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Abstract

In this paper, we solve exit problems for a one-sided Markov additive process (MAP)
which is exponentially killed with a bivariate killing intensity ω(·, ·) dependent on the
present level of the process and the current state of the environment. Moreover, we
analyze the respective resolvents. All identities are expressed in terms of new generaliza-
tions of classical scale matrices for MAPs. We also remark on a number of applications
of the obtained identities to (controlled) insurance risk processes. In particular, we show
that our results can be applied to the Omega model, where bankruptcy takes place at
rate ω(·, ·) when the surplus process becomes negative. Finally, we consider Markov-
modulated Brownian motion (MMBM) as a special case and present analytical and
numerical results for a particular choice of piecewise intensity function ω(·, ·).
Keywords: Dividends; fluctuation theory; Markov modulation; Omega model; potential
measures
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1. Introduction

As a natural generalization of a Lévy process, a continuous-time Markov additive process
(MAP) has various applications in the fields of risk theory, financial mathematics, environmen-
tal problems, queueing, and so forth (see, e.g., [2], [5], [6], [7], [13]). Informally speaking, a
MAP can be viewed as a Lévy process in a Markov environment whose characteristic function
depends on the state of the current environment, with possible jumps at the times of transition
between states. This structure of a MAP enriches its modelling possibilities in consideration
of seasonality of prices, recurring patterns of activity, burst arrivals, or occurrence of events
in phases. Throughout this article, we will consider a bivariate MAP (X, J) = {(Xt, Jt)}t≥0
such that X is a real-valued càdlàg (right-continuous with left limits) process and J is a right-
continuous jump process with a finite state space E = {1, 2, ...,N} to capture the states of the
environment.
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In the application of stochastic processes in insurance and finance, an important role is
played by exit problems, which focus on the behavior of the process across some specified
interval (possibly unbounded). Quantities of interest include the so-called first passage time (or
first exit time), the level of the process right before or after exiting (which could be calculated
directly from the resolvent (or potential) measures at killing), and the occupation time (the total
time spent in a certain interval before exiting). For example, in ruin theory, the classical time
to ruin is defined as the first time that a surplus process exits from the interval (0, +∞). In the
event of ruin, the surplus prior to ruin and the deficit at ruin are the two important quantities
by which to measure the company’s economic cost. In the theory of exit problems under a
spectrally negative Lévy process (with downward jumps only), it is well known that the results
are (semi-)explicitly expressed in terms of so-called scale functions. Such representations offer
a convenient way to analyze the properties of exit problems by examining the characteristics of
scale functions. For more details, we refer interested readers to [19]. In the MAP framework,
we can also find such representations by means of a nontrivial generalization. In this case, one
needs to work with matrix-valued functions, called scale matrices, as an analogue for scale
functions. The definitions and properties of scale matrices are presented in Section 2; see also
[15] and [16] for more results on this topic.

This paper solves exit problems for a spectrally negative MAP which is exponentially killed
with a bivariate killing intensity ω(·, ·) dependent on the present states of the process and
the environment. We use the expression ‘ω-killing’ for such a killing feature, which could
be interpreted as a (state- and/or level-dependent) Laplace argument, a discount factor, a
bankruptcy rate, or the weight for occupation time in different contexts. To formulate our
problems mathematically, let us first introduce the first passage times:

τ+
x = inf{t> 0 : Xt ≥ x}, τ−

x = inf{t> 0 : Xt < x}.
Then we assume that ω : E ×R→R

+ is a bounded, nonnegative measurable function, and for
any given i ∈ E, ω(i, x) =ωi(x). One of the main interests of this paper is to derive closed-form
formulas for occupation times (up to some exit times), weighted by the omega function. More
specifically, for d ≤ x ≤ c and 1 ≤ i, j ≤ N, we are interested in the expectation matrices whose
(i, j)-th elements are, respectively,

Ex

[
e− ∫ τ+c0 ωJs (Xs)ds, τ+

c < τ−
d , Jτ+

c
= j|J0 = i

]
(1.1)

and

Ex

[
e− ∫ τ−d0 ωJs (Xs)ds, τ−

d < τ+
c , Jτ−

d
= j|J0 = i

]
. (1.2)

Recently, Li and Palmowski [22] investigated such ω-killed exit identities and resolvents
for a general (reflected) spectrally negative Lévy process. They obtained representations of
exit problems in terms of new ω-scale functions, which are generalizations of the classical
scale functions. Similarly, in our article we describe exit problems in terms of ω-scale matri-
ces, denoted by W (ω) and Z (ω), which are generalizations of classical scale matrices. In the
particular case of constant killing intensity ω, our results are consistent with the traditional
(two-sided) exit identities (and resolvents) obtained in [15] and [16]. Moreover, it is shown
that these new generalized scale matrices satisfy certain integral equations.

There is a long list of potential areas where (1.1) and (1.2) can be applied. Here we would
like to mention two practical examples of the use of (1.1), which will also demonstrate the
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different interpretations of ω-killing. These two examples also motivate the discussions in
Sections 4 and 5.

From one point of view, we can consider ω as a weight function to describe a sophisticated
discount structure, which is essential in financial mathematics. For instance, one is interested
in the present value of a $1 payment made at the time of the surplus reaching level c (e.g.,
in the situation of performance-dependent payoff). When ω(i, x) = δ > 0, we have only one
single discount factor. However, with the general ω-killing feature, one can capture dynamic
discount rates to reflect economic environment changes in the whole path of the additive pro-
cess up to a certain stopping time. This is consistent with the practice that the discount rate
(or interest rate) varies with environment states. A company’s surplus level could also be used
as an indication of the economic environment. For illustration purposes, we will present as
examples some natural choices of ω, such as a (level-dependent) step function and a constant
state-dependent function, under a Markov-modulated Brownian motion risk process. We will
show how to identify the ω-scale matrices using differential equations. Numerical examples
are also provided by making use of Ivanov’s Mathematica package [17].

The second example is an application in ruin theory. The traditional definition of bankruptcy
occurs at the time to ruin (namely the first time that the surplus level drops below level zero).
However, bankruptcy can be defined in different ways to allow for the company’s self-recovery
within a certain grace period. One research direction is omega ruin time, proposed in [1] and
[11], where bankruptcy occurs either when the process crosses a pre-defined threshold level or
with intensityωwhen the process stays in the red zone. Then the expectation (1.1) is interpreted
as the probability of the surplus reaching level c before bankruptcy (or omega ruin). More
details are provided in Section 4. In this setting, our general results can be directly applied
to derive the value function of discounted dividend payments up to omega ruin time under a
barrier strategy. Our contribution lies in the fact that this is the first time that omega ruin time
has been investigated for a modulated process. As the surplus process evolves in a Markovian
environment, it offers more flexibility for describing various business cycles. In other words,
this model takes into account two sources of risk: claims risk and regime-switching risk.

The paper is organized as follows. Section 2 recalls some basic definitions and properties
of MAPs, and formally introduces the bivariate ω-function. In Section 3, we present the def-
initions of ω-scale matrices, making use of which we derive the explicit expressions for our
main results, including the one-sided and two-sided exit problems. Moreover, we analyze the
respectiveω-killed resolvents, which can be used for further development of the theory (e.g. the
surplus prior to ruin and deficit at ruin in the Omega model). Section 4 applies the main results
to find the value function for dividends paid until ruin under the Omega model. Section 5 is
dedicated to the analysis of some particular examples of the omega function. Further numer-
ical computations are performed. Finally, for conciseness and completeness, we postpone to
Appendix A the proofs of the existence and invertibility of ω-killed scale matrices, and to
Appendix B some proofs (of one lemma and one corollary) related to the main results.

2. Preliminaries

A Markov additive process (MAP) is defined as follows. Let (�,F , F, P) be a filtered prob-
ability space, with filtration F= {Ft : t ≥ 0} which satisfies the usual conditions. We say that
a bivariate process (X, J) is a MAP if, given {Jt = i} for i ∈ E, the vector (Xt+s − Xt, Jt+s) is
independent of Ft and has the same law as (Xs − X0, Js) given {J0 = i} for all s, t ≥ 0 and
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i ∈ E. Usually, X is called an additive component and J is a background process represent-
ing the environment. Moreover, every MAP has the following important representation. It is
straightforward from the definition that J forms a Markov chain. Furthermore, the process X
evolves as some Lévy process Xi when J is in state i. In addition, when J transits to state j �= i,
the process X jumps according to the distribution of the random variable Uij, where i, j ∈ E.
All these components are assumed to be independent. The above structure explains why the
other name for a MAP is ‘Markov-modulated Lévy process’. In particular, when J lives on a
single state, X reduces to a Lévy process. Throughout this paper we assume that the process X
has no positive jumps; thus Xi is a spectrally negative Lévy process and Uij ≤ 0 almost surely
(for every i, j ∈ E). We exclude the case when X has monotone paths. We further assume that J
is an irreducible Markov chain, with Q being its transition probability matrix and π being its
unique stationary vector.

Here are some basic characteristics and properties of MAPs. Let F(α) be the matrix
analogue of the Laplace exponent of the spectrally negative Lévy process: it satisfies

E
(
eαXt , Jt = j|J0 = i

)= (eF(α)t
)

ij
for α ≥ 0.

It has an explicit representation, namely

F(α) = diag(ψ1(α), ..., ψN(α)) + Q ◦E(eαUij ),

where ψi( · ) is the Laplace exponent of the Lévy process Xi (i.e., E(eαXi
t ) = eψi(α)t), and A ◦

B = (aijbij) stands for the entrywise (Hadamard) matrix product. Note that F(0) is the transition
rate matrix of J, and hence a MAP is non-defective if and only if F(0)
1 = 
0, where 
0 and

1 denote the (column) vectors of 0s and 1s respectively (whereas the identity and the zero
matrices are denoted by I and 0 respectively). Throughout this article, the law of (X, J) such that
X0 = x and J0 = i is denoted by Px,i and its expectation by Ex,i. We will also use equivalently
Ex[ · |J0 = i] for Ex,i[ · ] to emphasize the starting state. When x = 0, we will write P( · |J0 = i)
and E[ · |J0 = i] respectively. For a stopping time κ , the notation Ex[·, Jκ |J0] is used to denote
an N × N matrix whose (i, j) entry equals Ex[·, Jκ = j|J0 = i].

In the study of exit problems of spectrally negative MAPs, an essential role is played by
the so-called scale matrices, which are defined analogously to the scale functions of spec-
trally negative Lévy processes. From Kyprianou and Palmowski [21], for q ≥ 0, there exists a
continuous, invertible matrix function W(q) : [0,∞) →R

N×N such that for all 0 ≤ x ≤ a,

Ex

[
e−qτ+

a , τ+
a < τ−

0 , Jτ+
a
|J0

]
= W(q)(x)W(q)(a)−1. (2.1)

Moreover, Ivanovs [14] and Ivanovs and Palmowski [15] showed that W(q) can be character-
ized by

W̃
(q)

(α) = (F(α) − qI)−1 for large enough α, (2.2)

where f̃ (α) = ∫∞
0 e−αxf (x)dx denotes the Laplace transform of the (matrix) function f .

Furthermore, the domain of W(q) can be extended to the negative half line by taking W(q)(x) =
0 for x< 0. The basis of the above transform is a probabilistic construction of the scale matrix
W(q), which involves the first hitting time at level x and can be written as

W(q)(x) = e−�qxLq(x),
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with �q being the transition rate matrix of the Markov chain {Jτ+
x
}x≥0. In other words, one

has P(τ+
x < eq, Jτ+

x
) = e�qx with eq being an independent exponential random variable of rate

q> 0. Moreover, Lq(x) denotes a matrix of expected occupation times at 0 up to the first
passage time over x. In addition, the matrix Lq := Lq(∞) is the expected occupation density at
0. It is known that Lq has finite entries and is invertible unless the process is non-defective and
πE[X1, J1|J0]
1 = 0 (see [15). Hence, we have

lim
x→∞ e�qxW(q)(x) = lim

x→∞ W(q)(x)eRqx = Lq, (2.3)

where the matrix Rq := (Lq)−1 �qLq. Moreover, it is easy to see that the limit
lima→∞ W(q)(a)−1 = 0, since the expectation (2.1) tends to 0 when a → ∞; therefore, from
the above argument,

lim
x→∞ e�qx = lim

x→∞ W(q)(x)−1Lq(x) = 0.

The second scale matrix Z(q) is then defined through the W(q) matrix function:

Z(q)(x) = I −
∫ x

0
W(q)(y)dy (F(0) − qI).

Note that Z(q)(x) is continuous in x with Z(q)(0) = I. Furthermore,

lim
x→∞ e�qxZ(q)(x) =

∫ ∞

0
e�qzdzLq (qI − F(0)).

Remark 2.1. In the cases without exponential killing (q = 0), the superscript q will be omitted
in the quantities mentioned above, which will be written as W(x),Z(x),L(x),�, etc.

For more details about scale matrices, we refer the reader to [15], [16].

Definition 2.1. Let ω : E ×R→R
+ be a function defined as ω(i, x) =ωi(x), where for a fixed

i ∈ E, ωi : R→R
+ is a bounded, nonnegative measurable function, and let its values form the

matrix ω(x) := diag(ω1(x), ..., ωN(x)). Let λ> 0 be an upper bound of |ωi(x)| on [0,∞) for all
i ∈ E.

Further discussions of applications with some particular choices of ω will be presented in
Section 5.

3. Main results

3.1 Omega-scale matrices

Before presenting our main results, we shall devote a little time to establishing some nec-
essary notation. Our main aim is to represent fluctuation identities for MAPs with ω-killing in
terms of new ω-scale matrices defined as the unique solutions to the following equations:

W (ω)(x) = W(x) + W ∗
(
ωW (ω)

)
(x), (3.1)

Z (ω)(x) = I + W ∗
(
ωZ (ω)

)
(x),
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where f ∗ g(x) = ∫ x
0 f (x − y)g(y)dy denotes the convolution of two matrix functions f and g.

The following lemma shows that the above ω-scale matrices W (ω) and Z (ω) are well-defined
and exist uniquely (see Appendix A.1 for the proof).

Lemma 3.1. For every i, j ∈ E, let us assume that hij is a locally bounded function and ωi is a
bounded function on R. There exists a unique solution to the following equation:

H(x) = h(x) + W ∗ (ωH) (x), (3.2)

where H(x) = h(x) for x< 0. Furthermore, for any fixed δ > 0, H satisfies (3.2) if and only if
H satisfies

H(x) = hδ(x) + W(δ) ∗ ((ω − δI)H) (x), (3.3)

where hδ(x) = h(x) + δW(δ) ∗ h(x).

We further introduce more general scale matrices W (ω)(x, y) and Z (ω)(x, y) to allow
shifting:

W (ω)(x, y) = W(x − y) +
∫ x

y
W(x − z)ω(z)W (ω)(z, y)dz, (3.4)

Z (ω)(x, y) = I +
∫ x

y
W(x − z)ω(z)Z (ω)(z, y)dz. (3.5)

Also note that W (ω)(x, 0) =W (ω)(x), Z (ω)(x, 0) =Z (ω)(x),

W (ω∗)(x − y) =W (ω)(x, y), and Z (ω∗)(x − y) =Z (ω)(x, y), (3.6)

with ω∗(·, z) =ω(·, z + y).
Based on the fact that W(δ) − W = δW(δ) ∗ W and Z(δ) − Z = δW(δ) ∗ Z, it is easy to check

that

W (ω)(x, y) = W(δ)(x − y) +
∫ x

y
W(δ)(x − z)(ω(z) − δI)W (ω)(z, y)dz, (3.7)

Z (ω)(x, y) = Z(δ)(x − y) +
∫ x

y
W(δ)(x − z)(ω(z) − δI)Z (ω)(z, y)dz.

To solve the one-sided upward problem (i.e. to get Corollary 3.1(i)), we have to assume
additionally that

ωi(x) ≡ β ≥ 0 for all x ≤ 0 and i ∈ E. (3.8)

Hence we define a matrix function H(ω) which satisfies the following integral equation:

H(ω)(x) = e−Rβx +
∫ x

0
W(β)(x − z)(ω(z) − βI)H(ω)(z)dz. (3.9)
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3.2. Exit problems and resolvents

In this section, we establish our main results concerning fluctuation identities and resolvents
for spectrally negative ω-killed MAPs.

Theorem 3.1. (Two-sided exit problem)
For the invertible matrix functions W (ω) and Z (ω) given in (3.4) and (3.5) respectively, the

following hold.

(i) For d ≤ x ≤ c,

A(ω)
d (x, c) :=Ex

[
e− ∫ τ+c0 ωJs (Xs)ds, τ+

c < τ−
d , Jτ+

c
|J0

]
=W (ω)(x, d)W (ω)(c, d)−1.

(ii) For d ≤ x ≤ c,

B(ω)
d (x, c) :=Ex

[
e− ∫ τ−d0 ωJs (Xs)ds, τ−

d < τ+
c , Jτ−

d
|J0

]
=Z (ω)(x, d) −W (ω)(x, d)W (ω)(c, d)−1Z (ω)(c, d).

Proof of Theorem 3.1 Part (i). In what follows, we prove the case of d = 0, and then the
general result holds true using the shifting argument as well as the identity (3.6). First, applying
the strong Markov property of X at τ+

y and using the fact that X has no positive jumps, we get
that

A(ω)(x, z) = A(ω)(x, y)A(ω)(y, z) (3.10)

for all 0 ≤ x ≤ y ≤ z.
Following an argument similar to that of Li and Palmowski [22], we recall that λ> 0

is an arbitrary upper bound of ωi(x) (for all x ∈R and 1 ≤ i ≤ N). Let � = {�t, t ≥ 0} be a
Poisson point process with a characteristic measure μ(dt, dy) = λdt 1

λ
1{[0,λ]}(y)dy. Hence � =

{(Tk,Mk), k = 1, 2, . . . } is a doubly stochastic marked Poisson process with jump intensity λ,
jumps epochs Tk and marks Mk being uniformly distributed on [0, λ]. Moreover, we construct
� to be independent of X. Therefore, for Tω := inf {Tk > 0 : Mk <ωJTk

(XTk ); for k ≥ 1}, we
have

A(ω)
ij (x, c) = Px,i

(
τ+

c < τ−
0 ∧ Tω, Jτ+

c
= j
)

= Px,i

(
#k{Mk <ωJTk

(XTk ) for Tk < τ
+
c , τ

+
c < τ−

0 , Jτ+
c

= j} = 0
)

.

In this case, there are the following two scenarios: either there is no Tk which occurs before
reaching level c, or the first jump time T1 occurs in state m and the process renews from state
m. Hence

A(ω)
ij (x, c) = Px,i(T1 > τ

+
c , τ

+
c < τ−

0 , Jτ+
c

= j)

+
N∑

m=1

Ex,i

[
A(ω)

mj (XT1, c), T1 < τ
+
c ∧ τ−

0 ,M1 >ωm(XT1 ), JT1 = m
]

=Ex,i[e
−λτ+

c ; τ+
c < τ−

0 , Jτ+
c

= j]

+
∫ ∞

0

N∑
m=1

Ex,i
[
XT1 ∈ dy, T1 < τ

+
c ∧ τ−

0 , JT1 = m
] λ−ωm(y)

λ
A(ω)

mj (y, c),
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which is equivalent to

A(ω)(x, c) =Ex[e−λτ+
c , τ+

c < τ−
0 , Jτ+

c
]

+
∫ c

0
Ex
[
XT1 ∈ dy, T1 < τ

+
c ∧ τ−

0 , JT1

] 1

λ
(λI − ω(y))A(ω)(y, c), (3.11)

where Ex[e−λτ+
c , τ+

c < τ−
0 , Jτ+

c
] = W(λ)(x)W(λ)(c)−1 and

1

λ
Ex
[
XT1 ∈ dy, T1 < τ

+
c ∧ τ−

0 , JT1

]= (W(λ)(x)W(λ)(c)−1W(λ)(c − y) − W(λ)(x − y)
)

dy

are given in Ivanovs and Palmowski [15] and Ivanovs [16], respectively. After some rearrange-
ment of (3.11) together with the relation (3.10), we have(

I +
∫ x

0
W(λ)(x − y) (λI − ω(y))A(ω)(y, x)dy

)
A(ω)(x, c)

= W(λ)(x)W(λ)(c)−1
(

I +
∫ c

0
W(λ)(c − y) (λI − ω(y))A(ω)(y, c)dy

)
. (3.12)

By defining

W (ω)(x)−1 := W(λ)(x)−1
(

I +
∫ x

0
W(λ)(x − y) (λI − ω(y))A(ω)(y, x)dy

)
, (3.13)

we obtain the required identity

A(ω)(x, c) =W (ω)(x)W (ω)(c)−1.

The proof of the invertibility of the matrix W (ω)(x)−1 is deferred to Appendix A.2.
After making the replacement A(ω)(y, x) =W (ω)(y)W (ω)(x)−1 in (3.13), we have

W(λ)(x) =
(

I +
∫ x

0
W(λ)(x − y) (λI − ω(y))A(ω)(y, x)dy

)
W (ω)(x)

=W (ω)(x) +
∫ x

0
W(λ)(x − y) (λI − ω(y))W (ω)(y)dy.

Now using the identity W(δ) − W = δW ∗ W(δ), it is easy to show that

W (ω)(x) = W(x) +
∫ x

0
W(x − y)ω(y)W (ω)(y) dy,

which completes the proof of Part (i) of the theorem.
We need to pause for some preparation before we move to the proof of Part (ii). Let

{(Xt, Jt)}t≥0 be a MAP with lifetime ξ , and with transition probabilities and q-resolvent
measures given respectively by

Qt,ij fj(x) =Ex,i
[

fj(Xt), t< ξ, Jt = j
]

and

K(q)
ij fj(x) =

∫ ∞

0
e−qtQt,ij fj(x)dt,
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where {fj}N
j=1 is a set of nonnegative, bounded, continuous functions on R such that

supi,j K(0)
ij fj(x)<∞. Then the ω-type resolvent K(ω)

ij is defined by

K(ω)
ij fj(x) :=

∫ ∞

0
Q(ω)

t,ij fj(x)dt,

where

Q(ω)
t,ij fj(x) :=Ex,i

[
exp

(
−
∫ t

0
ωJs (Xs)ds

)
fj(Xt); t< ξ, Jt = j

]
.

The next lemma is a helpful tool used below to get the representation of the matrix
B(ω)(x, c). Its proof is postponed to Appendix B, since the arguments tend to be technical.

Lemma 3.2. The matrix K(ω)f(x) = {K(ω)
ij fj(x)}N

i,j=1 satisfies the following equality:

K(ω)f(x) = K(0)
(

f − ωK(ω)f
)

(x),

where f = diag( f1, ..., fN).

Now we can continue the proof of Theorem 3.1 as follows.
Proof of Theorem 3.1 Part (ii). Again we prove the case of d = 0, and then the general result

holds true using the shifting argument as well as the identity (3.6).
For i, j ∈ E, define

B(ω)
ij (x) := lim

c→∞ B(ω)
ij (x, c) =Ex,i

[
e− ∫ τ−00 ωJs (Xs)ds, τ−

0 <∞, Jτ−
0

= j

]
. (3.14)

Note that for any i, j ∈ E and x, c ∈R such that x< c, the matrix function B(ω)
ij (x, c) is monotone

in c, and it is bounded by 0 ≤ B(ω)
ij (x, c) ≤ Px,i

(
τ−

0 < τ+
c , Jτ−

0
= j
)

≤ 1, so the limit in (3.14)

exists and is finite. The strong Markov property and spectral negativity of X give that

B(ω)(x, c) = B(ω)(x) − A(ω)(x, c)B(ω)(c). (3.15)

To identify B(ω)(x), we use Lemma 3.2 with ξ = τ−
0 and f( · ) = ω( · ). This implies that

I(x) − B(ω)(x) =Ex

[∫ τ−
0

0
ωJt (Xt) exp

(
−
∫ t

0
ωJs (Xs)ds

)
dt, t< τ−

0 , Jt

]

=
∫ ∞

0
Ex

[
ωJt (Xt) exp

(
−
∫ t

0
ωJs (Xs)ds

)
, t< τ−

0 , Jt

]
dt

=
∫ ∞

0

(
W(x)eRy − W(x − y)

) [
ω(y) − ω(I − B(ω))(y)

]
dy, (3.16)

where the potential measure

K(0) (11(0,∞)(Xt ∈ dy)
)

(x) = U(0,∞)(x, dy) =
(

W(x)eRy − W(x − y)
)

dy

was obtained in [16] with R = R0. We may rewrite (3.16) as

B(ω)(x) = I(x) − W(x)CB(ω) +
∫ x

0
W(x − y)ω(y)B(ω)(y)dy, (3.17)

https://doi.org/10.1017/apr.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.2


Omega-killed Markov additive processes 413

where

CB(ω) =
∫ ∞

0
eRyω(y)B(ω)(y)dy. (3.18)

Note that 0 ≤ B(ω)
ij (y) ≤ 1, and recall that 0 ≤ωi(x) ≤ λ. Hence the last increment on the right-

hand side of Equation (3.17) is finite, so that the matrix CB(ω) is well-defined and finite. From
the definitions of ω-scale matrices we have

B(ω)(x) =Z (ω)(x) −W (ω)(x)CB(ω) . (3.19)

Equation (3.15) completes the proof.

Remark 3.1. When d = 0, we use the simplified notation A(ω)(x, c) := A(ω)
0 (x, c) and

B(ω)(x, c) := B(ω)
0 (x, c).

Now, taking the limits as d → −∞ and c → ∞ (as well as d = 0) in Theorem 3.1 Parts (i)
and (ii) respectively, we obtain the following corollary regarding the one-sided exit problem.
A detailed proof is given in Appendix B.

Corollary 3.1. (One-sided exit problem)

(i) Under the assumption (3.8), for x ≤ c,

Ex

[
e− ∫ τ+c0 ωJs (Xs)ds, τ+

c <∞, Jτ+
c
|J0

]
=H(ω)(x)H(ω)(c)−1,

where the invertible matrix function H(ω) is given in (3.9).

(ii) For x ≥ 0 and λ> 0,

Ex

[
e− ∫ τ−00 ωJs (Xs)ds, τ−

0 <∞, Jτ−
0
|J0

]
=Z (ω)(x) −W (ω)(x)CW(∞)−1Z(∞),

where the matrix

CW(∞)−1Z(∞) := lim
c→∞ W (ω)(c)−1Z (ω)(c)

exists and has finite entries.

Next, we present the representations of four ω-type resolvents. These types of identities
usually are used to describe the position of a Lévy process right before exit from some interval
or half-line based on a so-called compensation formula; see [20, Chap. 5] for details.

https://doi.org/10.1017/apr.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.2


414 CZARNA ET AL.

Theorem 3.2. (Resolvents.)

(i) For d ≤ x ≤ c,

U(ω)
(d,c)(x, dy) :=

∫ ∞

0
Ex

[
exp

(
−
∫ t

0
ωJs (Xs)ds

)
, Xt ∈ dy, t< τ−

d ∧ τ+
c , Jt|J0

]
dt

=
(
W (ω)(x, d)W (ω)(c, d)−1W (ω)(c, y) −W (ω)(x, y)

)
dy.

(ii) For x ≥ 0 and λ> 0,

U(ω)
(0,∞)(x, dy) :=

∫ ∞

0
Ex

[
exp

(
−
∫ t

0
ωJs (Xs)ds

)
, Xt ∈ dy, t< τ−

0 , Jt|J0

]
dt

=
(
W (ω)(x)CW(∞)−1W(∞)(y) −W (ω)(x, y)

)
dy,

where
CW(∞)−1W(∞)(y) := lim

c→∞ W (ω)(c)−1W (ω)(c, y)

is a well-defined and finite matrix.

(iii) For x, y ≤ c,

U(ω)
(−∞,c)(x, dy) :=

∫ ∞

0
Ex

[
exp

(
−
∫ t

0
ωJs(Xs)ds

)
, Xt ∈ dy, t< τ+

c , Jt|J0

]
dt

=
(
H(ω)(x)H(ω)(c)−1W (ω)(c, y) −W (ω)(x, y)

)
dy.

(iv) For x ∈R,

U(ω)
(−∞,∞)(x, dy) :=

∫ ∞

0
Ex

[
exp

(
−
∫ t

0
ωJs(Xs)ds

)
, Xt ∈ dy, Jt|J0

]
dt

=
(
H(ω)(x)CH(∞)−1W(∞)(y) −W (ω)(x, y)

)
dy,

where the matrix CH(∞)−1W(∞) = limc→∞ H(ω)(c)−1W (ω)(c, y) exists and has finite
entries.

Proof of Part (i). Using Lemma 3.2, we have

U(ω)
(d,c) f(x) :=

∫ ∞

0
Ex

[
fJt (Xt) exp

(
−
∫ t

0
ωJs (Xs)ds

)
, t< τ−

d ∧ τ+
c , Jt|J0

]
dt (3.20)

=
∫ c

d
U(d,c)(x, dy)

(
f(y) − ω(y)U(ω)

(d,c) f(y)
)
,

where U(d,c)(x, dy) is the potential measure of the MAP without ω-killing, as given in Theorem
1 of Ivanovs [16]:

U(d,c)(x, dy) =
(

W(x − d)W(c − d)−1W(c − y) − W(x − y)
)

dy.

https://doi.org/10.1017/apr.2020.2 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.2


Omega-killed Markov additive processes 415

Hence we can rewrite Equation (3.20) as

U(ω)
(d,c) f(x) = W(x − d)CU −

∫ x

d
W(x − y) f(y)dy +

∫ x

d
W(x − y)ω(y)U(ω)

(d,c) f(y)dy,

where CU = ∫ c
d W(c − d)−1W(c − y)

(
f(y) − ω(y)U(ω)

(d,c) f(y)
)

dy. Multiplying Equation (3.4)

by CU gives that

W (ω)(x, d)CU = W(x − d)CU +
∫ x

d
W(x − y)ω(y)W (ω)(y, d)CUdy.

Defining the operator R(ω) f(x) := ∫ x
d W (ω)(x, y) f(y)dy, we obtain

R(ω)f(x) =
∫ x

d
W(x − y) f(y)dy +

∫ x

d
W(x − y)ω(y)R(ω)f(y)dy.

Therefore, by the uniqueness property in Lemma 3.1, we have

U(ω)
(d,c) f(x) =W (ω)(x, d)CU −R(ω)f(x).

To find the constant matrix CU , we use the boundary condition U(ω)
(d,c) f(c) = 0. One completes

the proof by denoting the density of U(ω)
(d,c) f(x) as U(ω)

(d,c)(x, dy).

Proof of Part (ii). This identity follows directly from Theorem 3.2(i) by taking the limit and
using (2.3) together with the dominated convergence theorem.

Proof of Part (iii). The formula follows by taking the limit as d → −∞ in Theorem 3.2(i)
and then using (B.3).

Proof of Part (iv). This identity follows from Theorem 3.2(iii) by taking the limit as c → ∞.
Since H(ω)(c)−1W (ω)(c, y) is monotonic in c, the result holds.

4. Dividends in the omega ruin model

In this section, we demonstrate one application of the previously obtained results to the
dividend problem. The optimal dividend problem has been widespread in the field of applied
mathematics since De Finetti [10], who was the first to introduce the dividend model in risk
theory. In his work, it was proved that, under the rule of maximizing the expected discounted
dividends before the classical ruin time, the optimal strategy is the barrier strategy described as
follows. For a fixed level c> 0, whenever the surplus process reaches this level, one reflects the
process and pays all excess above c as dividends. In the literature, there is a rich set of articles
studying this problem in the continuous-time framework; see, e.g., Loeffen [23], Loeffen and
Renaud [24], and Avram et al. [3], where the value function of the barrier strategy and the
optimal barrier level were described in terms of scale functions.

In this paper, we assume that the company’s reserve process is governed by a MAP (X, J).
We consider a dividend barrier strategy (at c) and define the cumulative dividends paid up to
time t as follows:

Lc
t = sup

s≤t
[Xs − c] ∨ 0.

With the barrier dividend strategy, we work with the regulated process

Uc
t = Xt − Lc

t .
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Moreover, we assume that this company pays dividends according to the barrier strategy
until omega ruin time, defined as

τ d
ω = inf

{
t ≥ 0 :

∫ t

0
ωJs (U

c
s )ds> e1 or Uc

t <−d

}
,

where e1 is an independent exponential random variable (with mean 1), and a fixed level −d ≤
0 is a threshold. For all i ∈ E and for −d ≤ x ≤ 0, the (typically decreasing) function ωi(x) ≥ 0
can be interpreted as a bankruptcy rate. Thus ruin can occur in two situations. The first is the
situation when the process crosses a fixed level −d ≤ 0 (for d = 0 we have a case of classical
ruin time). The second possibility is when bankruptcy happens in the so-called ‘red zone’ (i.e.
when the surplus process is in [ − d, 0]), and the intensity of this bankruptcy is a function of
the current level of the additive regulated component Uc and the Markov chain J. In other
words, whenever the regulated surplus equals x for x ≤ 0, the probability of bankruptcy within
an infinitesimal time dt is ωJt (x)dt. (For more details related to the omega ruin time, we refer
the reader to [11] and [22].) Furthermore, when the regulated surplus process Uc

t is positive,
the omega function is interpreted only as a path-dependent discount factor, and it does not
apply for the definition of the omega ruin time. In the following theorem, we examine the case
of d = 0; we then consider a general d in the corollary.

Theorem 4.1. Assume that dividends are discounted at a constant force of interest δ > 0, and
d = 0. The expected discounted present value of the dividends paid before omega ruin (τω :=
τ 0
ω) under a constant dividend barrier c is given by

vc(x) :=Ex

[∫ τω

0
e−δtdLt, Jτω |J0

]
=
{
W (δ+ω)(x)W (δ+ω)′(c)−1 for 0< x ≤ c,

(x − c) +W (δ+ω)(c)W (δ+ω)′(c)−1 for x> c,

where the invertible matrix function W (δ+ω)′(c) is given by

W (δ+ω)′(c) = W′(c) +
∫ c

0
W′(c − y)(ω(y) + δI)W (δ+ω)(y)dy + W(0)(ω(c) + δI)W (δ+ω)(c).

Proof. We start with the case 0< x ≤ c. Conditioning on reaching the level c first, we have

vc(x) = A(ω)(x, c)vc(c) =W (δ+ω)(x)W (δ+ω)(c)−1vc(c).

As a first step, we will find a lower bound for vc(c). For m ∈N, suppose that the dividend is
not paid until reaching the level c + 1

m :

vc(c) ≥ Ec

[
e− ∫ τ+c+1/m

0 (δ +ωJs (Xs))ds, τ+
c+ 1

m
< τ−

0 , Jτ+
c+ 1

m

|J0

]
vc

(
c + 1

m

)

=Ec

[
e− ∫ τ+c+1/m

0 (δ +ωJs (Xs))ds, τ+
c+ 1

m
< τ−

0 , Jτ+
c+ 1

m

|J0

] (
vc(c) + 1

m
I
)
,

where the last equality is due to the dividend of 1
m paid immediately and the fact that the drop

in surplus will not cause a state transition.
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On the other hand, an upper bound can be found as

vc(c) ≤ Ec

[
e− ∫ τ+c+1/m

0 (δ +ωJs (Xs))ds, τ+
c+ 1

m
< τ−

0 , Jτ+
c+ 1

m

|J0

](
vc(c) + 1

m
I
)

+ 1

m
Ec

[∫ τ+
c+1/m

0
e−δtdt e− ∫ τ+c+1/m

0 ωJs (Xs)ds, τ+
c+ 1

m
< τ−

0 , Jτ−
0
|J0

]

+Ec

[∫ τω

0
e−δtdLc

t , τω < τ
+
c+ 1

m
, Jτω |J0

]
,

where Lc
t will be bounded by 1

m for the process from level c to level c + 1
m ; i.e.,

Ec

[∫ τω

0
e−δtdLc

t , τω < τ
+
c+ 1

m
, Jτω |J0

]
≤ 1

m
Pc

(
τω < τ

+
c+ 1

m
, Jτω |J0

)
.

Note that as m → ∞, the following two quantities approach 0:

lim
m→∞ Ec

[∫ τ+
c+1/m

0
e−δtdt e− ∫ τ+c+1/m

0 ωJs (Xs)ds, τ+
c+ 1

m
< τ−

0 , Jτ−
0
|J0

]
= 0

and

lim
m→∞ Pc

(
τω < τ

+
c+ 1

m
, Jτω |J0

)
= 0.

See Renaud and Zhou [25] and Czarna et al. [9] for more details.
Therefore, by matching the upper and lower bounds, we have

vc(c) =Ec

[
e− ∫ τ+c+1/m

0 (δ+ωJs (Xs))ds, τ+
c+ 1

m
< τ−

0 , Jτ+
c+ 1

m

|J0

](
vc(c) + 1

m
I
)

+ o

(
1

m

)

=W (δ+ω)(c)W (δ+ω)
(

c + 1

m

)−1 (
vc(c) + 1

m
I
)

+ o

(
1

m

)
,

and hence, after some rearrangement,(
W (δ+ω)(c + 1

m ) −W (δ+ω)(c)

1/m

)
W (δ+ω)(c)−1vc(c) = I + o

(
1

m

)
.

Letting m → ∞, it turns out that

W (δ+ω)′(c)W (δ+ω)(c)−1vc(c) = I,

where the matrix

W (δ+ω)′(c) = W′(c) +
∫ c

0
W′(c − y)(ω(y) + δI)W (δ+ω)(y)dy + W(0)(ω(c) + δI)W (δ+ω)(c)

is well-defined since the scale matrix W is almost everywhere differentiable (see [21]).
Furthermore, one can observe that, from the representation (A.5), the above matrix is invertible
for any c> 0, and then vc(c) =W (δ+ω)(c)W (δ+ω)′(c)−1.
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To end this proof, note that for x> c, one is immediately paying a dividend of size x − c
(and this will not cause a state transition); therefore

vc(x) = (x − c) + vc(c) = (x − c) +W (δ+ω)(c)W (δ+ω)′(c)−1.

Applying the shifting argument to Theorem 4.1, we have the representation of the value
function for a general d ≥ 0.

Corollary 4.1. For δ > 0, the expected present value of the dividend paid before omega ruin
(τ d
ω) under a constant dividend barrier c is

vd
c (x) :=Ex

[∫ τ d
ω

0
e−δtdLt, Jτ d

ω
|J0

]

=
{
W (δ+ω)(x,−d)W (δ+ω)′(c,−d)−1 for − d< x ≤ c,

(x − c) +W (δ+ω)(c,−d)W (δ+ω)′(c,−d)−1 for x> c,

for the invertible matrix

W (δ+ω)′(c,−d) = W′(c + d) +
∫ c

−d
W′(c − y)(ω(y) + δI)W (δ+ω)(y,−d)dy

+ W(0)(ω(c) + δI)W (δ+ω)(c,−d).

5. Examples

This section aims to demonstrate some explicit examples of ω-scale matrices when the
function ω is specified. We would like to present relations between W (ω) and W(q), for some
q ≥ 0, as well as numerical examples which provide a better understanding of the nature of
the matrix-valued functions explored. We will start with a short analysis of W(q) for Markov-
modulated Brownian motion (MMBM), since this will be a base model for more complicated
scale matrices.

5.1. Markov-modulated Brownian motion and its scale matrix

In this subsection, we will consider a particular case where (X, J) is a Markov-modulated
Brownian motion. Some essential relations are derived for later use in the subsequent exam-
ples. Let Xi be a Brownian motion with variance σ 2

i > 0 and drift μi for all i ∈ E. Further
denote σ and μ as the (column) vectors of σi and μi, and �v as the diagonal matrix with v on
the diagonal. Then the matrix Laplace exponent F(s) is given by

F(s) = 1

2
�2

σ s2 +�μs + Q.

Outside of the case when κ := πμ = 0 and q = 0, Ivanovs [12] performs the representation
of the q-scale matrix

W(q)(x) =
(

e−�+
q x − e�−

q x
)

�q, (5.1)

where �−1
q = − 1

2�
2
σ (�+

q + �−
q ) and �±

q are the (unique) right solutions to the matrix integral
equation F( ∓ �±

q ) = 0; that is,

� σ2
2

(�±
q )2 ∓�μ�±

q +
(

Q − qI
)

= 0. (5.2)
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In the next lemma, we present relations between �+
q and �−

q .

Lemma 5.1. For q ≥ 0, we have

� 2μ

σ2
= �+

q − Cq, Cq�
+
q =� 2

σ2

[
−Q + qI

]
(5.3)

and
� 2μ

σ2
= Dq − �−

q , Dq�
−
q =� 2

σ2

[
−Q + qI

]
, (5.4)

where

Cq = (�+
q + �−

q )�−
q (�+

q + �−
q )−1, Dq =

(
�+

q + �−
q

)
�+

q

(
�+

q + �−
q

)−1
.

Proof. Using the equations (5.2) all together, one can obtain

� σ2
2

(
(�+

q )2 − (�−
q )2
)

=�μ

(
�+

q + �−
q

)
;

hence, using (�+
q )2 − (�−

q )2 = �+
q (�+

q + �−
q ) − (�+

q + �−
q )�−

q , we have

� 2μ

σ2
=
(

(�+
q )2 − (�−

q )2
)(

�+
q + �−

q

)−1 = �+
q − Cq.

Now, the above relationship together with (5.2) gives that

Cq�
+
q =� 2

σ2

[
−Q + qI

]
.

The remaining part of the proof can be done in a similar way by using

(�+
q )2 − (�−

q )2 = (�+
q + �−

q )�+
q − �−

q (�+
q + �−

q ).

In the special case of q = 0 we will write �+, �−, C and D for �+
0 , �−

0 , C0 and D0,
respectively.

Note that if (X, J) is a MMBM with one single state (i.e. one-dimensional Brownian
motion), we have, for q ≥ 0,

�+
q = −ρ2, �−

q = −ρ1,

where ρ1 − ρ2 = 2μ
σ 2 and ρ1 + ρ2 = 2

√
μ2+2qσ 2

σ 2 . In general, for MMBM, we can only calculate

explicit analytical formulas for W(q)(x), �+
q , and �−

q in some special cases. For instance,
consider the following parameters: q> 0,

�σ =
(
σ1 0
0 σ2

)
, �μ =

(
0 0
0 0

)
, and Q =

(−q11 q11
q22 −q22

)
(5.5)

with σ1, σ2, q11, q22 ∈R+. Then the matrix F(s) − qI is of the form

F(s) − qI =
(
σ 2

1
2 s2 − q11 − q q11

q22
σ 2

2
2 s2 − q22 − q

)
.
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Therefore, inversion of the Laplace transform (2.2) with respect to s gives

W(q)(x) =
⎛⎝2(q22 + q) − α2

2σ
2
2 2q11

2q22 2(q11 + q) − α2
2σ

2
1

⎞⎠ eα2x − e−α2x

(α2
1 − α2

2)α2σ
2
1 σ

2
2

(5.6)

−
⎛⎝2(q22 + q) − α2

1σ
2
2 2q11

2q22 2(q11 + q) − α2
1σ

2
1

⎞⎠ eα1x − e−α1x

(α2
1 − α2

2)α1σ
2
1 σ

2
2

, (5.6)

where

α1 =

√
Mq +

√
(Mq)2 − 4σ 2

1 σ
2
2 Kq

σ1σ2
, α2 =

√
Mq −

√
(Mq)2 − 4σ 2

1 σ
2
2 Kq

σ1σ2
,

Mq = σ 2
1 (q22 + q) + σ 2

2 (q11 + q), Kq = (q11 + q22 + q)q.

Likewise, one can find the representation formulas for �+
q and �−

q . First, note that �+
q = �−

q
thanks to the assumption of μ1 =μ2 = 0 and Equation (5.2); thus (5.3) becomes

(�+
q )2 =� 2

σ2

[
−Q + qI

]
.

Since −α1 and −α2 are eigenvalues of �+
q , after some basic algebra one finds that

�+
q = �−

q =

⎛⎜⎜⎜⎝
−
√

2σ 2
2 (α1+α2)2(q11+q)−4q11q22

σ1σ2

2q11

σ 2
1

2q22

σ 2
2

−
√

2σ 2
1 (α1+α2)2(q22+q)−4q11q22

σ1σ2

⎞⎟⎟⎟⎠ 1

α1 + α2
.

5.2 Constant state-dependent discount rates

Consider the special case where ωi(x) ≡ωi is a constant for all x ∈R and i ∈ E. Therefore
the discounting structure depends on the state of the chain J alone. In this case, we have the
following proposition.

Proposition 5.1. Let ωi(x) ≡ωi for all x ∈R and i ∈ E. The ω-scale matrix has the Laplace
transform

W̃ (ω)(s) = (F(s) − ω)−1.

Proof. Taking the Laplace transform on both sides of (3.1), we have

W̃ (ω)(s) = W̃(s) + W̃(s)ωW̃ (ω)(s),

which gives

W̃ (ω)(s) = (I − W̃(s)ω
)−1

W̃(s) = (F(s) − ω)−1.

As an example of such an ω-scale matrix, we take again the model of MMBM with the
following parameters: ω1(x) =ω1, ω2(x) =ω2, and �σ , �μ and Q are as given in (5.5).
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One can use the inverse of the Laplace transform to get that

W (ω)(x) =
(

2(q22 +ω2) − α2
2σ

2
2 2q11

2q22 2(q11 +ω1) − α2
2σ

2
1

)
eα2x − e−α2x

(α2
1 − α2

2)α2σ
2
1 σ

2
2

−
(

2(q22 + q2) − α2
1σ

2
2 2q11

2q22 2(q11 + δ1) − α2
1σ

2
1

)
eα1x − e−α1x

(α2
1 − α2

2)α1σ
2
1 σ

2
2

,

where

α1 =

√
Mω +

√
(Mω)2 − 4σ 2

1 σ
2
2 Kω

σ1σ2
, α2 =

√
Mω −

√
(Mω)2 − 4σ 2

1 σ
2
2 Kω

σ1σ2
,

Mω = σ 2
1 (q22 +ω2) + σ 2

2 (q11 +ω1), Kω = q11ω2 +ω1q22 +ω1ω2.

Note that for ω1 =ω2 = q, this result is consistent with the previous result for the (q)-scale
matrix W(q) in (5.6).

5.3 Step ω-scale matrix

In this example, we consider the omega function as a positive step function which depends
only on the position of the process X. Such an assumption is motivated by the situation where
a company has a discount structure which depends on its current financial status (or which is
used as an indication of the economic environment). Li and Palmowski [22] showed that, in
the case of spectrally negative Lévy processes, such ω-scale functions have a recurrent nature.
The same observation holds true for MAPs.

Proposition 5.2. Assume that the omega function is of the form

ω(i, x) :=ω(x) = p0 +
n∑

j=1

(pj − pj−1)1{x>xj} for all i ∈ E, (5.6)

where n ∈N, {pj}n
j=0 is a fixed sequence, and {xj}n

j=1 is an increasing sequence dividing R into

(n + 1) parts. Then the omega matrix W (ω)(x, y) satisfies

W (ω)(x, y) =W (ω)
n (x, y)

for x> y, where W (ω)
n (x, y) is defined recursively as follows:

W (ω)
k+1(x, y) =W (ω)

k (x, y) + (pk+1 − pk)
∫ x

xk+1

W(pk+1)(x − z)W (ω)
k (z, y)dz

for x> xk+1 and k = 1, . . . , n − 1, with W (ω)
0 (x, y) = W(p0)(x − y).

Proof. Define ω(k)(x) := p0 +∑k
j=1 (pj − pj−1)1{x>xj}, with ω(0)(x) = p0. From Equation

(3.7), we get that

W (ω)
k (x, y) = W(pk+1)(x − y) +

∫ x

y
(ω(k)(z) − pk+1)W(pk+1)(x − z)W (ω)

k (z, y)dz (5.7)
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and

W (ω)
k+1(x, y) = W(pk+1)(x − y) +

∫ x

y
(ω(k+1)(z) − pk+1)W(pk+1)(x − z)W (ω)

k+1(z, y)dz. (5.8)

Note that ω(k+1)(z) − pk+1 = 0 for z> xk+1 and ω(k+1)(z) =ω(k)(z) for z ≤ xk+1. Thus, from
Lemma 3.1, we have

W (ω)
k+1(x, y) =W (ω)

k (x, y)

for x ≤ xk+1. Equation (5.8) can be rewritten as

W (ω)
k+1(x, y) = W(pk+1)(x − y) +

∫ xk

y
(ω(k+1)(z) − pk+1)W(pk+1)(x − z)W (ω)

k+1(z, y)dz

= W(pk+1)(x − y) +
∫ xk

y
(ω(k)(z) − pk+1)W(pk+1)(x − z)W (ω)

k+1(z, y)dz

=W (ω)
k (x, y) −

∫ x

xk

(ω(k)(z) − pk+1)W(pk+1)(x − z)W (ω)
k (z, y)dz,

where the last step uses (5.7). The proof is completed by noticing that ω(k)(z) − pk+1 = pk −
pk+1 for z> xk+1.

Note also that similar considerations will lead to the same result for the second ω-scale
matrix Z (ω).

In the next proposition, we will compute the matrix W (ω) for one particular case.

Proposition 5.3. Let (X, J) be a Markov-modulated Brownian motion with μi ∈R and σ 2
i > 0

for all i ∈ E. Assume that n = 1, {pj}n
j=0 = {p0, p1}, and {xj}n

j=1 = {x1}, with p0, p1, x1 being
positive numbers. Then for x ≤ x1,

W (ω)(x, y) = W(p0)(x − y), (5.8)

and for x> x1,

W (ω)(x, y) =
(

e−�+
p1

(x−x1)
(
�+

p1
+ �−

p1

)−1
�−

p1
+ e�−

p1
(x−x1)

(
�+

p1
+ �−

p1

)−1
�+

p1

)
· W(p0)(x1 − y) − W(p1)(x − x1)�σ2

2
W(p0)′ (x1 − y).

Proof. Note that the case x ≤ x1 is a straightforward conclusion from Proposition 5.2. For
x> x1, from Proposition 5.2 and Equation (5.1), we have

W1(x, y) =W0(x, y) + (p1 − p0)
∫ x

x1

W(p1)(x − z)W0(z, y)dz

= W(p0)(x − y) + (p1 − p0)
∫ x

x1

(
e−�+

p1
(x−z)

�p1e−�+
p0

(z−y)

− e−�+
p1

(x−z)
�p1e�−

p0
(z−y) − e�−

p1
(x−z)

�p1e−�+
p0

(z−y) + e�−
p1

(x−z)
�p1e�−

p0
(z−y)

)
dz�p0 . (5.9)

We start by identifying the following integral appearing in (5.9):∫ x

x1

(
e−�+

p1
(x−z)

�p1e−�+
p0

(z−y)
)

dz. (5.10)
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Consider (5.10) as a function M1 : A →R
N×N , where

A = {(x, y) : x ≥ x1, x> y}, (5.10)

and N is the size of the matrix W(p0). Then

M1(x, y) =
∫ x

x1

(
e−�+

p1
(x−z)

�p1e−�+
p0

(z−y)
)

dz = e−�+
p1

x
∫ x

x1

(
e�+

p1
z
�p1e−�+

p0
z
)

dz e�+
p0

y.

Let

K1(x) := M1(x, x1) =
∫ x

x1

(
e−�+

p1
(x−z)

�p1e−�+
p0

(z−x1)
)

dz.

The derivative of K1(x) is equal to

K′
1(x) = −�+

p1
K1(x) +�p1e−�+

p0
(x−x1)

, (5.11)

with the boundary condition K1(x1) = 0. We will prove that the solution of the above
differential equation is of the form

K1(x) = Ce−�+
p0

(x−x1) − e−�+
p1

(x−x1)C, (5.12)

where C is some constant matrix. To do this, we need to verify our guess for K1(x) by plugging
it into (5.11). After some calculation one can prove that (5.12) is indeed the solution if the
following equation holds true:

�+
p1

C − C�+
p0

=�p1 . (5.13)

The above equality is an example of the well-known Sylvester equation. To solve equations of
this type, one usually needs to rely on numerical methods. However, in this case, one can find
a formula for C via guess-and-check:

C = −
(
�+

p1
+ �−

p1

)−1(
�+

p0
+ �−

p1

)
· 1

p1 − p0
. (5.14)

Indeed, plugging this back into (5.13), one can verify the equivalence of both sides.
Therefore, K1(x) as defined in (5.12) (with constant matrix C given in (5.14)) is a solution to

the differential equation (5.11). It is now straightforward to check the expression for M1(x, y);
i.e.,

M1(x, y) = Ce−�+
p0

(x−y) − e−�+
p1

(x−x1)Ce−�+
p0

(x1−y).

Following similar reasoning as for the derivation of M1, one can determine the other
integrals appearing in (5.9), namely

M2(x, y) =
∫ x

x1

e−�+
p1

(x−z)
�p1e�−

p0
(z−y)dz = De�−

p0
(x−y) − e−�+

p1
(x−x1)De�−

p0
(x1−y)

,

M3(x, y) =
∫ x

x1

e�−
p1

(x−z)
�p1e−�+

p0
(z−y)dz = Ee−�+

p0
(x−y) − e�−

p1
(x−x1)Ee−�+

p0
(x1−y)

,

M4(x, y) =
∫ x

x1

e�−
p1

(x−z)
�p1e�−

p0
(z−y)dz = Fe�−

p0
(x−y) − e�−

p1
(x−x1) Fe�−

p0
(x1−y)

,

where the matrices C,D,E,F are given by

C = −
(
�+

p1
+ �−

p1

)−1(
�+

p0
+ �−

p1

)
· 1

p1 − p0
,

D =
(
�+

p1
+ �−

p1

)−1(
�−

p0
− �−

p1

)
· 1

p1 − p0
,
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E = −
(
�+

p1
+ �−

p1

)−1(
�+

p0
− �+

p1

)
· 1

p1 − p0
,

F =
(
�+

p1
+ �−

p1

)−1(
�−

p0
+ �+

p1

)
· 1

p1 − p0
.

Plugging these back into (5.9), we have, for x> x1,

W (ω)
1 (x, y) =

(
e−�+

p0
(x−y) − e�−

p0
(x−y)

)
�p0

+ (p1 − p0)
(

M1(x, y) − M2(x, y) − M3(x, y) + M4(x, y)
)
�p0

=
[
e−�+

p1
(x−x1)

(
�+

p1
+ �−

p1

)−1
�−

p1
+ e�−

p1
(x−x1)

(
�+

p1
+ �−

p1

)−1
�+

p1

]
· W(p0)(x1 − y) − W(p1)(x − x1)�σ2

2
W(p0)′(x1 − y),

which completes the proof of this proposition. Note that the uniqueness of this result is a
straightforward conclusion from Lemma 3.1.

Remark 5.1. In general, if we choose to divide R into more intervals, a similar idea could be
adopted for computing the ω-scale matrix.

5.4 Omega model

In Section 4, we examined an (omega) dividend problem in the general Markov additive
model, where the formula for the value function was derived in terms of the ω-scale matrix. In
this subsection, we will revisit this problem under MMBM and for a specific choice of omega
function:

ωi(x) :=ω(x) =
(
γ0 + γ1(x + d)

)
1{−d≤x≤0} for all i ∈ E,

where γ0 > 0 and γ1 < 0 are constants such that the omega function is decreasing in x. A
similar model for a Lévy risk process was analyzed in Li and Palmowski [22].

Let us fix a constant force of interest δ ≥ 0. Using (3.4) one can obtain that W (ω+δ) satisfies
the following equation: for x ∈ [ − d, 0],

W (ω+δ)(x,−d) = W(x + d) +
∫ x

−d
(ω(z) + δ)W(x − z)W (ω)(z,−d)dz

= W(x + d) +
∫ x+d

0
(ω(y − d) + δ)W(x + d − y)W (ω)(y − d,−d)dy

= W(γ0+δ)(x + d) + γ1

∫ x+d

0
yW(γ0+δ)(x + d − y)W (ω)(y − d,−d)dy.

Now, let z = x + d ≥ 0 and

G(z) :=W (ω+δ)(z − d,−d) =W (ω+δ)(x,−d). (5.15)

Then we can rewrite the equation for W (ω+δ) as

G(z) = W(γ0+δ)(z) + γ1

∫ z

0
yW(γ0+δ)(z − y)G(y)dy.

From (5.1), we obtain the following for W(γ0+δ):( d

dz
− Cγ0+δ

)( d

dz
+�+

γ0+δ
)

W(γ0+δ)(z) = 0, (5.16)

where Cγ0+δ = (�+
γ0

d + �−
γ0

d)�−
γ0

d(�+
γ0

d + �−
γ0

d)−1.
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Based on (5.15), for z ∈ [0, d] (or equivalently for x ∈ [ − d, 0]) we have( d

dz
− Cγ0+δ

)( d

dz
+�+

γ0+δ
)

G(z) = γ1z� 2
σ2

G(z) (5.17)

with the boundary conditions G(0) = 0 and G′(0) =� 2
σ2

.

Let us rewrite the above differential matrix equation in the following form:

G′′(z) +
(
�+
γ0

d − Cγ0+δ
)

G′(z) −
(

Cγ0+δ�+
γ0

d + 2γ1z�1/σ 2

)
G(z) = 0,

which, by (5.3), can be simplified to

� σ2
2

G′′(z) +�μG′(z) + QG(z) − (ω1(z) + δ)G(z) = 0, for z ∈ [0, d].

Now we will treat the case of z ≥ d (or equivalently x ≥ 0). We first rewrite the formula

W (ω+δ)(x; −d) = W(x + d) +
∫ x+d

0
ω(y − d)W(x + d − y)W (ω+δ)(y − d; − d)dy for x ≥ 0,

in terms of the matrix G(z) with z ≥ d:

G(z) = W(z) +
∫ d

0
(δ + (γ0 + γ1y))W(z − y)G(y)dy + δ

∫ z

d
W(z − y)G(y)dy.

Similarly to (5.16) and (5.17), we have, respectively,( d

dz
− C

)( d

dz
+ �+)W(z) = 0

and ( d

dz
− C

)( d

dz
+ �+)G(z) = δ� 2

σ2
G(z) for z ≥ d,

where C = (�+ + �−)�−(�+ + �−)−1. Using (5.3) with q = 0, one can get that

� σ2
2

G′′(z) +�μG′(z) + QG(z) − δG(z) = 0 for z> d.

Summarizing, G(z) satisfies the following differential equations:

� σ2
2

G′′(z) +�μG′(z) + QG(z) − (ω1(z) + δ)G(z) = 0 for z ∈ [0, d],

� σ2
2

G′′(z) +�μG′(z) + QG(z) − δG(z) = 0 for z> d,

with the boundary conditions G(0) = 0 and G′(0) =� 2
σ2

.

Therefore, from (5.15), for x ∈ [ − d, 0] we obtain

� σ2
2
W (ω+δ)′′(x,−d) +�μW (ω+δ)′(x,−d) − ((ω(x + d) + δ)I − Q)W (ω+δ)(x,−d) = 0,

and for x> 0,

� σ2
2
W (ω+δ)′′(x,−d) +�μW (ω+δ)′(x,−d) − (δI − Q)W (ω+δ)(x,−d) = 0,

with the boundary conditions W (ω+δ)(−d,−d) = 0 and W (ω+δ)′(−d,−d) =� 2
σ2

.
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FIGURE 1. Entries of ω-scale matrix function W (ω+δ)

Before we proceed to the numerical example, we recall that N is the cardinality of the state
space E, and W (ω+δ) maps R into R

N×N . Thus, one can see that the differential equations
for W (ω+δ) can be treated as a (2×N)th-order system of second-order initial-value problems.
As usual in such a setting, one can introduce new unknown functions as derivatives of the
remaining functions. Thus we obtain a (4×N)th-order system of first-order initial-value prob-
lems, for which there exist rich collections of iterative algorithms. Let us focus on uniqueness
and existence in the general case. Specifically, recall that every mth-order system of first-order
initial-value problems can be written in the form

dyi

dt
= gi(t, y1, y2, ..., ym),

where for each i ∈ {1, 2, ...,m}, gi is assumed to be defined on some set

Di = {(t, y1, ..., ym) : a ≤ t ≤ b,−∞< yk <∞, ∀k = 1, 2, ...,m}.

Then the system has a unique solution y1(t), y2(t), ..., ym(t) for a ≤ t ≤ b if all gi are continuous
on Di and satisfy a Lipschitz condition with respect to (y1, y2, ..., ym).

In the framework of this section, we choose a = −d and b = tmax as an upper limit of our
approximation. It is also clear that if we choose ω to be continuous, then the above sufficient
condition holds true. For illustration, given the parameters

�σ =
(

1.2 0
0 2

)
, �μ =

(
1.75 0

0 1.25

)
, Q =

(−0.4 0.4
0.2 −0.2

)
,

γ0 = 0.5, γ1 = −0.1, d = 5, tmax = 10 and δ = 0.04,
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Figure 1 shows the entries of the numerical approximations of the matrix function W (ω+δ).
We see that the main difference between the classical scale matrix and the ω-scale matrix is
the fact that here we have nonzero values in the interval (−d, 0].

Practical applications of our models and results will rely heavily on numerical evaluation.
For instance, one can use the numerical approach presented here to approximate the value
function of the dividend strategy in the Omega model. Moreover, one can produce similar
experiments for different choices of ω to capture different discount structures or bankruptcy
rates depending on the context; this will bring ω-scale matrices closer to our intuition.

Appendix A. The existence and invertibility of ω-scale matrices

A.1. Proof of Lemma 3.1 for the existence of ω-scale matrices

Proof. To prove the uniqueness of the solution, we will show that H(x) = 0 is the only
solution to

H(x) =
∫ x

0
W(x − y)ω(y)H(y)dy. (A.1)

Taking the Laplace transform on both sides of (A.1) (with an argument s0), we get

H̃(s0) = W̃(s0) ω̃H(s0).

Recall that λ is an upper bound of |ωi(y)| on [0,∞) for all i ∈ E. Using (2.2), we obtain that
the matrix norm of H̃(s0) fulfills the inequality

‖H̃(s0)‖ ≤ λ‖W̃(s0)‖‖H̃(s0)‖ = λ‖F−1(s0)‖‖H̃(s0)‖. (A.2)

Next we will show that there exists s0 such that

‖F(s)−1‖< 1

2λ
for all s ≥ s0. (A.3)

To do so, we recall the expression for F(α):

F(α) = diag(ψ1(α), . . . , ψN(α)) + Q ◦E(eαUij).

Observe that its diagonal goes to infinity as α goes to infinity, and each element (entrywise)
away from the diagonal is bounded by the (fixed) qij.

We now prove, using an induction argument with respect to the dimension of F(α), that

F(α)−1 → 0 as α→ ∞.

Define a series of sub-matrices of F(α), for m = 1, 2, . . . ,N:

Fm(α)−1 := F(α)−1
m×m =

({
Fij(α)

}m
i,j=1

)−1
.

In what follows, we will show that

F−1
m (α) → 0m×m, as α→ ∞. (A.4)

Clearly, FN(α)−1 = F(α)−1.
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When m = 1, F1(α)−1 = 1
ψ1(s0)+q11

, which makes (A.4) hold obviously, and s0 in (A.3) is

chosen so that 1
ψ1(s0)+q11

< 1
2λ . Assume (A.4) holds for the dimension m = k − 1. Then in the

dimension m = k, we have

Fk(α)−1 =
(

A B
C D

)−1

,

where
A(k−1)×(k−1) = Fk−1(α),

B(k−1)×1 = (q1kE(eαU1k ), . . . , q(k−1)kE(eαU(k−1)k ))T ,

C1×(k−1) = (qk1E(eαUk1 ), . . . , qk(k−1)E(eαUk(k−1) )),

and
D1×1 =ψk(α) − qkk.

Using the formula for the inverse of the block matrix(
A B
C D

)−1

=
(

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
,

it is easy to see that each block in Fk(α)−1 goes to 0 as α→ ∞, since

A−1 = Fk−1(α)−1 → 0(k−1)×(k−1),

(D − CA−1B)−1 = 1

ψk(α) − qkk − CA−1B
→ 0,

and B, C have bounded (nonnegative) elements. This completes the proof of (A.3).
Plugging (A.3) into (A.2) gives

‖H̃(s0)‖ = 0; i.e. H(x) = 0,

which completes the proof of the uniqueness of the solution to Equation (3.2).
To prove the existence of a solution to Equation (3.2), we construct a series of matrices

{Hm} which converge to the unique solution. Define the operator G on a matrix as follows: for
z> 0,

GK̃(z) =
∫ ∞

0
e−zx

∫ x

0
e−s0(x−y)W(x − y)ω(y)K(y)dydx = W̃(s0 + z) ω̃K(z),

G(m+1)K̃(z) = G(G(m))K̃(z),

H̃0(z) =
∫ ∞

0
e−zxe−s0xh(x)dx = h̃0(s0 + z), H̃m+1(z) = H̃0(z) + GH̃m(z).

Then G is a linear operator such that ‖GK̃(z)‖< 1
2‖K̃(z)‖ for z> 0. Therefore, for m> l, we

have

‖H̃m(z) − H̃l(z)‖ = ‖
m∑

k=l+1

G(k)H̃0(z)‖< 2−l‖H̃0(z)‖,
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which means {H̃m(z), z> 0}m≥0 forms a Cauchy sequence (entrywise) that admits a limit H̃(z)
for any z> 0 satisfying

H̃(z) = H̃0(z) + GH̃(z) = h̃0(s0 + z) + W̃(s0 + z) ω̃H(z).

Using the uniqueness of the Laplace transform, we have

H(x) = e−s0xh0(x) +
∫ x

0
e−s0(x−y)W(x − y)ω(y)H(y)dy,

which shows that H(x) = es0xH(x) is a solution to (3.2).
As for the second statement in this lemma, we see that if H satisfies (3.3), then by letting

δ = 0, we obtain (3.2) immediately. Now we only need to show that if H is a solution to (3.2),
it is also a solution to (3.3). We convolute both sides of (3.2) with δW(δ) (on the left):

δW(δ) ∗ H(x) = δW(δ) ∗ h(x) + δW(δ) ∗ W ∗ (ωH)(x) = δW(δ) ∗ h(x) + (W(δ) − W) ∗ (ωH)(x),

where the last step uses the identity W(δ) − W = δW(δ) ∗ W (which can be easily seen from
the Laplace transform). Therefore,

H(x) = h(x) + δW(δ) ∗ h(x) + W(δ) ∗ ((ω − δI)H)(x),

which completes the proof.

A.2. Proof of the invertibility of ω-scale matrices

Proposition A.1. The matrix W (ω)(x)−1 is invertible for any x> 0.

Proof. From (3.13), one can see that it is enough to prove that the matrix

P(x) := I +
∫ x

0
W(λ)(x − y) (λI − ω(y))A(ω)(y, x)dy

is invertible for every x ≥ 0. Using an argument similar to that of [21], note that for each y> 0
there exists some N × N sub-stochastic invertible intensity matrix �ω,∗(y) such that

Px

(
τ+

c < τ−
0 ∧ Tω, Jτ+

c
|J0

)
= exp

(∫ c

x
�ω,∗(y) dy

)
. (A.5)

This observation implies that the matrix A(ω)(x, c) is invertible for any x, c ∈R+ such that
0< x ≤ c. The matrix A(ω)(x, c) is also continuous (entrywise) with respect to c. Now, assume
that there exists c> 0 such that matrix P(x) is invertible for some 0< x< c and is singular for
x = c. Then from the relation (3.12) we get a contradiction, because the left-hand side of it
is invertible (as a product of invertible matrices) and the right-hand side is singular from the
assumption. Hence only two scenarios are possible: the matrix P(x) is invertible for all x> 0,
or it is singular for all x> 0. Finally, since P(0) = I and P(x) is continuous in x ≥ 0, we obtain
that P(x) must be invertible for all x ≥ 0.
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Appendix B. Proofs of additional facts

Here are the proofs of Lemma 3.2 and Corollary 3.1.

B.1. Proof of Lemma 3.2

Proof. As before, without loss of generality, we assume that ωi(x) is bounded by some λ> 0
for all x ∈R and i ∈ E. The finiteness of K(ω)

ij fj(x) comes from the fact that K(ω)
ij fj(x)<K(0)

ij fj(x)
for all 1 ≤ i ≤ N. Using arguments similar to those in the proof of Theorem 3.1(i), we have

Q(ω)
t,ij fj(x)

=Ex,i

[
fJt (Xt); t< ξ and Mk >ωJTk

(XTk ) for all Tk < t, Jt = j
]

=Ex,i
[
fJt (Xt); t< ξ, T1 > t, Jt = j

]+ N∑
l=1

∫ t

0
Ex,i

[
Q(ω)

t−s,lj fj(Xs),M1 >ωl(Xs), Js = l
]
P(T1 ∈ ds)

=Ex,i
[
e−λtfj(Xt); t< ξ, Jt = j

]+ N∑
l=1

∫ t

0
Ex,i

[
(λ−ωl(Xs))Q

(ω)
t−s,lj fj(Xs), Js = l

]
e−λsds

= Q(λ)
t,ij fj(x) +

N∑
l=1

∫ t

0
Q(λ)

s,il

(
(λ−ωl)Q

(ω)
t−s,lj fj

)
(x)ds.

Note that the superscript λ denotes a counterpart of fixed ωi(x) ≡ λ. Equivalently, in matrix
form, we have

Q(ω)
t f(x) = Q(λ)

t f(x) +
∫ t

0
Q(λ)

s

(
(λI − ω)Q(ω)

t−s f
)

(x)ds,

where by matrix compounding we mean (A(B)(x))ij =
∑N

m=1 AimBmj(x). Thus,

K(ω)f(x) =
∫ ∞

0
Q(ω)

t f(x)dt = K(λ)f(x) + K(λ)
(

(λI − ω)K(ω)f
)

(x). (B.1)

Using the resolvent identity λK(0)(K(λ)) = K(0) − K(λ), we have

λK(0)
(

K(ω) f
)

(x) = (K(0) − K(λ))f(x) + (K(0) − K(λ))
(

(λI − ω)K(ω)f
)

(x). (B.2)

Comparing (B.1) with (B.2) completes the proof.

B.2. Proof of Corollary 3.1

Proof of Part (i). First we will prove that

lim
d→−∞ W (ω)(x, d)W (ω)(c, d)−1 =H(ω)(x)H(ω)(c)−1. (B.3)

Then the result will follow from Theorem 3.1(i). Recall that for x ≥ d and any fixed β ≥ 0 we
have

W (ω)(x, d) = W(β)(x − d) +
∫ x

0
W(β)(x − z)(ω(z) − βI)W (ω)(z, d)dz.
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Moreover, for x = 0,

W (ω)(0, d)e−Rβd = W(β)(−d)e−Rβd.

Hence from (2.3) we have

lim
d→−∞ W (ω)(0, d)e−Rβd = lim

d→−∞ W(β)(−d)e−Rβd = Lβ .

From Theorem 3.1(i), for x> 0,

E

[
e− ∫ τ+x0 ωJs (Xs)ds, τ+

x < τ−
d , Jτ+

x
|J0

]
W (ω)(x, d) =W (ω)(0, d).

Since the above expectation is increasing with respect to d, the following limit is well-defined
and finite for every x> d:

lim
d→−∞ E

[
e− ∫ τ+x0 ωJs (Xs)ds, τ+

x < τ−
d , Jτ+

x
|J0

]
W (ω)(x, d)e−Rβd

=E

[
e− ∫ τ+x0 ωJs (Xs)ds, τ+

x <∞, Jτ+
x
|J0

]
lim

d→−∞ W (ω)(x, d)e−Rβd = Lβ .

Note also that, since the matrix Lβ is invertible (as was noted above Equation (2.3)), from the
above equation it follows that the matrix limd→−∞ W (ω)(x, d)e−Rβd is also invertible. Taking

H(ω)(x) := lim
d→−∞ W (ω)(x, d)e−Rβd(Lβ )−1

completes the proof of the first part of the corollary. To show that the above-defined H(ω)(x)
satisfies (3.9), note that

W (ω)(x, d)e−Rβd =
(

W(β)(x − d) +
∫ x

0
W(β)(x − z)(ω(z) − βI)W (ω)(z, d)dz

)
e−Rβd.

Then take the limit as d → −∞ and apply the dominated convergence theorem; the result
follows.

Proof of Part (ii). The proof follows from taking the limit (3.13), which exists and is finite.
Moreover, the limit

lim
c→∞ W (ω)(c)−1Z (ω)(c) = CW(∞)−1Z(∞) = CB(ω)

is finite by (3.17). This completes the proof.
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