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Self-similarity and the direct (enstrophy) cascade
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In the absence of large-scale coherent structures, a widely used statistical theory of
two-dimensional turbulence developed by Kraichnan, Leith, and Batchelor (KLB) predicts
a power-law scaling for the energy, E(k) ∝ kα with an integral exponent α = −3, in the
inertial range associated with the direct cascade. A power-law scaling is also observed in
the presence of coherent structures, but the scaling exponent becomes fractal and often
differs substantially from the value predicted by the KLB theory. Here we present a
dynamical theory that sheds new light on the relationship between the spatial and temporal
structure of the large-scale flow and the scaling of small-scale structures representing
filamentary vorticity. Specifically, we find hyperbolic regions of the large-scale flow to play
a key role in the flux of enstrophy between scales. Small-scale vorticity in these regions can
be described by dynamically self-similar solutions of the Euler equation, which explains
the power-law scaling. Furthermore, we find that correlations between different hyperbolic
regions are responsible for the emergence of fractal scaling exponents.
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1. Introduction

Fluid turbulence is a paradigm unsolved problem of classical physics and mathematics.
It occupies a unique place in science due to its complicated chaotic and multiscale
nature and in engineering due to its ubiquity and practical importance. The origins of
turbulent cascades, which are responsible for generating structure at multiple scales are
among the key mysteries. In particular, in two-dimensional (2-D) turbulence there are two
different cascades: direct and inverse (Clercx & Van Heijst 2009; Boffetta & Ecke 2012).
Specifically, the inverse cascade transfers energy from smaller to larger scales, while the
direct cascade transfers enstrophy from larger to smaller scales. Here we focus on fluid
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flows driven at large scales, for which it is the direct cascade that is primarily responsible
for the multiscale nature of turbulence.

The first theoretical, statistical description of both the inverse and the direct cascade
was developed by Kraichnan (1967), Leith (1968) and Batchelor (1969). In particular, for
the direct cascade, the Kraichnan, Leith and Batchelor (KLB) theory predicts the energy
density in the Fourier space to scale as a power law, E(k) ∝ k−3. Experiments (Rivera,
Aluie & Ecke 2014) and numerical simulations (Herring & McWilliams 1985; Legras,
Santangelo & Benzi 1988; Maltrud & Vallis 1991) however generally find the spectrum
to be steeper, with E(k) exhibiting scaling close to a power law kα with a non-integral
exponent in the range −5 < α < −3. The deviations from the predictions of the KLB
theory, which assumes the small scales to be uncorrelated, have been attributed to the
presence of coherent structures, which introduce correlations. Indeed, the integral scaling
exponent α = −3 can be recovered if the coherent structures, and hence, the correlations,
are artificially destroyed (Benzi, Patarnello & Santangelo 1988; Maltrud & Vallis 1991;
Borue 1993; Chen et al. 2003). The importance of coherent structures, which reflect the
accumulation of energy at large scales caused by the inverse cascade, has been recognized
already by Kraichnan (1971) whose logarithmic correction to the k−3 power law reflects
the non-local nature of the direct cascade.

While no systematic description of the effects of coherent structures has been developed
so far, several different mechanisms that may contribute to the direct cascade have been
explored. Earlier studies have focused on the stretching of small patches of vorticity,
essentially treated as a passive scalar, by large-scale vortices, leading to filamentation. In
particular, Saffman (1971) predicted the exponent α = −4 by using a simplified picture
that assumed that the vorticity is uniform inside each patch and the corresponding
vorticity field has a finite number of discontinuities along any straight line. Corresponding
scaling, however, is only observed at early times, while on longer time scales both
assumptions break down and the spectrum often becomes less steep (Brachet et al. 1987).
It was hypothesized that, on longer time scales, vorticity filaments are stretched as they
are wound up around vortices, generating a fractal structure that is characterized by a
non-integral exponent. For point vortices, the corresponding exponent was predicted to
be α = −11/3 = −3.6(6) (Moffatt 1986; Gilbert 1988). While these results established a
relationship between the topology of the large-scale flow and the scaling exponent, they did
not explain the lack of universality observed in the presence of coherent structures. Indeed,
coherent structures feature vortices with a wide variety of shapes and hence stretching
properties (Zhigunov & Grigoriev 2023).

More recent studies have identified straining (or hyperbolic) regions of large-scale flows,
rather than vortices (or elliptic regions), as playing a key role in the direct cascade.
Numerical results of Chen et al. (2003) confirmed the conjecture of Kraichnan (1971)
that the primary physical mechanism behind the direct cascade is ‘vortex thinning’,
i.e. steepening of the vorticity gradients in strain-dominated regions of the flow. This
picture is supported by the experimental studies of Kelley & Ouellette (2011) and Liao
& Ouellette (2015) who found that, at small scales, the spectral fluxes of both the energy
and the enstrophy are enhanced in regions that are predominantly straining. This relation is
particularly clear in numerical simulations of body-forced turbulence on a square doubly
periodic domain where the large-scale flow at high Reynolds numbers (Re) is dominated by
a pair of counter-rotating vortices, and vorticity filaments are mostly found in the straining
regions (Zhigunov & Grigoriev 2023). The presence of pronounced coherent structures
in this flow leads to particularly strong deviations from the KLB predictions, with the
scaling exponent reaching values as high as α ≈ −5. While convincing, this evidence is
qualitative, and a quantitative theory is yet to be developed that can predict the scaling
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exponents found in both numerics and experiments and explain their connection to the
spatial and temporal properties of coherent structures.

This paper introduces the key elements of such a quantitative theory for bounded flows
that reach statistical equilibrium in the presence of driving and viscous dissipation. The
paper is structured as follows. We will start by analysing the large- and small-scale
structures of vorticity that emerge in direct numerical simulations (DNS) of high-Re
2-D flows in § 2. Section 3 introduces a dynamical model for small-scale vorticity
as well as several classes of self-similar solutions representative of observations and
discusses their properties. The results are discussed in § 4 and conclusions are presented
in § 5.

2. High-Re flow in two dimensions

To gain intuition into the physical mechanism of the direct cascade, it is helpful to analyse
typical vorticity structures that emerge in high-Re incompressible flows driven by steady
large-scale forcing on a doubly periodic domain (0 ≤ x, y < 2π). Such flows can be
described by the Navier–Stokes equation

∂tω + u · ∇ω = ν∇2ω + ϕ, (2.1)

written in terms of vorticity ω = ∂xuy − ∂yux = −∇2ψ , where ux = ∂yψ and uy = −∂xψ
are the velocity components, ψ is the streamfunction and ϕ describes the external forcing.
In this section we will focus on the results of numerical simulations of turbulent flow
with ν = 10−5 driven by a steady checkerboard forcing ϕ = Φ sin(kf x) sin(kf y) with
kf = 4 reported by Zhigunov & Grigoriev (2023). The forcing wavenumber was chosen
to be sufficiently low to make sure there is a large separation between the forcing
length scale 	f = k−1

f and the Taylor microscale 	t = R e−1/2	0 at which viscous effects
become important. Here, the Reynolds number is defined as Re = E	2

0/ν, where E is
the characteristic magnitude of velocity gradient tensor elements ∂iuj and 	0 is the
characteristic length scale of the large-scale flow, so that 	t = (ν/E)1/2. To make sure
the small-scale structures are resolved, the flow was computed on a grid with resolution
2048 × 2048. Accounting for the 2/3 dealiasing used in the numerical simulations, this
corresponds to the highest resolved wavenumber of kmax = 682.

The large-scale flow is found to be insensitive to the particular choice of the forcing
profile, so long as its frequency is relatively low (Kim & Okamoto 2010, 2015; Kim,
Miyaji & Okamoto 2017). This is due to the accumulation of the energy at the largest
scales accessible to the flow, as illustrated by figure 1(a), caused by the inverse cascade.
The energy spectrum averaged over a long-time interval is found to exhibit a power-law
scaling E(k) ∝ kα over roughly a decade in the wavenumber (16 ≤ k ≤ 170). This scaling
indicates the presence of an inertial range characteristic of fully developed turbulence.
The exponent α ≈ −4.4 is found to be quite different from that predicted by KLB theory.
Numerical simulations also suggest that E ∝ Φ/(kf ν), which implies the balance between
the forcing and viscous dissipation terms and, consequently, the dominant balance between
the terms ∂tω and u · ∇ω at high Reynolds numbers.

Figure 2(a) shows a typical snapshot of the turbulent flow. We decomposed this flow
into a small-scale and large-scale component by applying a filter that corresponds to a
smoothed circular window with radius 2

√
2kf in Fourier space, so the entire inertial range

is included in the small-scale component. Several features of this flow are worth pointing
out. The large-scale flow shown in figure 2(b) is organized by a pair of counter-rotating
vortices. The region outside the vortex cores is dominated by the straining flow, with

995 A4-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

65
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.653


M. Reynoso, D. Zhigunov and R.O. Grigoriev

641 8 512

10–5

10–10

–4.7

–4.6

–4.5

–4.4

–4.3

–4.2

–4.1

–4.0
100

(a)

Ê
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Figure 1. The energy of a turbulent flow. (a) The energy spectrum averaged over a long-time interval (103

non-dimensional units). (b) The exponent of the spectrum is shown at intervals of the characteristic time scale
Tc = 10, averaged with nearby points.

the strain driven by the two vortices. The region of straining flow has nearly uniform
large-scale vorticity. The large-scale flow is not static, rather, a large fraction of the
time, it is found to be nearly time periodic (Zhigunov & Grigoriev 2023). Although time
dependent, the flow structure remains largely unchanged, with both vortices executing
a nearly circular motion. There are four stagnation points, a pair of elliptic ones inside
the vortex cores and another pair of hyperbolic ones inside the region of straining flow
outside of the vortex cores. When averaged over the characteristic time scale Tc ≈ 10,
which corresponds to the approximate period of the large-scale flow, the energy spectrum
retains a power-law shape. However, the associated exponent α is found to vary over a
significant range of values, as figure 1(b) shows, reflecting the changes in the properties of
the large-scale flow on time scales longer than Tc.

These results appear to be quite representative. Similar large-scale coherent structures
in the form of ‘vortex crystals’ (Aref et al. 2003) are also found to form for flows forced at
small scales (Smith & Yakhot 1994; Chertkov et al. 2007), even though they tend to take
a rather long time to emerge. Notably, this behaviour characteristic of forced turbulence is
quite different from that found for freely decaying turbulence (McWilliams 1984; Bracco
et al. 2000) where large-scale coherent structures fail to form.

For the flow considered here, most of the small-scale vorticity has a filamentary
structure with the filaments mostly confined to the region of straining flow, as illustrated
in figure 2(c). This region can be decomposed into a pair of hyperbolic regions, each
one containing a hyperbolic stagnation point. Inside each hyperbolic region, vorticity
filaments are mostly oriented along the expanding direction of the straining flow, although
some filaments are found to be oriented along the contracting direction. Some filamentary
vorticity is also found inside the vortex cores. These filaments are found predominantly in
the regions where the gradient of the large-scale vorticity is the largest and are oriented
transversely to this gradient. Hence, both the straining and vortical regions contribute to
the direct cascade, with the former corresponding to the picture described by Kraichnan
(1971) and the latter corresponding to the picture described by Moffatt (1986) and Gilbert
(1988). We will focus here on the straining region that contains most of the filamentary
vorticity.
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Figure 2. Typical snapshot of a high-Re turbulent flow. (a) Vorticity field ω. (b) The large-scale component of
ω (corresponding to wavenumbers k ≤ 16) features two pronounced counter-rotating vortices. The boundaries
between regions dominated by vortical and straining flow are shown as solid black lines and the boundaries
between the two hyperbolic regions are shown as dashed black lines. The arrows indicate the direction of
the flow in each hyperbolic region and the corresponding stagnation points are shown as black circles. The
boundaries of the hyperbolic regions, stagnation points and direction of the flow are shown in a reference
frame co-moving with the large-scale vortex pattern. (c) The small-scale component of ω (corresponding to
wavenumbers k ≥ 16) features pronounced vorticity filaments. (d) The local coordinate system and geometry
of a hyperbolic region of the flow. The colour map in all four panels uses red (blue) shades to indicate positive
(negative) values of vorticity.

3. Results

To understand how the large-scale coherent flow affects the direct cascade, below we
construct a dynamical model for small-scale vorticity inside the hyperbolic regions and
analyse several types of analytical solutions representative of vorticity filaments observed
in the numerics. All of these solutions feature a structure at different scales, however, their
associated energy and enstrophy spectra are found to be non-universal and depend on the
properties of the large-scale flow, both temporal and spatial.
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3.1. The dynamics of small-scale vorticity
In the inertial range kf � k � kt, where kt = 1/(	ts), the effects of both forcing and
viscous dissipation can be ignored, so the flow is effectively described by the Euler
equation

∂tω + u · ∇ω = 0. (3.1)

As discussed in the previous section, inside each hyperbolic region, the large-scale flow
has essentially constant vorticity. Consider a reference frame in which a hyperbolic
stagnation point remains at the origin and an orthogonal coordinate system with the y
coordinate oriented along the expanding direction of the flow, as shown in figure 2(d). The
velocity ul of the large-scale flow inside the hyperbolic region can be written as

ul = −Exx̂ + E( y + 2 cot(θ)x)ŷ, (3.2)

where E is the strain rate and θ is the angle between the expanding and contracting
direction, hence, the large-scale vorticity in the hyperbolic region is simply ωl = 2E cot θ .
For the simulations considered here, the time dependence of the large-scale flow manifests
mostly as a slow overall drift of the pattern, hence, the strain rate E > 0, the orientation
of the y axis and the angle θ can be considered constant (or at least slowly varying). This
limit corresponds to the adiabatic approximation used by Lapeyre, Klein & Hua (1999),
Lapeyre, Hua & Klein (2001).

Separating the flow into the large- and small-scale contributions, e.g. u = ul + us, and
substituting the result into the Euler equation yields

∂tωs + ul · ∇ωs = −us · ∇ωs. (3.3)

This evolution equation shows that small-scale vorticity ωs can be considered a passive
scalar that is advected by the large-scale flow ul, as is commonly assumed (Kraichnan
1971), only when the term us · ∇ωs vanishes. Indeed, when the level sets of the
streamfunction ψs describing the small-scale component of the flow are aligned with
the level sets of the small-scale vorticity ωs, the right-hand side of (3.3) disappears, so
small-scale vorticity effectively becomes a passive scalar. This will indeed be the case for
vorticity filaments whose radius of curvature is large compared with their thickness. As
figure 2(c) illustrates, this condition is satisfied almost everywhere except for the small
regions where the filaments are folded sharply.

In practice, the expanding and contracting directions of the straining flow tend to
be nearly orthogonal so, without loss of generality, we assume θ = π/2 in most of
the discussion below (the general case is considered in the § B.3). The corresponding
streamfunction then becomes ψl = −Exy and the large-scale vorticity vanishes, ωl = 0.
Let 	0 define one half of the distance between adjacent hyperbolic stagnation points of the
large-scale flow. Inside the hyperbolic region sketched in figure 2(d),

|xy| � h2, |x|, |y| < 	0, (3.4)

bounded by the level sets of ψl, (3.3) reduces to

∂tω − Ex∂xω + Ey∂yω = 0. (3.5)

The shape (described by the characteristic thickness h) of the hyperbolic region depends on
the properties of the large-scale flow. In practice, h can be found by computing the shape
of the Lagrangian coherent structure (Haller 2015) that defines the boundary between
the elliptic and hyperbolic region of the large-scale flow. As illustrated in figure 2(b),
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the hyperbolic region does not have to be reflection symmetric with respect to either
the expanding or contracting direction. We assume it to be symmetric, without loss of
generality, to simplify the notations. The general solution to the linear equation (3.5) can
be found using the method of characteristics

ω = ωs = g(χ, η), (3.6)

where g are arbitrary functions of the similarity variables χ ≡ eE tx/	0 and η ≡ e−E ty/	0.
This family of solutions is dynamically self-similar, i.e. ω(eEτ x, e−Eτ y, t) = ω(x, y, t + τ)

for any τ , although only the values of τ corresponding to multiples of the temporal period
T = 2π/Ω of the large-scale flow are of interest here. This is illustrated in figure 2(d); the
vorticity field inside the regionΣ1 is compressed along the x direction and stretched in the
y direction by the same factor Λ = eET > 1 after one period and mapped onto the region
Σ2. Similarly, the region Σ2 is mapped onto the region Σ3, etc.

3.2. Non-interacting hyperbolic regions
The simplest such solutions depend on just one of the two similarity variables. Consider,
for instance, small-scale vorticity filaments oriented along the expanding direction, in
which case

ω = g±
c (χ), (3.7)

where the superscript denotes the sign of x. This family of solutions describes vortex
thinning associated with the stretching of filaments as they are advected towards the y axis.
The functions g±

c (χ) are determined by the variation in the vorticity field at the ‘entrances’
to the hyperbolic region where x = ±	0. Since vorticity at x = 	0 and x = −	0 will
generally be different, so g+

c (χ) and g−
c (χ) will also be different. For oscillatory g±

c (χ),
these self-similar solutions describe vorticity filaments whose characteristic thickness
decreases exponentially fast, �x(t) ∝ e−E t, as they are advected towards the streamline
x = 0, representing a continuous flux of enstrophy from large to small scales.

The family of solutions (3.7) describes non-interacting hyperbolic regions, i.e. vorticity
fields entering one hyperbolic region that have not just left another hyperbolic region.
In this case, the temporal and spatial profile of the vorticity field at the entrance to a
hyperbolic region is defined by the forcing field ϕ, which acquires time dependence due to
the time-periodic overall motion of the hyperbolic regions. For forcing with low spatial
frequency, the vorticity field at either entrance (x = −	0 or x = 	0) to the hyperbolic
region can be considered to vary slowly in the y direction, i.e. ω(±	0, y, t) ≈ g±

c (e
E t). For

the large-scale flow with temporal period T , the functions g±
c (χ) have to be periodic, with

period ET . As a result, the vorticity field described by the solution family (3.7) becomes
both time periodic and self-similar in the conventional sense, i.e. ω(Λx, t) = ω(x, t).

Self-similarity of the vorticity field implies that its Fourier spectrum ω̂(k, t) has a
power-law scaling. Indeed, since g±

c (χ) is periodic, it can be written in the form of a
Fourier series, i.e. inside each hyperbolic region we have

ω =
∞∑

n=1

ā±
n cos[ns ln |χ | + φ̄±

n ], (3.8)

where ā±
n are the Fourier amplitudes, φ̄±

n are the corresponding phases and s = Ω/E =
2π/ ln(Λ) is a key non-dimensional parameter describing the temporal frequency of the
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large-scale flow. It is straightforward to show that |ω̂(k, t)| ∝ k−1
x δ(ky) and, therefore, the

enstrophy spectrum in the inertial range should have a power-law scaling

H(k) ∝ 〈|ω̂(k, t)|2〉t ∝ k−2, (3.9)

which corresponds to the scaling exponent α = −4 for the energy E(k) = k−2H(k),
consistent with the prediction of Saffman (1971) (see § B.2). This result however does
not account for two essential features of the vorticity field. First of all, viscosity becomes
important in the dissipation range leading to attenuation of the thinnest vorticity filaments.
Second, vorticity filaments are confined to the hyperbolic region, which introduces a
(weak) dependence on the y coordinate. We will consider the consequences of both effects
next.

In the presence of viscosity, self-similarity breaks down on length scales comparable to
the Taylor microscale 	t and the vorticity field takes the form

ω =
∞∑

n=1

a±
n cos[ns ln |χ | + φ±

n ], (3.10)

where, to leading order in 	t/x,

φ±
n (x) = φ̄±

n − ns
2
	2

t

x2 , (3.11)

and

a±
n (x) = ā±

n exp
[
−n2s2

2
	2

t

x2

]
, (3.12)

as shown in Appendix A. Note that, for |x| 
 s	t, both the phases φ±
n (x) and the

amplitudes a±
n (x) become constant and the self-similar solution (3.8) is restored. For

|x| � s	t, vorticity is exponentially strongly suppressed. The former (latter) range in the
physical space corresponds to the inertial (dissipation) range in the Fourier space.

The effect of confinement to the interior of the hyperbolic region can be represented by
imposing an envelope on the vorticity field that approaches zero outside of the hyperbolic
region and unity inside. This envelope can be written as a function of the variable ξ ≡
χη = xy/	2

0 ∝ ψl (which is an invariant of the large-scale flow ul, i.e. ∂tξ + ul · ∇ξ = 0)

such as e−	4
0ξ

2/h4
, which yields

a±
n (x, y) = ā±

n exp

[
−n2s2

2
	2

t

x2 − 	4
0ξ

2

h4

]
. (3.13)

Computing the enstrophy for this choice on the infinite plane (i.e. 	0 → ∞), one finds that

H(k) ∝ k−1 (3.14)

in the inertial range, as shown in Appendix B.1. Other appropriate choices of the envelope
would yield the same power law with the value of the scaling exponent α = −3 predicted
by the KLB theory.
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Figure 3. Snapshots of the vorticity field (3.15) for s = 20, 	0 = 1 and Re = 107 with (a) h = 0.82, (b) h =
0.25 and (c) h = 0.1. (d) The enstrophy spectrum shows different scaling regimes corresponding to h = 0.82
(solid blue line) and h = 0.25 (solid yellow line). (e) Exponent α to describe which corresponds to the best of
a single-power law H(k) ∝ kα+2 over the interval kc < k < kt as a function of the hyperbolic region thickness
h, where kc is defined by (B24).

Depending on the values of h/	0 and Re, one could see one or both scalings (3.9) and
(3.14) in the inertial range, as illustrated in figure 3(d) for the special case ā±

n = δn1, i.e.

ω = cos(s ln |χ |) exp

[
−s2	2

t

2x2 − 	4
0ξ

2

h4

]
, (3.15)

with 	0 = 1 and Re = 107, which corresponds to kt ≈ 3 × 103. Indeed, for thick
hyperbolic regions (i.e. h � 	0, cf. figure 3a), the envelope can be ignored and we recover
the scaling relation (3.9). For thin hyperbolic regions (i.e. h � 	0, cf. figure 3c), the length
of vorticity filaments is determined by the hyperbolic envelope rather than the size 	0 for
k in the inertial range, so we find the scaling relation (3.14) instead. For intermediate
values of h/	0 (cf. figure 3b), we can see both scaling regimes, H(k) ∝ k−1 at lower k
and H(k) ∝ k−2 at higher k. This is what one should expect: the hyperbolic envelope
only affects the length of the thicker filaments while thinner filaments all have the same
length 	0.

Observation of two different scaling regimes clearly requires the inertial range to be
quite wide and, hence, Re to be quite large. Asymptotic states at high Re are likely
inaccessible in experiments and require very long simulations to reach, which may explain
the lack of experimental or numerical evidence showing two different scaling exponents.
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For smaller Re, power-law scaling is only found over a narrow range of wavenumbers, and
only one of the two regimes can be observed. Figure 3(e) shows the exponent α for the
best-fit power law H(k) ∝ kα+2 as a function of the thickness h of the hyperbolic region.
We see that the exponent asymptotes to −3 for small h and −4 for large h with a narrow
transition region where the fit to a single power law becomes a poor approximation.

The relation between the thickness of the hyperbolic region and the wavenumber at
which the crossover between the two scaling regimes occurs can be easily estimated by
inspecting figure 2(d). The boundaries of the hyperbolic region |xy| = h2 and |y| = 	0
intersect at positions x = ±x∗, where x∗ = h2/	0. The thickness of a vorticity filament
entering the hyperbolic region at x0 = ±	0 is δx0 ∼ (1 −Λ−1/2)	0. After n periods,
its position and thickness become xn = ±Λ−n	0 and δxn ∼ Λ−n(1 −Λ−1/2)	0 = (1 −
Λ−1/2)|xn|, so the thickness of the filaments at x = ±x∗ is δx∗ ∼ (1 −Λ−1/2)x∗. The
scaling exponent α = −3 corresponds to |x| > x∗ (and hence k < k∗) while the scaling
exponent α = −4 corresponds to |x| < x∗ (and hence k > k∗), where

k∗ = π

δx∗ ∼ π	0

(1 −Λ−1/2)h2 . (3.16)

In particular, for 	0 = 1, h = 0.25 and s = 20 we find thatΛ−1 = e−2π/s ≈ 0.73 and k∗ ∼
345, which is comparable to the value k∗ ∼ 103 found in figure 3(d).

In comparison, for a typical DNS snapshot such as that shown in figure 2(a), we find that
E ≈ 3.7,Ω ≈ 0.63, 	0 ≈ 2.2 and h ≈ 1, yielding k∗ ∼ 7. The arguments presented in this
section would suggest that the energy spectrum should scale as E(k) ∝ k−4 for k > k∗ and,
indeed, we find a power-law scaling in figure 1(a) in this range of wavenumbers. However,
the scaling exponent is found to be fractal, varying in time, and bounded by α = −4, as
figure 1(b) illustrates. Of course, it would be a mistake to draw any far-reaching conclusion
based on the analytical solution (3.15), which is missing several essential features of
filamentary vorticity representative of turbulent flows, as discussed below.

Before we discuss the interaction effects, in conclusion of this section, for completeness,
we should point out the existence of another family of self-similar solutions, i.e.

ω = g±
e (η), (3.17)

where g±
e (η) are again arbitrary functions and the superscript denotes the sign of y. This

family of solutions describes vorticity filaments oriented along the contracting direction
of the straining flow. These filaments become thicker, rather than thinner, with their
characteristic thickness growing as �y(t) ∝ eE t, hence, this family of solutions describes
so-called backscatter or flux of enstrophy from small scales towards large scales. For
a time-periodic large-scale flow, the corresponding small-scale vorticity field is also
self-similar, ω(Λ−1y, t) = ω( y, t + T). Such solutions will only be dynamically relevant
when the vorticity at the entrance of the hyperbolic region varies slowly in the x direction
and quickly in the y direction, i.e. has the form of filaments oriented along the contracting
direction. Indeed, vorticity filaments with such an orientation are routinely found in
turbulent flows featuring pronounced coherent structures, as illustrated in figure 2(c), and
this is due entirely to the interaction between adjacent hyperbolic regions.

3.3. Interacting hyperbolic regions
The large-scale flow associated with a pronounced coherent structure introduces strong
correlations between adjacent hyperbolic regions: small-scale vorticity leaving one
hyperbolic region immediately enters an adjacent one. The large-scale flow considered
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Figure 4. Vorticity transport between a pair of adjacent hyperbolic regions of a time-periodic large-scale flow.
The unstable manifold (purple) of the saddle at the centre of the left hyperbolic region (pale yellow) tangles
with the stable manifold (green) of the saddle at the centre of the right hyperbolic region (pale blue). Vorticity
filaments everywhere are stretched along, and aligned with, the unstable manifold.

here (cf. figure 2) is particularly simple since it contains just two hyperbolic regions
with a saddle (fixed point or compact limit cycle) at the centre of each. Each one of
the two saddles of the large-scale flow has an associated stable and unstable manifold
whose directions coincide, near the saddle, with the contracting and expanding direction
of the large-scale flow. When the large-scale flow is time periodic, the unstable manifold
of one saddle crosses the stable manifold of the other, forming a heteroclinic tangle, as
illustrated in figure 4, and leading to chaotic mixing (Ottino 1990). In fact, it is this chaotic
mixing that is most likely responsible for the large-scale vorticity becoming effectively
uniform inside the hyperbolic regions. The stretching of small-scale vorticity along the
unstable manifold and compression transverse to it aligns vorticity filaments along the
unstable manifold. Hence, it is such heteroclinic (or for some flows, homoclinic) tangles
that determine the shape and size of the hyperbolic regions. The correlation between
adjacent hyperbolic regions not only determines the orientation of the vorticity filaments at
the entrance but also their Fourier spectrum. This is illustrated in figure 4 that shows what
the vorticity field looks like qualitatively at different positions along the same unstable
manifold. We will explore how both features, i.e. the orientation and the frequency
spectrum of the filaments entering a hyperbolic region, affect the enstrophy spectra (in
the Re → ∞ limit) in the remainder of this section.

3.3.1. The effect of the spatial orientation
The solutions (3.7) and (3.17) may still be dynamically relevant even for the case of
interacting hyperbolic regions when the vorticity filaments at the entrance are oriented
strictly along the contracting or expanding direction of the large-scale flow. However, this
is rather unlikely: their orientation is determined by the shape of the unstable manifold
that generally will not be perfectly aligned with either direction. To determine whether the
enstrophy and energy spectra retain a power-law shape and what the scaling exponent is
for filaments with arbitrary orientations, let us consider a vorticity field

ω = cos(s[ln |χ | + rξ ]) e−	4
0ξ

2/h4
, (3.18)

which is a special case of the general solution (3.6). Here r is a non-dimensional parameter
that controls the orientation of filaments at the entrance of the hyperbolic region. In
particular, for |r| � 1, this solution reduces to (3.15) in the inviscid limit, with the
filaments at the entrance x = ±	0 oriented along the expanding direction (y axis). For
|r| 
 1, the filaments become oriented everywhere along the streamlines of the large-scale
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Figure 5. Filaments of varying orientation at the entrance to the hyperbolic region. A snapshot of the vorticity
field (3.18) for s = 8, h = 0.5, 	0 = 1 and (a) r = 1.5 or (b) r = 7.5. (c) The enstrophy spectrum corresponds
to the vorticity field for different orientations: r = 2.5 (blue), r = 5 (yellow) and r = 7.5 (red).

flow, as illustrated in figure 5(b). In particular, at the entrance, they become oriented
along the contracting direction (x axis). Note that the values of r could be different on
the opposite sides of the y axis that is a separatix of the flow. Here we consider r to have
the same value for simplicity. Furthermore, note that the thickness of the filaments at the
entrance is large and fairly uniform, with very thin filaments only found near the y axis
(i.e. close to the unstable manifold).

The enstrophy spectrum for this solution was computed numerically for different values
of r, with representative results shown in figure 5(c). We find that, regardless of the
orientation (and curvature) of the filaments, the spectrum has the form of a power law
with the same (integral) exponent α = −4 predicted for straight filaments oriented along
the expanding direction of the large-scale flow in the limit of large h. The same qualitative
result (not shown) is found in the limit of small h, where α = −3. Hence, it is not the
orientation of the vorticity filaments that is responsible for generating fractal exponents or
the emergence of fractal structures in the vorticity field.

3.3.2. The effect of the frequency content
The small-scale vorticity field at the entrance to a hyperbolic region (e.g. the one shown
in pale blue in figure 4) is determined by that at the exit from an immediately adjacent
hyperbolic region (e.g. the one shown in pale yellow in figure 4). Recall that vorticity
filaments are not just aligned with, but are also compressed in the direction transverse to,
an unstable manifold. Hence, for a time-periodic large-scale flow, at the entrance to any
hyperbolic region, one would generally find vorticity filaments with an entire spectrum
of spatial frequencies, from extremely thin filaments near the unstable manifold of the
adjacent saddle to much thicker filaments generated by the forcing ϕ further away from
the manifold.

To construct a particular solution (3.6) for the vorticity field with such properties,
consider a function

q = cos(s[ln |χ | − rξ ])− 	2
0ξ

h2 , (3.19)

whose level set q = 0 defines an unstable manifold of an adjacent saddle. It intersects the
stable manifold y = 0 of the saddle (0, 0) at the points (xn, 0) where

xn(t) = ± exp
(πn

s
− E t

)
, (3.20)
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Figure 6. Filaments with a broad spectrum of spatial frequencies at the entrance to the hyperbolic region.
(a) The stable manifold (green) and the unstable manifold for r = 0 (red) and r = 16 (purple). (b) A snapshot
of the vorticity field (3.22) for r = 16. Enstrophy spectrum calculated by direct numerical evaluation as the
time average of (3.22), shown as a solid blue line (c). The best fit for a power law is shown as a dashed red line.
In all three panels, s = 3 and h = 0.2.

with n an integer. This is consistent with the solutions (3.15) and (3.18) for which the level
sets ω = 0 would be the analogue of the unstable manifold. The parameter r describes the
tilt of the unstable manifold at the intersection points as illustrated in figure 6(a).

Let us assume the adjacent hyperbolic region is centred at the saddle (−2	0, 0) whose
unstable manifold it tangent to the x axis. Near that saddle, the vorticity field is given by
(3.18), rotated by 90◦ to account for the different orientation of the straining flow. Since
the logarithmic term in the argument of the cosine dominates, we find that

ω ≈ cos(s ln |η|) = cos(s ln |q/χ | + φ0), (3.21)

where φ0 = 2 ln(h/	0) is a constant that can be absorbed into the definition of the origin
of time. Imposing the hyperbolic envelope, we have

ω = cos(s ln |q/χ |) e−q2
. (3.22)

A representative vorticity field described by this solution is shown in figure 6(b). The
corresponding enstrophy spectrum is shown in figure 6(c) and has the form of a power law,
but now with a non-integral exponent α, reflecting the fractal nature of the corresponding
vorticity field. Indeed, the large-scale flow considered here is analogous to the baker’s map
(Arnold & Avez 1968) and the corresponding small-scale vorticity field is analogous to the
fractal structures generated by the baker’s map.

To confirm that this finding is not an artifact of a particular choice of parameters,
we have computed the enstrophy spectrum for a range of parameters and verified that
it retains the power-law scaling. The dependence of the scaling exponent on several of the
parameters is shown in figure 7. For instance, changing the tilt of the unstable manifold
(and hence, the filaments’ orientations) has a relatively weak effect on the value of α and
can lead to both an increase and a decrease in the exponent, depending on the thickness
of the hyperbolic region, as illustrated in figure 7(a). On the other hand, the exponent was
found to depend rather sensitively on the thickness of the hyperbolic region, decreasing
with h, as shown in figure 7(b). The scaling exponent was also found to depend on the
frequency of the time-periodic component of the large-scale flow, increasing with s as
shown in figure 7(c). While the characteristic values of s in DNS considered here are
found to be smaller than unity, we could not compute the Fourier spectrum of (3.22) with
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Figure 7. Scaling exponent α of the enstrophy spectrum H ∝ kα+2 for the vorticity field (3.22). The scaling
exponent as a function of r for s = 3, evaluated at different values of h (a). The scaling exponent as a function
of the hyperbolic region size h for r = 10 and s = 4 (b). The scaling exponent as a function of the strain rate s,
where h = 0.2, and r = 10 (c).

accuracy sufficient to reliably determine the scaling exponent for s � 1 due to the limited
resolution of the computational grid (which is constrained by the amount of available
memory). As figure 6(c) illustrates, even for s = 3, the inertial range corresponds to
rather high wavenumbers. Indeed, given the fractal nature of this vorticity field, very fine
meshes are required to properly resolve all the relevant length scales. Note however that the
solution (3.22) is meant to illustrate the importance of the interaction effects qualitatively,
not reproduce numerical solutions for the vorticity field and their spectra quantitatively.

4. Discussion

The useful analogy with advection of passive scalars (Kraichnan 1971, 1975) yields
substantial insight into the physical mechanisms of the direct cascade. Previous numerical
simulations suggested that this analogy holds in the hyperbolic regions of the flow
(Lapeyre et al. 2001). The analysis presented in § 3.1 shows that this analogy is much
more nuanced. Specifically, we find the small-scale vorticity to behave as a passive scalar
in regions where (i) the vorticity of the large-scale flow is nearly constant, and (ii) the
curvature of the vorticity filaments representing small scales is low. In particular, even
inside the hyperbolic regions, the sharp folds of the vorticity filaments are not simply
advected by the large-scale flow ul; the small-scale flow us also plays an important role.
On the other hand, we may find this analogy to also hold inside the elliptic regions of the
flow. For instance, for the stationary low-frequency forcing considered here, large-scale
vorticity inside vortex cores is often found to be relatively uniform – the flow field shown
in figure 2(a) represents an example of this – so that small-scale vorticity there satisfies the
same evolution equation as in the hyperbolic regions and can also be considered a passive
scalar.

The physical mechanism of the direct cascade described in this paper provides an
explicit, quantitative relation between the properties of coherent structures and the scaling
of enstrophy and energy in the inertial range. This mechanism refines the qualitative
picture proposed by Kraichnan that involves stretching of filamentary vorticity in the
straining regions of the large-scale flow. As shown here, the dynamics of vorticity filaments
are described by a novel class of exact, self-similar (and hence, scale-free) solutions of
the Euler equation, naturally leading to a power-law scaling. Unlike the solutions of the
Navier–Stokes equation describing coherent substructures (Deguchi 2015; Eckhardt &
Zammert 2018; Doohan, Willis & Hwang 2019; Yang, Willis & Hwang 2019; Azimi &
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Coherent
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Coherent
substructures
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Figure 8. The relationship between the spatial scales, cascades and various classes of exact solutions of the
governing equations in high-Re 2-D turbulence.

Schneider 2020) or the solutions of the Euler equation describing large-scale coherent
structures (Zhigunov & Grigoriev 2023), the dynamically self-similar solutions reported
here span the entire inertial range associated with the direct cascade. The relationship
between different classes of solutions and the two cascades in high-Re 2-D turbulence
is summarized in figure 8. It is worth emphasizing that, just as in the case of exact
solutions of the Euler equation describing large-scale flows (Zhigunov & Grigoriev 2023),
dynamically self-similar solutions describing the direct cascade belong to families spanned
by an infinite number of continuous parameters.

Vortex thinning in the hyperbolic regions of the large-scale flow is exponentially fast.
In contrast, the mechanism considered by Moffatt (1986) and Gilbert (1988) describes
a relatively slow linear stretching of vorticity filaments in the vortical (elliptic) regions.
Therefore, while both mechanisms operate at the same time, the former plays the dominant
role in the direct cascade and explains how power-law spectra can emerge on rather short
time scales. Of course, the presence of these two mechanisms does not exclude other
physical mechanisms that may contribute to the transport of enstrophy between scales.
For instance, vorticity filaments can be stretched exponentially fast inside the vortex
cores. Indeed, a time-dependent large-scale flow is generally expected to generate chaotic
advection and global mixing in such circular geometries, provided various symmetries are
broken (Grigoriev 2005). We may also find exponential stretching of vorticity filaments at
the edges of vortex cores, where the frequency of the time-dependent component of the
flow is resonant with the frequency at which fluid elements are advected around the vortex
by the time-independent component, as predicted by the Kolmogorov–Arnold–Moser
theory (Cartwright, Feingold & Piro 1999). Indeed, pronounced vortex filaments are found
in these narrow regions as well, as illustrated by figure 2(a).

Time-dependence of the large-scale flow, which has not been fully appreciated
previously, plays a critical role in the evolution of vortex filaments in the hyperbolic
regions. Chaotic advection generally requires both stretching and folding. While stretching
is generic in any flow with a non-trivial structure, folding is a direct result of time
dependence. It should be emphasized that the mechanism described by Moffatt (1986)
and Gilbert (1988) involves no time dependence and, hence, no folding. In the hyperbolic
regions the structure of vorticity filaments, and the associated Fourier spectrum, is
crucially impacted by both the time-dependent and time-independent component of the
large-scale flow. In particular, we find the scaling exponent α to depend on the ratio s of
the respective time scales as well as other parameters such as 	0, h and r that also depend
on both components. Note that the DNS considered here feature large-scale flows that are
nearly time periodic on relatively short time scales (Zhigunov & Grigoriev 2023), with
slowly drifting parameters s, 	0, h and r. Since the stretching of filaments is exponentially
fast, the power-law spectrum is established quickly, and the slow parameter drift leads to a
correspondingly slow variation of the exponent α shown in figure 1(b).
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Our results suggest that, for the direct cascade in 2-D turbulence, the presence of fractal
structures in the vorticity field (or, equivalently, a fractal dimension of level sets of the
vorticity field) implies a fractal value of the scaling exponent α and vice versa. The
key observation, however, is not that α is fractal but rather that it is non-universal and
takes irrational values in some interval that depends on the properties of the associated
large-scale flow. Indeed, fractal scaling exponents are hardly special. For instance, under
appropriate conditions, one finds a rational exponent α = −5/3 for both the direct
cascade in three dimensions and for the inverse cascade in two dimensions even in the
absence of a fractal flow structure. In both cases, the rational value of α is a direct
consequence of two assumptions: (1) that the flow structure is scale-invariant and (2)
that E(k) depends only on a one-dimensional parameter (the energy dissipation rate
εα), with dimensional analysis requiring E(k) ∝ ε

2/3
α k−5/3 (Boffetta & Ecke 2012). For

the direct cascade in two dimensions, similar assumptions leads to the classical KLB
prediction E(k) ∝ η

2/3
ν k−3, where ην is the enstrophy dissipation rate. The presence of

a large-scale coherent structure introduces four additional dimensional parameters: E ,
Ω , 	0 and h. On dimensional grounds, we find that E(k) ∝ η

2/3
ν k−3f (s, h/	0, k	0) in the

inertial range, where f is an arbitrary function. This functional form places no restrictions
whatsoever on the scaling exponent α and, in particular, allows it to take irrational
values.

The KLB theory crucially relies on the assumption that stretching of small-scale
vorticity patches in different hyperbolic regions is uncorrelated. Deviations from the KLB
predictions are expected whenever this assumption breaks down. Indeed, for the numerical
simulations of turbulence considered here, the large-scale flow, a representative snapshot
of which is shown in figure 2, has two hyperbolic regions. The dynamics of small-scale
vorticity in the two hyperbolic regions are strongly correlated. In particular, the stretching
(contracting) direction in one hyperbolic region is well aligned with the contracting
(stretching) direction in the other. To understand and describe the non-universal aspects of
the direct cascade and, in particular, determine the enstrophy/energy scaling in the inertial
range, these correlations imposed by the large-scale flow have to be properly accounted
for. A key consequence of these correlations is the pronounced filamentary structures
present in the vorticity field, clearly seen in figure 2, at the entrances to both hyperbolic
regions. As we have shown in § 3.3.2, it is the presence of these vorticity filaments with a
broad spectrum of spatial frequencies that is responsible for the emergence of a self-similar
structure of small-scale vorticity inside the hyperbolic regions characterized by a fractal
scaling exponent.

As figure 2 illustrates, at least for the forcing considered here, vorticity filaments
are aligned along the contracting direction of the large-scale flow, at the entrances to
both hyperbolic regions. The dynamics of vorticity filaments with such an orientation is
described, until that orientation changes, by the self-similar solution (3.17) representing
the flux of enstrophy towards large, rather than small, scales (backscatter). A proper
quantitative description of backscatter is crucial for subgrid-scale modelling. However,
correlations induced by the large-scale flow are accounted for neither in the KLB theory
nor in the stochastic approaches to modelling eddy viscosity (Kraichnan 1976; Leslie
& Quarini 1979; Leith 1990). Backscatter amplifies the large scales at the expense of
the small scales and should therefore make the spectra of enstrophy and energy steeper,
in agreement with the results of numerical simulations. It is worth emphasizing that
enstrophy flows in both directions at all times, with the flux towards small (large)
scales in regions where small-scale vorticity filaments are preferentially aligned along the
expanding (contracting) direction of the large-scale flow. Backscatter, and consequently
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the energy/enstrophy scaling in the inertial range, are non-universal and cannot be
described properly by statistical descriptions agnostic of coherent structures.

It is natural to ask, how much of the analysis presented here would carry over to a
more general situation where the large-scale flow is aperiodic? The flow domain can
still be decomposed into elliptic and hyperbolic regions (Haller 2001). Even though the
topology of the large-scale flow will evolve in this case, i.e. some hyperbolic regions will
be destroyed, others will emerge, and the ‘neighbours’ will change, in the presence of
coherent structures, these topological changes are slow while advection and stretching of
vorticity filaments is fast (the characteristic time scale for the latter processes is τ = E−1).
This implies that a given vorticity filament will only return to the same hyperbolic region
a finite number of times, rather than an infinite number of times as in the time-periodic
case. Recall however that the thickness of a filament decreases exponentially quickly;
its thickness becomes comparable to the Taylor microscale 	t on the short-time scale
τ ln(kf /kt) ∼ ln(Re)/(2E) at which point that filament is destroyed by viscosity, whether
the flow is time periodic or not. Hence, for a finite Re, the emergence of fractal structures
and scaling with a fractal exponent in the inertial range only requires a very small number
of returns and time periodicity of the large-scale flow is not essential. In fact, a vorticity
filament may travel through a sequence of different hyperbolic regions and vanish before
ever returning to where it was born. The essential feature of the large-scale flow is time
dependence causing folding of the filaments that, together with stretching, leads to chaotic
mixing, even if folding is not time periodic. Indeed, by Poincare–Birkhof theorem, a steady
2-D flow does not generate Lagrangian chaos and, hence, cannot produce fractal structures.
In the absence of coherent structures, hyperbolic regions are themselves small and the
topology of the flow changes quickly, destroying the long-term correlations between
neighbouring hyperbolic regions that play a key role in generating fractal structures.

5. Conclusion

We introduced here a mechanistic, dynamical description of the direct cascade in
2-D turbulence in the presence of coherent structures. This description involves two
qualitatively different classes of solutions of the Euler equation: (weakly unstable)
time-periodic solutions describing the large scales, i.e. vortex condensate, and dynamically
self-similar solutions describing the small scales or, more precisely, the scales
corresponding to the inertial range. The self-similar, i.e. scale-free, nature of the latter class
of solutions is the fundamental reason why power-law scaling of energy and enstrophy is
found in the inertial range, regardless of whether the scaling exponent is integral or fractal.

In the absence of correlations between different hyperbolic regions of the large-scale
flow, our description reproduces the scaling predicted by the KLB theory. In particular,
we find that enstrophy flows strictly from large to small scales with no backscatter. In the
presence of pronounced coherent structures, adjacent hyperbolic regions of the large-scale
flow become strongly correlated leading to a complete breakdown of the KLB theory.
These correlations have a dramatic effect on the direct cascade. In particular, they lead
to a substantial and persistent backscatter, with the enstrophy flowing from large to small
scales at the exit(s) and from small to large scales at the entrance(s) of the hyperbolic
regions, with the thickness of a typical filament repeatedly growing and shrinking as it is
advected by the large-scale flow. Backscatter leads to steeper spectra in the inertial range
than what KLB theory predicts. In fact, it is not uncommon to find the scaling exponent α
as high as −5 in the DNS considered here. Other numerical and experimental studies of
forced turbulence reported different exponents, but the common finding is that α < −3.
The entirety of available results clearly demonstrates that, in the presence of coherent
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structures, the scaling in the inertial range is non-universal and the value of the exponent
depends on the properties of the large-scale flow.

Correlations are also responsible for the scaling exponent taking fractal values that
reflect the emergence of self-similar fractal structures in the vorticity field. Such fractal
structures represent ‘stacks’ of vorticity filaments of very different thickness generated
by repeated stretching and folding of small-scale vorticity by the large-scale flow. Their
properties – their orientation and shape, their fractal dimension and the scaling exponent
– are controlled by both the large-scale flow – namely the thickness and size of the
hyperbolic regions, the ratio of its temporal frequency to the local strain rate and the angle
at which the stable and unstable manifolds of adjacent saddles intersect – and the forcing
that injects both energy and enstrophy into the flow. In particular, for large-scale flows that
are time periodic, these fractal structures are described by solutions that are self-similar in
space and periodic in time.

In conclusion, let us point out some limitations of the present work. First of all,
while the large-scale flow, for the steady, low-frequency forcing considered here, tends
to be nearly time periodic for extended periods of time, this property is unlikely to be
representative of turbulent flows driven by other types of forcing (e.g. stochastic in time
or high frequency in space). Corresponding large-scale flows can be nearly steady or even
completely aperiodic. While, for such flows, one may still be able to consider small-scale
vorticity to be effectively advected by the large-scale flow, this description may break down
in regions where the large-scale vorticity itself exhibits fast variation (e.g. in the presence
of internal boundary layers). In the aperiodic case, the topology of the large-scale flow will
also evolve, presenting additional complications. Furthermore, even in the regions where
the large-scale vorticity is nearly constant, small-scale vorticity cannot be considered a
passive scalar where vorticity filaments have a high curvature. These limitations imply
that the dynamical description presented here requires further refinement and validation
before it can be extended to other turbulent flows featuring different coherent structures.
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Appendix A. Effect of viscosity

In the presence of viscosity, self-similarity of the small-scale vorticity field in a hyperbolic
region will break down when the filament thickness becomes comparable to the Taylor
microscale 	t. Equation (3.5) should be replaced with

∂tω − Ex∂xω − ν∂2
xω = 0. (A1)

Small viscosity implies that the ratio ε = ν/E = 	2
t is small compared with 	2

0. In the
inertial range, the product εx−2 = (	t/x)2 � 1, and we can represent the effect of viscosity
perturbatively using a WKB expansion,

ω = 1
2

∞∑
n=1

ā±
n exp[Θn0(χ)+ εx−2Θn1(χ)+ ε2x−4Θn2(χ)+ · · · ] + c.c., (A2)
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where c.c. denotes complex conjugate. For ε = 0, the corrections disappear and we should
recover the inviscid solution (3.8), hence,

Θn0(χ) = ins ln |χ | + iφ̄±
n = ins ln |x/	0| + inΩt + iφ̄±

n . (A3)

Substituting (A2) into (A1) and collecting terms of different orders in ε, we find that

Θn1(χ) = Θ ′′
n0(χ)+Θ ′

n0(χ)[Θ
′
n0(χ)− 1]

2
, (A4)

etc. Substituting the expression for Θn0(χ) into this equation, we find that

Θn1 = −ins − n2s2

2
. (A5)

The vorticity is therefore given by the spatially modulated version of the original
self-similar solution

ω(x, t) ≈
∞∑

n=1

a±
n (x) cos[ns ln |x/	0| + nΩt + φ±

n (x)], (A6)

where, to leading order in 	t/x,

φ±
n (x) = φ̄±

n − ns
2
	2

t

x2 (A7)

and

a±
n (x) = ā±

n exp
[
−n2s2

2
	2

t

x2

]
. (A8)

Note that, for |x| 
 s	t, the amplitudes a±
n (x) ≈ ā±

n are essentially constant and φ±
n (x) ≈

φ̄±
n while, for

|x| < σ	t, (A9)

the amplitudes a±
n (x) become exponentially small. It is straightforward to compute the

solutions to a higher order in perturbation theory although additional corrections do not
change any results presented here qualitatively.

Appendix B. Fourier spectrum of the vorticity field

In this appendix we derive the power spectra of analytical solutions that represent the
enstrophy flux from large to small scales in non-interacting hyperbolic regions. We discuss
the limits of thin (small h) and thick (large h) hyperbolic regions as well as the effect of
varying the angle between the expanding and the contracting direction.

B.1. Thin hyperbolic regions
A representative snapshot of the vorticity field defined by (3.10) and (3.13) is shown in
figure 9(a). The dashed lines represent the boundaries of the spatial region contributing to
the inertial range. In particular, we see that the vorticity field is strongly attenuated in the
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Figure 9. A snapshot of the vorticity field ω(x, t) defined by (3.15) in the physical space for s = 20, h = 0.1,
	0 = 1 and Re = 105 (a). The black dashed line represents the boundaries described by (3.4) and (A9). The
corresponding (normalized) power spectrum Ĥ(k) (b). The boundaries defined by (B16) and (B17) are shown
as red dashed lines.

region |x| < s	t due to the action of viscosity, as discussed in Appendix A. The Fourier
spectrum of this vorticity field is given by

ω̂(k, t) ≈
∞∑

n=1

ā−
n

2

∫ 0

−	0

dx
∫ 	0

−	0

dy exp
[

fns(k, x)+ inΩt + iφ̄−
n

]

+
∞∑

n=1

ā+
n

2

∫ 	0

0
dx

∫ 	0

−	0

dy exp
[

fns(k, x)+ inΩt + iφ̄+
n

] + c.c., (B1)

where

fr(k, x) = ir ln |x| − ir + r2

2k2
t x2

− x2y2

h4 + ik · x, (B2)

and the dependence on 	0 is absorbed in the definition of the phase φ̄±
n .

The integrals can be evaluated using the saddle-point approximation. The saddle point
xs is found by solving the equation ∇fr(k, xs) = 0,

xs = − r
kx

X(βr),

ys = ikyh4

2x2
s
.

⎫⎪⎪⎬
⎪⎪⎭ (B3)

Here X(β) is the dominant root of the cubic equation X2 − X3 + β = 0, which
corresponds to the limit X(0) = 1,

βr = −i
ρ

2r3 + 1 − ir
r2 κ2, (B4)

and we introduced the short-hand notations κ = kx/kt and ρ = k2
xk2

yh4.
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So long as |Re[xs]| < 	0, the saddle-point approximation yields

ω̂(k, t) ≈
∞∑

n=1

πā−
n exp

[
fns(k, xs)+ inΩt + iφ̄−

n
]

2
√−gns(k, xs)

+
∞∑

n=1

πā+
n exp

[
fns(k, xs)+ inΩt + iφ̄+

n
]

2
√−gns(k, xs)

+ c.c., (B5)

where

fr(k, xs) = ir ln
∣∣∣∣ r
kx

∣∣∣∣ + irF(βr),

F(β) = ln X(β)− X(β)− β

2X2(β)
,

⎫⎪⎪⎬
⎪⎪⎭ (B6)

and

gr(k, xs) = det(∇∇fr)|xs = irG(βr)

h4 ,

G(β) = 2 + 6
β

X2(β)
.

⎫⎪⎬
⎪⎭ (B7)

Let us define the average of the enstrophy spectrum over a period of the large-scale flow
as

Ĥ(k) = 1
T

∫ T

0
|ω̂(k, t)|2 dt. (B8)

Using appropriate orthogonality relations, we find that

Ĥ(k) ≈ 2π2h4
∞∑

n=1

HnA(nσ, ρ, κ), (B9)

where
Hn = 1

4 |ā−
n eiφ̄−

n + ā+
n eiφ̄+

n |2, (B10)

and the wavenumber dependence is contained entirely in the amplitudes

A(r, ρ, κ) = eRe[2fr]

r|G(βr)| . (B11)

Note that, in the absence of viscosity, the enstrophy spectrum depends on the
wavenumber only through the non-dimensional combination ρ, with the amplitude
A(r, ρ, κ) being a decreasing function of ρ. Therefore, at high Re, the enstrophy is confined
to a hyperbolic region in the Fourier space as well, as illustrated in figure 9(b). The width
of the hyperbolic region can be easily estimated in various limiting cases. In the limit of
large r, β is small and we can use the Taylor expansion

X(β) = 1 + β − 2β2 + · · · . (B12)

Keeping the leading-order terms in β, we find an explicit expression for the amplitude

A(r, ρ, κ) ≈ 1
2r

exp
[
− ρ

2r2 − κ2
]
. (B13)

The approximation (B12) is accurate for r � 10, but it starts to break down for smaller
values of r, especially when κ is low. This is illustrated in figure 10 that compares this
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Figure 10. The amplitude function A(r, ρ, κ), normalized by A0 = A(r, 0, κ), for κ = 0.1 (a) and κ = 2
(b) with r = 20 (red), r = 1 (yellow) and r = 0.05 (blue). The results based on the exact solution X(β) (solid
lines) are compared with those based on the power series expansion of X(β) in the limits of low β (black dashed
line) and high β (coloured dashed lines).

approximation with the exact result (B11) for κ = 0.1 and κ = 2 representative of the
inertial and dissipation range, respectively. For small r, one should instead consider the
limit of large β where

X(β) = β1/3 + 1
3 + 1

9β
−1/3 + · · · , (B14)

and, to leading order in β,

A(r, ρ, κ) ≈ 1

6r|β1/3
r |

exp[−3rRe[iβ1/3
r ]]. (B15)

This approximation is found to be accurate for r � 0.1, as illustrated in figure 10.
Let n̄ be the dominant harmonic in the Fourier series (3.8) and r̄ ≡ n̄s. In the inertial

range the amplitude (B15) becomes independent of r, hence, the hyperbolic region is
defined by the inequality

|kxky| � z(r̄)
h2 , z(r̄) =

{
1, r̄ � 0.1,
2r̄, r̄ � 10.

(B16)

Furthermore, the saddle-point approximation that underlies (B11) is only accurate when
the saddle lies inside the integration domain, i.e. |xs| < 	0, which corresponds to

|kx| � ks ≡ r̄
	0
. (B17)

For |kx| < ks, the amplitude A(r, ρ, κ) becomes exponentially small. As figure 9(b)
illustrates, the inequalities (B16) and (B17) describe well the boundaries of the region
in the Fourier space outside of which the enstrophy spectrum essentially vanishes. The
maximal width of the enstrophy spectrum in the ky direction can be estimated by setting
kx = ks in (B16), yielding

max
kx

|ky| � kw ≡ z(r̄)	0

r̄h2 . (B18)

The enstrophy scaling can be determined by integrating Ĥ(k) over the annular region
k < |k| < k + dk. For k � max(ks, kw), the dominant contribution to the integral comes
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from the two arcs near the kx axis where the annular region intersects the hyperbolic region
defined by the inequality (B16). For k � ka, where

ka ≡ 2
√

2r̄
h

, (B19)

these arcs are well approximated by straight lines with kx = k, such that

H(k) = 4π2h2
∞∑

n=1

Hn

[∫ ∞

0
A(ns, ρ, κ)

dρ√
ρ

]
kx=k

k−1. (B20)

In the inertial range we can set κ = 0, so the expression in square brackets becomes k
independent and we find that H(k) ∝ k−1, as predicted by the KLB theory.

Further progress can be made in various limiting cases. For large s, the integral in (B20)
can be evaluated with the help of (B13), yielding

H(k) = 2π5/2h2
∞∑

n=1

Hn e−(k/kt)
2
k−1, (B21)

with the Gaussian envelope describing the effect of viscosity. The corresponding energy
spectrum is given by

E(k) ∝ k−2H(k) ∝ e−(k/kt)
2
k−3. (B22)

The analytical result (B21) accurately represents the enstrophy spectrum computed
numerically in both the inertial and dissipation range, as figure 11(a) illustrates. As
expected, the boundary between these two regions is defined by the Taylor microscale
kt = 	−1

t = R e1/2	−1
0 . Noticeable deviations from power-law scaling are found for k � kd,

where

kd ≡ kt

2
. (B23)

The low-wavenumber boundary of the inertial range should be described by

kc ≡ max(ks, kw, ka). (B24)

Both boundaries, k = kc and k = kd, are indeed in good agreement with the numerically
computed spectra corresponding to the self-similar vorticity field (3.15), as can be seen
in figure 11. Note that, in the limit of s → 0, kc = kw ∝ s−1, while, in the limit s → ∞,
kc = ks ∝ s. Hence, the inertial range should be the widest for intermediate values of s.

For small s, the integrals in (B20) can be evaluated using the approximation (B15)
for 1 ≤ n ≤ nmax, where nmax ∼ 0.1/s. The integrals are dominated by values of ρ much
smaller than unity, and, in this limit, we can use a series expansion

3rβ1/3
r ≈ −c1,rκ

2/3 − c2,rρκ
−4/3, (B25)

where we have defined the coefficients c1,r = −3(r − ir2)1/3 and c2,r = (i/2)(r −
ir2)−2/3. Assuming the series (3.8) truncated at nmax accurately describes the small-scale
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Figure 11. The enstrophy spectrum H(k). (a) The result obtained by direct numerical evaluation of the time
average (B8), shown as a solid blue line, is compared with the analytical result (B21), shown as a dashed red
line, for the vorticity field (3.15) with s = 20, h = 0.1, 	0 = 1 and Re = 107. (b) The spectrum calculated using
the saddle-point approximation (B20) for s = 20 (blue), s = 2 (yellow) and s = 0.2 (red), and Re = 1012 (solid
lines). Dashed lines show the fits to an expression of the form H ∝ exp (−b(k/kt)

γ )k−1, where b = 1 and
γ = 2 for s = 20; b = 0.74 and γ = 0.71 for s = 1; b = 0.018 and γ = 2/3 for s = 0.05. In both panels, the
grey background represents the inertial range kc < k < kd whose boundaries are given by (B23) and (B24).

vorticity field, we can write

H(k) ≈
nmax∑
n=1

∫ ∞

0

2π2Hnh4

|c1,ns|κ2/3 exp
[
−Im(c1,ns)κ

2/3 − Im(c2,ns)
ρ

κ4/3

] dρ√
ρ
. (B26)

Evaluating the integrals with the help of the saddle-node approximation, we find that

H(k) ≈ 23/2π5/2h2
√

3

nmax∑
n=1

Hn e−Im(c1,ns)(k/kt)
2/3

k−1, (B27)

where we used the relation |c1,r| [Im(c2,r)]1/2 ≈ √
3/2 that holds at small values of r. It

should be pointed out that, for small s and max(ks, ka) < k < kw, the integral of Ĥ(k) over
the annular region should include the contribution from the hyperbolic region near the ky
axis, which would require a correction to (B20). This correction should be relatively small
and, therefore, is not considered here.

The accuracy of the approximations (B21) and (B27) can be confirmed by comparing
them with the integral (B20) evaluated numerically. Figure 11(b) shows the respective
results computed for the vorticity field (3.15). For both s = 20 and s = 0.05, the enstrophy
spectrum is indeed well described by the analytical results (B21) and (B27), respectively.
While both approximations break down at the intermediate values of s, we can leverage the
functional form of these approximations to speculate that the enstrophy spectrum generally
has the form

H(k) ∝ e−b(s)(k/kt)
γ (s)

k−1, (B28)

where the exponent γ interpolates between the values of 2/3 and 2 for low s and high s,
respectively. For the intermediate value s = 1, we find the spectrum can indeed be fitted
quite well by this expression with b = 0.74 and γ = 0.71.
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B.2. Thick hyperbolic regions
For thick hyperbolic regions, much of the analysis conducted in the limit of small h still
applies with minor modifications. In particular, we can take the limit h → ∞ and the y
integral in (B1) can be evaluated explicitly, yielding

ω̂(k, t) ≈
∞∑

n=1

ā−
n

2

∫ 0

−	0

dx
sin (ky	0)

πky
exp[ fns(kx, x)+ inΩt + iφ̄−

n ]

+
∞∑

n=1

ā+
n

2

∫ 	0

0
dx

sin (ky	0)

πky
exp[ fns(kx, x)+ inΩt + iφ̄+

n ] + c.c., (B29)

where

fr(kx, x) = ir ln |x| − ir + r2

2k2
t x2

+ ikxx. (B30)

The x integral can again be evaluated using the saddle-point approximation:

ω̂(k, t) ≈
∞∑

n=1

√
πā−

n exp[ fns(kx, xs)+ inΩt + iφ̄−
n ]

2
√−2f ′′

ns(kx, xs)

sin (ky	0)

πky

+
∞∑

n=1

√
πā+

n exp[ fns(kx, xs)+ inΩt + iφ̄+
n ]

2
√−2f ′′

ns(kx, xs)

sin (ky	0)

πky
+ c.c.. (B31)

Here xs can again be found using (B7) with ρ = 0. Now we have

f ′′
r (kx, xs) = − ik2

x

r
I(β),

I(β) = X(β)−2 + 3βX(β)−4.

⎫⎪⎬
⎪⎭ (B32)

Computing the radial and temporal averages of Ĥ(k, t) yields the enstrophy spectrum

H(k) ≈ 	0√
2π

∞∑
n=1

HnA(ns, κ)k−2, (B33)

where the amplitudes Hn remain unchanged and

A(r, κ) = r eRe[2fr]

|I(βr)| . (B34)

In the limit of large r, the amplitudes reduce to

A(r, κ) ≈ exp[−κ2], (B35)

and in the limit of small r we obtain

A(r, κ) ≈ r1/3

3κ2/3 exp[−(κ/r)2/3]. (B36)

Note that the latter expression is only valid for κ = O(1), and we still find that H(k) ∝ k−2

in the inertial range.
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Figure 12. A snapshot of the vorticity field ω(x, t) defined by (3.15) in the physical space for s = 20, h = 0.1,
	0 = 1, Re = 106 and θ ≈ 45◦ (a). The black dashed line represents the boundary of the hyperbolic region
given by inequality (B37). The corresponding (normalized) power spectrum Ĥ(k) (b). The boundaries of the
hyperbolic region defined by (B38) and (B39) are shown as red dashed lines.
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Figure 13. The enstrophy spectrum corresponding to the vorticity field (3.15) for different angles between
the expanding and contracting directions: θ = 90◦ (blue), θ = 45◦ (yellow) and θ = 11.3◦ (red). The grey
background represents the inertial range for θ = 90◦.

B.3. Effect of the angle between expanding and contracting directions
In the analysis elsewhere in this paper, we assumed the expanding and contracting
directions of the large-scale flow intersect at right angles. However, the key results hold
for arbitrary angles θ . Generally, it is convenient to use an orthogonal coordinate system
where the y axis is aligned with the expanding direction. For this choice of the coordinate
system, small-scale vorticity can still be described by the self-similar solution (3.7), where
χ = |x| eE t and η = |y + x cot(θ)| e−E t. The shape of the hyperbolic region,

|xy + cot(θ)x2| � h2, (B37)

will be change accordingly, as illustrated in figure 12(a) for θ ≈ 45◦.
The enstrophy spectrum will also remain confined to a region of hyperbolic shape in

Fourier space, with the ‘contracting’ and ‘expanding’ directions making an angle θ , as
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illustrated in figure 12(b). The boundaries of this region are given by

|kxky − cot(θ)k2
y | ≈ z(r̄)

h2 (B38)

and

|kx − cot(θ)ky| ≈ r̄
	0
. (B39)

The enstrophy spectrum in both the inertial and dissipation range changes rather
insignificantly when the angle θ is varied. The most notable differences are at lower
wavenumbers, as illustrated in figure 13. In particular, the lower bound kc of the inertial
range shifts towards higher wavenumbers when θ deviates increasingly from 90 ◦. The
shift of kc is due primarily to the spectral gap defined by (B39) progressively overlapping
with the hyperbolic region near the kx axis.
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