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ABSTRACT

It is known that the partial stop-loss contract is an optimal reinsurance form 
under the VaR risk measure. Assuming that market premiums are set according 
to the expected value principle with varying loading factors, the optimal rein-
surance parameters of this contract are obtained under three alternative single 
and joint party reinsurance criteria: (i) strong minimum of the total retained 
loss VaR measure; (ii) weak minimum of the total retained loss VaR measure 
and maximum of the reinsurer’s expected profi t; (iii) weak minimum of the 
total retained loss VaR measure and minimum of the total variance risk meas-
ure. New conditions for fi nancing in the mean simultaneously the cedent’s and 
the reinsurer’s required VaR economic capital are revealed for situations of pure 
risk transfer (classical reinsurance) or risk and profi t transfer (design of internal 
reinsurance or reinsurance captive owned by the captive of a corporate fi rm).
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1. INTRODUCTION

Reinsurance is an important risk transfer instrument that leads to a more 
effective risk management through reduction of required economic capital. 
Optimal reinsurance is a widely discussed and complex actuarial topic that 
fi nds a great variety of different answers. There are two kinds of optimization 
problems:

P1) Find the optimal reinsurance form under given criteria for a given set of 
ceded and/or retained loss functions.

P2) For a given optimal reinsurance form, that is a solution to problem P1, 
determine the optimal reinsurance parameters (e.g. optimal retention, 
expected profi t, reinsurance price, etc.) under given criteria.
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Concerning problem P1 early results have shown that the stop-loss contract is 
an optimal reinsurance form under the variance risk measure by minimizing 
the variance of a portfolio’s retained loss for a fi xed reinsurance premium (e.g. 
Borch (1960), Kahn (1961), Arrow (1963/74), Ohlin (1969), etc.), which yield 
optimality under the cedent’s point of view. By minimizing the variance of a 
portfolio’s ceded loss for a fi xed reinsurance premium, Vajda (1962) has iden-
tifi ed the quota-share contract as optimal reinsurance form, which yield opti-
mality under the reinsurer’s point of  view. Obviously, there is a confl ict of 
interests between the parties involved in a reinsurance program. As pointed 
out by Borch (1969) “an arrangement which is very attractive to one party 
may be quite unacceptable to the other”. Since publication of Borch’s seminal 
work (see Borch (1990) for collected papers), optimal solutions for both the 
cedent and the reinsurer have scarcely been discussed, although some papers 
devoted to joint optimality criteria have been published (e.g. Ignatov et al. 
(2004), Kaishev and Dimitrova (2006), Dimitrova and Kaishev (2010)).

In recent years various solutions to problem P1 and P2 under the value-at-
risk measure (VaR) and the conditional value-at-risk measure (CVaR) have 
been obtained (e.g. Cai and Tan (2007), Cai et al. (2008), Bernard and Tian 
(2009), Cheung (2010), Chi and Tan (2010)). In the present paper, we show 
that within this framework it is possible to determine solutions that are opti-
mal from the cedent’s and reinsurer’s point of views. Alternatively, we obtain 
optimal solutions under the total variance risk measure (sum of the ceded and 
retained variance of the loss) considered earlier by the author (in particular 
Hürlimann (1994a/b, 1996, 1999)).

The paper is organized as follows. Section 2 recalls the necessary and suf-
fi cient conditions for the existence of the optimal reinsurance form under the 
VaR risk measure as fi rst identifi ed by Cai et al.(2008). The Sections 3 and 4 
are devoted to the optimal design of the partial stop-loss contract with ceded 
loss function f(x) = a(x  –  d)+, a ! (0,1], d > 0, which is an optimal reinsurance 
form under the VaR risk measure. We assume throughout that the market 
premium and the reinsurance premium are set according to the expected value 
principle with varying loading factors. Proposition 3.1 determines the optimal 
reinsurance parameters by minimizing the VaR measure of the total retained 
loss for an arbitrary confi dence level (strong minimum). Proposition 3.2 pro-
poses an alternative solution by minimizing the VaR measure of  the total 
retained loss for a suffi ciently high confi dence level (weak minimum) and by 
maximizing the reinsurer’s expected profi t. A third optimal solution is found 
in Proposition 4.1 under a weak minimum of  the total retained loss VaR 
measure and a minimum of the total variance risk measure. Interesting and 
useful conditions for fi nancing in the mean simultaneously the cedent’s and 
the reinsurer’s required economic capital are derived for situations of pure risk 
transfer (classical reinsurance) or risk and profi t transfer (design of internal 
reinsurance or reinsurance captive owned by the captive of a corporate fi rm). 
Section 5 illustrates the obtained results for a lognormal and a gamma approx-
imate distribution of the loss. Section 6 summarizes and concludes.
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2. OPTIMAL REINSURANCE FORMS UNDER THE VAR RISK MEASURE

A reinsurance contract determines the rules according to which premium pay-
ments and unearned premium reserves, as well as claim payments, case reserves 
and IBNR reserves are split between the ceding and the reinsurance compa-
nies. In a simplifi ed approach let S be the (aggregate) loss of  an insurance 
portfolio, which is supposed to be insured against a market premium P.
We assume that S is a non-negative integrable random variable with cumula-
tive distribution FS (x) = P(S  #  x), survival distribution FS (x) = 1  –  FS (x), and 
positive mean m = E [S ] > 0. We assume that FS (x) is strictly increasing and 
continuous on (0, 3), with a possible jump at 0. The quantile function of S is 
defi ned and denoted by QS(u) = inf {x  :  FS (x)  $  u}. The stop-loss transform 
of S is denoted by pS(x) = E [(S  –  x)+]. We use that pS(x) = FS (x)  ·  mS(x), 
where mS(x) denotes the mean excess function. Let Sr, Sc be the loss random 
variables representing the reinsurer’s loss and the cedent’s loss in the presence 
of reinsurance such that S = Sc + Sr holds, and denote the expected values of 
these losses by mr = E [Sr], mc = E[Sc ]. We assume that the market premium and 
the reinsurance premium Pr are set according to the expected value principle 
such that 

 P = (1  +  q) m, Pr = (1 + qr) mr,  (2.1)

where q is the market loading factor without reinsurance, and qr is the loading 
factor of the reinsurer. Note that this assumption is in agreement with actu-
arial practice, where usually either the reinsurance premium or the reinsurance 
loading factor is predetermined. Then, the cedent’s retained premium and
the corresponding (implicit) loading factor qc are determined by Pc = P – Pr = 
(1 + qc) mc. Given an insured loss (q, S) and the reinsurance loading factor qr, 
the actuarial problem of  optimal reinsurance is to determine, under given 
criteria, the optimal reinsurance premium Pr  =  (1  +  qr) mr, or equivalently, 
either the optimal retained premium Pc = P – Pr or the cedent’s loading factor 
qc  =  q  –  (qr  –  q) mr / (m  –  mr).

The VaR and CVaR of a random variable X at the confi dence level a  !  (0,1) 
are defi ned as VaRa [X ]  =  QX(a) and CVaRa[X ]  =  E [X |X  > VaRa[X ] ] respec-
tively. Let f (x) be a real, increasing and convex function on (0, 3), which satis-
fi es 0  #  f (x)  #  x, called ceded loss function, such that Sr = f (S ) represents
the ceded loss. The set of all possible ceded loss functions is denoted as C.
The reinsurance premium corresponding to f  ! C is denoted by Pr

f(S) = 
(1  +  qr) E [ f(S )]. The total retained loss, which is the sum of the cedent’s loss 
and the reinsurance premium, is denoted by Tc

f(S) = S – f (S )  +  Pr
f(S). The 

optimal reinsurance problems of  type P1 studied by Cai et al. (2008) and 
Cheung (2010) are stated as follows:

c c c c ((S S S S( ( ) .min minaR T VaR T aR T aR Ta a a af C f C
=

! !

f f*f *f) )V V=) , CVC8 8B B8 8B B  

(2.2)

94838_Astin41-2_10_Hurlimann.indd   54994838_Astin41-2_10_Hurlimann.indd   549 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136988 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136988


550 W. HÜRLIMANN

It is convenient to introduce the following notation and functions

 x Sq= Sr r( ()( ), ( ( / (1 ), ) ( ) ) .d d d x Q g x x xp= + = + +q ) x 1*  (2.3)

One observes that q( ) ( ) .g 0 r m= +1  The necessary and suffi cient conditions 
for the existence of the optimal reinsurance form under the VaR risk measure 
have been identifi ed by Cai et al. (2008). It is possible to rewrite the objective 
function under the VaR measure as c( a( )S S(Sa a) ( ( ))H Var T Q f Q= - +f )f := 8 B  

r(1 ) ( )E f S+ q 7 A (e.g. Cheung (2010), equation (3)).

Theorem 2.1. For a given confi dence level Sa ( ( ), )0 1! F  the following state-
ments hold true:

CASE 1: If r (0) / (0)F> S Sq F  and a( )S (> dQ g *), then ( (d) ,min g *=
f C!

)H f  and the 
stop-loss ceded loss function +d((f x x *= -) )*  is optimal.

CASE 2: If  r (0) / (0)F> S Sq F  and a( )S (dQ g *= ), then ( (d) ,min g *=
f C!

)H f  and 
the partial stop-loss ceded loss function ,d( ( ) [ , ]f x a a 0 1* != - +) x*  
is optimal.

CASE 3: If  r ( ) / ( )F 0 0S S#q F  and a( )S (Q g 0> ), then ( () ,min g 0=
f C!

)H f  and the 
full reinsurance ceded loss function (f x x=)*  is optimal.

CASE 4: If  r ( ) / ( )F 0 0S S#q F  and a( )S (Q g 0> ), then ( () ,min g 0=
f C!

)H f  and the 
quota-share ceded loss function ( , [ , ]f x ax a 0 1!=)*  is optimal.

CASE 5: For all other cases one has S( a) ( ),min Q=
f C!

H f  and full retention with 
ceded loss function (f x 0=)*  is optimal.

Proof. Consult Cheung (2010), Theorem 1. ¡

Theorem 2.1 identifi es the partial stop-loss contract with ceded loss func-
tion ,d(f a= +x) -$ ( )x  as an optimal reinsurance form. At this stage, some 
remarks on related but alternative reinsurance arrangements, which are optimal 
forms under different risk measures, are in order. The limited stop-loss contract 

,d( {( ) },minf b= - +x) x  which is most popular in practice, has been identifi ed 
as optimal reinsurance form in Cummins and Mahul (2004). In fact, Kaluska 
and Okolewski (2008) have derived optimality under the criteria of maximizing 
either the expected utility or the stability of the cedent for a fi xed reinsurance 
premium under the maximal possible claims premium calculation principle. 
The same contract has been shown optimal under more general symmetric and 
even asymmetric risk measures in Gajek and Zagrodny (2004a). Similarly, the 
truncated stop-loss contract with ceded loss function d-( { } ( ) ,f x c1 #= +x x) $  

0,c d2 $  has been identifi ed as optimal reinsurance form in Gajek and 
Zagrodny (2004b), Kaluszka (2005), Kaluska and Okolewski (2008), and Bernard 
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and Tian (2009). All these quite recent results are most interesting from a 
general risk management perspective. But, in view of the current implementa-
tion of regulatory solvency systems, the VaR and CVaR risk measures that are 
relevant to standard solvency models (e.g. Solvency II and Swiss Solvency Test 
(SST)) have fi rst priority. In this respect, a unifi ed analysis under the VaR and 
CVaR risk measures of  the above three stop-loss related reinsurance forms 
over different classes of ceded loss functions with increasing degrees of gen-
erality has been undertaken in Chi and Tan (2010). Finally, note that for the 
CVaR risk measure, a result similar to Theorem 2.1 has also been obtained in 
Cai et al. (2008) and Cheung (2010). Given some optimal reinsurance form, it 
is possible to tackle problem P2 for it. In the present paper, we restrict ourselves 
to the fi xed set of increasing and convex ceded loss functions, for which the par-
tial stop-loss contract is relevant, and restrict ourselves to the VaR risk measure. 
Similar investigations for the related limited and truncated stop-loss contracts, 
as well as a study under the CVaR risk measure, are not undertaken here.

3. JOINT PARTY OPTIMALITY WITH THE MAXIMUM REINSURER’S
EXPECTED PROFIT

Consider the partial stop-loss contract with ceded loss function (f a=x) $
d( ) , [0,1], 0,a d >!- +x   and reinsurance premium r r rq( , ) ( )P P a d= = +1

( .a dSp )  The cedent’s loss is described by d( , ( )S a d S a Sc $- - +=)  and the 
total retained loss by c rc( , ) ( , ) ( , ) .T a d S a d P a d= +  The optimization problem 
P2 will be formulated for different criteria that are all related to a minimization 
of the VaR measure of the total retained loss. The fi rst approach requires a 
minimum for an arbitrary confi dence level (called strong minimum)

(P2.1) ,c cd ( , )a d( ) minVaR T a VaR Ta a
* *

[ , ]a d0 1 0>! ,
=8 7B A 

By abuse of notation , d( )a* *  denotes throughout the optimal parameters of 
any (P2.1) related optimization problem. If  the confi dence level is suffi ciently 
large the Lemma 3.1 shows that the optimal priority d*  of the diverse problems 
is always of the form r( )d q  and takes different values for different reinsurance 
loading factors (optimal or not). The chosen unifi ed notation is somewhat con-
fusing, but this will be ruled out through discussion whenever felt necessary.

Lemma 3.1. Assuming S da( )Q 0> >*  the optimal parameters of  problem 
(P2.1) satisfy the following properties. One has rd ( )d* = q , or equivalently 

r (d d() / ) (0) / (0),F F>* *
S S S S=q FF  and either (i) a 1* =  if  S (da( )Q g> *) or

(ii) ! [ , ]a 0 1*  if  S (da( ) .Q g *= )

Proof. With Cheung (2010), equation (3.3) (see also Section 2), and if S da( ) ,Q >  
one has
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 S (r raq q( ) ( ) ), 1 ( ) ( ) .h d d Q h a da S d S$= + + - = - +1 1 Fp " ,

The necessary fi rst order condition h 0d =  implies that r (d1 1 / ),*
S+ =q F  or 

equivalently ( (r F d d) / ) .* *
S S=q F  By defi nition of the function d (x) in (2.3) this 

is equivalent to rd = .(d* q )  Now, for rd d ( ),d *= = q  one has by defi nition of 
(x)g  in (2.3) that

 ( S S( (a a(d d= da ) ) ),h m Q g Q* * *
S+ - = -)

and similarly
 S (a a, (a d d( ) ( ) ) .h a g Q* *$ $= + -) 1

If  h 0<a  then ,a d( )h *  is strictly decreasing, hence ,a 1* =  and if  ah 0=  any 
! [ ]a 1* ,0  is optimal. In both cases one has , ,c (d d d( ) ( )VaR T a h a ga

* * * * *= = )8 B  
as in Theorem 2.1. ¡

Similarly to the above, the optimal cedent’s loading factor is denoted by c .q*  
The next result describes the complete solution of problem P2 with respect to 
criterion (P2.1). The obtained result is a reformulation of  the Cases 1 and 2 
of Theorem 2.1.

Proposition 3.1. Given an insured loss ( ),Sq  and a reinsurance loading
factor satisfying r(0) / (0) ,F <S S !q qF  assume that c0 ,# # qq*  as well as 

S (a m) / ( ) .Q 0> SF  Then, the optimal ceded partial stop-loss function (f x =)*

d d!( ) , [0,1] ,a a 0>* * * *- + ,$ x  under criterion (P2.1) is completely described 
by the following conditions. The optimal priority is given by rd ( )d* != q

max( , ]d0 ,*  where maxd *  is the unique solution of the implicit equation

(C1.1) S (amax max( ) ) .d m d QS+ =* *

The loading factors are necessarily given by and must satisfy the inequalities

(C1.2)
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and the optimal partial stop-loss factor ! [ , ]a 0 1*  is determined as follows:

(C1.3) 

c

c=

r
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d

max

max
max

,

( )
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d

d
d

1 0 < <

*

*

*
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q q m

-

-
=

q *

*
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*

p

Z

[

\

]]

]]

 

Proof. By Lemma 3.1 and its proof one has = rd ( )d* q  and +( (d dd ) .g m* * *
S=)

One has (! 0,dd max]* *  because (g x) is strictly increasing. Since the function 

S(a(x) )h S= (x m x Q+ ) -  is strictly increasing on S(a( ))0,Q  with (aS )( )h 0>Q  
and S (a( ) (0) ( ) )0 0h Q 0<S S$ $m= -F F  by assumption, the solution to (C1.1) 
is unique. On the other hand, the decomposition r cP P P= +  is equivalent to 
the equality (here for the optimal solution)

 c c= r (( ) ( ) ) .d* *
Sq m q- -q * *q pa  (3.1)

Assume for the moment that c r,<#q q* q  which will be shown below. If  
d max0 d< <* *  one must have 1* =a  by the Case 1 of Theorem 2.1, which shows 

the fi rst formula in (C1.3). The fi rst formula in (C1.2) follows from (3.1). If  
d maxd* = *  the second formula in (C1.3) follows also from (3.1). Since 1*#a  
the equation (3.1) implies the inequality cr ( () ( )),d d* *

S S# q mm- -q q * pp  which 
implies the fi rst inequality for cq* in the second formula in (C1.2). Moreover, 
using the assumption c ,#q q*  one obtains from the same inequality that r#q q  
and more stringently r<q q  by the assumption r ,! qq  hence c r<#q q q* . ¡

Remarks 3.1.

(i) The condition c r<#q q q*  means that the reinsurer covers stop-loss rein-
surance at a higher loading factor than the cedent. In fact, if  cq q=*  either 
the optimal priority is the unique solution (! 0,dd max)* *  of r ( )d*

Sqm = q p  
(if  it exists) or one must have 0* =a  (no reinsurance) in case d maxd* = * . 
Excluding the fi rst situation as a singular exception, reinsurance occurs 
only if  the strict inequality c r<<q q q*  holds. In fact, the inequality c r<q q*  
has been derived in the Appendix of  Hürlimann (2010) by means of 
“ordering of risks” considerations. The assumption r ! qq  is not restric-
tive. Indeed, if  cr !q q=q * the equality (3.1) is only possible for the choice 

1, 0* *= =da  of  full reinsurance (excluded by assumption), and the 
remaining possibility cr q q= =q * contradicts the inequality c r<q q* .

(ii) The pure stop-loss case 1* =a  is somewhat ambiguous. While the cedent’s 
loading factor is uniquely determined as a function of the optimal priority 
through S ( r rd q( ))Q* = +q 1/ , the reinsurance loading factor varies in the 
range r max max( (0) / (0), ( )/ ( )]F F d dS S S S!q F F* * . However, this fact may be
of  practical value, because the reinsurance loading factor can usually be 
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 chosen by the reinsurer (see also the comment (i) of  the Remarks 3.2). 
Extending the optimality criterion taking into account the reinsurer’s point 
of view will resolve this ambiguity and yield well-defi ned optimal reinsur-
ance loading factors that are denoted rq* (by abuse of notation).

A drawback of  the obtained optimal design is the fact that it only provides 
optimality from the cedent’s point of  view. To overcome this possibly unre-
alistic limitation we consider alternative optimization criteria, which take
into account both the cedent’s and reinsurer’s point of views. Our considera-
tions will include a solvency perspective. We take into account the required 
VaR economic capitals of  both parties and compare them to their under-
writing expected profi ts. The retained VaR economic capital for a given con-
fi dence level a  depends only upon the centered retained loss and it is defi ned 
by mc= -a [ [ ]EC VaRac c

VaR ]S S: . One has the relationship

 c cra [ [ [ ,EC VaR P VaR EGa ac c rm m= - = -VaR ]S T T- -] ]  (3.2) 

where

 rrr( , )EG EG a d Pr r Sm= = - = q ( )dap  (3.3) 

denotes the reinsurer’s expected profi t. Since the VaR measure is additive for 
comonotonic random variables, and ,Sc rS  are comonotonic, the ceded VaR 
economic capital at the confi dence level a  is defi ned and determined by

 m c=a a a[ [ ] [ ] [EC VaR EC ECS a rr r - = SVaR VaR VaRS -] ]S: , (3.4)

where ma [ [ ]EC VaRS a= -VaR S]  represents the VaR economic capital without 
reinsurance. For later use we introduce also the retained expected profi t defi ned 
and denoted by

 c -( , ) ( ( )) .EG EG a d P a dc c c c Sm m= = -= q p  (3.5)

Before proceeding with alternatives let us mention the following interesting 
and useful properties. We use the notations , ,cd dr cr( ), ( ),S S S S* * * *= =a a* *

, ,d dr c( ), ( )EG EG EG EG* * * *
r c= =a a** .

Corollary 3.1. Under the assumptions of Proposition 3.1 the reinsurer’s expected 
profi t of the optimal design, as a function of the ceded VaR economic capital, 
is given by

 S (a(a r ) ) .EG EC S m d Q* *
S= + -VaR

r d* +* 8 B  (3.6)
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Moreover, in the special case S (a)P Q=  (percentile premium calculation 
 principle), the retained expected profi t, as a function of  the retained VaR 
economic capital, is given by

 c S (a d (ac ) .EG EC S * *
S= - - mVaR Q d** )+8 B  (3.7)

Proof. By the proof of Lemma 3.1, one has for the optimal design cTVaRa =*8 B

(d )g * . Substituting this and (3.2) into (3.4) one gets

 c S (T a (da ar r r[ ] ) ) .EC S EC VaR EG Q g EGa
*m- + = - +VaR VaR S= + * ** *8 8B B

Since ( (d d d) )g m* * *
S= +  one obtains (3.6). In the special case one has

 
S S S( ( (

c

a a a( (d d

Sa a a

c

r

r

[ ]

) ) ) ) ),

EC EC EC S

Q EG g Q EG g Q* *m

-

= - - + - = + -

VaR VaR VaRS=

*

*

*

*8 8B B

where the last equality follows from the relationship S (a)Q Pm m- = - =

c rEG EG+* *. ¡

The interpretation of Corollary 3.1 is quite instructive from an economic point 
of view. For this purpose we need a concept that describes the fact that a given 
deterministic quantity is fi nanced in the mean by another stochastic quantity.

Defi nition 3.1. A deterministic liability L is weakly (strongly) mean fi nanced 
by a stochastic profi t G if  the mean inequality G $[ ]E L  (mean equality 

LG[ ]E = ) holds.

In the Case 2 of Theorem 2.1, i.e. d maxd* = * , Corollary 3.1 simplifi es by equa-
tion (C1.1) to the relationships a rrEG EC SVaR=* *8 B and cacEG EC SVaR=* *8 B. 
From an economic management perspective the fi rst one means that the  reinsurer’s 
required VaR economic capital is strongly mean fi nanced by the reinsurer’s profi t 

rG P Sr r= - . Even more, in the mentioned special case, the cedent’s required 
VaR economic capital is also strongly mean fi nanced, namely by the cedent’s 
profi t c cG P Sc = - . In practice, these situations might be unrealistic. First, the 
special case implies that the market premium S (a)P Q= , which is set according 
to the percentile premium calculation principle, might not be competitive. 
 Second, a reinsurer’s might not enter into such a zero-sum profi t strategy and 
opt for higher expected profi t at the cost of higher required economic capital.

Fortunately, the relationship (3.2) suggests at least two further optimization 
problems. First, one sees that minimizing c[VaRa T ] and maximizing EGr  ren-
ders actually ca [EC SVaR ] minimum. This can be formulated as single party 
optimization problem (point of view of cedent):
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(P2.1’) , d ca a( ) ( ,minEC S EC S a* *
[ , ],a dc 0 1 0! $

VaR VaRa )d=8 7B A

The optimal solution of this problem coincides with full reinsurance.

Corollary 3.2. Assume S (a)Q > m. Given an insured loss ( , )q S  and the reinsur-
ance loading factor rq , the optimal ceded partial stop-loss function (f x * $=) a*

$d d( ) , [0,1], 0* * *!- +x a , under criterion (P2.1’) is full reinsurance, i.e. 
1, =d= 0* *a .

Proof. With Cheung (2010), equation (3.3), (see also Section 2), and (3.3), rewrite 
(3.2) as

 
d

d

S S

S S

( (

( (

c c ra a

a a

qa [ [ ) ( ) ) ( ) ( )

) ( ) ) ( ) .

EC S VaR EG Q a d

EG Q a d

a r S

r S

m

m m

- - - + +

- - = - - + -

+

+

VaR T Q

Q

1 a

a

=] ] -= p

p

Since this expression does not contain the variable rq , one sees that problem (P2.1’) 
is formally identical to the minimization problem cVaR m{ ( , )] }[min T a da[ , ],a d0 1 0

-
! $

 

for a vanishing reinsurance loading factor r 0=q . Since S (a) ( )Q g 0> m= , the 
result follows from Case 3 of Theorem 2.1. ¡

A second meaningful two party optimization problem (point of view of cedent 
and reinsurer) is to minimize for a suffi ciently high confi dence level the VaR 
measure of the total retained loss and maximize the reinsurer’s expected profi t:

(P2.2) ,c d( ) ( , )minVaR T EG a da
* *

( , ],a d r0 1 0>!

a =8 B  for a suffi ciently high confi dence 
level a ,

 , d( ) ( , )maxEG EG a d* *
, ],(r

a d
r0 1 0>

=
!

a

To distinguish it from the strong minimum required by criterion (P2.1) the less 
stringent minimum in (P2.2) is called weak minimum. The slightly restricted 
optimization problem with a fi xed partial stop-loss factor ( , ]a 0 1!  is consid-
ered in Proposition 3.2 while Corollary 3.3 handles the unrestricted problem. 
As already stated in the comment (ii) of the Remarks 3.1 the obtained optimal 
reinsurance loading factors are denoted rq*.

Proposition 3.2. Given an insured loss ( , )Sq , assume that c r0 , !# #q q q q* * , 
and S (a d)Q 0> >* . Assume that the density function (x( ) 0f x >S S�) = F  and 
its derivative (x)fS�  exist for all x 0> . Then, the optimal ceded partial stop-
loss function d d( ( ) ,f x a 0>* *$= - +) x , for fi xed ( , ]a 0 1! , under criterion 
(P2.2) is completely described as follows. A local maximum for the reinsurer’s 
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expected profi t exists at the optimal priority = rd ( )d 0>* q* , if  and only if  the 
implicit equation

(C2.1) ( ( ( (d d d d) ) ) )f m F* * * *
S S S S$ $= F

has a solution and one has

(C2.2) (( ( (d d d) ( 3 )) ) ) ( ) .f F df d 0>* * *
S S S S S$ $ $ $- - �2 F p

The optimal reinsurance loading factor is necessarily given by

(C2.3) r
(
(

(
(

d
d

)
)

)
)

.
F F

0
0

>
*

*

S

S

S

Sq =*

F F

The optimal cedent’s loading factor is determined by and satisfi es the inequality

(C2.4) 
(

(
d

d
c

r
r

)
)

a
a

0 .
*

*

S

S 1# #q
m q

q q=
-

-

p
pq*

*
*

m

Proof. The necessary condition (C2.3) of optimality, that is r ( )d( ) / ,F dS S=q F  
has been shown in Lemma 3.1. It follows that r( , ) ( )EG a d dr S= =q ap

( ) ( )a F d m dS S$ $ . For ease of notation, set .( )d( ) ( ) ( ) ( )h d f d d F dS S S S
2

$ $= -p F

Since (S )( ( )m x x xS S=) /p F , a calculation shows that 2( )d
( , ) ( )

.d
EG a d

a
h dr

S
2

2
= $

F
 

A necessary condition for the existence of a local maximum is herewith (C2.1). 

Further, using that (d )h 0* =  at the optimal priority, one obtains 
EG
d

r

d d

22

2
=

=
2

*

 
(d )

2(
�

.a
d

h
*

*

S )
$

F
 A second order suffi cient condition for a local maximum is here-

with ( ( ( (d d d d) ( ) ) )f= (d-) (2 3 ) )h d 0<* * * * *
S S S S S-� p�f F$ $ $ F , which yields

condition (C2.2). The expression for the cedent’s loading factor in (C2.4) fol-
lows from the equality (3.1) and the inequalities for the loading factors are 
shown as in the proof of Proposition 3.1. ¡

For a variable partial stop-loss factor ( , ]a 0 1!  the optimal design is deter-
mined as follows.

Corollary 3.3. Under the assumptions of Proposition 3.2 and variable stop-loss 
factor ( , ]a 0 1!  the optimal design under criterion (P2.2) has a ceded stop-loss 
function df ( ( ) , 0x >* *= - + d) x , and is determined as follows. If  it exists, the 
optimal priority rd = ( 0d >* q )*  is solution of the implicit equation (C2.1) and 
(C2.2) must hold. Moreover, the optimal reinsurance loading factor is given 
by (C2.3) and the remaining loading factors satisfy the conditions
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(C2.4’) c
(

r
r(

( (
(d

d
d

d
d

S

)
)
)
,

)
)

.
F

<
*

*

*

*

*
S S

S

S
#m q q q

m
qm q

=
-

-
=

p * *
*

p
p

F
   

 

Proof. By the proof of Lemma 3.1 one has a(d d[ ( , ] ) ( )VaR a a g 1a
* *

c $ $= + -T

S (a) .Q  This is minimum, and d ( (F d d( ) ) )EG a m* * *
r S S$ $=,a  is maximum, 

exactly when a 1= . The conditions (C2.4’) follow from (C2.4) through rear-
rangement by setting a 1= . ¡

Remarks 3.2. 

(i) In Proposition 3.2 and Corollary 3.3 the optimal reinsurance loading fac-
tor is by (C2.3) a predetermined function of the optimal priority. If  d*  is 
very large, then rq* will be very large, which will be unrealistic in practice. 
In contrast to this, in Proposition 3.1 the reinsurance loading factor can 
be fi xed by the reinsurer, which is in agreement with practice. But then, 
unless (aS(d ) )g * = Q  with d maxd* = * , one has (aS(d ) )g <* Q  and only the 
pure stop-loss contract can be optimal by the Case 1 of  Theorem 2.1. 
Based on reinsurance market data, it might be interesting to analyze 
whether Proposition 3.2 and Corollary 3.3 can generate unrealistic practical 
situations. As alternatives, it is still possible to consider similar optimization 
problems for the (optimal) limited and truncated stop-loss contracts men-
tioned at the end of Section 2.

(ii) Corollary 3.3 proposes a method to identify the unknown optimal priority 
in Case 1 of Theorem 2.1. The optimal priority in (C2.1) can be reinterpreted 
as fi xed point of the quantile function

  ( S
S

S
S S( (

(
(

d d d
d
d

1) ))
)
)

h
h
h* * *

*

*

S$= =0
0

Q Qm ,f p  (3.8)

 where

  S S(
(S

S
S

S( )x( )
)
)

{ }, ( ) ( )
( )

{ ( )},ln lnh x
x

f x
h x x

x
xdx

d

S
dx
d

S
1

= = = =0

p p- -F
F

F
 (3.9)

 denote respectively the hazard rate function (also called failure rate, degree 
zero stop-loss rate), and the degree one stop-loss rate, (see Hürlimann 
(2000), Section 2).

(iii) Existence and uniqueness of the local maximum defi ned by (C2.1)-(C2.2) 
remain to be discussed. The numerical optimal priorities obtained in Sec-
tion 5 are all uniquely determined. In general, it is felt that the fi xed point 
equation (3.8) might be helpful for resolving the open existence question 
using appropriate conditions for such equations. Uniqueness depends 
upon the number of sign changes of the function ( )h d  in the proof of 
Proposition 3.2. Both questions have so far not been analyzed and go beyond 
the scope of the present investigation.
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4. JOINT PARTY OPTIMALITY WITH THE MINIMUM OF THE TOTAL

VARIANCE RISK MEASURE

From now on we will assume that the loss S has a fi nite variance [Var SS ]s =2  
and we defi ne and denote the stop-loss transform of  degree two by (x),S2p =

E +
2( )x-S7 A. The stop-loss transform variance is defi ned and denoted by 

S .2( ) ( ) ( )x x x,S S2s p= -2 p
Instead of maximizing the reinsurer’s expected profi t besides minimizing in 

a weak sense the total retained loss VaR, one might consider stabilization of 
the total variance of the retained and ceded loss. It is generally recognized that 
an appropriate reinsurance program should minimize unexpected fl uctuations 
and produce value through more stable insurance results (e.g. Venter (2001)). 
Suppose unexpected fl uctuations are measured using the variance, and that
the unexpected total fl uctuations associated to the splitting of a risk in several 
components is measured using the total variance risk measure defi ned by the 
sum of the component variances. In the reinsurance situation this risk measure 
is defi ned and denoted by

 S, ,S Sc c c$R S ar S ar S Cov S2S r r rs= -2V V+=6 6 6 6@ @ @ @ (4.1)

An alternative to (P2.2) is therefore the following optimization criterion (weak 
minimum of the cedent’s VaR measure of the total retained loss and minimum 
of the total variance risk measure):

(P2.3) , ( ,dc c a( ) )minVaR T VaR T da a
* *

( , ]a d0 1 0>!

a
,

=7 6A @ for all suffi ciently high con-
fi dence levels a , 

, , ( , ( ,d d a a( ), ( ) ), )minR S S R S d S d* * * *
( , ]S r a d S c rc 0 1 0>!

a a
,

=7 6A @

We consider optimization under the restricted criterion (P2.3) for a fi xed par-
tial stop-loss factor ( , ]a 0 1! . The “conjugate” or dual stop-loss transform 
defi ned by ((p ) )x x xS Sm= - + p  and the dual mean excess function ( )xSm  
defi ned by ((p m) ( ) )Fx x xS S $= S  are used. 

Proposition 4.1. Given an insured loss ( ),Sq  with fi nite variance Ss
2 , assume 

that c r0 , !# #q q q q* * , and (aS d) 0> >*Q . Assume that the density function 
( )x( 0f x >S S) �= F  exists for all x 0> . Then, the optimal ceded partial stop-

loss function d df ( ( ) ,x a 0>* *$= - +) x , for fi xed ( , ]a 0 1! , under criterion 
(P2.3) is completely described as follows. A local minimum for the total vari-
ance of the retained and ceded loss exists at the optimal priority (d qrd = ) 0>* ,*

if  and only if, ( , ]a 12
1

! , the implicit equation

(C3.1) ( (d d( 1) ) ) ,m 0* *
S$ - =2 Sma - ,

has a solution and one has
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(C3.2) ( ( ( (d d d dS2 ) ) ) 2 ) .F f a 0>* * * * *
S S S$ $ $ $m- - +a d pF ^ h

The optimal reinsurance loading factor is necessarily given by

(C3.3) r
(
(
d
d

S S)
)

( )
( )

.
F F

0
0

>
*

*
S Sq =*

F F

The optimal cedent’s loading factor is determined by and satisfi es the inequality

(C3.4) c
(

(r
r

d
d

0
)

)
.<

*

*

S

S
# #q

m
qm q

q q=
-

-

a
a*

*
*

p
p

Proof. The necessary condition (C3.3) has been shown in Lemma 3.1. According 
to (4.1) the total variance risk measure is minimal exactly when the covariance 
between the retained and ceded loss is maximum. To obtain an expression for 
this quantity, use that = ( ) , ( )S S a d a dc r$ $- - = -+ +S S S  to get

 
,S Cov Varc $S , ( ) ( )

( ) ( ) .

Cov S d a d

a E d a d

a

,

r

S S S2

$

$ $ p

= - - -

= - - +

+ +

+ ( ) ( )

S S

S d dS am-
2p p

8 7 7

7

B A A

A

$

$

.

.

But, one has ( )dd+( ) ( ) ( ) ( )E d d d dE d, SS2$ $ p- - + -= = ++ +S S S2 pS6 @ 7 A . 
Inserted in the preceding curly bracket one obtains

 c, ( ) ( ) ( ( )) ( ) ( )

( ),

Cov S S a a d d d d a

a h d

1 1,r S S S S2$ $ $

$

p m= - + - + - -

=

( )dp p 2p8 B % /

with S=( )d a (p( ) ( ) ( ) )h d d dS S$ $s- +21 p . A necessary condition for a local 
maximum is (d =)h 0*� . Using that = = =S�� �S (p( ), ) ( ), ( )d d F d dS S S s- 2( )d Fp  

2 ( ) ( )F d dS S- p  one obtains

 
a2 ( )

1

- S

S

p( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (2 ) ( ) ( )

h d a F d d d d F d d

a F d d m d d

S S S S S

S S

$

$ $

= - - +

= - - Sm

� 1

,a

p pF

F

#

#

-

-

which implies the condition (C3.1). One notes that the condition ( , ]a 12
1

!  is 
necessary for a local minimum. Indeed, if  a 2

1
#  then ( )d = 0�h  can only be 

fulfi lled if  (Sp )d 0# . Since (Sp )d  is strictly increasing and (p ) 00S =  one
has (Sp )d 0<  for all d 0>  and thus ( )d = 0�h  is impossible for a 2

1
# .

A second order suffi cient condition for a local maximum is (d ) 0h <*� . Since 
1)( S ( )d d) {( ( ) ( ) ( )}a F d d dS S S$= -2 p- p�h a F  one gets further
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1)(-

1) 2a

S S

S

p

p

( ) (2 ( ) ( ) ( ) ( )) ( ) ( ) ( ) ( )

( ) ( ( ) ( )) ( ) ( )

d a a d d F d d f d d F d d

a f d d d F d d

S S S S S S

S S S S

$

$

= - + -

= + -(2 ,

f p

p-a

F F

F

h� #

#

-

-

which implies the condition (C3.2). The condition (C3.4) is shown as in the 
preceding proofs. ¡

Concerning the relationship between the cedent’s and reinsurer’s VaR economic 
capitals and the corresponding expected profi ts, a result similar to  Corollary 3.1 
is obtained.

Corollary 4.1. Under the assumptions of Proposition 4.1 and ( , ]a 12
1

! , the 
reinsurer’s expected profi t of the optimal design, as a function of the retained 
VaR economic capital, is given by

 (ac S )aSar ) ( .EG EC m d Q* *
S$- + -VaR )= * ( d+ 1* 8 B # -  (4.1)

Moreover, in the special case (aS )P = Q  (percentile premium calculation prin-
ciple), the retained expected profi t, as a function of  the ceded VaR economic 
capital, is given by

 (aSa drSac ) ) ( .EG EC m d* *
S$- - -VaR )Q= * (+ 1* 8 B # -  (4.2)

Proof. The retained VaR economic capital equals by (3.2) (using (C3.3))

(

(

(

(

c c a

a

a

a

(S

S

S

S

ra

a

a

a

(

( ( (

( ( ( ( (

( ( ( (

d d

d d d d

d d d d d d d

d d d d d

S

S Ta r

p

) ( ) ) )

) ( ) ) ) )

) ) ( ) ) ) ) )

) ( ) ) ) ) ) .

EC VaR EG a g

a m a F m

m F m m

F m m

a
* *

* * * *

* * * * * * *

* * * * *

S

S S S

S S S S

S S S S

$ $

$ $ $

$

$

m q m

m

m

= - - = + - - - =

+ + - - -

= - + + - + - +

= + - + - +

aVaR Q

Q

Q

Q

1

1

1

1

* * **

F

p

_ i

8 8B B

#

#

-

-

On the hand, using that ( ( (d d a d) ) (1 ) )a m m* * *
S S$ $= + -Sm  by (C3.1) (and 

(C3.3)), the reinsurer’s expected profi t in (3.3) can be rewritten as

 (r ( ( ( ( (d d d d d dr p) ) ) ) (1 ) ) .EG a F m a F m* * * * * *
S S S S S S$q= = = + -a* )$* $p

Comparing both quantities one obtains (4.1). In the special case one gets 
from (3.4) that 

 
(

( (

c a

a a

S

S S

r

((d d dm

a a a r

c

)

( ) ) ) ( ) ) ) ,

EC S EC S EC S EG

a m EG a1 1* * * *
S S$ $

m= - -

+ - + - = - + -

VaR VaR VaR Q

Q d Q

-* * =

+

*

*

8 7 8B A B

$ $. .
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where the last equality follows from the relationship (aS ) Pm m- = - =Q
c rEG EG+* *. ¡

Remarks 4.1. 

(i) The conditions (C3.1) and (C3.2) for the pure stop-loss contract a 1=  
have been further discussed and analyzed in Hürlimann (1999). The results 
in Corollary 4.1 are new. They provide an alternative to Corollary 3.3
for identifying the unknown optimal priority in Case 1 of  Theorem 2.1 
(see point (iii) of the Remarks 3.2). Moreover, they suggest further appli-
cation in risk management: 

(ii) Consider “internal reinsurance” in a (re)insurance company or a “reinsur-
ance captive” owned by a corporate business fi rm that acts as insurer 
either directly or via another direct insurance captive. The property 

ca rEC EGS =VaR * *7 A  means that the cedent’s required VaR economic capital 
is strongly mean fi nanced by the reinsurer’s profi t. What does this mean 
in practice? Let split the insurance loss of a fi rm between a direct insurance 
captive (acting as cedent) and a reinsurance captive in this optimal way. 
Since a reinsurance captive does not need to generate profi t from their 
reinsurance business, its profi t can be transferred to the direct insurance 
captive that covers herewith in the mean its required VaR economic cap-
ital. As a consequence only the VaR economic capital of the reinsurance 
captive must be reserved by the fi rm. Though the reinsurer’s required
VaR economic capital, given by ( (Sr a dp )EC S *

Sm- -a )VaR * Q=7 A , may be 
quite important, it is clearly less than the required VaR economic capital 

(aSa [ ] )EC S m= -VaR Q  for the original loss faced without a reinsurance 
arrangement. Though this implies a release of required VaR economic 
capital this is not a surprise per se because the premium for the original 
loss will include and fi nance in the mean the reinsurer’s profi t. Therefore, 
from an economic point of view the release of economical capital is just 
transferred to the original premium without a priori any economic benefi t.

(iii) In continuation of the discussion in (ii), in the special case of Corollary 4.1, 
the reinsurer’s VaR economic capital also coincides with the retained 
expected profi t. In this situation an overall strongly mean fi nancing strategy 
for an internal reinsurance or for a two party captive structure (direct insur-
ance captive and reinsurance captive) can be designed by exchanging the 
profi ts between cedent and reinsurer. Setting the market premium equal 
to the percentile premium (aS )P = Q  fulfi lls automatically the VaR eco-
nomic capital requirements of both the cedent and the reinsurer. In this 
optimal way, the required VaR economic capital of  a fi rm is not only 
mean fi nanced but also mean self-fi nanced by the cedent’s and reinsurer’s 
profi ts. Again, this is not a surprise because the VaR economic capital of 
the original loss is already strongly mean fi nanced by the original profi t 
in virtue of the equality (aSG S a[ ] ) [ ]E E EC Sm= = - =] VaRQ[ -P , and 
a splitting of the original loss does not make any difference in the overall. 
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The created value or relevance of  the reinsurance splitting strategy is 
beforehand risk theoretical (also in the situation (ii) above). Indeed, under 
the optimal strategy, the total insurance loss fl uctuations are minimized 
in terms of the total variance risk measure. By defi nition (4.1) these fl uc-
tuations are clearly less than the original insurance loss fl uctuations as 
measured by the variance.

The next result states useful suffi cient conditions for the existence of a solution 
to (C3.1).

Proposition 4.2. Assume the distribution (x)FS  of the loss is strictly increasing 
and continuous on ( , )0 3  and has fi nite mean m and variance Ss

2 . Two cases 
are distinguished.

Case 1: a 1=

If  m( )FS 2
1

$  then there exists d $ m  such that ( ) ( ) ( )g d F d dS S= -p
S p( ) ( ) 0.d dS =F

Case 2: ( , ]a 12
1

!

If  the squared coeffi cient of  variation satisfi es the inequality S
S=k <

2
2

m
s

f p

a2
a
m
m

( , ) ( )
) ( )

1C a F
F

1
1 2

S

S
2

m =
-

- -
-

(1
e o  then there exists d0 < # m  such that 

1) S p( ) (2 ( ) ( ) ( ) ( )g d F d d d d 0S S S= - - =a p F .

Proof. Case 1 is Theorem 4 in Hürlimann (1999). Its elementary probabilistic 
proof is based on the inequality of Bowers (1969)

 S m2( ) ( ) ( )d dS 2
1

# s m+ - - -2 dp ,` j

which is now used in a similar way to show Case 2. First, one observes that if  
a > 2

1  there exists d >1 m such that ( )F d a1 2 1< <S 1 / , hence (remember that 
((p ) )x x xS Sm= - + p )

 2 ( )a d m- S( ) 1 ( ) ( ) ( ) 0.g d F d d d <S S1 1 1 1= - - - Fp7 A

By continuity of  the function ( )g d  it suffi ces to show the existence of  0 < 
d d<2 1# m  such that ( )g d 02 $ . Let d0 < # m and note that m( ) ( )F d F <S S#

( ) 1 2F d a<S 1 / . It follows that

d da a2 2S S m m( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .g d d F d d F d1 1S S S S$= - - - - - - pF Fm p m7 7A A

By the above inequality of Bowers a suffi cient condition for ( )g d 0$  is
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S dm m m
m

( ) ( ) ( )
( )

( ),aF
F

1 2
1

S

S
2
1 2

#s + - - -
-
-

-d d2 m` ej o  or equivalently

S d2#
a

m m
m

( ) ( )
) ( )

( ) .a
F

1
1 2

S

S2s + -
-

- -
-d F

2 (1
me o

By defi nition of ( , )C a m , which is non-negative for all ( , ]a 12
1

! , the preceding 
inequality is further equivalent to (a,CS )d # m s m- / . With the made 
assumption, any (a,CS! 0, )d2 s m/-m_ A satisfi es the inequality ( )g d 02 $ . 
Case 2 is shown. ¡

To complete the results, we show that it is not possible to minimize the total 
variance risk measure through simultaneous variation of the partial stop-loss 
factor and the priority (a dual version of Theorem 2 in Hürlimann (1999)).

Proposition 4.3. Given is a loss S with fi nite variance Ss
2 . The bi-dimensional 

optimization problem , , , ,a a( (d d d dc c( ), ( ) ), )minCov Cov S S* * * *
( , ]r a d r0 1 0>

=
!

S a S a
,

8 7B A 

for the partial stop-loss function df ( ( ) , ( , ],x a a d0 1 0>$ != - +) x  has no 
solution unless a 1= .

Proof. The covariance between the retained and ceded loss reads ,S SrCov c =6 @

( , )h a d  with S( ,a a $ p) { ) ( ) ( ) ( )}h d a d d dS S$ $s= - +2(1 p  (see the proof  of 
Proposition 4.1). A calculation shows that the fi rst order conditions h h 0a d= =  
for a maximum over the domain ( , ], ,a d0 1 0>!  are equivalent to the equations 
(the expression for hd  is found in the proof of Proposition 4.1)

S Sp p( ) ( ) ( ) ( ), ( ) ( ) ( ) ( ) ( ) .d d d F d d d d1 1S S S S S$ $ $ $ $s = =2 p p2 2- - Fa a  (4.3)

Solve both equations for the unknown parameter a and equate the obtained 
expressions to get the condition 

 S
2

S

( )
( )
( )

.d
d

F dS
Ss =2

F
$ ( )dp  (4.4)

Applying the generalized inequality of Kremer (1990) (see Hürlimann (1994a, 
1997a/b)) one has

 S
2

S

( )
( )
( )

.d
d

F dS
S$s2

F
$ ( )dp  (4.5)

Since there is in general strict inequality only the equality case must be con-
sidered. In this situation we argue as in Case 2 of the proof of Theorem 2 in 
Hürlimann (1999). ¡
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5. CASE STUDY

Two frequently encountered distributions used to approximate the aggregate 
loss of  an insurance portfolio are the lognormal and gamma distributions.
We note that it is very natural to choose a log-normal distribution as it is 
compliant with the Solvency II non-life SCR standard formula. The gamma 
distribution can be justifi ed as limiting distribution of a compound Poisson 
distribution with gamma distributed claim size (e.g. Hürlimann(2002), Theo-
rem 2). For simplicity only these loss distributions are considered in the present 
case study.

5.1. Lognormal distribution of the loss

Suppose that the loss has a lognormal survival distribution (x uS = F) (( ) / ),x t-lnF  
(x)F  the standard normal distribution, whose parameters satisfy the relation-

ships

 kS+ m( ) ( ) , .,ln ln k1 S
S2

2
1t t mu= = - =2 s

 (5.1)

Besides the distribution function, full optimization calculations depend upon 
the specifi cation of  the density, its fi rst derivative, the quantile function
and the stop-loss transform. These functions are determined by the following 
formulas:

(S ( (S S

( ) ( ) ( )

) , ( ) ( ( )) ) .

ln ln

exp exp

f x x
x x x

x f x

u u x x x x

1 1

2
1

S S S

S
1 2 2

$ $ $

$ $ $

t t
u

t t
u t

t t p tF

= - = - - +

= - = - -
-Q

,

) $m F F

$�( ),x,f �( )xf F= fc c

c

m m

m

 (5.2)

5.2. Gamma distribution of the loss

Suppose that the loss has a gamma survival distribution x;( $(xS G) )g= bF , 
(x; )G g  the incomplete gamma function, whose parameters satisfy the relation-

ships

 
S S

, , .
k k

k1 1
S

S

$
g b

m m= = =2 2

s
 (5.3)

Full optimization specifi cation is based on the following formulas:

=( )x

( (

1

$

(h

$S

$ (x

S

(

(x

�

G

) ; ( ) ( , ),

( ), ) ; ) ( ) .

f x x h x x e
x f

u x x x x1

S

x

S S

S

1

1 1

$ $

$ $

b b g b
g

b p m b

G

G

= = - -
-

= = -

g- -

- -

;

;

g

g

)

)Q

$),g

F+g

f d n

 (5.4)
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5.3. Numerical implementation and illustration

To illustrate the risk management application of the obtained results we con-
sider lognormal (lnN) and Gamma (G) distributed losses with a fi xed mean 

100m =  and varying coeffi cient of  variation j. ,k 0 05S = $  j =  1, 2, 3, 4, 5.
The market premium is set according to the percentile or the standard devia-
tion premium calculation principle. We consider the optimal partial stop-loss 
contract under the three optimality criteria (P2.1), (P2.2) and (P2.3) for the 
four different cases:

Case 1: (aS ),P a 1= =Q

Case 2: 3 , 1( )P akS $ m= =+1

Case 3: (aS ), .P a 0 75= =Q

Case 4: 3( ) , .P k a 0 75S $ m= + =1

To fi x ideas the confi dence level is set at a 99.5%= , which is regulatory com-
pliant with Solvency II. In the ambiguous situation a 1=  of  criterion (P2.1), 
which allows for varying reinsurance loading factors, only the extreme reinsur-
ance loading factor r Smax max( ) ( )F d dS=q / F* *  is chosen in the numerical illustra-
tion. In the Cases 1 and 3 the market loading factor without reinsurance equals 

(aS( ) )q m m= -Q / , and in the Cases 2 and 4 it is equal to 3kSq = . Note that 
for the lognormal distribution with .k 0 145S =  the two market premiums 
approximately coincide, that is S 3(0.995) (1 kS, m+Q $) . This corresponds
to the distribution used to calibrate the Solvency II standard non-life SCR 
formula.

Numerical implementation is straightforward, especially if  it is done with 
the aid of a computer algebra system (e.g. MATHCAD). For example, to fi nd 
the optimal pair , qrd( )* *  of problem (P2.2) for a distribution function (x)FS  
one proceeds as follows. Ensure fi rst that the related probabilistic functions 

( )x , (aS ( (x x( � ) ), )f x mS S S S) ,, Q pf  are available (formulas (5.2) and (5.4) in the 
illustration). Then, according to Proposition 3.2, one solves the implicit equation 
(C2.1) using a suitable software functionality (e.g. the “solver” in MATHCAD). 
If  the condition (C2.2) for d*  and the assumption (aS d) > *Q  are satisfi ed a 
local maximum has been found. The optimal loading factors c,r( )q q* *  are 
obtained from the expressions in (C2.2) and (C.3).

5.4. Mean fi nancing properties: risk transfer versus risk and profi t transfer

Besides calculation of the economic capital and expected profi t for the cedent and 
reinsurer, we compare the mean fi nancing properties of the optimal solutions 
under the three optimality criteria. We do this for two kinds of risk sharing 
arrangements. The fi rst one is classical reinsurance. This is a pure risk transfer 
(RT) under which the reinsurer takes over the ceded loss against a predeter-
mined reinsurance premium. The second one is an alternative risk and profi t 

94838_Astin41-2_10_Hurlimann.indd   56694838_Astin41-2_10_Hurlimann.indd   566 2/12/11   08:332/12/11   08:33

https://doi.org/10.2143/AST.41.2.2136988 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136988


 OPTIMAL REINSURANCE REVISITED 567

transfer (RPT) under which the reinsurer takes over the ceded loss against a 
predetermined reinsurance premium and the profi ts of the cedent and reinsurer 
are exchanged (e.g. design of internal reinsurance or setting a reinsurance captive).

The interpretation of Corollary 3.1 has shown that the required VaR eco-
nomic capitals for the optimal RT under criterion (P2.1) is strongly mean 
fi nanced by the corresponding profi ts for both the cedent and reinsurer provided 
a 1<  (typically Case 3), for which one has necessarily d maxd* = * . In Case 1, 
that is a 1= , this property holds only for the extreme reinsurance loading 
factor r Smax max( ) ( )F d dS=q / F* * , which is the choice made in our numerical
case study. Nevertheless, for (0),r S Smax max(0) ( ) ( ))(F F d dS S!q // F F* *  an overall 
strongly mean fi nancing property holds in the sense that the following equation 
holds (trivially fulfi lled in case (aS )P = Q ):

 a a a[ ] [ ] [ ]EC EC EC EG EGc c rr+ +SVaR VaR VaR S= =S  (5.5)

For a 1= , Corollary 4.1 can be interpreted as a strongly mean fi nancing 
 property for the optimal RPT under criterion (P2.3) because the cedent and 
reinsurer exchange their profi ts. To measure the degree of mean fi nance of a 
RT and RPT, it is useful to consider the following indices.

Defi nitions 5.1. The RT indices of mean fi nance for the cedent and reinsurer 
are defi ned by

 = =rc : :
a

a

a

a

[ ]
[ ]

,
[ ]

[ ]
,IMF

EC
EG EC

IMF
EC

EG ECc c r- - r
VaR

VaR

VaR

VaR
RT RT

S S
S S

 (5.6)

The RPT indices of mean fi nance for the cedent and reinsurer are defi ned by

 = =rc : :
a

a

a

a

[ ]
[ ]

,
[ ]

[ ]
IMF

EC
EG EC

IMF
EC

EG ECcRPT r RPT c- - r
VaR

VaR

VaR

VaR

S S
S S

 (5.7)

Clearly, a VaR economic capital is weakly (strongly) mean fi nanced if  and only 
if  an index is non-negative (vanishes). According to (5.5) the required overall 
VaR economic capital is weakly (strongly) mean fi nanced by the profi ts if  the 
corresponding sums of  indices in (5.6) respectively (5.7) are non-negative
(vanish). The indices of mean fi nance are non-negative for both the cedent and 
reinsurer under the following conditions:

  (c r aS, (k (x PS60 0 ) 2.1), ), (0,1]IMF IMF F P aS +/$ $ $ !
RT RT Q  (5.8)

   (c r aS, (k (x PS6 ) . ), ),IMF IMF F P a0 0 2 3 1S +/$ $ $ =RPT RPT Q   (5.9)

Table 5.1 lists besides the optimal pairs , qrd( )* *  the cedent’s and reinsurer’s 
VaR economic capitals and expected profi ts for the three optimality criteria 
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under the four Cases. Table 5.2 displays the corresponding indices of mean 
fi nance. The abbreviation CV for coeffi cient of variation is used in the Tables 
and discussion.

The most important properties and dependencies can be read off  from the 
Tables as follows:

(1) The optimal pairs , qrd( )* *  depend on the loss distribution but not on the 
market premium, and depend on the partial stop-loss factor a only under 
(P2.3). For criterion (P2.1) the values of  , rd q* *  are the highest possible 
ones (extreme reinsurance loading factor) but any other values satisfying 

qrd max0 ( )d d< * #= * *  could have been chosen as already explained in the 
text. 

(2) The optimal pairs , qrd( )* *  for criterion (P2.1) are similar for the lognormal 
and gamma distributions. For the criteria (P2.2)-(P2.3) they differ more 
and more by increasing CV. In particular, qr

*  increases much faster under 
a lognormal distribution than under a gamma distribution by increasing 
CV for the criterion (P2.2).

(3) The optimal priority is increasing with increasing CV except for criterion 
(P2.3), a  =  0.75. In this situation it is decreasing with increasing CV.

(4) The optimal reinsurance loading factor is increasing with increasing CV 
for the criteria (P2.2)-(P2.3), but it is decreasing with increasing CV for 
criterion (P2.1).

(5) The properties of  the optimal priority solving the equation (C3.1) for 
criterion (P2.3) are instructive. In case a 1=  the optimal priority is close 
to the mean but above it, in agreement with Case 1 of Proposition 4.2 and 
the observations already made in former papers (e.g. Hürlimann (1994b), 
Hürlimann (1999), Section 4). For ( , ]a 12

1
!  the optimal priority is less 

than the mean, in agreement with Case 2 of  Proposition 4.2. One can 
argue that a priority less than the mean is not meaningful, as done
in Hürlimann(1999), hence only the pure stop-loss case a 1=  might be 
practical.

(6) For fi xed a the VaR economic capitals of  the cedent and reinsurer as
well as the reinsurer’s expected profi ts do not depend upon the market 
premium but depend on the loss distribution. The expected profi t of
the cedent depends on a, the market premium and the loss distribution. 
Maximizing the reinsurer’s expected profi t under criterion (P2.2) requires 
a high increase of economic capital for a moderate increase in expected 
profi t when compared to criterion (P2.1). However, the corresponding 
reinsurance premiums are much more competitive for criterion (P2.2) in 
this situation (much smaller reinsurance loading factors).

(7) The overall VaR economic capital is strongly mean fi nanced by the profi ts 
in the Cases 1 and 3 under all criteria. Since (aS )P = Q  this is a trivial 
property. Accordingly, in the Cases 2 and 4, the same weak property only 
holds for those smaller CV’s satisfying (aS )P > Q .
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(8) The cedant’s and reinsurer’sVaR economic capitals are strongly mean 
fi nanced by their own profi ts (Cases 1 and 3 for the RT under criterion 
(P2.1)) respectively by their exchanged profi ts (Case 1 for the RPT under 
criterion (P2.3)). The same weak properties hold in the Cases 2 and 4 for 
the RT, respectively Case 2 for the RPT, provided the CV’s are suffi ciently 
small to satisfy (aS )P > Q .

TABLE 5.1

ECONOMIC CAPITAL AND EXPECTED PROFIT FOR OPTIMAL PAIRS , qrd( )* *

CASE 1: Market premium = percentile premium to confi dence level 99.5%, a  =  1

CASE 2: Market premium = mean plus three standard deviations, a  =  1

CASE 3: Market premium = percentile premium to confi dence level 99.5%, a  =  0.75
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CASE 4: Market premium = mean plus three standard deviations, a  =  0.75

TABLE 5.2

INDICES OF MEAN SELF-FINANCE FOR OPTIMAL RT AND RPT

CASE 1: Market premium = percentile premium to confi dence level 99.5%, a  =  1

CASE 3: Market premium = percentile premium to confi dence level 99.5%, a  =  0.75

CASE 2: Market premium = mean plus three standard deviations, a  =  1
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6. CONCLUSIONS AND OUTLOOK

A summary of what has been accomplished by highlighting the main results 
and fi ndings might be helpful. Our starting point has been the partial stop-loss 
contract. It has been identifi ed as optimal reinsurance form under criterion 
(P2.1) by minimizing the value-at-risk measure of the total retained loss over 
the class of increasing and convex ceded loss functions (recent work by Cai
et al. (2008), Cheung (2010) and Chi and Tan (2010)). Unless the maximum 
possible stop-loss priority is chosen, only the pure stop-loss contract will be 
optimal. This insight is a consequence of the reformulation in Proposition 3.1 
of the Cases 1 and 2 of the original Theorem 2.1 (see (i) of the Remarks 3.2). 
But then, the reinsurance loading factor remains indeterminate and can vary 
over a fi nite range. This enables the reinsurer to take the opportunity to max-
imize his expected profi t, which leads to the joint party optimality criterion 
(P2.2). Compared to (P2.1) the new criterion prescribes a suffi ciently high 
confi dence level. This restriction seems to be fulfi lled in practical situations. 
Alternatively, stabilization of the total variance of the retained and ceded loss 
is considered by minimizing instead the total variance risk measure, which 
leads to the joint party optimality criterion (P2.3). As a fi rst main result we 
obtain a complete description of the optimal reinsurance parameters under 
the single party criterion (P2.1) in Proposition 3.1. The Propositions 3.2 and 
4.1 do the same for the criteria (P2.2) and (P2.3) by providing necessary and 
suffi cient conditions for the local extremal solutions of the corresponding joint 
party optimization problems.

In view of the emerging importance of solvency systems, the relationship 
between the cedent’s and reinsurer’s VaR economic capitals and the expected 
profi ts is emphasized. Corollary 3.1 summarizes this for the criterion (P2.1) while 
Corollary 4.2 does it for the criterion (P2.3). The obtained results are inter-
preted in terms of mean fi nancing properties, which turn out to be of some 
importance for the economics of pure risk transfer (classical reinsurance) or 
risk and profi t transfer (design of internal reinsurance or reinsurance captive 
owned by the captive of a corporate fi rm). First of all, set the market premium 
equal to the percentile premium. Then, the following characterizations of the 

CASE 4: Market premium = mean plus three standard deviations, a  =  0.75
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GRAPH 6.1: Comparison of the pure stop-loss optimal risk transfer strategies

optimal risk transfer strategies can be formulated (consequences of the Corol-
laries 3.1 and 4.1): 

(1) Consider an optimal pure risk transfer agreement under criterion (P2.1). 
The cedent’s and reinsurer’s required VaR economic capitals are both 
strongly mean fi nanced by their profi ts, if and only if, the maximum optimal 
stop-loss priority is chosen. Moreover, in this situation, the cedent’s VaR 
economic capital is minimum and the reinsurer’s expected profi t is maximum 
only for the pure stop-loss contract.

(2) Consider an optimal risk and profi t transfer agreement under criterion 
(P2.3). The cedent’s and reinsurer’s required VaR economic capitals are 
both strongly mean fi nanced by their exchanged profi ts, if  and only if, the 
pure stop-loss contract is chosen. Moreover, in this situation, the cedent’s 
VaR economic capital is minimum and the total variance of the retained 
and ceded loss is minimum.

To illustrate, assume a percentile market premium and that the characterizing 
property in (1) and (2) holds. It is remarkable to observe additionally that
the optimal cedent’s and reinsurer’s expected profi ts under the criteria (P2.1) 
and (P2.3) are very close, especially for the lower coeffi cients of  variation.
The Graph 6.1 illustrates this fi nding for the lognormal insurance loss distribution. 
The big difference lies in the optimal priorities and reinsurance loading factors, 
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which turn out to be much larger under criterion (P2.1). In particular, higher 
retained VaR economic capitals are required under (P2.1).

Finally, on cannot conclude without giving a brief  outlook for possible 
work. Besides the CVaR risk measure, also called tail conditional expectation 
(CTE) risk measure, other important risk measures can be considered. For 
example, in the class of tail preserving risk measures, one fi nds the right-tail 
risk measure by Wang (1998) (see also Hürlimann (2004)) and the lookback 
risk measure (e.g. Hürlimann (1998/2003/2004)). Future research on this topic 
should include other optimal reinsurance forms like the limited and truncated 
stop-loss contracts (comments of Section 2) and the excess-of-loss reinsurance 
contract studied in Meng and Zhang (2010). 
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