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SUMMARY
This paper describes a modeling approach to compute the lumped parameter hydrodynamic deriva-
tive matrices of an underwater multi-hull vehicle. The vehicle, modeled as a multi-body underwater
system and denoted as cluster, can be composed by heterogeneous bodies with known dynamic
parameters, rigidly connected. The nonlinear dynamic equations of the cluster and its parameters
are derived by means of a modular approach, based on the composition of single basic elements. The
ultimate objective is to derive a mathematical description of the multi-hull system that captures its
most significant dynamics allowing to design model-based motion controllers and navigation filters.
The modular nature of the resulting model can be exploited, by example, when control reconfigura-
tion is to be dealt with in the presence of (possibly multiple) failures. The numerical simulation of a
hypothetical cluster is presented and discussed.

KEYWORDS: Autonomous underwater vehicle; Multi-body underwater systems; Hydrodynamic
model.

1. Introduction
Remotely operated vehicles and autonomous underwater vehicles (AUVs) are increasingly applied
in a number of offshore applications in order to improve operation efficiency and operator’s safety.
Among many other applications, intervention missions of underwater vehicles equipped with manip-
ulators represent an important asset in many applicative scenarios such as rescue, oil and gas industry,
underwater construction, security, etc.

Modeling of generic underwater vehicles has been extensively treated in1 and.2 The challenge
for a multi-body cluster is to describe the nonlinear dynamics of the cluster from the dynamics of
individual elements.

With respect to traditional modeling methods, the major difficulties arise from constraints when
robots are connected. Indeed lumped parameter dynamic models of marine robots include many coef-
ficients (hydrodynamic derivatives) associated with hydrodynamic interactions as drag, lift, added
mass, and buoyancy. These can be numerically estimated by computational fluid dynamic (CFD)
methods or experimentally. A more recent approach3 combines analytical and semiempirical estima-
tion (ASE) methods with a parameter estimator based on the extended Kalman filter. In particular, the
ASE methods build on theoretical and numerical hydrodynamics and geometric models of submarine
vehicles.

If a multi-body vehicle is built by composing in cluster rigid bodies with known dynamic param-
eters, the question arises on how to exploit such knowledge to estimate the dynamic parameters of
the cluster. This is the main issue addressed in this paper. Note that the unknown model parameters
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could be experimentally estimated either off line (as in4) or online (as in5). However, typical maneu-
vers of practical interest for underwater vehicles are generally poorly exciting, jeopardizing the use
of online observers for accurate parameter estimation.

Multi-body dynamics for underwater applications has been investigated in multiple papers.
Refs. [6, 7] used multi-body dynamics to model underwater cables. Multi-body dynamics methods
for modeling underwater vehicles have been used in refs. [8–13]. Ref. [12] presents an approach
to multi-body dynamics modeling of a “semi-submersible” system consisting of a surface towing
vehicle, a tow cable, and a towfish. The towing vehicle and towfish are modeled using 6-degrees
of freedom (DOF) rigid body dynamics. Given that the towing cable can experience large deforma-
tions and displacements, its dynamics are modeled using the Absolute Nodal Coordinate Formulation
method.

In ref. [13], the multi-body dynamic modeling and analysis of an AUV with a Variant Buoyancy
System is performed based on Kane’s dynamic equations, namely, generalized forces that con-
tribute to dynamics are determined by Kane’s approach. Kane’s method offers advantages over
Newton–Euler and Lagrange methods for the computation of multi-body dynamics. With the use
of generalized forces, the need for examining interaction and constraint forces among bodies is elim-
inated. Also refs. [10,11] present a methodology for dynamic modeling of multi-body systems using
Kane’s dynamic equations. In ref. [8], the cooperative navigation and control problem for fleets of
streamer-vehicle systems is considered; in particular, a dynamic simulation model for a coupled
streamer-vehicle system is proposed based on Kane’s method. Ref. [9] investigates the dynamic
modeling and control of an underwater vehicle-manipulator multi-body system on the basis of the
Newton–Euler recursive algorithm.

Dynamic modeling of reconfigurable underwater systems has been also investigated in
refs. [14–17]. Ref. [17] proposes a method that combines Kane’s equations with graph theory
to model underwater self-reconfigurable robots. Whereas the modeling approach proposed in
refs. [14–16] is based on an application of the Udwadia–Kalaba equation.18 The papers develop the
equations of motion for a system composed of N rigidly connected robots based on the Udwadia–
Kalaba formulation.18 This framework uses quasi-velocities to derive the constraints imposed by
rigid connections.

A specific approach for the dynamic modeling of a multi-body underwater vehicle is proposed
in the present paper, which tackles the problem of representing in compact form the dynamics of a
cluster of N rigidly connected elements. The characteristics of each element of the cluster (including
its hydrodynamic model) are assumed known. The approach appears particularly interesting when
one considers the development of larger vehicles designed and built by linking several smaller ones.
Such an approach, which is at the basis of some recent research programs,19 presents several advan-
tages, provided that (i) a considerable degree of redundancy is obtained, which allows for an easily
reconfigurable control system in case of failures and (ii) testing of a single, smaller size, prototype
element of the cluster is not only easier but also significantly cheaper than building and testing a
single, large size, vehicle.

Moreover, when larger vehicles are realized by means of a cluster of existing (and possibly already
tested) robots, performance and suitability of the new design with respect to mission requirements
can be easily estimated as soon as the dynamic model is available. The present paper offers a method
that allows to perform such an analysis, before the vehicle is built, possibly comparing different
geometric configurations.

The elements of the cluster are heterogeneous robots/bodies, which can be either actuated or not
actuated. When the cluster is assumed to be rigid, it is possible to derive the net values of exter-
nal actions (hydrodynamic forces and moments, total weight, and buoyancy) and control forces and
moments from those derived for the individual robots, without the need of evaluating internal actions
associated with the constraint forces induced by the cluster structure on its elements during the
motion. Hence, a modular approach is here proposed that exploits the knowledge of the dynamic
model of a single underwater vehicle to obtain a mathematical model for a cluster of underwater
robots. The original contribution is related to the application of a systematic approach to the dynamic
modeling of modular underwater robots.

The advantage of this approach with respect to the Udwadia–Kalaba formulation ref. [5] is the
derivation of a dynamic–hydrodynamic model for the whole multi-body system considering the
constraints imposed by the rigid connections only at a geometrical level, without the need for
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Fig. 1. The H2020 ROBUST project UVMS (Underwater Vehicle Manipulator System) platform.

explicitly deriving constraint forces and moments. Indeed, the proposed approach allows express-
ing directly the motion of the cluster using a 6-DOF equation, rather than using a 6N-DOF vector
of quasi-velocities as in refs. [14–16]. Moreover, with respect to the recursive Newton–Eulerian for-
mulation used in ref. [9], the proposed approach allows to derive a closed-form multi-body dynamic
model.

Preliminary results of this modeling approach were presented in refs. [20]. The methodology is
here described in more detail and applied to a realistic test case, derived in the framework of the
activities of the H2020 ROBUST project,19 where a similar configuration was built and is currently
under test (see Fig. 1). Numerical simulations are presented and discussed for assessing the validity
of the modeling approach.

The rest of the paper is organized as follows: Section 2 defines the notation and recalls the main
tools for the transformation of generalized forces and moments. Section 3 presents the problem for-
mulation and the description of the equation of motion for the cluster and the single k-th body. The
cluster model is derived building on the knowledge of the single body models. Numerical results are
reported in Section 4. Finally, concluding remarks are addressed in Section 5.
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Fig. 2. Reference frames used for describing motion of cluster C and k-th body K linked rigidly.

2. Preliminaries and Notation

2.1. Clustering method
The clustering approach aims at providing a generic framework to model modular underwater vehi-
cles. Let consider a generic multi-body rigid underwater vehicle, composed of N heterogeneous
robots/bodies linked rigidly, denoted as cluster. Each element of the cluster can be either actuated
or not actuated, and its characteristics (including its hydrodynamic parameters) are assumed known.
The objective is to derive a mathematical description of the overall multi-body system dynamics
building on the knowledge of the single basic elements. This dynamic modeling exploits a specific
composition approach. It is based on the main assumption that the cluster is rigid. When the cluster
is assumed to be rigid, it is possible to derive the net values of external actions (e.g., hydrodynamic
forces and moments) and control forces and moments from those derived for the individual bodies,
without the need of evaluating internal actions associated with the constraint forces induced by the
cluster structure. However, it should be noted that, in line of principle, the distance among each single
vehicle can influence the hydrodynamic forces and moments. If such a distance is sufficiently large,
namely greater than two times the diameter of each single vehicle, the overall dynamic model will
not significantly be affected by interference phenomena.

Note that when interference phenomena become significant, they will depend on the particular
configuration considered, and either numerical CFD simulation or a dedicated experimental cam-
paign are required for modeling hydrodynamic forces and moments developed on the specific cluster.
Indeed, in what follows, the vehicles will be assumed to be at a distance such that the possible inter-
ferences can be neglected. The proposed clustering approach has the benefit to simplify the design
of accurate controllers. This is an important feature, especially when control reconfiguration is to be
dealt with in the presence of (possibly multiple) failures.

2.2. Notations
In order to describe the motion of multi-body generic rigid underwater vehicle by means of rigid
body DOF, the reference frames, illustrated in Fig. 2, are defined as follows:

• {0}: inertial North-East-Down (NED) earth-fixed reference frame with origin in o ∈R
3;

• {b}: cluster-fixed reference frame with origin in c ∈R
3, where c is the point chosen as pole for

forces and moments;
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• {k}: k-th body-fixed reference frame (k = 1, . . . , N) with origin in a point pk ∈R
3 of the k-th body,

where pk is the point chosen as pole for forces and moments.

Moreover, the following notation will be adopted for vectors in the coordinate systems {0}, {b},
and {k}:

brc,pk = position vector from c to pk expressed in frame {b} where it is constant (rigid body
constraint);
0vpk/o = linear velocity of pk with respect to o expressed in {0};
bωb/0 = angular velocity of {b} with respect to {0} expressed in {b};
bνc/o = generalized velocity of c with respect to o expressed in {b};

k
pk f = force with line of action through the point pk expressed in {k};
b
cm = moment about the point c expressed in {b};
0ηb = Euler angles between {b} and {0};
bν̇c/o = d

dt
bνc/o time derivative of bνc/o;

Cg is the cluster center of gravity.

The symbol S(·) ∈R
3×3 denotes the skew symmetric matrix associated with the cross product, such

that S(a)b = a × b for any a, b ∈R
3×3.

From Fig. 2 it follows that

0ro,pk = 0ro,c + 0Rb
brc,pk , (1)

where 0Rb ∈ SO(3) is the rotation matrix between frame {b} and {0}. Time differentiation of (1) gives
the velocity of the point pk (origin of k-th frame {k}) with respect to o (origin of frame {0}) expressed
in {0}, that is:

0vpk/o = d

dt
0ro,pk = 0vc/o + 0ωb/0 × 0rc,pk . (2)

From time differentiation of (2) it follows that:

0apk/o = d

dt
0vc/o +

(
d

dt
0ωb/0

)
× 0rc,pk + 0ωb/0 × (

0ωb/0 × 0rc,pk

)
. (3)

In the following, we recall the main tools for the transformation of the generalized forces and
moments between two points in different reference frames.

2.3. Generalized velocity vectors in different reference frames
The generalized velocity of point pk of the k-th body with respect to o expressed in {k} is denoted as

kνpk/o :=
[

kvpk/o

kωk/0

]
. (4)

In order to express the relation between kνpk/o and bνc/o, it is necessary first to all to express the
vectors in the same reference frame {b}. Letting bRk be the rotation matrix from {k} to {b}, one has
that:

bνpk/o =
[

bvpk/o

bωk/0

]
= bR̄k

kνpk/o, (5)

where matrix bR̄k ∈ SO(6) is defined as

bR̄k :=
[

bRk 03×3

03×3
bRk

]
∈R

6×6. (6)
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Note that since all points of a rigid body have the same angular velocity, the assumption of a rigid
cluster implies that bωk/0 = bωb/0. Now, as also illustrated in,2 the transformation between bνpk/o and
bνc/o can be expressed as follows:

bνpk/o = T
(

brc,pk

)
bνc/o, (7)

where the matrix T(brc,pk) is given by

T
(

brc,pk

) =
[

I3×3 −S
(

brc,pk

)
03×3 I3×3

]
, (8)

summarizing
kνpk/o = kR̄b T

(
brc,pk

)
bνc/o. (9)

Similarly it can be shown that time differentiating (5) leads to the following:
kν̇pk/o = kR̄b T

(
brc,pk

)
bν̇c/o. (10)

2.4. Generalized forces in different reference frames
Letting k

pk
τ k be the generalized forces vector acting on k-th about pk expressed in {k}

k
pk

τ k =
[

k
pk

f k

k
pk

mk,

]
(11)

the generalized forces can be expressed in the cluster-fixed reference frame {b} using the matrix bR̄k,
previously defined:

b
pk
τ k = bR̄k

k
pk
τ k. (12)

As also illustrated in ref. [2], the transformation of the generalized forces between the points pk and
c in frame {b} is given by

b
cτ k = T� (

brc,pk

)
b
pk
τ k. (13)

Hence, the generalized forces about the point c expressed in {b}, that is, b
cτ k, can be written as a

function of the generalized forces about the point pk expressed in {k} b
pk
τ k through the following

transformation:

b
cτ k = T� (

brc,pk

)
bR̄k

k
pk
τ k. (14)

3. Cluster Equations of Motion

3.1. Kinematic equations
Assuming that the cluster of N robots is rigid, its 6-DOF kinematic equations can be expressed as
follows:

0ṙo,c = 0Rb
bvc/o (15)

bṘ0 = −S
(

bωb/0
)

bR0, (16)

where 0ro,c = [x, y, z]� denotes the NED position of the cluster in frame {0}, bvc/o = [u, v, w]� and
bωb/0 = [p, q, r]� are the cluster-fixed linear and angular velocity vectors, respectively. So, Eq. (15)
describes the translational motion and (16) describes the rotational motion (i.e., kinematics of the
rotation matrix).

It is worth highlighting that the standard kinematic equations for the rotational motion used, for
example, in refs. [2, 21], make use of the Euler angles as a parametrization of SO(3). It is known
that any minimal rotation matrix parametrization is singular. The formulation adopted in (16) has the
advantage being derived without needing any specific parametrization of SO(3), hence avoiding all
the issues related to minimal representation singularities. Of course, if needed, Euler angles (0�b)
could always be derived from the elements of the rotation matrix bR0 as reported in ref. [22].
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3.2. Dynamic equations
As shown in refs. [2,23], the standard lumped parameter model used in most robotics applications is
given by

Mrb
bν̇c/o + Crb

(
bνc/o

)
bνc/o = b

cτ rb. (17)

Equation (17) represents the Newton–Euler dynamic equations of motion expressed in an arbitrary
cluster-fixed coordinate frame, where

bνc/o := [bv�
c/o

bω�
b/0]� is the cluster-fixed generalized (linear and angular) velocity vector,

b
cτ rb is a generalized vector of external forces and moments,
Mrb is the rigid-body inertia matrix,
Crb is the rigid-body Coriolis and centripetal matrix.

The generalized vector of external forces and moments b
cτ rb is given by:

b
cτ rb = b

cτ dp + b
cτ drag + b

cτ r f + b
cτE + b

cτ + b
cτ L, (18)

where

b
cτ dp is the vector of dynamic pressure forces and moments;
b
cτ drag is the vector of viscous drag effects forces and moments;
b
cτ r f is the vector of restoring (gravitational and buoyancy) forces and moments;
b
cτE = b

cτwave + b
cτwind is the vector of environmental forces and moments on a rigid body (it will

be considered negligible in the following);
b
cτ is the vector of propulsion forces and moments;
b
cτ L is the vector of lifting forces and moments.

Note that hydrodynamic forces and moments acting on the cluster are due to added mass, drag,
and lifting (b

cτ dp, b
cτ drag, and b

cτ L), whereas the restoring forces and moments are due to weight and
buoyancy (b

cτ r f ).
With regards to the left-hand side of Eq. (17), the rigid-body inertia matrix Mrb and the rigid-body

Coriolis and centripetal matrix Crb in (17) are defined as in ref. [23]:

Mrb :=
[

mI3×3 −mS
(

brc,Cg

)
mS

(
brc,Cg

)
Ic

]
, Crb

(
bωb/o

) :=
[

mS
(

bωb/o
) −mS

(
bωb/o

)
S
(

brc,Cg

)
mS

(
brc,Cg

)
S

(
bωb/o

) −S
(
Ic

bωb/o
)

]
,

(19)

where

m is the total mass of the cluster;
brc,Cg is the distance vector from c to Cg expressed in frame {b};
Ic is cluster inertia matrix about c (origin of frame {b}).

Assuming that the inertia Igk of the k-th vehicle about its center of gravity is known, the matrix Ic can
be computed by means of the Huygens–Steiner theorem. Namely, the contribution of each vehicle to
the cluster inertia matrix about c is given by

Ick = Igk − mk S2(brc,Cgk), (20)

where mk is the mass of the k-th vehicle and brc,Cgk is the distance vector from c to Cgk expressed in
frame {b}. Hence,

Ic =
N∑

k=1

Ick. (21)
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As for the right-hand side of Eq. (17), that is, the vector of external forces and moments, the hydro-
dynamic/hydrostatic parameters for the cluster form the knowledge of the hydrodynamic/hydrostatic
parameters of each individual body. The same for the propulsion and lifting forces and moments. To
this aim, we consider the equations of motion of each body as illustrated in the following section.

3.3. Equations of motion for the k-th body
The equations of motion of the generic k-th body can be modeled as in ref. [2], where the generalized
velocities kνpk/o and forces k

pk
τ rbk of the generic k-th body are expressed in its body-fixed frame {k}

(k = 1,. . . , N):

Mrbk
kν̇pk/o + Crbk(

kνpk/o)
kνpk/o = k

pk
τ rbk , (22)

with

k
pk

τ rbk = k
pk

τ dpk + k
pk
τ dragk + k

pk
τ r fk + k

pk
τEk + k

pk
τ k + k

pk
τ Lk . (23)

By means of the matrices bR̄k and T
(

brc,pk

)
defined, in Sections 2.3 and 2.4, it is possible to specify

the inertia, damping, lifting, restoring, and propulsion (when present) forces of all bodies about a
common point c in a common reference frame {b} making use of the cluster generalized velocity
bνc/o only. The details of such procedure are illustrated in the following subsections. Hence, the
generalized external forces for the cluster in (18) can be obtained from the sum of the individual
contributions properly transformed.

3.3.1. Hydrodynamic forces and moments. In general, a body moving in a fluid is subject to external
forces and moments due to the interaction between its external surface and the fluid. These hydrody-
namic forces and moments are proportional to the fluid density and depend on speed and acceleration
of the body.

Added mass terms. The dynamic pressure forces and moments acting on the k-th vehicle expressed
in its local body frame {k} can be expressed in the form

k
pk

τ dpk = −MAk

d

dt
kνpk/o − CAk

(
kνpk/o

)
kνpk/o. (24)

As highlighted in Section 2.4, the actions can be projected in the cluster-fixed reference frame {b}
and the pole for moments can be moved from pk to c. At the same time, under the transformations
described in Section 2.3, it is possible to express the generalized velocity of the k-th vehicle kνpk/o as
a function of the generalized cluster velocity bνc/o, leading to the following equation:

b
cτ dpk = −T� (

brc,pk

)
M̄Ak T

(
brc,pk

) d

dt
bνc/o − T� (

brc,pk

)
C̄Ak

(
bνc/o

)
T

(
brc,pk

)
bνc/o, (25)

where

M̄Ak = bR̄kMAk
kR̄b, (26)

and

C̄Ak

(
bνc/o

) =
[

S
(

bωb/0
)

03×3

S
(

bvc/o + bωb/0 × brc,pk

)
S

(
bωb/0

)
]

M̄Ak . (27)

Details about the derivation of (25) are reported in Appendix A. Equation (25) highlights how the
dynamic pressure forces and moments of the k-th vehicle about point c can be expressed in the cluster
reference frame using cluster velocity bνc/o only.

Lifting and drag forces and moments. Hydrodynamic drag and lift forces are conventionally calcu-
lated in the flow frame { fk}.24 The flow frame is commonly used in aerodynamics to model lift, side,
and drag forces. The flow frame is found by rotating the k-th body frame {k} such that the resulting
x axis becomes parallel to the freestream flow. In the flow frame, the x axis points directly into the
relative flow, while the z axis remains in the vehicle symmetry plane, perpendicular to the x axis. The

https://doi.org/10.1017/S0263574719001693 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001693


1690 Dynamic modeling of underwater multi-hull vehicles

(a) (b)

Fig. 3. (a): Flow frame { fk} as function of the angle of attack α and sideslip angle β (b): Alternative flow frame
{ f ∗

k } as function of the angle α∗ and angle σ .

y axis completes the right-handed system. In the flow frame, each hydrodynamic term, lift, side, and
drag resolve into a force that is parallel to one of the axes. Indeed, lift is, by definition, perpendicular
to the relative flow, while drag is parallel and side force is lateral.

The transformation from flow to body frame is defined by two angles: the angle of attack αk and
the sideslip angle βk. For the sake of notation compactness, in the following the subscript k and the
angles α and β will be omitted.

For vehicles moving at a forward speed U > 0, the angle of attack and sideslip angle are equal to

α = tan−1(w/u), β = sin−1(v/U), (28)

where [u, v, w] are vehicle velocity components expressed in the body frame. The hydrodynamic
forces in the flow frame fk f a are expressed as: fk f a = −[D′

S
′
L

′ ]�, where D
′
, S

′
, and L

′
denote the

drag, side force, and lift, respectively, that are function of the angle of attack α.
Hydrodynamic force components are then projected into the body frame of the k-th vehicle by

means of coordinate transformation matrix

kRfk =
⎡
⎣ cos(β) cos(α) − sin(β) cos(α) − sin(α)

sin(β) cos(β) 0
cos(β) sin(α) − sin(β) sin(α) cos(α)

⎤
⎦. (29)

The determination of hydrodynamic force components D, S, and L requires an ad-hoc model,
based on a database of hydrodynamic coefficients CD, CS, and CL, such that each force component
can be expressed as 0.5 ρ U2A Cj, j = D, S, L, where ρ is fluid density and A a reference area. Each
force coefficient depends on hydrodynamic angles, α and β, and Reynolds number Rn = ρV�/μ,
where � is a reference length and μ is fluid viscosity. Their values can be obtained experimentally
or evaluated by means of CFD method, generating a database for various combinations of α and β.
When a body is axisymmetric it is possible to take advantage of symmetry, provided that the plane
which contains the symmetry axis of the body, xB, and the velocity relative to the fluid is always a
symmetry plane, hence, no side force in a direction perpendicular to this plane is expected. Only two
hydrodynamic force components are necessary for determining the hydrodynamic action of the body,
in a frame which has xf ≡ xf ∗ and zf ∗ as axes lying on this plane, as represented in Fig. 3(b).

This flow frame { f ∗
k } is obtained from the body frame with the following rotation matrix:

f ∗
kRk = Ry,α∗Rx,σ =

⎡
⎣ cos(α∗) − sin(α∗) cos(σ ) sin(α∗) cos(σ )

0 cos(σ ) sin(σ )

− sin(α∗) − cos(α∗) sin(σ ) cos(α∗) cos(σ ).

⎤
⎦. (30)

The resulting flow frame { f ∗
k } is thus still aligned with the velocity vector relative to the flow,

but symmetry of the body allows one to assume that S = 0 ⇒ f ∗
k f a = −[D 0 L]�, where α∗ and σ are

equal to
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cos(α∗) = cos(α) cos(β), sin σ = sin β

sin α∗ . (31)

The advantage of such a formulation is that we do not need to compute the lateral forces. Note that
the D, S and L forces will be different from the forces D

′
, S

′
, and L

′
previously mentioned, because

they will be computed making reference to the angle of attack α∗ rather than α. Referring to the flow
frame { f ∗

k }, we can compute the norm of the lift force as:

L = 1

2
ρ U2A(α∗)CL(Rn, α∗), (32)

where A(α∗) is the projected frontal area of the body, and CL(Rn, α∗) is the a-dimensional lift coeffi-
cient depending on the Reynolds number Rn and the angle of attack α∗. The lift coefficient is usually
empirically determined. A good reference for experimental data is,25 which contains a large amount
of aerodynamic data from many different types of vehicles, wings, and other common engineering
shapes. Usually the lift coefficient is assumed to depend only on the angle of attack, and independent
of the Reynolds number, in the form:26

CL(Rn, α∗) 	 CL(α
∗). (33)

The lifting force consists of two different components due to circulation and cross-flow.25 Within the
range of small angles of attack, the linear circulation-type component of the lift is described by a lift
coefficient linear with the angle of attack:

CL = CLα∗ α
∗. (34)

As the angle of attack increases, a nonlinear component of lift originates due to cross-flow; for
example, for a cylinder the nonlinear lift coefficient is found to be:25

CL = Cc sin2(α∗) cos(α∗), (35)

being Cc a cross-flow coefficient. The lifting forces and moments in a flow frame centered in the k-th
body center of pressure (cpk) are

f ∗
k

cpkτ Lk = [0 0 −L 0 0 0]�. Thus, the lifting forces and moments in
the k-th body frame centered in pk result in:

k
pk

τ Lk = T�(krpk,cpk)
kR̄f ∗

k

f ∗
k

cpkτ Lk , (36)

being rcpk,pk the distance vector from cpk to pk expressed in frame {k}. Of course, the lifting forces
and moments can be expressed in the cluster-fixed frame {b} and transported to the point c using the
following transformation:

b
cτ Lk = T� (

brc,pk

)
bR̄k

k
pk

τ Lk . (37)

With regards to the hydrodynamic damping, the drag forces of each k-th vehicle are parallel to the
flow and can be expressed in its own body frame {k} as in,24 namely as the sum of a linear damping
term (due to possible skin friction) and a nonlinear damping term (due to quadratic damping and
higher-order terms) such that:

k
pk
τ dragk = −k

pk
Dk

(
kνpk/o

)
kνpk/o, (38)

where

k
pk

Dk
(

kνpk/o
) = k

pk
Dklin + k

pk
Dkquad

(
kνpk/o

)
. (39)

A first approximation of the damping matrix could be to assume that it is diagonal in the center of
gravity,24 that is:

k
pk

Dklin ≈ −diag(Xu, Yv, Zw, Kp, Mq, Nr), (40)

k
pk

Dkquad

(
kνpk/o

) ≈ −diag(Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|). (41)
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Without loss of generality, here we have tacitly assumed that the k-th body frame is centered in the
center of gravity. Yet, the absolute value of each velocity component (|u|, |v|, |w|, |p|, |q|, |r|) in (41)
can be expressed as function of the cluster velocity bνc/o:

surge : |u| = |ke1
� kνpk/o| = |ke1

� kR̄bT
(

brc,pk

)
bνc/o|

sway : |v| = |ke2
� kνpk/o| = |ke2

� kR̄bT
(

brc,pk

)
bνc/o|

heave : |w| = |ke3
� kνpk/o| = |ke3

� kR̄bT
(

brc,pk

)
bνc/o|

roll : |p| = |ke4
� kνpk/o| = |ke4

� kR̄bT
(

brc,pk

)
bνc/o|

pitch : |q| = |ke5
� kνpk/o| = |ke5

� kR̄bT
(

brc,pk

)
bνc/o|

yaw : |r| = |ke6
� kνpk/o| = |ke6

� kR̄bT
(

brc,pk

)
bνc/o|, (42)

being {kei; i = 1, . . . , 6} the versors of the six-dimensional space R
6.

At this point, following the procedure illustrated in 2.4, the damping forces k
pk
τ dragk can be expressed

in the frame {b} and transformed to the point c, leading to:

b
cτ dragk = −T� (

brc,pk

)
pk

bD̄k
(

bνc/o
)

T
(

brc,pk

)
bνc/o, (43)

where pk
bD̄k

(
bνc/o

)
is defined as:

pk
bD̄k

(
bνc/o

) = bR̄k pk
kD

(
bνc/o

)
kR̄b

b. (44)

Mathematical details about the derivation of (43) are reported in Appendix B.

3.3.2. Hydrostatic forces and moments. The restoring terms are determined by the gravitational and
buoyancy forces and are expressed as:24

k
pk

τ r f k =
[

kf r f k

kmr f k

]
= −

[
kf Gk

+ kf Bk

S
(

krg
)

kf Gk
+ S

(
krB

)
kf Bk

,

]
, (45)

with kf Gk
denoting the k-th vehicle gravitational forces and kf Bk

the k-th vehicle buoyant forces,
defined respectively as:

kf Gk
= kR0

⎡
⎢⎣

0

0

mk g

⎤
⎥⎦ , kf Bk

= −kR0

⎡
⎢⎣

0

0

ρg�k

⎤
⎥⎦,

where

mk is the k-th vehicle mass;
g is the gravity constant;
ρ is the fluid density (salt water);
�k is the displaced water volume of the k-th vehicle;
krg is the position vector of center of gravity Cgk of the k-th vehicle with respect to pk (origin of
body frame {k});
krB is the position vector of center of buoyancy Cbk of the k-th vehicle with respect to pk (origin
of body frame {k}).
Again, using the usual procedure, k

pk
τ r f k can be expressed in frame {b} and transported about the

point c (origin of frame {b}):
b
cτ r f k = T� (

brc,pk

)
bR̄k

k
pk

τ r f k. (46)

3.3.3. Propulsion terms. Assuming that the k-th vehicle has nt thrusters, the propulsion forces and
moments are expressed as

k
pk

τ k := Bkuk, (47)

https://doi.org/10.1017/S0263574719001693 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001693


Dynamic modeling of underwater multi-hull vehicles 1693

where Bk ∈R
6×nt is the allocation matrix and uk ∈R

nt×1 is the thruster input vector.
Hence, when the propulsion forces and moments of the k-th vehicle are expressed in the cluster-

fixed frame {b} and the pole for moments moved from pk to c became one has

b
cτ k = T� (

brc,pk

)
bR̄k

k
pk

τ k. (48)

Letting B∗
k = T� (

brc,pk

)
bR̄k Bk, Eq. (48) can be expressed in compact form as

b
cτ k = B∗

kuk. (49)

3.4. Cluster 6-DOF dynamic model
In this section, a model for the cluster is derived on the basis of the knowledge of the inertial, hydro-
static, hydrodynamic, and propulsion actions for each single body. As already highlighted in the
previous section, the inertia, lifting, damping, restoring, and propulsion forces (when present) of all
bodies can be expressed in a common reference frame {b} making use of the cluster velocity νc/o

only. This allows to specify the generalized vector of external forces for the cluster in Eq. (17) as the
sum of the individual contributions of the N rigidly connected heterogeneous robots/bodies, that is

Mrb
bν̇c/o + Crb

(
bνc/o

)
bνc/o =

N∑
k=1

(
b
cτ dpk + b

cτ dragk + b
cτ r fk + b

cτ k + b
cτ Lk

)
. (50)

Interestingly, the contribution given by the propulsion forces and moments b
cτ = ∑N

k=1
b
cτ k can be

rewritten as

b
cτ = Bcl U, (51)

with Bcl = [B∗
1 · · · B∗

N] and U = [u1 . . . uN]�. As a result, the effects of the control input of each
actuated robot are directly mapped onto the cluster frame and determine its motion. Summarizing
the dynamics of the cluster is described by (52):

(Mrb + MA cl)
bν̇c/o + (

Crb
(

bνc/o
) + CA cl

(
bνc/o

))
bνc/o +

+ (
Dl cl + Dq cl

(
bνc/o

))
bνc/o + τ r f cl + τ L cl = Bcl U, (52)

where the terms MA cl, CA cl, Dlin cl, Dquad cl, τ r f cl, τ L cl, and Bcl are recalled in Table I.
The advantage of this approach with respect to the Udwadia–Kalaba formulation18 is the deriva-

tion of a dynamic–hydrodynamic model for the whole multi-body system considering the constraints
imposed by the rigid connections only at a geometrical level, without the need for explicitly deriv-
ing constraint forces and moments. Hence, the proposed approach allows expressing directly the
motion of the cluster using the 6-DOF equation (52), rather than using a 6N-DOF vector of quasi-
velocities as in.16 Moreover, the use of the cluster allocation matrix Bcl has the benefit of directly
mapping the control input of each actuated robot on the cluster motion. This is an important feature,
because it simplifies the design of dynamic controllers for the overall system especially when control
reconfiguration it to be dealt with in the presence of (possibly multiple) actuator failures.

Remark. Following the approach discussed in,23 if the vehicle moves inside a current, it is still
possible to represent its dynamics by means of Eq. (52), under the assumption of an irrotational
and constant flow field in NED frame. In this framework, the generalized velocity of the vehicle with
respect to an inertial frame is given by νc/o = νc/f + ν f /o, where νc/f = [v�

c/f , ω�
c/f ]� is the generalized

cluster’s velocity with respect to the fluid, whereas ν f /o = [v�
f /o, 0�

3×1]� is the generalized velocity
of the current. It is sufficient to replace νc/o with νc/f in Eq. (52) and let vc/o = vc/f + vf /o in Eq. (15).

4. Numerical Example

4.1. Test case
In order to numerically assess it, the proposed approach is applied to a hypothetical cluster com-
posed by four AUVs connected by rigid rods, as illustrated in Fig. 4. Such a kind of configuration
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Table I. Inertia, hydrodynamic, hydrostatic, and propulsion parameters for the single body and the cluster
system.

kth body k=1...N Cluster

Added mass terms MAk MA cl =
N∑

k=1

(
T� (

brc,pk

)
M̄Ak T

(
brc,pk

))

CAk

(
kνpk/o

)
CA cl

(
bνc/o

) =
N∑

k=1

T� (
brc,pk

)
C̄Ak

(
bνc/o

)
T

(
brc,pk

)

Damping terms k
pk

Dkl Dl cl = ∑N
k=1

(
T� (

brc,pk

)
bR̄k

k
pk

Dkl
kR̄b

bT
(

brc,pk

))
k
pk

Dkq

(
kνpk/o

)
Dq cl

(
bνc/o

) =
N∑

k=1

(
T� (

brc,pk

)
bR̄k

k
pk

Dkq

(
bνc/o

)
kR̄b

bT
(

brc,pk

))

Lifting terms k
pk

τ Lk τL cl =
N∑

k=1

(
T� (

brc,pk

)
bR̄k

k
pk

τ Lk

)

Restoring terms k
pk

τ r fk τr f cl =
N∑

k=1

(
T� (

brc,pk

)
bR̄k

k
pk

τ r fk

)

Propulsion terms Bk Bcl =
[
B∗

1...B
∗
N

]

Folaga-AUV 4-Folaga cluster

1
2

3
4

Fig. 4. 4-Folaga cluster multi-hull system obtained from single-vehicle Folaga-AUV.

is interesting from a practical point of view because the internal framework can serve as sup-
porting infrastructure for payload modules, such as robotic manipulators, sensing, processing, or
communication equipment typically necessary for the execution of specific missions.

The AUVs which compose the cluster are assumed to be Folaga-AUV type,27 which model is
available from the literature.28 The connecting rods are assumed massless in the simulation, so that
their contribution to mass properties, resorting, and hydrodynamic forces is neglected, for the sake
of simplicity. Note that, in the presence of information on geometry and mass of the connecting rods,
each one of them would simply represent an additional non-actuated element of the cluster. Hence,
the validity of the modeling approach is not affected by this simplifying assumption.

A numerical simulator has been developed implementing the described modeling approach, and
it is applied to the cluster depicted in Fig. 4. Several simulations are performed in both conditions,
ideal (without environmental disturbances) and more realistic including ocean currents.

The mass and dimensions of AUV and cluster are reported in Table II, whereas added mass coeffi-
cients and linear drag coefficients of AUV and cluster are compared in Tables III and IV, respectively.
Such terms depend on the shape of the body and are independent of velocity bνc/o.

The other hydrodynamic coefficients depend on vehicle trajectory. Indeed, the quadratic drag and
lift coefficients depend on the vehicle velocity, that is, bνc/o for the cluster and kνpk/o for the single
k-th Folaga-AUV. Fig. 5 reports the evolution of the lift coefficient as a function of the angle of attack
for a single Folaga-AUV. The restoring coefficients depend on the actual orientation of the vehicle.
Therefore, the effects of these contributions are compared making reference to a specific trajectory.

https://doi.org/10.1017/S0263574719001693 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574719001693


Dynamic modeling of underwater multi-hull vehicles 1695

Table II. Mass and dimensions of Folaga-AUV single-body versus 4-Folaga cluster.

Parameter AUV Cluster Units

mass 25 100 kg
Width 1.882 1.882 m
Height 0.155 1.31 m
Length 0.155 1.31 m

Table III. Added mass coefficients of Folaga-AUV single-body versus 4-Folaga cluster.

Coefficient AUV Cluster Units

Xu̇ 0.47 1.88 kg
Yv̇ 22.7 90.80 kg
Zẇ 22.7 90.80 kg
Kṗ 0.1 45.8 kg m2

Mq̇ 3.64 15.03 kg m2

Nṙ 3.64 15.03 kg m2

Table IV. Linear drag coefficients of Folaga-AUV single-body versus 4-Folaga cluster.

Coefficient AUV Cluster Units

Xu 1.08 4.31 kg/s
Yv 10.21 40.84 kg/s
Zw 10.21 40.84 kg/s
Kp 3 · 10−3 20.42 kg m2/s
Mq 1.06 5.32 kg m2/s
Nr 1.06 5.32 kg m2/s
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Fig. 5. Lift coefficient versus generic α∗ (0 − 90o) with Reynolds number 1.5 · 105 ≤ Rn ≤ 1.5 · 106 for Folaga-
AUV.

It is worth noting that cluster coefficients are not a bare sum of the individual contributions, but
they are composed through the transformation matrix T defined in (8). This could result in cluster
coefficients much higher than the individual AUV counterparts. This is particularly evident for roll
drag moment (see Table IV), which appears to be four orders of magnitude greater than the individual
AUV roll drag moment. The physical reason is that the individual AUVs roll drag moments are not
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(a)

(b)

Fig. 6. (a) Trajectory of the 4-Folaga cluster. (b) Evolution of the angle of attack α∗ of the 4-Folaga cluster
system and the four Folaga-AUVs while performing the trajectory.
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Fig. 7. Drag forces and moments of the 4 Folaga cluster system and the four Folaga-AUVs while performing
trajectory in Fig. 6.

the only contributions to the cluster roll drag moment. Heave and sway linear drag forces acting on
the single AUVs also generate a roll moment on the cluster. The magnitude of each contribution thus
depends on the geometrical arrangement of the AUVs within the cluster.

4.2. Simulations
Two different experiments are considered. The first one, denoted as experiment 1, is a motion in the
{x, z} plane performed at zero sideslip angle, which is generated by activating the rear main thruster
first (to accelerate the vehicle in the surge direction) and then the vertical thrusters of all AUVs with
the same intensity (thus accelerating the vehicle in the heave direction). The second experiment,
depicted in Fig. 10(a), is characterized by a not null sideslip angle. The motion is generated by
activating the rear main thruster first (as in the previous example, to accelerate the vehicle in the
surge direction) and then the lateral thrusters of each AUV with the same intensity.

Experiment 1. The first experiment is performed in the absence of environmental disturbances, and
the resulting trajectory is reported in red in Fig. 6(a). The blue arrows represent the attitude of the
body frame {ib, jb, kb} associated with the cluster. Fig. 6(b) represents the variation of the angle of
attack, whereas Fig. 7 reports the evolution of the not null drag force components and moments for
the cluster and the four AUVs, respectively, each one expressed in its own body frame. Fig. 8 reports
the evolution of the not null lift forces and moments for the cluster system and the four AUVs,
respectively. Finally, Fig. 9 shows the vehicle attitude and the not null restoring contributions.
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Fig. 8. Lift forces and moments of the 4 Folaga cluster system and the four Folaga-AUVs while performing
trajectory in Fig. 6.
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Fig. 9. (a) Attitude of the 4-Folaga cluster system while performing trajectory in Fig. 6. (b) Pitch restoring of
the 4-Folaga cluster system and the four Folaga-AUVs while performing trajectory in Fig. 6.

From Fig. 7 and 8, it is evident how the drag and lift forces evolution of cluster are the sum of the
drag and lift forces one of the four AUVs. This is due to the geometrical composition of cluster model
and to the similar physical conditions of each Folaga-AUV. Of course, the lift forces depend also on
the angle of attack α∗ illustrated in Fig. 6(b). As expected, in correspondence of small angles of
attack there is a pitch lift moment. Moreover, a further contribution to the pitch moment is generated
by restoring torques, which for this purely longitudinal maneuver, in the absence of ocean currents,
are zero around the other two axes.

The trajectory appears reasonable and the variation of state variables consistent with the expected
behavior of the vehicle under the considered control action. Note that the vehicle achieves a steady
descent trajectory, with constant angle of attack, provided that in the present longitudinal example
α ≡ α�.

Experiment 2. The second experiment is performed in both ideal conditions (without environmental
disturbances) and more realistic ones including ocean currents. With reference to the ideal conditions
case, the resulting trajectory is reported in red in Fig. 10(a). Figure 10(b) provides the variation of
α�, which in the present case corresponds approximately to a sideslip angle (α� ≈ β). The drag and
lift forces of the cluster and AUV are reported in Fig. 11(a) and (b). Figure 12(a) and (b) report the
evolution of the lift forces and moments for the cluster system and the four AUVs, respectively, each
one expressed in its body frame. As already highlighted, the drag and lift forces on the cluster are
the sum of the drag and lift forces on the four AUVs. In this case the angle of attack α∗ illustrated
in Fig. 10(b), characterized by a not null sideslip angle, gives rise to a lift contribution that generate
first additional sway, heave, pitch, and yaw motions, and then additional surge and roll motions. The
resulting vehicle attitude and restoring forces and moments are illustrated in Fig. 13.
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Fig. 11. (a) Drag forces of the 4-Folaga cluster system and the four Folaga-AUVs while performing trajectory
in Fig. 10. (b) Drag moments of the 4-Folaga cluster system and the four Folaga-AUVs while performing
trajectory in Fig. 10.
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Fig. 12. (a) Lift forces of the 4 Folaga cluster system and the four Folaga-AUVs while performing trajectory in
Fig. 10. (b) Lift moments of the 4 Folaga cluster system and the four Folaga-AUVs while performing trajectory
in Fig. 10.
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Fig. 14. Trajectory of cluster without currents (red) and in the presence of ocean currents (blue).

The same simulation (i.e., same inputs) is repeated in the presence of a constant and irrota-
tional ocean current in the inertial NED frame, namely with 0vf /o = [0.1 0.1 0]�[m/s], and 0ωf /o =
01×3[rad/s]. The initial condition of the cluster relative velocity is assumed to be null, 0νc/o = 01×6.
Consequently, the two cases differ in the kinematics only as illustrated in Fig. 14.

5. Conclusions
A modeling approach has been developed to compute the lumped parameter hydrodynamic derivative
matrices for a generic multi-hull underwater vehicle. In particular, its dynamic model has been built
on the knowledge of the single basic bodies exploiting a specific multi-body composition approach.
This allows the derivation of a dynamic–hydrodynamic model for the whole multi-body system with-
out solving explicitly the constraints imposed by the rigid connections. The present paper provides
a generic framework to model modular underwater vehicles. It presents the advantage to simplify
the control system design for the overall system and potentially improve its performance. Moreover,
it offers a method allowing to perform a dynamic analysis before the cluster vehicle is actually
built, under the hypothesis of a sufficiently large separation between the bodies. For example, when
larger vehicles are realized by means of a cluster of existing robots, performance and suitability
of different geometric configurations can be numerically estimated as soon as the dynamic model
is available. Possible control method that could also benefit from the proposed dynamic modeling
approach may include path-following controllers, task priority-based controllers, formation control
tasks, or inspection tasks. Finally, numerical simulations have been presented applying the proposed
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methodology to a hypothetical cluster composed of four AUVs, whose models were already studied
in the past.
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Appendix
A. Derivation of Dynamic Pressure Generalized Forces on k-th Vehicle (25)
The dynamic pressure forces and moments acting on the k-th vehicle expressed in its local body
frame {k} are given by (24):

k
pk

τ dpk = −MAk

d

dt
kνpk/o − CAk

(
kνpk/o

)
kνpk/o.

As highlighted in Section 2.4, these actions can be projected in the cluster-fixed reference frame
{b} by means of the matrix bR̄k:

b
pk

τ dpk = bR̄k
k
pk

τ dpk = bR̄k{−MAk
kR̄b

d

dt
bνpk/o − CAk

(
kνpk/o

)
kR̄b

bνpk/o} =

= − (
bR̄kMAk

kR̄b
) d

dt
bνpk/o − bR̄k

[
S

(
kωb/0

)
03×3

S
(

kvpk/o
) −S

(
kωb/0

)
]

MAk
kR̄b

bνpk/o =

= − (
bR̄kMAk

kR̄b
) d

dt
bνpk/o − bR̄k

[
S

(
kωb/0

)
03×3

S
(

kvpk/o
) −S

(
kωb/0

)
]

kR̄b
bR̄kMAk

kR̄b
bνpk/o. (A1)

Exploiting the following property of a generic rotation matrix R

RS(x)R� = S(Rx) ∀R ∈ SO(3), x ∈R
3,

the (A1) yields:

b
pk

τ dpk = − (
bR̄kMAk

kR̄b
) d

dt
bνpk/o −

[
S

(
bRk

kωb/0
)

03×3

S
(

bRk
kvpk/o

) −S
(

bRk
kωb/0

)
]

bR̄kMAk
kR̄b

bνpk/o =

= − (
bR̄kMAk

kR̄b
) d

dt
bνpk/o −

[
S

(
bωb/0

)
03×3

S
(

bvpk/o
) −S

(
bωb/0

)
] (

bR̄kMAk
kR̄b

)
bνpk/o. (A2)

Hence, the Eq. (A2) becomes:

b
pk

τ dpk = −M̄Ak

d

dt
bνpk/o − C̄Ak

(
bνpk/o

)
M̄Ak

bνpk/o, (A3)

where M̄Ak and C̄Ak(
bνpk/o) are defined as:

M̄Ak = bR̄kMAk
kR̄b, (A4)

C̄Ak

(
bνpk/o

) =
[

S
(

bωb/0
)

03×3

S
(

bvpk/o
) −S

(
bωb/0

)
]

M̄Ak . (A5)

Now, exploiting the transformation between bνpk/o and bνc/o defined in (7), Eq. (A3) can be rewritten
as:

b
pkτ dpk = −M̄Ak T(brc,pk)

d

dt
bνc/o − C̄Ak(T(brc,pk)

bνc/o)T(brc,pk)
bνc/o. (A6)
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Finally, the pole for moments can be moved from pk to c by means of the transformation matrix
T(brc,pk):

b
cτ dpk = −T�(brc,pk) M̄Ak T(brc,pk)

d

dt
bνc/o − T�(brc,pk) C̄Ak

(
bνc/o

)
T(brc,pk)

bνc/o, (A7)

where C̄Ak(
bνc/o) is given by:

C̄Ak

(
bνc/o

) =
[

S
(

bωb/0
)

03×3

S
(

bvc/o + bωb/0 × brc,pk

)
S

(
bωb/0

)
]

M̄Ak . (A8)

B. Derivation of Drag Generalized Forces on k-th Vehicle (43)
The hydrodynamic drag forces acting on the k-th vehicle expressed in its local body frame {k} are
given by:

pk
kτ dragk = − pk

kDk
(

kνpk/o
)

kνpk/o, (A9)

where

pk
kDk

(
kνpk/o

) = pk
kDklin + pk

kDkquad

(
kνpk/o

)
. (A10)

Following the procedure illustrated in 2.4, the damping forces k
pk
τ dragk can be expressed in the frame

{b} leading to:

b
pk τ dragk = bR̄k pk

kτ dragk = −bR̄k pk
kDk

(
kνpk/o

)
kνpk/o = (A11)

= −bR̄k pk
kDk

(
kνpk/o

)
kR̄b

bνpk/o. (A12)

Now, the pole for moments can be moved from pk to c by means of the transformation matrix
T(brc,pk):

b
cτ dragk = T� (

brc,pk

)
b
pkτ dragk = −T� (

brc,pk

)
bR̄k pk

kDk
(

kνpk/o
)

kR̄b
bνpk/o. (A13)

Exploiting the transformation between bνpk/o and bνc/o defined in (7), Eq. (A13) becomes:

b
cτ dragk = −T� (

brc,pk

)
bR̄k pk

kDk
(

kνpk/o
)

kR̄bT
(

brc,pk

)
bνc/o. (A14)

Finally, Eq. (A13) can be rewritten as:

b
cτ dragk = −T� (

brc,pk

)
pk

bD̄k
(

bνc/o
)

T
(

brc,pk

)
bνc/o, (A15)

having defined pk
bD̄k

(
bνc/o

)
as:

pk
bD̄k

(
bνc/o

) = bR̄k pk
kDk

(
kνpk/o

)
kR̄b = bR̄k pk

kDk
(

kR̄bT
(

brc,pk

)
bνc/o

)
kR̄b. (A16)
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