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We consider a generic continuous-time system in which events of random magni-
tudes occur stochastically and study the system’s extreme-value statistics. An event
is described by a pair (z, x) of coordinates, where ¢ is the time at which the event
took place and x is the magnitude of the event. The stochastic occurrence of the
events is assumed to be governed by a Poisson point process.

We study various issues regarding the system'’s extreme-value statistics, includ-
ing (i) the distribution of the largest-magnitude event, the distribution of the nth
“runner-up”’ event, and the multidimensional distribution of the “top n” extreme
events, (ii) the internal hierarchy of the extreme-value events—how large are their
magnitudes when measured relative to each other, and (iii) the occurrence of record
times and record values. Furthermore, we unveil a hidden Poissonian structure
underlying the system’s sequence of order statistics (the largest-magnitude event,
the second largest event, etc.). This structure provides us with a markedly simple
simulation algorithm for the entire sequence of order statistics.

1. INTRODUCTION

The Gaussian (Normal) curve is well known as the universal probability law gov-
erning the statistical distribution of large samples. However, what truly impacts us
is not the overwhelming majority of “normal events,” but the few rare exceptions of
“abnormal” extreme events. Indeed, it is the unique Michael Jordan we remember,
rather than a multitude of excellent professional NBA basketball players scoring an
average number of points per game; it is hurricane Andrew that insurance compa-
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nies (painfully) recall, rather than the thousands of strong storms that took place in
the United States in the 1990s; and it is the 1912 Titanic disaster we remember,
rather than numerous other unfortunate sinking events of ships in the Atlantic. For
many more examples of the importance we attribute to extreme events, we refer the
readers to the Guinness Book of Records.

The interest in rare and extreme events was shared—apart from the devoted
readers of the Guinness Book of Records—also by the scientific community. The
pioneering studies took place in the 1920s and 1930s, with the works of von Bort-
kiewicz [20], Fréchet [8], Fisher and Tippett [7], von Mises [21], Weibull, and
Gumbel [12]. A rigorous theoretical framework was presented in 1943 by Gnedenko
[11]. Nowadays, the study of extremes is a well-established branch of Probability
Theory called Extreme Value Theory (EVT). This theory is of major importance in
the analysis of rare and “catastrophic” events such as floods in hydrology, large
claims in insurance, crashes in finance, material failure in corrosion analysis, and
so forth. Classic references on EVT are [9,12]. For both the theory and applications
of modern EVT we refer the readers to [3,15,19].

Given a sequence {&,},~, of independent and identically distributed (i.i.d.)
random variables (random samples), the “normal” approach is to study the asymp-
totic behavior of the scaled sums of the &’s, namely the limiting probability distri-
bution of

S;n — {51 + + é:n} bn (1)
an

(as n — oo0), where {a,};~; and {b,},_, are properly chosen scaling coefficients.
This, as the Central Limit Theorem asserts, leads to the universal Gaussian (Nor-
mal) distribution. (In case the £’s fail to have a finite variance or mean, the Central
Limit Theorem is replaced by the Generalized Central Limit Theorem, and the lim-
iting distributions are the stable Lévy laws [13].) The “extreme” approach, on the
other hand, studies the asymptotic behavior of the scaled maxima of the &’s:

X = max{&,...,&,} — bn'

(2)

" all
The “Central Limit Theorem” of EVT asserts that (2) has three possible limiting
probability laws (named, respectively, after the pioneers of EVT): Fréchet, Weibull,
and Gumbel. The probability distribution functions of these universal extreme value

laws are
Fréchet: exp{—x “}, x> 0;
Weibull:  exp{—|x|*}, x <0; 3)
Gumbel: exp{—e "}, x real

(the exponent « appearing in the Fréchet and Weibull distributions is a positive
parameter).
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Typically, EVT studies the extreme statistics (maxima, minima, order statis-
tics, records, etc.) of random sequences {&,},—,. The fundamental theory considers
i.i.d. sequences, but generalizations to stationary sequences do exist (see, for exam-
ple, [3]). Such random sequences represent a fime series of data measured at discrete-
time epochs. However, most “real-world” systems are usually continuous-time
systems. Hence, why not study the extremes of continuous-time systems directly in
some appropriate continuous-time setting?

Consider a generic continuous-time physical system in which events that take
place are monitored and logged. Each event is described by a pair (¢, x) of coordi-
nates, with 7 being the time at which the event occurred and x being the magnitude
of the event (a numerical value). Hence, the “history” of the physical system is
given by a random collection X of points in the plane, where each point of X rep-
resents an event that took place. In the mathematical nomenclature, the random
collection A—the system’s history of events—is called a point process. A direct
continuous-time approach would thus be to study the statistics of the extreme points
of X. To that end, one obviously has to specify the probability distribution of the
point process X. The continuous-time counterparts of discrete-time i.i.d. sequences
are Poisson point processes. If X is a Poisson point process governed by the rate
function A(x), then, informally, (i) events of magnitude belonging to the infinites-
imal range (x, x + dx) arrive at rate A(x)dx and (ii) the occurrences of events of
different magnitudes are independent.

In this article, we will explore the extremes of a generic continuous-time phys-
ical system whose history of events forms a Poisson point process. As we will dem-
onstrate, this setting turns out to be “tailor-made” to the modeling and analysis of
extreme events in continuous time. We begin, in Section 2, with a short review of
the notion of Poisson point processes and introduce our underlying continuous-
time system model. In Section 3, we define the system’s sequence of order statis-
tics and explore their distributions: the probability law of the maximum, the
probability law of the nth “runner-up,” and the multidimensional probability law of
the “top n”” extremes. In Section 4, we unveil a hidden Poissonian structure under-
lying the sequence of order statistics. This hidden structure gives rise to a markedly
simple simulation algorithm for the sequence of order statistics. In Section 5, we
turn to study the internal hierarchy of the sequence of order statistics; namely we
analyze the magnitudes of the extreme events when measured relative to each other.
We conclude, in Section 6, with the exploration of the system’s records times and
record values.

A note about notation: Throughout the article, R denotes the real line, P(-) :=
probability, E[ -] := expectation, and dw (dx, dt, etc.) is used to denote the infini-
tesimal neighborhood of the point w (x, 7, etc.).

2. THE CONTINUOUS-TIME SETTING

In this section we concisely review the notion of Poisson point processes, introduce
our underlying continuous-time “event process” (which will accompany us through-
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out the manuscript), and explain the passage from the discrete-time i.i.d. setting to
the continuous-time Poisson setting.

2.1. Poisson Point Processes

Let Q be an Euclidean space (or subspace or domain). A random countable collec-
tion of points IT C Q is called a point process [17]. We denote by I1(B) the number
of points of II residing in the subset B:

I1(B) = card{Il N B}. 4)

Hence, the point process I C Q induces a counting measure on () given by (4).
A point process IT C ) is said to be a Poisson point process [17] with rate r(w)
if the following pair of conditions hold:

 If B is a subset of €, then the random variable I1(B) is Poisson distributed
with mean [z r(w) do.

o If {B,}, is a finite collection of disjoint subsets of Q, then {I1(By)}, is a finite
collection of independent random variables.

The Poisson point process I1 can also be described by its finite-dimensional
distributions: The probability that a given set of points {w;};—, belongs to II is

P(Il(dw,) = 1,...,l1(dw,) =1) =r(w,) dw,...r(w,) dw,. 5)

Informally, ) is divided into infinitesimal cells. Each cell contains either a single
point or no points at all. The cells are independent, and the probability that the cell
dw contains a point is r(w) dw.

The best known example of a Poisson point process is the standard Poisson
process, where Q) = [0,00) and the rate function r(w) is constant.

2.2. The Event Process

Equipped with the notion of Poisson point processes, we can now rigorously define
the point process X presented in Section 1. Recall that we considered a generic
continuous-time physical system whose “history” is a random collection X of points
in the plane—the point (¢, x) represents an event of magnitude x taking place at
time 7. In Section 1, we said, informally, that “events of magnitude belonging to the
infinitesimal range (x, x + dx) arrive at rate A(x) dx” and, “the occurrences of events
of different magnitudes are independent.” Put rigorously, the process X' (henceforth
referred to as our event process) is taken to be a time-homogeneous Poisson point
process on ) = [0,00) X R with rate

r(t,x) = A(x). (6)
Thus,
(r,x) € X with probability A(x) dt dx. 7
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We set A(x) to be the Poissonian rate at which samples of size greater than x
arrive, namely

Ax) = fw/\(u) du. )]

The function A(x) is smooth, monotone nonincreasing, and fully characterizes the
event process X. This function will turn out to play a key role in the sequel. We
henceforth refer to the function A(x) as the characteristic of the process X and
assume that

lim A(x) =+ and lim A(x)=0. )
X—>—00 x—>+oo
We will elaborate on this assumption in the following subsection. Furthermore, in
Subsection 3.1 we shall show that this assumption is in fact an essential requirement.
Finally, note that the random variable X([¢,7 + A] X [a,b])—counting the
number of events of size x € [a, b] occurring during the time interval [z, 7 + A]—is
Poisson distributed with mean

J:HAJ::; r(t,x) dtdx = Afb A(x) dx = A(A(a) — A(D)). (10)

a

2.3. From Discrete to Continuous and Back

In the discrete-time setting described in Section 1, the underlying time series
{&,}n is an i.i.d. sequence of random variables. If we take the random samples
{&€,}721 to arrive according to some continuous-time counting process (N(7)),~o,
then the sample set, at time #, would be

{gl"”’fN(t)} (11)

(the sample set being empty in the case N(z) = 0). The setting in which (N(7)),~¢ is
a renewal process was introduced in [10] and coined “Random Record Models”
(see also [4,22]).

If (N(7)),~0 is a standard Poisson process with rate p, then the “sample pro-
cess” (11) is in fact a time-homogeneous Poisson point process on [0,00) X R with
rate

r(t,x) = pf(x),

where f(x) is the probability density function of the £’s.

On the other hand, if the rate function A(x) of the event process X is integrable
(i.e., if [A(x)dx < o0), then X can be described in the form of the sample set (11),
where (i) the Poissonian arrival rate is p := [ A(x) dx and (ii) the probability den-
sity function of the &’s is f(x) := A(x)/p.

Hence, in the case of integrable rate functions, there is a one-to-one corre-
spondence, via embedding, between discrete-time i.i.d. sequences {&,}.=, and
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continuous-time event processes X. However, the truly interesting case is where the
rate function is actually not integrable: [ A(x) dx = oo. In this case, X has infinitely
many events occurring on all time scales (i.e., on any time interval), and no corre-
spondence between X and any discrete-time i.i.d. sequence {&,}, can be estab-
lished. Thus, in the case of a nonintegrable rate function, the event process X is a
truly continuous-time “creature.”

In this article, we focus on the “truly continuous-time case,” where the rate
functions are nonintegrable. This is the reason for assumption (9). The limit
lim,_, ., A(x) = +oo ensures that the rate function A(x) is indeed nonintegrable.
The limit lim,_,, ., A(x) = 0, on the other hand, ensures that events of infinitely
large magnitude do not occur. We will return to discuss assumption (9) in Subsec-
tion 3.1.

3. THE SEQUENCE OF ORDER STATISTICS
Let
X, (1) > X5(1) > X;5(1) > -+ (12)

denote the sequence of order statistics of the event process X namely X,,(¢) is the
nth largest sample observed during the time period [0, ]:

X, (1) = sup{x < X,_,(t)| (s,x) € X and s = 1}, 13)
where X(7) is set to equal +oo. (Definition (13) is in fact valid for any point pro-
cess on () =[0,00) X R.)

Let us now turn to analyze the probability distributions of the maximum value
X,(t), the nth “runner-up” X, (¢), and the vector of the “top n” order statistics

(Xl(t)’ .. -7Xn(t))'
3.1. The Maximum

We compute the distribution of the maximum X (7). The maximum at time ¢ is less
or equal to x if and only if no events of magnitude greater than x occurred during the
time period [0, t]; that is,

{X,(1) = x} ={X([0, 1] X (x,00)) = O}

However, the random variable X ([0, 1] X (x,00)) is Poisson distributed with mean
tA(x) (recall (10)) and, hence,

P(X,(r) = x) = exp{—1A(x)}. (14)
The probability density function of X,(z) is given, in turn, by
exp{—tA(x)}A(x). (15)

The assumption of (9): From (14), we see that the distribution of the maximum
is proper if and only if the assumption of (9) holds. Indeed, in order for the distri-
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bution of X,(z) to be proper, the limit of (14) must equal zero when x — —oo
and must equal one when x — +oco. This, however, takes place if and only if
lim,_, o A(x) = +ooand lim,_, ., A(x) = 0. Hence, the assumption of (9) is not an
impeding restriction, but an essential requirement.

3.2. Beating the Maximum

Assume that the current maximum level is x. How long will we have to wait until
this maximum level is beat? Since events of magnitude greater than x arrive at rate
A(x), the answer is straightforward: The waiting time is exponentially distributed
with rate A(x) (mean 1/A(x)). Let us consider the two following variations of this
question.

(i) Assume that we are at time #, but we do not know the current maximum
level X,(z). How long will we have to wait—from the present time ¢
onward—until the unknown maximum level X,(7) is beat? Let L(#) denote
the respective waiting time. Given that X () = x, the waiting time L(¢) is
exponentially distributed with rate A(x). Conditioning on the (unknown)
maximum level X,(¢), we obtain that

P(L(1) > 1) = (16)

1+t

The proof of (16) is given below. Note that the waiting time L(¢) has infi-
nite mean.

(ii) This variation regards positive-valued event processes. Assume (as ear-
lier) that the current maximum level is x and let kK > 1 be a fixed parameter.
How long will we have to wait until the occurrence of a maximum level
that is at least k times larger than a/l the maximum levels preceding it?
These waiting times (coined “geometric record times™) are explored in [2]
(their analysis is considerably harder than the analysis of the waiting times
described earlier).

To prove (16), use the probability density function of (15) and the change of
variables u = tA(x):

[o%e]

P(L(¢z) > 1) = f P(L(r) > 1|X,(t) = x)P(X,(t) € dx)

= Jw exp{—IA(x)}exp{—tA(x)}tA(x) dx
= foo exp{—(1 + I/t)u}du

=({+1/t)\
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3.3. Fréchet, Weibull, and Gumbel

Equation (14) implies that the function A(x) fully characterizes the distribution of
the maximum. On the other hand, the function A(x) also fully characterizes the
underlying event process X. Hence, there is a one-to-one correspondence—conveyed
by the characteristic A(x)—between event processes and the distribution of their
maxima. In particular, the event processes corresponding to the “Central Limit Theo-
rem” distributions of EVT (viz. the Fréchet, Weibull, and Gumbel distributions) are
given, respectively, by

Fréchet: A(x) = x7¢, Alx) =ax™ @1, x> 0;
Weibull:  A(x) = |x|% Alx) =alx|*), x <0
Gumbel: A(x) = exp{—x}, A(x) = exp{—x}, x real
(the exponent « appearing in the Fréchet and Weibull distributions is a positive
parameter).
Could these extreme value laws be obtained (as in the “classic” EVT) as the
only possible maxima scaling limits? The answer, as explained below, is affirmative.

The continuous-time scaling of the maximum X (¢), analogous to the discrete-
time scaling of (2), is

X X,(t)— b
Ri(1) = —(t;(t) v

where a(r) and b(r) are the scaling functions (a(z) being positive valued). The
distribution of the scaled maxima X(7), using (14), is hence given by

P(X,(t) = x) = exp{—tA(a(t)x + b(1))} 17)
On the other hand, the distribution of the scaled maxima M, of (2) is given by
P(M, = x) = exp{—nL(a,x + b,)}, (18)

where L(x) := —In(P(£; = x)). Moreover, the function L(x) satisfies the very
same properties the function A(x) does; namely it is monotone decreasing, with
lim,,_,L(x) = +oc0 and lim,_,, ., L(x) = 0.

Thus, (17) (as t — o0) and (18) (as n — oo) must yield the same distributional
limits. The “classic” EVT asserts that the three possible limits of (18) are the extreme
value distributions: Fréchet, Weibull, and Gumbel. Hence, these probability laws
are also the only possible limits of (17).

The scaling functions in the Fréchet, Weibull, and Gumbel cases are

Fréchet: a(t) =t b(t) =0;
Weibull:  a(t) =1 V¢, b(r) = 0;
Gumbel: a(r) =1, b(t) = In(z).
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It is interesting to note that in these three special cases, the scaling yields
P(X,(1) = x) = exp{—A(x)} (V1= 0).

For a detailed analysis regarding the “basins of attraction” of the Fréchet,
Weibull, and Gumbel extreme value distributions, we refer the readers to [3].

3.4. The nth “Runner-up” and the “Top n”

The distribution of X,,,()—the nth “runner-up” is computed analogously to the
distribution of the maximum X,(#). The (n + 1)st order statistic at time ¢ is less or
equal to x if and only if no more than n events of magnitude greater than x occurred
during the time period [0, £]; that is,

{X1 () = x} ={X([0, 1] X (x,00)) = n}.
Hence, since X([0, ] X (x,00)) is Poisson distributed with mean rA(x), we have

P(X,. (1) = x) = i (’A( D expl-in (. (19)

The probability density function of X,,,(¢) is given, in turn, by

(tA(x))” ——— exp{—tA(x)}tA(x). (20)

Note that (19) and (20) indeed coincide with (14) and (15) in the case n = 0.
Equation (19) gives the one-dimensional distribution of the order statistics. What
about the joint, multidimensional, probability distribution of the order statistics;
namely the joint distribution of the “top n”—the vector (X,(),...,X,(¢))?
Well, the joint probability density function of the vector (X,(1),---, X,,(¢)) is
given by

fn(xla”-?xn) = tnA(xl)"'A(xn)exp{_tA(xn)}’ (21)

where x| > x, > --- > x,,. The explanation follows.

In order for the points x; > x, > ..+ > x,, to be the “top n” points of the sample
process X at time ¢, we need (for j = 1,...,n) the following: (i) an event of magni-
tude x; takes place during the time period [0, 7]; this occurs with probability
tA(x;) dx;; and (ii) no events of magnitude € (x;,x;_;) (where x, is set to equal
+00) take place during the time period [0,7]; this occurs with probability
exp{—#(A(x;) — A(x;—;))}. Multiplying these probabilities together yields the multi-
dimensional density function (21).

4. THE STRUCTURE OF THE SEQUENCE OF ORDER STATISTICS

When viewed as a stochastic process in the “order parameter” n (keeping the time
t fixed), the sequence of order statistics {X,(7)},~, conceals a hidden underlying
structure, which we unveil in this section. First, we reveal a Markovian structure
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governing the sequence of order statistics. Second, we prove that the Markovian
structure is due to a hidden, underlying, Poissonian structure. This Poissonian struc-
ture, in turn, provides us with a markedly simple simulation algorithm for the
sequence of order statistics. Third, we show that the (discretely parameterized)
sequence of order statistics can be embedded in a simple transformation of a (con-
tinuously parameterized) Gamma process.

4.1. Markovian Structure

The conditional distribution of a (n + 1)st order statistic, given the value of the nth
order statistic, is

P(X,1(1) = y[X,(1) = x) = exp{~1(A(y) — A(x))} (22)

(y < x). The explanation follows.

Given that the nth order statistic equals x, the (n + 1)st order statistic will be
less or equal to y (where y < x) if and only if no events of magnitude € (y, x) occur
during the time interval [0, 7]; that is, if and only if X'([0,¢] X (y, x)) = 0. Since X
is a Poisson point process, the random variable X([0, 7] X (y, x)) is Poisson dis-
tributed with mean 7(A(y) — A(x)) and is independent of the points of X' residing in
[0, 1] X [x,00). Hence, the left-hand side of (22) equals the probability that X'([0, 1] X
(y,x)) = 0, which, in turn, is given by the right-hand side of (22).

Since (22) is a Markovian recursion, it implies that the sequence of order sta-
tistics {X,,(¢)}o, is a Markov chain (in the variable n, for ¢ fixed). The initial con-
dition of this Markov chain is given by the distribution of the maximum X,(¢);
see (14).

4.2. The Hidden Poissonian Structure

When viewed in the proper perspective, the sequence of order statistics {X,,(¢)}r—,
conceals a hidden Poissonian structure. The “proper perspective” is to consider the
sequence {A(X,(1))},~,, rather than the original sequence {X,,(7)},~;. Let us begin
with the distribution of A(X,(7)).

Using (14), we have

P(A(X,(2)) > u) = P(X, (1) < A" () = exp{—tA(A”" (u))} = exp{—tu}

(u = 0). Hence, A(X,(r)) is exponentially distributed with parameter ¢ (mean 1/¢).
In a similar way, (19) implies that A(X,(¢)) is Gamma distributed with parameters

(t,n).
More informative, however, is to analyze the conditional distribution of the
increment A(X,, (7)) — A(X, (1)) given A(X,(1)). Indeed, using (22), we have

P(A(X, (1)) = A(X, (1)) > u| A(X, (1)) = v)
=P(X, (1) <A '(u+0)|X,(t) = A" (v))
= exp{—1(A(A""(u+v)) = A(A" ' ()))}

exp{—tu};
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that is, the increment A(X, () — A(X,(¢)) is independent of A(X,(t)) and is
exponentially distributed with parameter ¢ (mean 1/7). Hence, we have obtained the
following proposition:

PROPOSITION 1: Let X be an event process with characteristic A(x) and order sta-
tistics {X,,(t)}o—,. Then the increasing sequence of points {A(X,(t))}r—, forms a
standard Poisson process with rate t.

4.3. Simulation and Gamma Embedding

Proposition 1 provides us with a remarkably simple simulation algorithm for the
entire sequence of order statistics {X,,(¢)}n—:

Zi+Zy+ -+ Z,
, (23)

t

X, (1) = A‘(

where {Z,},—, is an i.i.d. sequence of exponentially distributed random variables
with unit mean. In particular, the simulation algorithms for the Fréchet, Weibull,
and Gumbel order statistics are as follows:

t 1/a
Fréchet: X,(t) = ;
Z 724 -+ 2,

L+@+m+aya

t ’
Gumbel: X,(t)=In(t) —In(Z, +Z, + --- + Z,).

Weibull: X, (t) = —(

Equation (23) is in fact a manifestation of a Gamma embedding as we now explain.
The Gamma process (G(s)),=o is a stochastic process starting at the origin
(G(0) = 0) whose increments are independent, stationary, and Gamma distributed:

P(G(b) — G(a) E dx) = ﬁ exp{—x}x 91 gx

(b > a = 0). The Gamma process is a special example of one-sided Lévy processes
(Lévy subordinators) [1].

At the point s = 1, the value of the Gamma process G(1) is exponentially dis-
tributed with unit mean. Hence, since the Gamma process has independent and sta-
tionary increments, the increments {G(n) — G(n — 1)}, form an i.i.d. sequence of
exponentially distributed random variables with unit mean. Combining this obser-
vation with (23), we obtain the following Gamma embedding of the sequence of
order statistics {X,,(¢)},—:

[ Gn)
X, (1) =A '<T>; (24
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that is, the discrete-parameter sequence {X,(¢)},—, is embedded in the continuous-
time process (A~'(G(s)/t))s=0, Which, in turn, is a transformation of the Gamma
process (G(s))=o-

Furthermore, the random variable A~'(G (s)/t), for noninteger parameter val-
ues s, may be considered a “virtual” s-order statistic. Continuing yet another step in
this direction, we can define the Fréchet, Weibull, and Gumbel virtual order pro-
cesses as follows (s = 0):

Fréchet: G(s)™V%;
Weibull:  —G(s)V<;
Gumbel: —In(G(s)).

5. THE INTERNAL HIERARCHY OF THE SEQUENCE
OF ORDER STATISTICS

What is the “internal hierarchy” of the sequence of the order statistics? What are the
relative magnitudes of the order statistics? The answer to these questions is given
by the following proposition.

PROPOSITION 2: Let X be an event process with characteristic A(x) and order sta-
tistics {X,, (1)} . Then the ratios {A(X,,(t))"/A(X,+,(1))" }i2, are independent and
uniformly distributed on the unit interval. Equivalently,

ACX, (1))
P(A(Xnﬂ(z)) =

The proof of Proposition 2, which is based on the use of an order-preserving
transformation of event processes, is provided in the Appendix.

We note that the distribution of the ratio A(X,,(7))/A(X,+(¢)) can be deduced
from Proposition 1. Indeed, (23) implies that this ratio equals, in law, the ratio
Z,+ -+ 2Z)/(Z,+ -+ + Z,,1), where {Z,}7—, is an i.i.d. sequence of expo-
nentially distributed random variables with unit mean. The latter ratio, in turn, is
known (see, for example, [6]) to be governed by the Beta distribution function "
O<u<l).

With Proposition 2 at hand, let us explore the internal hierarchy of the sequence
of order statistics in the special Fréchet, Weibull, and Gumbel cases.

A

u> =u" oO<u<l). (25)

5.1. The Fréchet and Weibull Cases

In the Fréchet case, A(x) = x~%, and in the Weibull case, A(x) = | x|* (the exponent
a being a positive parameter). Hence, Proposition 2 implies the following:

 Fréchet: The ratios X, ,(7)/X,(t),n=1,2,..., are independent random vari-
ables governed by the Beta distribution

Xn+l(t) = _ an
P( X.(1) _u>—u . (26)
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* Weibull: The ratios | X,(1)|/| X, ,(¢)|, n = 1,2,..., are independent random
variables governed by the Beta distribution

X0 _ N _ .,
P(m_u>—u . (27)

Most interesting is the first ratio—X,(7)/X, () in the Fréchet case and | X(z)|/
| X,(7)| in the Weibull case—which measures the relative magnitudes of the “win-
ner” and the “first runner-up.” The ratio distribution, in both the Fréchet and Weibull
cases, is governed by the probability density function f(u) = au® ' (0 < u < 1).
This density function undergoes a phase transition when crossing the parameter
value @ = 1: (i) When 0 < a < 1, the density f(u) is monotone decreasing, starting
at f(0) = oo and decreasing to f(1) = «; (i) when a = 1 (the “critical” parameter
value), the density () is uniform; and (iii) when a > 1, the density f(«) is mono-
tone increasing, starting at f(0) = 0 and increasing to /(1) = a. Hence, the “first
runner-up” trails considerably behind the “winner” when « is small, and it follows
the “winner” closely when « is large.

At the other end of the order spectrum, the distribution function #*" becomes
more and more concentrated around the value u = 1 as n — oo. This implies that as
n — oo, the order statistics get closer and closer to each other in ratio. In the Fréchet
case, as n — oo, the order statistics converge to zero and hence get closer and closer
to each other, also absolutely. In the Weibull case, on the other hand, the order
statistics diverge to —oo and hence remain apart.

In the Fréchet and Weibull cases, Proposition 2 also provides us with an algo-
rithm for the simulation of the relative contributions of the “top n” order statistics
X,(1),X5(2),...,X,(1) to their aggregate magnitude. The explanation follows.

Let {U,}{Z| be an i.i.d. sequence of uniformly distributed random variables,
and set {M,}7—; to be given by

an

1, k=0
M, = U]]/a Uzl/za‘ . Uk]/ka, k> 0.
Proposition 2 implies (all equalities below are equalities in law):

Fréchet case: X, (t)/X,(t) = Ud/* and hence, using recursion, X (1) =
X,(t)My_,. This, in turn, yields the arithmetic average:

(Xl(t)’X2(t)5"-’Xn(t)) _ (MO’MI’”"Mnfl)
X,() +X,(8) + - +X,(t) My+M, + - +M,_,

(28)
Weibull case: | X,(¢)|/| X, (¢)| = U//** and hence, using recursion, | X,(¢)| =

|X,(t)|M,_,/M,_,. This, in turn, yields the harmonic average:

(|Xl(t)|a|X2(t)|’---7|Xn(t)|) _ (M()_I’Ml_l’-”aMn_—ll)
X, (O] + (X (O] + - + X, Mg+ M+ o+ M

(29)
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5.2. The Gumbel Case
In the Gumbel case A(x) = exp{—x} and hence proposition 2 implies:

Gumbel: The differences X, (¢) — X,,,(t), n = 1,2,..., are independent ran-
dom variables governed by the exponential distribution

P(X, (1) = X,1(t) > u) = exp{—nu}. (30)

Alternatively, the random variables {n (X, () — X, ,(¢))},~, are i.i.d. and exponen-
tially distributed with unit mean.

Let us study the following “asymptotically centered” sequence of differences
{D,},_, defined by

D, = X,(t) = X+ () — In(n).
Using (30), the sequence {D, },~, admits the probabilistic representation

Z 7 Z,
D,=—+—+ ...+ — —1n(n), 3D
1 2 n

where {Z,},2, is an i.i.d. sequence of exponentially distributed random variables
with unit mean. The representation (31), in turn, yields that the mean and variance

of D, are
1 1 1
E[Dn]:I"‘E"’""";_ln(")ﬁ—m Y,
Var[D, ] ! + ! + .+ ! s
= — _ —%—,
ar n 12 22 nz n—oo 6

where y = 0.577 is Euler’s constant.
Moreover, the representation (31) further yields that the Laplace transform
of D, is

1 2 n rai+6) Tm+1)
E -0D,}] = — -
lexp{=0D. 1 = Ty 35t e 7’ Tn+1+0)
(@ = 0). Hence, using Stirling’s formula, we have
Elexp{—6D,}] ——> T'(1 + ).

n—00

The function T'(1 + 6), however, is the Laplace transform of the standard Gumbel
distribution (see, for example, [5]), and hence we conclude the following:

The sequence {D, },—, converges, in law, to the standard Gumbel distribution.
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6. RECORDS

Among the points of the event process &, the set of record points (henceforth denoted
by R) is of special interest. This last section is devoted to the study of these points.

A point (£, x) € Xis said to be a record point if and only if all events occurring
during the time period [0, #) were smaller in magnitude than the value x:

(t,x) € R X([0,1) X [x,00)) = 0. (32)

If (z,x) € R, then t is called a record time and x is called a record value. We denote
the sets of record times and record values respectively by R ;e and Ry,.. Clearly,
the sets Ryjme C [0,00) and Ry .. C R are the projections of the record set R on the
time and space axes.

The probability that the points {(z;, x;)}/—;, where r; < 1, < --- <1, and x; <
X, < --- <x,, belong to the record set R is given by

P(R(dtj X dx;) =1;j=1,...,n) = ﬁ expi—(t; — ;- )A(x;)}A(x;) dt; dx;, (33)
j=1

where ¢ is set to equal zero. The explanation follows.

In order for the points {(z;, x;)}/—, to belong to the record set R, we need the
following (for j = 1,...,n): (i) the point (#;,x;) belongs to the underlying event
process A this occurs with probability A(x;) df;dx;; and (ii) during the time inter-
val (#;_1, t;), no events of magnitude greater or equal to the value x; take place; this
occurs with probability exp{—(#; — #,_;)A(x;)}. Multiplying these probabilities
together yields (33).

We note that (33) can be written, alternatively, in the form

P(R(dt; X dx;) =1;j=1,...,n)
— [T explot(A(x) — ACxy DYAG,) di d;, (34)
j=1

where x, is set to equal +oo.
Now, integrating (33) over x; < x, < --- < x, yields

dt;
P(Rtimc(dtj) = 1 ;.] = 1’-”7”) = H t_], (35)
j=1 1
and integrating (34) over t; < t, < --- < 1, yields
" oA(x;)dx;
P(Ryaue(dx;)) = 15j=1,...,n) =[] Ay dy (36)
! j=1 A(xj)

Hence, using (5), we can conclude the following:

PROPOSITION 3: Let X be an event process with characteristic A(x). Then the fol-
lowing hold:
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(i) The set of record times R me of X is a temporal Poisson point process with
rate 1/t.

(ii) The set of record values R a1, of X a is Poisson point process (on R) with
rate A(x)/A(x).

In particular, for the Fréchet, Weibull, and Gumbel cases the rate A(x)/A(x) of
the Poisson point process of record values R, is as follows:

Fréchet: a/x, x>0
Weibull:  «f|x], x <0;
Gumbel: 1, x real.

Several remarks are necessary:

(i) We emphasize that the record set itself R is not a Poisson point process on
[0,00) X R since the probability P(R(dt; X dx;) =1;j=1,...,n) givenin
(34) does not admit the multiplicative form (5).

(ii) Equation (35) is the continuous-time counterpart of Rényi’s record theo-
rem [18]. Rényi’s theorem asserts that if {£;}/_, is an i.i.d. sequence of
random variables and E; is the event {¢; is a record value}, then the events
{E;};- are independent and P(E;) = 1/j.

(iii) Results analogous to those given in (35) and (36) for i.i.d. random
sequences can be found in [3, Chap. 5].

(iv) Recall the waiting time L(#) defined in Subsection 3.2: L(¢) is the length
of the time period elapsing from time ¢ until the first occurrence of a record
event after time 1. Note that {L(z) > [} if and only if the set of record
times Ryme has no points on the interval [1, 7 + []. Hence, Proposition 3
yields that

t+1 1 1
P(L(t)>1)= exp{—f ; du} = 1+—l/t’

reaffirming (16).

7. CONCLUSIONS

Motivated by the fact that the classic EVT undertakes a discrete-time approach,
whereas most “real-world” systems are usually continuous time, our aim in this
work was fo introduce a simple and parsimonious model, counterpart to the discrete-
time i.i.d. model, for the study of extremes in continuous time.

To that end, we considered a generic continuous-time system in which events
of random magnitudes arrive stochastically—following time-homogeneous Pois-
son point process dynamics on [0,00) X R. The (monotone decreasing) function
A(x) was used to denote the Poissonian rate at which events of magnitude greater
than x occur and was assumed to satisfy lim,_, . A(x) = +ooand lim,_, ;. A(x) = 0.
This ensured the following: (i) the occurrences of the events are everywhere dense
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on the time axis (i.e., there are countably many events occurring on any time inter-
val), whereas (ii) events greater than any given level occur discretely (i.e., there are
only finitely many such events on any time interval).

This Poissonian model turned out to naturally accommodate the study and inves-
tigation of extremes in continuous time:

e the maximum X,(t): the magnitude of the greatest event occurring during the
time interval [0, 1];

* the nth “runner-up” X, (t): the magnitude of the (n + 1)st greatest event
occurring during the time interval [0, #];

e the “top n” (X,(1),...,X,(r)): the vector of magnitudes of the n greatest
events occurring during the time interval [0, 7];

e the set of record times Rn.: the time epochs at which the record events
occurred;

e the set of record values R, .. the values of the record events.

Furthermore, for any fixed time ¢, we explored the sequence of order statistics
X, (1)}, ,—viewed as a stochastic process indexed by the parameter n:
p y the p

e Structure: We discovered that the increasing sequence of points
{A(X,(1))};2, forms a standard Poisson Process with rate .

e Simulation: We devised a markedly simple algorithm for the simulation of
the sequence {X,,(¢)},—,.

* Hierarchy: We discovered that the ratios {A(X,(7))"/A(X, (1))}, are
independent and uniformly distributed on the unit interval.

Throughout, emphasis was focused on three special cases: (i) Fréchet A(x) =
x~% (x > 0); (ii) Weibull A(x) = |x|* (x < 0); (iii) Gumbel A(x) = exp{—x}
(x real). For these cases, the resulting maximum distributions are governed respec-
tively by the Fréchet, Weibull, and Gumbel probability laws. These laws are of
major importance since they are the universal “stable laws” of the classic EVT—
the only possible maxima scaling limits.

We hope that researchers in the engineering and informational sciences, when
having to deal with extreme events in continuous-time systems, would find use in
the modeling approach and results presented in this work.
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APPENDIX

We introduce an order-preserving transformation of event processes and use it to prove
Proposition 2.

A.1. An Order-Preserving Transformation

Given a point process X on [0,00) X I and a monotone-increasing bijection ¢ : 1 — J (I and
J being subintervals of the real line R), consider the transformation

O: X = Y={1,¢())}vex (A.D)

that is, the point (z, x) of X'is mapped by the transformation ® to the point (z, ¢ (x)) of ). The
map ® transforms the point process X (on [0,00) X I) to a new point process Y (on [0,00) X
J). Furthermore, the map ® preserves the order of the order statistics: If {X,(t)}y—, is the
sequence of order statistics of the process X and {Y,,(7)};~, is the sequence of order statistics
of the process ), then
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V(1) = $(X,(1)). (A2)

Now, if X'is a Poisson point process with rate r(z, x), then standard probabilistic argu-
ments imply that ) is also a Poisson point process and its rate is ry(,y) = ra(t, "1 (y))/
@' (¢~ '(y)). In particular, if X'is a sample process with characteristic A (x), then )is a new
sample process with characteristic

Ay(y) = Ax(d™" (). (A.3)

Equation (A.3) can also be derived directly by combining together (A.2) and (14).
Hence, given a pair of sample processes—X with characteristic A x(x) and )) with char-
acteristic Ay(y)—the map ® induced by the monotone-increasing bijection

¢ (x) = A5 (Ax(x)) (A.4)

transforms the process A to the process ).
Equations (A.3) and (A.4) enable us to transform between different sample processes
while preserving the order of their order statistics.

A.2. Proof of Proposition 2

We split the proof into two steps. In the first step, we prove that Proposition 2 holds for the
special case of an event process ) with characteristic Ay(y) = 1/y, y > 0. In the second step,
we use the order-preserving transformation of Subsection A.1 to validate Proposition 2 for
any event process X.

We remark that the running maximum process (Y;(7)),=o (associated with the event pro-
cess ) is analogous, albeit not identical, to the “Poisson hyperbolic staircase process” intro-
duced and studied in [16].

Step 1: Fix an integer n. The characteristic of the event process ) is Ay(y) = 1/y (y > 0)
and, hence, (21) implies that the joint probability density function of the vector of order
statistics (Y;(z),...,Y,+1(7)) is given by
Fou ) 1" exp{—t/y,1}

n y LA yl’l =T 5 5 2.,
o T vk

Now,

Y2(1)< Yg(r)< Yn+1(t)<
(n(r) e T 0 ‘“")

= f J fn+1()’1,y27 S Vpr1) dypdys ... dy,

» V3 e _
—<u| _5 Yut
:f f J f Soi1 (V6 Y20 ey Yur1) dyrdys. . dy,
Yn+1=0y,= ynﬂ/ll,, Ya=y3/uy Jy1=ys /uy
oo n+1 —
s "1 exp{ t/y,m}d
T Ujuz...u, ) nto Yn+1
Y1 =0 1 Yn+i
=ului...u.
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This, in turn, implies that ratios {Y;.,(r)/Y;(¢)}/_, are independent random variables gov-

erned by the Beta distribution:
Y,'H(f) )
P =u|=u'
Y;(1)

Step 2: Let X be an arbitrary event process with characteristic A y(x) and let ) be an event
process with characteristic Ay (y) = 1/y, y > 0. Equation (A.4) implies that the order-
preserving map & transforming the process X to the process Y is induced by the monotone-
increasing bijection

1
A x(x)

¢(x) =

(or, equivalently, using (A.3): if ¢(x) = 1/A x(x), then Ay (y) = 1/y). Exploiting the fact that
® is order-preserving, (A.2) implies that
Y (1) B b (X;41(1)) _ A (X;(1))
Y(1) o (X;(1)) AX(X/+l(t))

Hence, using Step 1, we obtain that the ratios {A v (X;(7))/A +(X;1,(1))}}=, are independent
random variables governed by the Beta distribution:

P( Ax(X;(1)) _ ): i
Aoy )T

Since the choice of n was arbitrary, the proof of Proposition 2 is complete.
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