the collection of simply and doubly connected Fatou components of f respectively.
We claim that f (D)⊂D and there exists an integer k ≥ 1 such that f ◦k(A) ∈D for
every A ∈A. The assertion f (D)⊂D is obvious since the image of a simply connected
Fatou component under a rational map is again simply connected. If f (A1)= A2, where
A1, A2 ∈A, then there exist no critical points in A1 by Riemann–Hurwitz’s formula. This
means that each A ∈A cannot be periodic since the cycle of every periodic attracting
Fatou component must contain at least one critical point. On the other hand, by Sullivan’s
theorem, the Fatou components of a rational map cannot be wandering. This completes the
proof of the claim.

Up to a Mobius transformation, we can assume that 0 and∞, respectively, belong to the
two simply connected Fatou components of f , which are denoted by D0 and D∞. Namely,
D = {D0, D∞}. Since f (D)⊂D, we first suppose that f (D0)= D0 and f (D∞)= D∞.
Let f −1(D0)= D0 ∪ A1 ∪ · · · ∪ Am , where A1, . . . , Am are m annuli separating 0 and
∞ such that Ai ≺ Ai+1 for every 1≤ i ≤ m − 1. It is easy to see m ≥ 1. Otherwise, D0

is completely invariant, then J ( f )= ∂D0 which contradicts the assumption that J ( f ) is a
Cantor set of circles.

Suppose that deg( f |D0 : D0→ D0)= d1 and deg( f |∂−Ai : ∂−Ai → ∂D0)= d2i and
deg( f |∂+Ai : ∂+Ai → ∂D0)= d2i+1 for 1≤ i ≤ m. It follows that deg( f )=

∑2m+1
j=1 d j .

Let W1 be the annular domain between D0 and A1 and Wi be the annular domain
between Ai−1 and Ai , where 2≤ i ≤ m. We have f (Wi )= C\D0 and deg( f |Wi :Wi →

C\D0)= d2i−1 + d2i . This means that there exists at least one Fatou component Bi ( Wi

such that f (Bi )= D∞. If there exist B ′i 6= Bi such that B ′i ( Wi and f (B ′i )= D∞,
there must exist one component of f −1(D0) in Wi , which contradicts the assumption
that A1 ∪ · · · ∪ Am is the collection of all annular components of f −1(D0). So there
exists exactly one Fatou component Bi ( Wi such that f (Bi )= D∞ and deg( f |Bi : Bi →

D∞)= d2i−1 + d2i . A similar argument can be used to show that D∞ is the only
component of f −1(D∞) lying in the unbounded component of C\Am which can be
mapped onto D∞. Therefore, f −1(D∞)= B1 ∪ · · · ∪ Bm ∪ D∞ and deg( f |D∞)= d2m+1

since deg( f )=
∑2m+1

j=1 d j . Denote C\(D0 ∪ D∞) by E . The preimage f −1(E) consists
of 2m + 1 annular components E1, . . . , E2m+1 such that Ei ≺ Ei+1 for 1≤ i ≤ 2m. The
map f : Ei → E is an unramified covering map with degree di , where 1≤ i ≤ 2m + 1 (see
Figure 3).
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FIGURE 3. Sketch illustrating the mapping relation of f , where di , 1≤ i ≤ 2m + 1, denote the degrees of the
restriction of f on the boundaries of Fatou components.

Let n = 2m + 1 and p = 1. The assertion
∑n

i=1 1/di < 1 follows from Grötzsch’s
modulus inequality since each Ei is essentially contained in E and mod(Ei )=mod(E)/di .
In the following, we will construct a quasiconformal map φ : C→ C which conjugates the
dynamics on the Julia set of f to that of f1,d1,...,dn .

For simplicity, we denote f1,d1,...,dn by F . Note that F(0)= 0 and F(∞)=∞.
There exist two simply connected Fatou components D′0 and D′∞, both are invariant
under F such that 0 ∈ D′0 and ∞∈ D′∞. From the proof of Theorem 1.1, we know
that F−1(D′0)= D′0 ∪ A′1 ∪ · · · ∪ A′m , where A′1, . . . , A′m are m annuli separating 0 and
∞ such that A′i ≺ A′i+1 for every 1≤ i ≤ m − 1. Moreover, deg(F |D′0 : D

′

0→ D′0)= d1,
deg(F |∂−A′i

: ∂−A′i → ∂D′0)= d2i and deg(F |∂+A′i
: ∂+A′i → ∂D′0)= d2i+1 for 1≤ i ≤ m.

Let W ′1 be the annular domain between D′0 and A′1 and W ′i be the annular domain between
A′i−1 and A′i , where 2≤ i ≤ m. There exists exactly one Fatou component B ′i ( W ′i
such that F(B ′i )= D′∞ and deg(F |B′i : B

′

i → D′∞)= d2i−1 + d2i . We have F−1(D′∞)=

B ′1 ∪ · · · ∪ B ′m ∪ D′∞ and deg(F |D′∞)= d2m+1. Similarly, let E ′ := C\(D′0 ∪ D′∞). There
exist 2m + 1 annular components E ′1, . . . , E ′2m+1 of F−1(E ′) such that E ′i ≺ E ′i+1 for
1≤ i ≤ 2m. The map F : E ′i → E ′ is a covering with degree di , where 1≤ i ≤ 2m + 1.

By quasiconformal surgery, it can be seen that ∂D0, ∂D∞, ∂D′0, ∂D′∞ and their
preimages are all quasicircles and the dilatation is bounded by a fixed constant. There
exists a quasiconformal mapping φ0 : C→ C such that φ0(D0)= D′0 and φ0(D∞)= D′∞,
hence φ0(∂D0)= ∂D′0 and φ0(∂D∞)= ∂D′∞. Moreover, φ0 can be chosen such that
φ0 ◦ f = F ◦ φ0 on ∂D0 ∪ ∂D∞.

Now we construct a lift φE1 : E1→ E ′1 of φ0 : E→ E ′ as follows. For every z ∈
E1\∂−E1, we choose a simple curve γ : [0, 1] → E such that γ (1)= f (z) and γ (0)=
w ∈ ∂−E . Since f : E1→ E is a covering map, there exists a unique lift γ̃ : [0, 1] →
E1 of γ such that γ̃ (1)= z and w̃ := γ̃ (0) ∈ ∂−E1. Similarly, since F : E ′1→ E ′ is
a covering map, there exists a unique lift α : [0, 1] → E ′1 of φ0(γ ) : [0, 1] → E ′ such
that α(0)= φ0(w̃) since φ0 ◦ f = F ◦ φ0 on ∂D0 = ∂−E1. Define φE1(z) := α(1). We
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know that φ0 ◦ f = F ◦ φE1 on E1 and φE1 : E1→ E ′1 is quasiconformal since f, F are
both holomorphic covering maps with degree d1 and φ0 : E→ E ′ is quasiconformal.
Now some parts of φ1 : C→ C are defined as follows: φ1|D0

= φ0|D0
, φ1|D∞ = φ0|D∞

and φ1|E1 = φE1 . Then φ1 ◦ f = F ◦ φ1 on ∂E1. Similarly, there exists a unique
quasiconformal mapping φE2m+1 : E2m+1→ E ′2m+1, which is the lift of φ0 : E→ E ′, such
that φ0 ◦ f = F ◦ φE2m+1 on E2m+1. Define φ1|E2m+1 = φE2m+1 . Then, φ1 ◦ f = F ◦ φ1 on
∂E2m+1.

Unlike the cases of E1 and E2m+1, the lift φEi : Ei → E ′i of φ0 : E→ E ′ exists but
is not unique for 2≤ i ≤ 2m. We first show the existence of φEi . Without loss of
generality, suppose that i is even. Since f : ∂−Ei → ∂D∞ and F : ∂−E ′i → ∂D′∞ are
both covering mappings with degree di , there exists a lift (not unique) φEi : ∂−Ei → ∂−E ′i
of φ0 : ∂D∞→ ∂D′∞ such that φ0 ◦ f = F ◦ φEi on ∂−Ei . By using the same method
of defining φE1 , there exists a unique lift of φ0 : E→ E ′ defined from Ei to E ′i , which
we denote also by φEi such that φ0 ◦ f = F ◦ φEi on Ei . Note that φEi : Ei → E ′i is
quasiconformal. Define φ1|Ei = φEi . Then, φ0 ◦ f = F ◦ φ1 on

⋃2m+1
i=1 Ei and φ1 ◦ f =

F ◦ φ1 on
⋃2m+1

i=1 ∂Ei .

In order to unify the notation, let D2i−1 := Bi and D2i := Ai for 1≤ i ≤ m. Then
we have Di ≺ D j for 1≤ i < j ≤ 2m. We need to define φ1 on

⋃2m
i=1 Di . For

every Di , where 1≤ i ≤ 2m, its two boundary components ∂+Ei and ∂−Ei+1 are
both quasicircles. Since φEi and φEi+1 are both quasiconformal mappings, the map

φ1|∂+Ei∪∂−Ei+1 has a quasiconformal extension φDi : Di → D
′

i such that φDi (Di )= D′i .
Now we obtain a quasiconformal mapping φ1 : C→ C defined as φ1|Ei := φEi , φ1|D j =

φD j and φ1|D0∪D∞ = φ0, where 1≤ i ≤ 2m + 1 and 1≤ j ≤ 2m.

Next, we define φ2. First, let φ2|D j = φ1 for j ∈ {0, 1, . . . , 2m,∞}. Then we lift
φ1 : E→ E ′ in an appropriate way to obtain φ2 : Ei → E ′i for 1≤ i ≤ 2m + 1. Finally,
we check the continuity of the resulting map φ2 : C→ C. Now let us make this precise. In
order to guarantee the continuity of φ2 on D0 ∪ E1, we need to have φ2|∂−E1 = φ1. Then
there exists only one way to lift φ1 : E→ E ′ to obtain φ2 : E1→ E ′1. In order to guarantee
the continuity of the lift φ2, we need to check the continuity of φ2 on the boundary ∂+E1

first. In fact, φ0|E and φ1|E are homotopic to each other and φ1|∂E = φ0|∂E , so it follows
that φ2|∂+E1 = φ1|∂+E1 since φ2|∂−E1 = φ1|∂−E1 . This means that φ2 is continuous on
∂+E1. Similarly, we can lift φ1 : E→ E ′ to obtain φ2 : Ei → E ′i for 2≤ i ≤ 2m + 1
and guarantee the continuity of φ2. Above all, the map φ2 : C→ C satisfies: (1) φ2 is
quasiconformal and the dilatation K (φ2)= K (φ1); (2) φ2| f −1(D0∪D∞) = φ1; (3) φ1 ◦ f =

F ◦ φ2 on
⋃2m+1

i=1 Ei and hence φ2 ◦ f = F ◦ φ2 on f −2(∂D0 ∪ ∂D∞).

Suppose we have obtained φk for some k ≥ 1, then φk+1 can be defined completely
similarly to the process of the derivation of φ2 from φ1. Inductively, we can obtain a
sequence of quasiconformal mappings {φk}k≥0 such that: (1) K (φk)= K (φ1)≥ K (φ0) for
k ≥ 1; (2) φk+1(z)= φk(z) for z ∈ f −k(D0 ∪ D∞); (3) φk ◦ f = F ◦ φk on f −k(∂D0 ∪

∂D∞). This means that {φk}k≥0 forms a normal family. Take a convergent subsequence of
{φk}k≥0 whose limit we denote by φ∞, then φ∞ is a quasiconformal mapping satisfying
φ∞ ◦ f = F ◦ φ∞ on

⋃
k≥0 f −k(∂D0 ∪ ∂D∞). Moreover, K (φ∞)≤ K (φ1). Since φ∞

is continuous, φ∞ ◦ f = F ◦ φ∞ holds on the closure of
⋃

k≥0 f −k(∂D0 ∪ ∂D∞), which
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is the Julia set of f . Therefore, φ = φ∞ is the quasiconformal mapping we want to find
which conjugates f to F on their corresponding Julia sets. This ends the proof of the case
f (D0)= D0 and f (D∞)= D∞.

The other three cases: (1) f (D0)= D∞, f (D∞)= D∞; (2) f (D0)= D∞, f (D∞)=
D0; and (3) f (D0)= D0, f (D∞)= D0 can be proved completely similarly.

If one or both of the components D0 and D∞ are parabolic, there exists a perturbation
fε of f such that fε is hyperbolic and the dynamics of fε are topologically conjugate to
those of f on their corresponding Julia sets [Cui]. Then f has a ‘model’ in (1.2) since fε
always does. This ends the proof of Theorem 3.2 and hence Theorem 1.2. 2

From the proof of Theorem 3.2 in the hyperbolic case, we have the following immediate
corollary.

COROLLARY 3.3. If the parameters ai are chosen as in Theorem 1.1, where 1≤ i ≤ n − 1,
then each Julia component of f p,d1,...,dn is a quasicircle.

4. Non-hyperbolic rational maps whose Julia sets are Cantor circles
The rational maps

Pλ(z)=
(1/n)[(1+ z)n − 1] + λm+nzm+n

1− λm+nzm+n , (4.1)

where λ ∈ C∗ = C\{0} and m, n ≥ 2 are both positive integers satisfying 1/m + 1/n < 1,
can be seen as a perturbation of the parabolic polynomial

P̃(z)=
(1+ z)n − 1

n
. (4.2)

Note that P̃ has a parabolic fixed point at the origin with multiplier 1 and critical point
−1 with multiplicity n − 1. This means that there exists only one bounded and hence
simply connected Fatou component of P̃ in which all points are attracted to the origin. In
particular, the Julia set of P̃ is a Jordan curve with infinitely many cusps.

We hope that some of the properties of P̃ stated above will also hold for Pλ when λ is
small. However, there are obviously many differences between Pλ and P̃ . The degree of
Pλ is m + n and Pλ(∞)=−1. There are 2(m + n)− 2 critical points of Pλ: m − 1 at∞,
n − 1 very close to −1, and the remaining m + n critical points lie near the circle Tr0/|λ|,
where r0 =

m+n
√

n/m (see Lemma 4.3). In fact, we will see that Pλ can be viewed as a
‘parabolic’ McMullen map at the end of this section since Pλ is conjugate to some gη on
their corresponding Julia sets.

Firstly, we show that the fixed parabolic Fatou component of P̃ contains the Euclidean
disk D(−3/4, 3/4) for every n ≥ 2 and Pλ maps D(−3/4, 3/4) into itself if λ is small
enough.

LEMMA 4.1.
(1) For every n ≥ 2, P̃(D(−3/4, 3/4))⊂ D(−3/4, 3/4) ∪ {0}.
(2) If 0< |λ|< 1/(3n), then Pλ(D(−3/4, 3/4))⊂ D(−3/4, 3/4) ∪ {0}. In particular,

D(−3/4, 3/4) lies in the parabolic Fatou component of Pλ with parabolic fixed
point 0.
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Proof. If z ∈ D(−3/4, 3/4), then |P̃(z)+ (1/n)| = |1+ z|n/n ≤ 1/n. In particular, the
inequality sign can be replaced by equality if and only if z = 0. This ends the proof of (1).

The proof of (2) will be divided into two cases: |z| is small and not too small. For every
z =−(3/4)+ (3/4)eiθ

∈ ∂D(−3/4, 3/4), where −π < θ ≤ π , we have |1+ P̃(z)| ≤ 5/2
by (1) and |λz|m+n < 1/2 since |λ|< 1/(3n). This means that

|Pλ(z)− P̃(z)| =

∣∣∣∣λm+nzm+n(1+ P̃(z))

1− λm+nzm+n

∣∣∣∣≤ 5|λz|m+n . (4.3)

Since |z| = (3/4)|1− eiθ
| = (3/4)|e−iθ/2

− eiθ/2
| = (3/4)|sin θ

2 | ≤ (3/4)|θ | and |λ|<
1/(3n), we have

|Pλ(z)− P̃(z)| ≤ 5(|θ |/(4n))m+n . (4.4)

On the other hand, since |sin θ | ≥ (2/π)|θ | if |θ | ≤ π/2, we have

|P̃(z)+ (3/4)| =

∣∣∣∣ [(1/4)+ (3/4)eiθ
]
n
− 1

n
+

3
4

∣∣∣∣≤ |(1/4)+ (3/4)eiθ
|
n
− 1

n
+

3
4

=
[1− (3/4) sin2(θ/2)]n/2 − 1

n
+

3
4
≤
[1− (3θ2/4π2)]n/2 − 1

n
+

3
4
.

(4.5)

If |θ |< 2π/n, then (3θ2/4π2) < 2/n. By Lemma 2.1(3), we have

|P̃(z)+ (3/4)| ≤ −
(n/2)(3θ2/4π2)

3n
+

3
4
=

3
4
−

θ2

8π2 . (4.6)

Therefore, combining (4.4) and (4.6), it follows that if |θ |< 2π/n, then

|Pλ(z)+ (3/4)| ≤ |P̃(z)+ (3/4)| + |Pλ(z)− P̃(z)| ≤
3
4
−

θ2

8π2 + 5
(
|θ |

4n

)m+n

≤ 3/4.

(4.7)
If (2π/n)≤ |θ | ≤ π , from (4.5) and (4.6) we know that

|P̃(z)+ (3/4)| ≤
3
4
−

1

2n2 . (4.8)

From (4.4) and (4.8), it follows that if (2π/n)≤ |θ | ≤ π , then

|Pλ(z)+ (3/4)| ≤
3
4
−

1

2n2 + 5
(
|θ |

4n

)m+n

< 3/4. (4.9)

Therefore, we have shown that |Pλ(z)+ (3/4)| ≤ 3/4 for every z ∈ ∂D(−3/4, 3/4) and
|Pλ(z)+ (3/4)| = 3/4 if and only if z = 0. The proof is complete. 2

As in the procedure in §2, we now locate the free critical points of Pλ. By a direct
calculation, the bounded m + 2n − 1 critical points of Pλ are the solutions of

(1+ z)n−1
+ λm+nzm+n−1

{[1+ (m/n)][(1+ z)n + n − 1] − z(1+ z)n−1
} = 0. (4.10)

LEMMA 4.2. If 0< |λ|< 1/(3n), then there are n − 1 critical points of Pλ in

D(−1, |λ|)( D(− 3
4 ,

3
4 ).
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Proof. If |z + 1| ≤ |λ|< 1/(3n), then |z| · |1+ z|n−1
≤ (1+ |λ|)|λ|n−1 < 1 and

[1+ (m/n)]|(1+ z)n + n − 1| ≤ [1+ (m/n)](|λ|n + n − 1) < m + n. (4.11)

This means that if |z + 1| ≤ |λ|, then

|λm+nzm+n−1
{[1+ (m/n)][(1+ z)n + n − 1] − z(1+ z)n−1

}|

< |λ|n−1
· |λz|m−1

|λ|2|z|n(m + n + 1) < |λ|n−1
· (2n)1−m(9n2)−1e1/3(m + n + 1)

< |λ|n−1
· (m + n − 1)/(2n)m+1 < |λ|n−1. (4.12)

By Rouché’s theorem, the proof is complete. 2

Let C̃ P := {w̃ j = (r0/λ) exp(π i(2 j − 1)/(m + n)) : 1≤ j ≤ m + n} be the collection
of the zeros of mλm+nzm+n

+ n = 0, where r0 =
m+n
√

n/m. Since h(x)= x1/x , x > 0, has
maximal value e1/e < 3/2 at x = e, we have

2/3< 1/ m
√

m < r0 <
n
√

n < 3/2. (4.13)

The following lemma shows that the remaining m + n critical points of Pλ are very ‘close’
to C̃ P .

LEMMA 4.3. If 0< |λ|< 1/(2mn2), then (4.10) has a solution w j such that |w j − w̃ j |<

2(m + n)/m, where 1≤ j ≤ m + n. Moreover, wi = w j if and only if i = j .

Proof. Dividing by (1+ z)n−1 on both sides of (4.10), we have

1+ λm+nzm+n−1
(

m

n
z +

m + n

n

[
1+

n − 1

(1+ z)n−1

])
= 0. (4.14)

Or, in more useful form,

n

mλm+n + zm+n
+
(m + n)zm+n−1

m

(
1+

n − 1

(1+ z)n−1

)
= 0. (4.15)

Let�= {z : |zm+n
+ (n/m)λ−(m+n)

| ≤ β|λ| · (n/m)|λ|−(m+n)
}, where β = 2(m + n)/

mr0 < 3(m + n)/m. If z ∈�, then |λm+nzm+n
+ (n/m)|< β|λ| · n/m and |z − w̃ j |<

βr0 for some 1≤ j ≤ 2n by Lemma 2.1(2). If z ∈� and 0< |λ|< 1/(2mn2), we have

n − 1

|1+ z|n−1 <
n − 1

[(|λ|−1 − β)r0 − 1]n−1 <
n − 1

[(2m+1n2/3)− 3− (2n/m)]n−1 <
1

15
(4.16)

and

β|λ| ≤
2(m + n)

2mn2 · mr0
<

3
2mn

(
1
m
+

1
n

)
<

1
4

therefore
1+ β|λ|

2(1− β|λ|)
<

5
6
. (4.17)

Therefore, if z ∈� and 0< |λ|< 1/(2mn2), from (4.16) and (4.17) we have∣∣∣∣ (m + n)zm+n−1

m

(
1+

n − 1

(1+ z)n−1

)∣∣∣∣= m + n

m|λ|m+n

∣∣∣∣λm+nzm+n

z

(
1+

n − 1

(1+ z)n−1

)∣∣∣∣
<

m + n

m|λ|m+n

(β|λ| + 1)n/m

r0(1/|λ| − β)
·

16
15
=

nβ|λ|

m|λ|m+n

1+ β|λ|
2(1− β|λ|)

·
16
15
<

nβ|λ|

m|λ|m+n . (4.18)
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Applying Rouché’s theorem to (4.15) and then using Lemma 2.1(2), the proof of the first
assertion is complete. By means of the same argument as for (2.15), if 0< |λ|< 1/(2mn2)

we have

(r0/|λ|) · sin(π/(m + n))

2(m + n)/m
≥

mr0

(m + n)2|λ|
>

2m+1m

3[(m/n)+ 1]2
> 1. (4.19)

This means that wi = w j if and only if i = j . The proof is complete. 2

Let C P := {w j : 1≤ j ≤ m + n} be the m + n critical points of Pλ lying near the circle
Tr0/|λ| and CV := {Pλ(w j ) : 1≤ j ≤ m + n}. Let C P−1 be the collection of n − 1 critical
points of Pλ near −1 (see Lemma 4.2) and CV−1 = {Pλ(z) : z ∈ C P−1}.

Let T0 be the Fatou component of Pλ containing the attracting petal at the origin and
U := D(−3/4, 3/4). By Lemmas 4.1(2) and 4.2, we know that C P−1 ∪ CV−1 ⊂U ⊂ T0.
Since Pλ(∞)=−1, it follows that there exists a neighborhood of ∞ such that Pλ maps
it to a neighborhood of −1. Let T∞ be the Fatou component such that ∞∈ T∞ and
U0,U∞ be the components of P−1

λ (U ) such that 0 ∈U 0 and ∞∈U∞. Obviously, we
have U ⊂U0 ⊂ T0 and U∞ ⊂ T∞.

LEMMA 4.4. If 0< |λ| ≤ 1/(210mn3), there exists an annular neighborhood A1 of C P
containing T1/|λ| ∪ C P such that Pλ(A1)⊂U ′∞ ⊂U∞, where U ′∞ is a neighborhood
of∞.

Proof. It is known from Lemma 4.3 that C P ‘almost’ lies uniformly on the circle Tr0/|λ|

and all the finite poles of Pλ lie on the circle T1/|λ|. Define the annulus

A1 = {z : 1/(2|λ|) < |z|< 2/|λ|}. (4.20)

Note that
r0

|λ|
+

2(m + n)

m
<

3
2|λ|
+ 2+

2n

m
<

2
|λ|

(4.21)

and
r0

|λ|
−

2(m + n)

m
>

2
3|λ|
− 2−

2n

m
>

1
2|λ|

. (4.22)

We have T1/|λ| ∪ C P ⊂ A1 by Lemma 4.3. If z ∈ A1 and |λ| ≤ 1/(210mn3), then

|Pλ(z)+ 1| ≥
(|z| − 1)n

n(|λz|m+n + 1)
≥
((1/2|λ|)− 1)n

n(2m+n + 1)
=

(1− 2|λ|)n

2nn|λ|n(2m+n + 1)

>
2

|λ|1+(n/m)
+ 1. (4.23)

In fact,

(1− 2|λ|)n

2m+n + 1
>
[1− (2/210mn3)]n

2m+n + 1
>

0.9
2m+n + 1

>
1

2m+n+1 + 2nn|λ|n . (4.24)

This means that (4.23) follows by

2m+2n+2n|λ|n ≤ |λ|1+(n/m). (4.25)
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FIGURE 4. Sketch illustrating the mapping relation of Pλ. The small pentagons denote the critical points.

This is true because |λ| ≤ 1/(210mn3). Now we have proved that if z ∈ A1 and |λ| ≤
1/(210mn3), then |Pλ(z)|> 2/|λ|1+(n/m).

On the other hand, if |z| ≥ 2/|λ|1+(n/m), then

|Pλ(z)+ 1| ≤
(|z| + 1)n + 1
|λz|m+n − 1

≤
(1+ |z|−1)n + |z|−n

2m − |z|−n <
1
2
. (4.26)

This means that Pλ(z) ∈ D(−1, 1/2)⊂U . Let U ′∞ be the component of P−1
λ (D(−1, 1/2))

containing {z : |z| ≥ 2/|λ|1+(n/m)
}, then it follows that Pλ(A1)⊂U ′∞ ⊂U∞ (see

Figure 4). 2

Proof of Theorem 1.3. For every λ such that 0< |λ| ≤ 1/(210mn3), let A := C\(U ∪U ′∞).
Since Pλ :U ′∞→ D(−1, 1/2) is proper with degree m, it follows that U ′∞ is simply
connected and A is an annulus. Note that P−1

λ (U ′∞) is an annulus since there are m + n
critical points in P−1

λ (U ′∞) on which the degree of Pλ is m + n. This means that P−1
λ (A)

consists of two disjoint annuli I1 and I2 and I1 ∪ I2 ⊂ A. The degree of the restriction of
Pλ on I1 and I2 are m and n respectively.

The following argument is very similar to that of Theorem 1.1. The Julia set of Pλ
is Jλ =

⋂
k≥0 P−k

λ (A). By construction, the components of Jn are compact sets nested

between −1 and∞ since P−1
λ : A→ I j is conformal for j = 1 or 2. Since the component

of Jn cannot be a point and the proof of Theorem 1.2 in [PT] can also be applied to
geometrically finite rational maps (see [PT, §9] and [TY]), we know that every component
of Jn is a Jordan curve. The dynamics of Pλ on the set of Julia components is isomorphic
to the one-sided shift on two symbols 62 := {0, 1}N. In particular, Jλ is homeomorphic to
62 × S1, which is a Cantor set of circles, as claimed. 2

Remark 4.5. From the proof of Theorems 1.3 and 3.2, we know that the dynamics on
the Julia set of Pλ is conjugate to that of some gη with the form (1.1). Therefore, we
can view Pλ as a ‘parabolic’ McMullen map since the only difference is that the super-
attracting basin and its preimages of gη have been replaced by a fixed parabolic basin and
its preimages of Pλ (see Figure 5).
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FIGURE 5. The Julia set of Pλ, where m = 3, n = 2 and λ is small enough such that Jλ is a Cantor set of circles.
All the Fatou components of Pλ are iterated onto the fixed parabolic component (the ‘cauliflower’ in the center

of this figure) with parabolic fixed point 1.

5. More non-hyperbolic examples
In this section we will construct more non-hyperbolic rational maps whose Julia sets
are Cantor circles but which were not included in the previous section. Inspired by
Theorem 1.1, for every n ≥ 2, we define

Pn(z)= An
(n + 1)z(−1)n+1(n+1)

nzn+1 + 1

n−1∏
i=1

(z2n+2
− b2n+2

i )(−1)i−1
+ Bn, (5.1)

where |bi | = si for some 0< s ≤ 1/(25n2) and

An =
1

1+ (2n + 2)Cn

n−1∏
i=1

(1− b2n+2
i )(−1)i , Bn =

(2n + 2)Cn

1+ (2n + 2)Cn

and Cn =

n−1∑
i=1

(−1)i−1b2n+2
i

1− b2n+2
i

. (5.2)

LEMMA 5.1.
(1) Pn(1)= 1 and P ′n(1)= 1.
(2) 1− s2n+1/(n + 1) < |An|< 1+ s2n+1/(n + 1) and |Bn|< s2n+1/(3n + 3).

Proof. It is easy to see Pn(1)= 1 by a straightforward calculation. Note that

Fn(z) :=
z P ′n(z)

Pn(z)− Bn
=

n−1∑
i=1

(−1)i−1(2n + 2)z2n+2

z2n+2 − b2n+2
i

+ (−1)n+1(n + 1)−
n(n + 1)zn+1

nzn+1 + 1
.

(5.3)
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This means that

P ′n(1)
Pn(1)− Bn

= (2n + 2)
n−1∑
i=1

(−1)i−1b2n+2
i

1− b2n+2
i

+ (2n + 2)

×

n−1∑
i=1

(−1)i−1
+ (−1)n+1(n + 1)− n

= (2n + 2)
n−1∑
i=1

(−1)i−1b2n+2
i

1− b2n+2
i

+ 1 := (2n + 2)Cn + 1. (5.4)

Therefore, we have
P ′n(1)= (1− Bn)[(2n + 2)Cn + 1] = 1. (5.5)

It follows that 1 is a parabolic fixed point of Pn . This completes the proof of (1).
For (2), since |1− b2n+2

i |
−1
≤ 1+ 2|b1|

2n+2 for 1≤ i ≤ n − 1 and 0< s ≤ 1/(25n2)≤

1/100, then

(2n + 2)|Cn| < (2n + 2)(1+ 2|b1|
2n+2)

n−1∑
i=1

|bi |
2n+2

≤
(2n + 2)(1+ 2s2n+2)s2n+2

1− s2n+2 <
s2n+1

4n + 4
. (5.6)

We have

|Bn| =

∣∣∣∣ (2n + 2)Cn

1+ (2n + 2)Cn

∣∣∣∣< (2n + 2)|Cn|[1+ (4n + 4)|Cn|]<
s2n+1

3n + 3
(5.7)

and

|An| < [1+ (4n + 4)|Cn|]

n−1∏
i=1

(1+ 2|bi |
2n+2)

<

(
1+

s2n+1

2n + 2

)
(1+ 5s2n+2) < 1+

s2n+1

n + 1
. (5.8)

Moreover, we have

|An| > [1− (2n + 2)|Cn|]

n−1∏
i=1

(1− |bi |
2n+2)

>

(
1−

s2n+1

4n + 4

)(
1−

s2n+2

1− s2n+2

)
> 1−

s2n+1

n + 1
. (5.9)

The proof is complete. 2

Let us first explain some ideas behind the construction. For n ≥ 2, define Q̃(z)=
(zn+1

+ n)/(n + 1) and ϕ(z)= 1/z, then Q(z) := ϕ ◦ Q̃ ◦ ϕ−1(z)= (n + 1)zn+1/

(nzn+1
+ 1) satisfies: ∞ is a critical point of Q with multiplicity n which is attracted

to the parabolic fixed point 1. Since {bi }1≤i≤n−1 are very small, the rational map Pn can be
viewed as a small perturbation of Q. The terms An and Bn here guarantee that 1 is always
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TABLE 1. The proof of Lemma 5.3.∑
16 j<i (−1) j ∑

i< j6n−1(−1) j−1 (1+ (−1)n+1)/2

odd n odd i 0 −1 1
even i −1 0 1

even n odd i 0 0 0
even i −1 1 0

a parabolic fixed point of Pn (see Lemma 5.1). It can be shown that Pn maps an annular
neighborhood of T|bi | into T0 or T∞ according to whether i is odd or even, where T0 and
T∞ denote the Fatou components containing 0 and∞ respectively (see Lemma 5.5). The
Fatou component T∞ is always parabolic while T0 is attracting or mapped to T∞ according
to whether n is odd or even. The proof of Theorem 1.4 will based on the mixed arguments
in the previous two sections.

If |z| ≤ 1, then |Q̃(z)| ≤ 1. This means that the fixed parabolic Fatou component of Q̃
contains the unit disk for every n ≥ 2. Therefore, the parabolic Fatou component of Q
contains the exterior of the closed unit disk C\D. Although the polynomial Q has been
perturbed into Pn , we still have following lemma.

LEMMA 5.2. Pn(C\D)⊂ (C\D) ∪ {1}. In particular, the disk C\D lies in the parabolic
Fatou component of Pn with parabolic fixed point 1.

The proof of Lemma 5.2 is very subtle, and will be delayed until the next section.

LEMMA 5.3. Let n ≥ 2 and 1≤ i ≤ n − 1, then∑
1≤ j<i

(−1) j
+

∑
i< j≤n−1

(−1) j−1
+

1+ (−1)n+1

2
= 0. (5.10)

Proof. The argument is based on several cases shown in Table 1. 2

As before, we first locate the critical points of Pn . Note that 0 and∞ are both critical
points of Pn with multiplicity n and the degree of Pn is n2

+ n. The remaining 2(n2
− 1)

critical points of Pn are the solutions of Fn(z)= 0 (see equation (5.3)).
For 1≤ i ≤ n − 1, let C̃ P i := {w̃i, j = bi exp(π i(2 j − 1)/(2n + 2)) : 1≤ j ≤ 2n + 2}

be the collection of 2n + 2 points lying on T|bi | uniformly. The following lemma is similar
to Lemmas 2.3 and 4.3.

LEMMA 5.4. For every w̃i, j ∈ C̃ P i , where 1≤ i ≤ n − 1 and 1≤ j ≤ 2n + 2, there exists
wi, j , which is a solution of Fn(z)= 0, such that |wi, j − w̃i, j |< sn+1/2

|bi |. Moreover,
wi1, j1 = wi2, j2 if and only if (i1, j1)= (i2, j2).

Proof. Note that Fn(z)= 0 is equivalent to

n−1∑
i=1

(−1)i−1 z2n+2
+ b2n+2

i

z2n+2 − b2n+2
i

+
1+ (−1)n+1

2
−

nzn+1

nzn+1 + 1
= 0. (5.11)
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Multiplying both sides of (5.11) by z2n+2
− b2n+2

i , where 1≤ i ≤ n − 1, we have

(−1)i−1(z2n+2
+ b2n+2

i )+ (z2n+2
− b2n+2

i ) Gi (z)= 0, (5.12)

where

Gi (z)=
∑

1≤ j≤n−1, j 6=i

(−1) j−1
z2n+2

+ b2n+2
j

z2n+2 − b2n+2
j

+
1+ (−1)n+1

2
−

nzn+1

nzn+1 + 1
. (5.13)

Let�i = {z : |z2n+2
+ b2n+2

i | ≤ sn+(1/2)
|bi |

2n+2
}, where 1≤ i ≤ n − 1. If z ∈�i , then

|z|n+1
≤ (1+ sn+(1/2))|bi |

n+1
≤ (1+ sn+(1/2))sn+1 by Lemma 2.1(2). So∣∣∣∣ nzn+1

nzn+1 + 1

∣∣∣∣≤ n(1+ sn+(1/2))sn+1

1− n(1+ sn+(1/2))sn+1
≤

(1+ 100−5/2)sn+(1/2)/5

1− (1+ 100−5/2)100−5/2/5
< 0.3sn+(1/2)

since s ≤ 1/(25n2)≤ 1/100. For every z ∈�i , if 1≤ j < i , we have

|z/b j |
2n+2
= |z/bi |

2n+2
|bi/b j |

2n+2 < (1+ sn+(1/2))s(2n+2)(i− j). (5.14)

If i < j ≤ n − 1, by the first statement of Lemma 2.1(2), we have

|b j/z|
2n+2
= |bi/z|

2n+2
|b j/bi |

2n+2
≤ (1+ 2 · sn+(1/2))s(2n+2)( j−i). (5.15)

From (5.14), (5.15) and Lemma 5.3, we have∣∣∣∣Gi (z)+
nzn+1

nzn+1 + 1

∣∣∣∣
=

∣∣∣∣ ∑
1≤ j<i

(−1) j 1+ (z/b j )
2n+2

1− (z/b j )2n+2 +
∑

i< j≤n−1

(−1) j−1 1+ (b j/z)2n+2

1− (b j/z)2n+2 +
1+ (−1)n+1

2

∣∣∣∣
< 3 · (1+ 2 · sn+(1/2))

( ∑
1≤ j<i

s(2n+2)(i− j)
+

∑
i< j≤n−1

s(2n+2)( j−i)
)

< 6 · (1+ 2 · sn+(1/2))2s2n+2. (5.16)

The first inequality in (5.16) follows from the inequality 2x/(1− x)≤ 3x if x < 1/3 (here
x ≤ (1+ 2 · sn+(1/2)) s2n+2 < 10−10). So we have

|Gi (z)|< 6 · (1+ 2 · sn+(1/2))2s2n+2
+ 0.3sn+(1/2) < 0.4sn+(1/2). (5.17)

Therefore, if z ∈�i , then

|z2n+2
− b2n+2

i | · |Gi (z)|< (2+ sn+(1/2))|bi |
2n+2
· 0.4sn+(1/2) < sn+(1/2)

|bi |
2n+2.

(5.18)
From (5.12) and by Rouché’s theorem, there exists a solution wi, j of Fn(z)= 0 such
that wi, j ∈�i for every 1≤ j ≤ 2n + 2. In particular, |wi, j − w̃i, j |< sn+(1/2)

|bi | by
the second statement of Lemma 2.1(2). The assertion wi1, j1 = wi2, j2 if and only if
(i1, j1)= (i2, j2) can be verified similarly as for equations (2.14) and (2.15). The proof is
complete. 2

For 1≤ i ≤ n − 1, let C Pi := {wi, j : 1≤ j ≤ 2n + 2} be the collection of critical points
of Pn which lie close to the circle T|bi |.
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LEMMA 5.5. There exist n − 1 annuli {Ai }
n−1
i=1 satisfying An−1 ≺ · · · ≺ A1 and two simply

connected domains U0 and U∞ which contain 0 and∞, respectively, such that
(1) U∞ ⊃ C\D and Pn(U∞)⊂U∞ ∪ {1};
(2) Ai ⊃ T|bi | ∪ C Pi , Pn(Ai )⊂U0 for odd i and Pn(Ai )⊂U∞ for even i;
(3) Pn(U 0)⊂U∞ for even n and Pn(U 0)⊂U0 for odd n.

Proof. Let U∞ := C\D be the exterior of the closed unit disk. Then (1) is obvious if we
apply Lemma 5.2. Let ε = sn+(1/2) and Ai = A|bi |(1−2ε),|bi |(1+2ε). From (5.1), we know
that

|Rn(z)| :=

∣∣∣∣ Pn(z)− Bn

An
·

nzn+1
+ 1

n + 1

∣∣∣∣= |z|(−1)n+1(n+1)
|z2n+2

− b2n+2
i |

(−1)i−1
Hi (z),

(5.19)
where

Hi (z)=
i−1∏
j=1

|b j |
(2n+2)(−1) j−1

n−1∏
j=i+1

|z|(2n+2)(−1) j−1
· Qi (z) (5.20)

and

Qi (z)=
i−1∏
j=1

|1− (z/b j )
2n+2
|
(−1) j−1

n−1∏
j=i+1

|1− (b j/z)
2n+2
|
(−1) j−1

. (5.21)

If z ∈ Ai , where 1≤ i ≤ n − 1, we have

Qi (z) <
i−1∏
j=1

(
1+ 3|bi/b j |

2n+2
) n−1∏

j=i+1

(
1+ 3|b j/bi |

2n+2
)
< (1+ 6s2n+2)2 (5.22)

and

Qi (z) >
i−1∏
j=1

(1+ 3|bi/b j |
2n+2)−1

n−1∏
j=i+1

(1+ 3|b j/bi |
2n+2)−1 > (1+ 6s2n+2)−2. (5.23)

Note that ε = sn+(1/2)
≤ (5n)−2n−1

≤ 10−5. If n is even and 1≤ i ≤ n − 1 is odd, then
for z ∈ Ai we have

|Rn(z)| =
|z2n+2

− b2n+2
i |

|z|n+1

1

s(i−1)(n+1)
Qi (z) <

|bi |
n+1
[1+ (1+ 2ε)2n+2

]

(1− 2ε)n+1

(1+ 6s2n+2)2

s(i−1)(n+1)

=
1+ (1+ 2ε)2n+2

(1− 2ε)n+1 (1+ 6s2n+2)2sn+1 < 2.1 · sn+1.

If n and 1≤ i ≤ n − 1 are both even, then for z ∈ Ai we have

|Rn(z)| =
|bi−1|

2n+2
|z|2n+2

|z|n+1|z2n+2 − b2n+2
i |

1

s(i−2)(n+1)
Qi (z)

>
(1− 2ε)n+1

1+ (1+ 2ε)2n+2 (1− 6s2n+2)2 > 0.49.

This means that if n is even and 1≤ i ≤ n − 1 is odd, for z ∈ Ai we have

|Pn(z)| <

∣∣∣∣2.1 · sn+1
· (n + 1)An

nzn+1 + 1

∣∣∣∣+ |Bn|

≤
2.1(sn+(1/2)/5) · (1+ s2n+1/(n + 1))

1− n(1+ 2ε)sn+1 +
s2n+1

3n + 3
< sn+(1/2)
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by Lemma 5.1(2). If n and 1≤ i ≤ n − 1 are both even, then for z ∈ Ai we have

|Pn(z)| >

∣∣∣∣0.49(n + 1)An

nzn+1 + 1

∣∣∣∣− |Bn|

≥
0.49(n + 1)[1− s2n+1/(n + 1)]

1+ n(1+ 2ε)sn+1 −
s2n+1

3n + 3
>

n + 1
3
≥ 1.

By completely similar arguments one can show that, if n is odd, for z ∈ Ai we have

|Pn(z)|< sn+(1/2) for odd i and |Pn(z)|> 1 for even i. (5.24)

Let U0 = Dr , where r = sn+(1/2). This proves (2).
If n is odd, for every z such that |z| ≤ sn+(1/2) we have

|Pn(z)| ≤

∣∣∣∣ (n + 1)An

nzn+1 + 1

∣∣∣∣|z|n+1
n−1∏
i=1

|bi |
(2n+2)(−1)i−1

n−1∏
i=1

∣∣∣∣1− z2n+2

b2n+2
i

∣∣∣∣(−1)i−1

+ |Bn|

≤
(n + 1)[1+ s2n+1/(n + 1)]

1− nsn2+(n/2)
s3(n+1)/2

n−1∏
i=1

(
1+ 2

|z|2n+2

|bi |
2n+2

)
+

s2n+1

3n + 3
< sn+(1/2).

It follows that Pn(Dr )⊂ Dr for odd n, where r = sn+(1/2).
If n is even, then Pn maps a neighborhood of 0 to that of ∞. For every z such that

|z| ≤ sn+(1/2) we have

|Pn(z)| ≥
(n + 1)s−(n+1)/2(1− s2n+1/(n + 1))

1+ nsn2+(n/2)

n−1∏
i=1

(
1− 2

|z|2n+2

|bi |
2n+2

)
−

s2n+1

3n + 3
> n > 1.

(5.25)
This ends the proof of (3). The proof is complete. 2

Proof of Theorem 1.4. Let A := C\(U0 ∪U∞). The Julia set of Pn is equal to⋂
k≥0 P−k

n (A). Note that Pn is geometrically finite. The argument is completely similar
to the proofs of Theorems 1.1 and 1.3. The set of Julia components of Pn is isomorphic to
the one-sided shift on n symbols 6n := {0, 1, . . . , n − 1}N. In particular, the Julia set of
Pn is homeomorphic to6n × S1, which is a Cantor set of circles, as desired (see Figure 6).
We omit the details here. 2

6. Proof of Lemma 5.2
This section will be devoted to proving Lemma 5.2, which is the key ingredient in the proof
of Lemma 5.5 and hence in Theorem 1.4.

Proof. Let R̃(z)= 1/Pn(1/z), then Lemma 5.2 reduces to proving R̃(D)⊂ D ∪ {1}. Let
w = zn+1, by a straightforward calculation we have

R(w) := R̃(z)=
w + n

n + 1
·

1
S(w)

, (6.1)
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FIGURE 6. The Julia set of P3, which is a Cantor set of circles. The parameter s is chosen small enough. The gray
parts in the figure denote the Fatou components, which are iterated to the attracting Fatou component containing
the origin, while the white parts denote the Fatou components iterated to the parabolic Fatou component whose
boundary contains the parabolic fixed point one. Some equipotentials of the Fatou coordinate have been drawn in

the parabolic Fatou component and its preimages. Figure range: [−1.6, 1.6] × [−1.2, 1.2].

where

S(w) = An

n−1∏
i=1

(1− b2n+2
i w2)(−1)i−1

+
w + n

n + 1
Bn

= 1+
w − 1

1+ (2n + 2)Cn

(
H(w)− 1
w − 1

+ 2Cn

)
(6.2)

and

H(w)=
n−1∏
i=1

(1− b2n+2
i )(−1)i

n−1∏
i=1

(1− b2n+2
i w2)(−1)i−1

. (6.3)

Since H(1)= 1, it follows that H ′(1) is a finite number. In fact,

I (w) :=
H ′(w)

H(w)
=−2w

n−1∑
i=1

(−1)i−1b2n+2
i

1− b2n+2
i w2

. (6.4)

We know that I (1)= H ′(1)=−2Cn . For every small enough w − 1, we can write S(w)
as

S(w) = 1+
(w − 1)2

1+ (2n + 2)Cn
·
(H(w)− 1)/(w − 1)+ 2Cn

w − 1

=: 1+
(w − 1)2

1+ (2n + 2)Cn
·8(w), (6.5)
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where

8(w)=
∑
k≥2

H (k)(1)
k!

(w − 1)k−2. (6.6)

The next step is to estimate H (k)(1) for every k ≥ 2.
For every k ≥ 1, let

Yk(w)=

n−1∑
i=1

(−1)i−1
(

b2n+2
i

1− b2n+2
i w2

)k

. (6.7)

In particular, Y1(1)= Cn and

Y ′k(w)= 2kwYk+1(w). (6.8)

If |w| = 1, we have

|Yk(w)| ≤

∣∣∣∣ b2n+2
1

1− b2n+2
1

∣∣∣∣k(1+
n−1∑
i=2

∣∣∣∣b2n+2
i (1− b2n+2

1 )

b2n+2
1 (1− b2n+2

i )

∣∣∣∣k)≤ 11
10

∣∣∣∣ b2n+2
1

1− b2n+2
1

∣∣∣∣k . (6.9)

Similarly, we have |Yk(w)| ≥ (9/10)|b2n+2
1 /(1− b2n+2

1 )|k . This means that∣∣∣∣Yk+1(w)

Yk(w)

∣∣∣∣≤ 11
9

∣∣∣∣ b2n+2
1

1− b2n+2
1

∣∣∣∣≤ 2s2n+2 < 1/2. (6.10)

We first claim that |I (k)(1)| ≤ 2k+1k!|Cn| for every k ≥ 0. Since I (0)(w)=−2wY1(w)

and I (1)(w)=−2Y1(w)− 4w2Y2(w), it can be proved inductively that I (k)(w) can be
written as

I (k)(w)=
2k∑

j=1

Qk, j (w)=

2k∑
j=1

Pk, j (w)Yk, j (w), (6.11)

where Pk, j (w) is a polynomial with degree at most k + 1 and Yk, j = Yl for some 1≤ l ≤
k + 1. Note that some terms Qk, j may be equal to zero (the degree of the corresponding
polynomial Pk, j is regarded as−∞) and the formula (6.11) can be simplified, but what we
need is this ‘long’ expansion. In particular, without loss of generality, for 1≤ j ≤ 2k , we
require further that

Pk+1,2 j−1(w)Yk+1,2 j−1(w)= P ′k, j (w)Yk, j (w) and

Pk+1,2 j (w)Yk+1,2 j (w)= Pk, j (w)Y
′

k, j (w). (6.12)

Since deg(Pk, j )≤ k + 1 and Yk, j = Yl for some 1≤ l ≤ k + 1, it follows that

|Pk+1,2 j−1(1)Yk+1,2 j−1(1)| + |Pk+1,2 j (1)Yk+1,2 j (1)|

= |P ′k, j (1)Yl(1)| + |Pk, j (1)Y ′l (1)|

≤ (k + 1)|Pk, j (1)Yl(1)| + 2(k + 1)|Pk, j (1)Yl+1(1)|

≤ 2(k + 1)|Pk, j (1)Yk, j (1)| (6.13)

since |Yl+1(1)/Yl(1)| ≤ 1/2 for every l ≥ 1 by (6.10).
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Denoting ||I (k)(1)|| :=
∑2k

j=1 |Pk, j (1)Yk, j (1)|, we have ||I (k)(1)|| ≤ 2k||I (k−1)(1)||.
This means that

|I (k)(1)| ≤ ||I (k)(1)|| ≤ 2kk!||I (0)(1)|| = 2k+1k!|Cn|. (6.14)

This proves the claim |I (k)(1)| ≤ 2k+1k!|Cn| for every k ≥ 0.
Secondly, we check by induction that |H (k)(1)| ≤ 4kk!|Cn| for k ≥ 1. For k = 1, we

have |H ′(1)| = 2|Cn|< 4|Cn|. Assume that |H (i)(1)| ≤ 4i i !|Cn| for every 1≤ i ≤ k. By
(6.4), we have H ′(w)= H(w)I (w). So

|H (k+1)(1)| ≤ |I (k)(1)| +
k∑

i=1

k!

i !(k − i)!
|H (i)(1)| · |I (k−i)(1)|

≤ 2k+1k!|Cn|(1+ 2k+1
|Cn|)≤ 4k+1(k + 1)!|Cn| (6.15)

since |I (k−i)(1)| ≤ 2k−i+1(k − i)!|Cn| and |H (i)(1)| ≤ 4i i !|Cn| for every 1≤ i ≤ k.
If w = eiθ for |θ | ≤ 1/20, then |w − 1|< |θ | ≤ 1/20. By (6.6) and (6.15), we have

|8(w)| ≤
∑
k≥2

4k
|Cn|(1/20)k−2

≤ 16|Cn|
∑
k≥0

5−k
= 20|Cn|. (6.16)

By (6.5) and (6.16), it follows that

|S(w)| ≥ 1−
θ2

1− (2n + 2)|Cn|
20|Cn| ≥ 1−

s2n+1

n + 1
θ2 (6.17)

since n ≥ 2 and |Cn|< s2n+1/[8(n + 1)2] by (5.6).
On the other hand, if w = eiθ for 0≤ |θ | ≤ π , then∣∣∣∣w + n

n + 1

∣∣∣∣= (1−
4n

(n + 1)2
sin2 θ

2

)1/2

≤

(
1−

4n

π2(n + 1)2
θ2
)1/2

≤ 1−
2n

(n + 1)2π2 θ
2

(6.18)
since (1− x)1/2 ≤ 1− x/2 for 0≤ x < 1. This means that if w = eiθ for |θ | ≤ 1/20, then

|R(w)| ≤

(
1−

2n

(n + 1)2π2 θ
2
)(

1−
s2n+1

n + 1
θ2
)−1

≤ 1. (6.19)

Moreover, |R(w)| = 1 if and only if w = 1.
If w = eiθ for |θ |> 1/20, by (6.2) and Lemma 5.1(2) we have

|S(w)| ≥

(
1−

s2n+1

n + 1

) n−1∏
i=1

(1− |bi |
2n+2)−

s2n+1

3n + 3
≥ 1−

3s2n+1

n + 1
. (6.20)

By (6.18) and (6.20), we have

|R(w)| ≤

(
1−

2

202(n + 1)π2

)(
1−

3s2n+1

n + 1

)−1

< 1. (6.21)

This means that R(w)maps the boundary of the unit disk into the unit disk except atw = 1.
Since R(w) 6= ∞ if |w| ≤ 1, we know that R(D)⊂ D ∪ {1}. Therefore, R̃(D)⊂ D ∪ {1}
and R̃ maps {z ∈ C : zn+1

= 1} onto 1. This ends the proof of Lemma 5.2. 2
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