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Tracial approximation in simple
C*-algebras

Xuanlong Fu and Huaxin Lin

Abstract. We revisit the notion of tracial approximation for unital simple C*-algebras. We show
that a unital simple separable infinite dimensional C*-algebra A is asymptotically tracially in the
class of C*-algebras with finite nuclear dimension if and only if A is asymptotically tracially in the
class of nuclear Z-stable C*-algebras.

1 Introduction

Nuclear dimension for C*-algebras was first introduced in [63]. Over the time, this
notion becomes increasingly important in the study of C*-algebras in the connec-
tion with the Elliott program [14], the program of classification of separable simple
amenable C*-algebras by the Elliott invariant, a set of K-theory related invariant.
The part of the Toms—Winter conjecture (see [63, Conjecture 9.3]) states that a unital
simple nuclear separable C*-algebra A has finite nuclear dimension if and only if A
is Z-stable, i.e., A® Z = A, where Z is the Jiang-Su algebra, a unital separable and
infinite dimensional simple C*-algebra which has Ko(Z) = Z (as an ordered group),
Ki(Z) = {0} and a unique tracial state (see [23]). This part of the Toms-Winter
conjecture is now a theorem (see [60], [8], see also [42]).

On the other hand, tracial rank was introduced in [33] (and see also [32]).
C*-algebras with tracial rank 0 are also called C*-algebras which are tracially AE
Amenable tracially AF-algebras and C*-algebras of tracial rank 1 were classified in
[34] and [35] with the presence of UCT (these classification results were preceded by
[15] and [16], respectively). These had been generalized to the classification of the class
of amenable simple C*-algebras which have rationally generalized tracial rank at most
1 satisfying the UCT (see [21], and [22], see also [36], [61], [37], and [39]). In [17], it
is proved that all unital separable simple C*-algebras with finite nuclear dimension in
the UCT class, in fact, have rationally generalized tracial rank at most 1 (using [51]).

Received by the editors April 27, 2020; revised January 30, 2021; accepted February 22, 2021.

Published online on Cambridge Core February 26, 2021.

Huaxin Lin is the corresponding author.

Xuanlong Fu was supported by China Postdoctoral Science Foundation, grant # 2020M670962,
and partially supported by an NSFC grant (NSFC 11420101001). Huaxin Lin was partially supported
by an NSF grant (DMS-1954600). Both authors acknowledge the support from the Research Center
of Operator Algebras at East China Normal University which is partially supported by Shanghai Key
Laboratory of PMMP, Science and Technology Commission of Shanghai Municipality (STCSM), grant
#13dz2260400 and a NNSF grant (11531003).

AMS subject classification: 46L05, 46L35.

CrossMark

@

https://doi.org/10.4153/50008414X21000158 Published online by Cambridge University Press


http://dx.doi.org/10.4153/S0008414X21000158
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.4153/S0008414X21000158&domain=pdf
https://doi.org/10.4153/S0008414X21000158
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In other words, all unital separable simple C*-algebras with finite nuclear dimension
satisfying the UCT are classified (up to isomorphism) by their Elliott invariant. This
can also be restated, by the proof of Toms-Winter conjecture as mentioned above,
that all unital separable amenable simple Z-stable C*-algebras satisfying the UCT are
classified.

The beginning point of this paper is to search a tracial version of a part of Toms-
Winter conjecture, i.e., a separable amenable simple unital C*-algebra is Z-stable
if and only if it has finite nuclear dimension (which is now a theorem). We revisit
a version of tracial approximation (see Definition 3.1 and Proposition 3.10). The
main results include the following statement: A unital separable infinite dimensional
simple C*-algebra A which is asymptotically tracially in N, (the class of all nuclear
Z-stable C*-algebras) if and only if A is asymptotically tracially in N, (the class of all
C* -algebras with nuclear dimension at most #) for some integer n > 0 (see Theorem
9.3). It is also shown that a unital separable simple C*-algebra A which is asymptoti-
cally tracially in Cy ; (the class of all separable Z-stable C*-algebras), is either purely
infinite, or has stable rank 1 (see Theorem 9.1). Moreover, A has strict comparison (for
positive elements). Furthermore, it is shown that if A is a unital separable simple C*-
algebra which is asymptotically tracially in N (the class of all nuclear C*-algebras)
and A is asymptotically tracially in Cg , then A is asymptotically tracially in N, (see
Theorem 8.7). As one expects, in the case that A is a unital separable nuclear simple
C*-algebra, then A is asymptotically tracially in N,, if and only if it is asymptotically
tracially in Cz s, and, if and only if A has finite nuclear dimension and Z-stable. A
number of other related results are also obtained. In Example 9.17, a large number
of unital nonexact separable simple C*-algebras which are asymptotically tracially
in N,, are presented. It should be mentioned that if a unital simple C*-algebra A is
asymptotically tracially in the class of finite dimensional C*-algebras then A has tracial
rank 0, and if A is asymptotically tracially in the class of C*-algebras which are one-
dimensional NCCW complexes then A has generalized tracial rank at most 1.

The organization of this paper is as follows. Section 2 serves as a preliminary.
We fix some frequently used notations and concepts there. Section 3 studies some
basic properties of asymptotical tracial approximation. Section 4 gives some useful
properties that are preserved by asymptotical tracial approximation. One of the results
is that, if A is a unital separable simple C*-algebra which is asymptotically tracially
in the class of exact C*-algebras, then every two-quasitrace of A is a trace (see
Corollary 4.7). Section 5 is a preparation for Section 6 which gives a sufficient and
necessary condition for a c.p.c. generalized inductive limit to have finite nuclear
dimension (Theorem 6.5). Section 7 shows that every unital infinite dimensional
separable simple C*-algebra which is asymptotically tracially in N, is asymptotically
tracially in Ny (see Theorem 7.18). In Section 8, we show that a separable simple
unital infinite dimensional C*-algebra which is asymptotically tracially in N and is
also asymptotically tracially in Cz s, then it is asymptotically tracially in N, (Theorem
8.7). In Section 9, we summarize and combine some of the results. Theorem 9.11
shows that asymptotical tracial approximation behaves well under the spatial tensor
products. As a consequence, a variety of examples can be produced. For example,
if A is any unital separable simple C*-algebra and B is a unital infinite dimensional
separable simple C*-algebra which is asymptotically tracially in the class of Z-stable
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C*-algebras, then the spatial tensor product A ® B is asymptotically tracially in the
class of Z-stable C*-algebras. If both A and B are asymptotically tracially in N,,, then
the spatial tensor product A ® B is also asymptotically tracially in N, (see Corollary
9.12).

2 Preliminary

Notation 2.1 Let X be a normed space and 0 < r < s be real numbers. Set B, ;(X) :=
{x € X:r<|x| <s}. Denote by X" the closed unit ball By ,(X) of X.

Leta,be X andlete>0, wewriteawn, bif|[a—b| <e. LetY,Zc X andlete> 0,
we say Y is an e-net of Z, and denoted by Z . Y, if, for all z € Z, there is y € Y such that
Z mg Y.

Notation 2.2 Let A and B be C*-algebras, let ¢ : A — B be a map, let J c A, and let
e> 0. The map ¢ is called (F, €)- multiplicative, or called e-multiplicative on F, if for
any x,y € F, o(xy) ~e 9(x)9(y). If, in addition, for any x € F, |@(x)| ~¢ | x|, then
we say ¢ is an (F, €)-approximate embedding.

Notation 2.3 Let A and B be C*-algebras. The spatial tensor product of A and B is
denoted by A ® B.

Notation 2.4 Let N={1,2,...} be the set of natural numbers. Let My denote the
algebra of k by k complex matrices (k € N). Let {ei’;)} denote the canonical matrix units

of My (1< i, j <k and k € N). If F is a finite dimensional C*-algebra, then GF denotes
the standard generating set of F, i.e., the union of canonical matrix units of each direct
summand of F. Note that the standard generating set of F is in the unit ball of F and is
also a linear generating set.

Notation 2.5 Let A be a C*-algebra and let S, T c A be subsets of A. Set S- T := {st :
seS,teThandset St :={acA:as=0=sa,VseS}. Let§”.H be the norm closure of
S. Denote by Her 5 (S) (or just Her(S)) the hereditary C*-subalgebra of A generated by S.
Let C*(S) be the C*-subalgebra of A generated by S. Denote by A, the set of all positive
elements in A, by AL == A, n A', and by Ay, the set of all self-adjoint elements in A.

Denote by M(A) the multiplier algebra of A. For x € A, the spectrum of x is denoted by
sp(x), or just sp(x).

Notation 2.6 Let A; be C*-algebras (i €N). Set [];o;A;:={{a,a2,...}:4a;€
Aj, sup,y |ai| < oo}, and set @72 A; = {{ar,az,...}:a; € Aj, lim;_ ||a;| = 0}.
Denoteby mtoo : [1io Ai > e Aif ®i2y A the quotient map. We also use the notation
I°(A) =TI Aand co(A) := D2y A Definer: A — 1°(A) by 1(a) ={a,a,...}, the
constant sequence, for all a € A. Define 14 = 7o © 1.

Let h:B— Tl Ai/ @ A; be a *homomorphism. The map h is called a
strict embedding, if for any be B, there exists {b1,b,,...} € [Iiey A; such that
h(b) = oo ({b1, b2,...}) and |b|| =liminf; e |b;|. If CcTljo  Ai/ @iy Ai is a
C*-subalgebra and the embedding map 1 : C > []o) Ai/ Dioy A; is a strict embedding,
then we say C is strictly embedded.

(1) Note that, if C c 1°°(A)/co(A) is full in 1=°(A) [co(A), then C is strictly embedded
(see also Proposition 2.7).
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(2) For a C*-algebra A, the map 14 defined above is a strict embedding, and the map
i:A—=1°(A)/co(A), a v~ 1({a,0,a,0,a,0,-}) is not.

Proposition2.7 Let Ay, A,, ... be C*-algebras and let A be a simple C*-algebra. Let h :
A>Tl A/ 52, A; be an embedding. If for some nonzero element a € A\{0}, there
existsa; € A; (i € N)suchthat h(a) = no0 ({a1, az, ... }) andliminf;_ o |a;| > 0 hold,
then h is a strict embedding.

Proof If his not a strict embedding, then we can choose ¢ € A and natural numbers
i) <ip<--andc; € A; (i € N)suchthat h(c) = meo ({c1, €25 ... }) and limy o0 || ¢, || <
lcll. Let mmy : [Ty Ai/ Doy Ai = [Ty Ai,/ @iy A, be the quotient map induced by
the quotient map 7 : [15o; A; = [1he; Ai,. By the assumption of this proposition,
|m o h(a)| = |7 ({ai,ai,, ... })| =liminf,_ o |a;, | > 0. It follows that 71 0 h is a
nonzero *-homomorphism. Since A is simple, 7; o & is an embedding. However, by the
choice of ¢, we have |7 0 h(c)| = |00 ({ci)> €iy» - - - }) | =limyseo | ci, || < [ ], which
is contradicted to that m; o h is an embedding. Thus, / is a strict embedding. ]

Notation 2.8 Let € > 0. Define a continuous function f, : [0, +00) — [0,1] by

0 te0,¢],
fe(t)=41 t€[2¢, 00),

linear t € [g,2¢].
Notation 2.9 Let ¢ : A —> B be alinear map. The map ¢ is positive, if (A, ) c B, and
¢ is completely positive, abbreviated as c.p., if p ® id: A® M, - B® M, are positive
for all n e N. If ¢ is positive linear and || <1, then it is called positive contractive,
abbreviated as p.c., if ¢ is c.p. and || < 1, then ¢ is completely positive contractive,
abbreviated as cp.c. If ¢ is cp.c. and ¢(14) =1p, then ¢ is call unital completely
positive, abbreviated as u.c.p.

The following lemma is a well-known corollary of Stinespring’s theorem (cf. [27,
Lemma 7.11]):

Lemma 2.10 Let ¢ : A — B be a c.p.c. map from C*-algebra A to C*-algebra B. Then
lo(xp) = 9(x) () < lg(xx*) = p(x)@(x*) 2] y] for all x, y € A.
The following lemma is taken from [28, Lemma 3.5].

Lemma 2.11 Let A, B,C be C*-algebras, let a € Ag,, and let € > 0. Suppose that v :
A - Band ¢:B— C are c.p.c. maps and ||¢ o y(a*) — ¢ o y(a)?| < e. Then, for all
beB,

lp(w(a)b) = p(y(a))g(b)] < €/*[b]| and |g(by(a)) ~¢(b)g(y(a))] < b].

Proof We will only show the first inequality. The proof of the second is similar. We
have

0<9(y(a)®) - 9(y(a))® < p(y(a®)) - p(y(a))* < e.
Thus, lo(w(a)?) - ¢(v(a))?|<e. By Lemma 210, we  have
lo(y(a)b) -~ 9(y(a))g(b)] < £/2[b]. u
Some versions of the following statements are well known (which can also be
derived by using Lemma 2.11 in the case of c.p.c. maps).
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Lemma 2.12  For any C*-algebras A and B, any p.c. map (resp. c.p.c. map) ¢ : A — B,
any projection p € A, any 8 € (0,1/8), if |@(p) — ¢(p)?*| < 6, then there exists a p.c.
map (respectively c.p.c. map) y : A — B satisfying

(1) y(p) is a projection in C*(¢(p)) and
) (9= )lpapl <582

Proof If|p(p) - ¢(p)?*| <8 <1/8,0onehassp(¢(p)) c [0,4] u[1-1n,1],wheren =
20 o 4 Thep
1+V/1-48 242

] o, for t € [0, 7],
h(t)_{ 1/tY2, forte[1-n,1]

is a continuous function on sp(¢(p)). Let ¢ := h(¢(p)). Define a positive linear map
(respectively c.p. map) y: A — B by x — co(pxp)c for all x € A. Then e := y(p) =
h(o(p))*¢(p) is a projection in C* (¢(p)). It follows from [50, Corollary 1] that v is
a p.c. map (respectively c.p.c map). For x € (pAp)!,, by Kadison’s generalized Schwarz
inequality [24, Theorem 1],
(1= )e()[* = [(1-)g(x)*(A- )] <[ (1= )p(x*) (1~ )]
<[A-)p(p)(A-)f <.

Then, for x € (pAp)!,, one estimates

lo(x) =y ()l = l9(x) = co(x)e] < (1= c)p(x)[ + e[ lp(x)(1 =€)

1
1/2
<y’ (1+ ).
ol
_ 1/2 1 \_ _ 4 1172 1/2
Therefore, (¢ — ¥)|papll <27 (1+\/1_7) \/2+\/§(1+\/ﬁ)6 <587, |

Definition 2.13 Let A be a C*-algebra and let M (A)+ := Uyuen My (A)4. For x €
M, (A), we identify x with diag(x,0) € M,,,,(A) for all m e N. Let a € M,,(A),
and b € M,,(A),.Define a ® b := diag(a,b) € M4 (A)+. If a,b € M, (A), we write
a $a b if there are x; € M, (A) such that lim;_, o |a@ — x]bx;| = 0 [10]. If such {x;}
does not exist, then we write a £4 b. We write a ~ b if a $4 b and b $4 a hold. The
Cuntz relation ~ is an equivalence relation. We also write a $ b and a ~ b, when A
is given and there is no confusion. Set W(A) := Mo (A)+/ ~a. Let (a) denote the
equivalence class of a. We write (a) < (b) if a $4 b. (W(A),<) is a partially ordered
abelian semigroup. W(A) is called almost unperforated, if for any (a), (b) € W(A),
and for any k € N, if (k +1){a) < k(b), then (a) < (b) (see [46]).

Let k € N be an integer. We write k(a) z (b) if Her(b) contains k mutually orthog-
onal elements by, b,,. .., by such thata $ b;,i=1,2,.. ., k.

If B c Aisahereditary C*-subalgebra, a,b € B,,thena $4 b < a $p b.

Definition 2.14 Denote by QT (A) the set of two-quasitraces of A with || 7| = 7(14) =
1 (see [1, IT 1.1, IT 2.3]) and by T(A) the set of all tracial states on A. We will also
use T(A) as well as QT (A) for the extensions on My (A) for each k. For € QT (A),
define a lower semi-continuous function d, : Mx(A), - C, a = lim, .o 7(fi/x(a)).
The function d, is called the dimension function induced by .
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Definition 2.15 Let A be a unital C*-algebra. We say that A has strict comparison (for
positive elements), if, for all a, b € My (A)+, a $ b, whenever d,(a) < d,(b) holds for
allTe QT(A).

3 Asymptotical tracial approximation

Definition 3.1 (Asymptotical tracial approximation) Let A be a unital simple
C*-algebra, let P be a class of C*-algebras. We say A is asymptotically tracially in P, if
for any finite subset F c A, any € > 0, and any a € A, \{0}, there exist a C*-algebra B
inP,cpcmapsa:A—B,B,:B—-Aandy,: A— A(neN),such that

(1) x ~¢ pu(x) + Bpoa(x) forallx e Fand forall n e N,

(2) aisan (F,¢)-approximate embedding,

(3) limyoo [Bu(xy) = Bu(x)Bn(¥)| = 0and lim,.co |Ba(x)| = x| forall x, y € B,
and

(4) y,(14) SaaforallneN.

Remark 3.2 Let us point out that in the definition above, we may assume that J is a
finite subset of AL, € € (0,1), and |a|| = 1, without loss of generality.

Asymptotical tracial approximation may also be defined for nonunital C*-algebras
as well as for nonsimple C*-algebras. These will be discussed in a subsequent paper.

Suppose that P has the property that, if A € P, then M,,(A) € P for all integer n > 1.
Then, it is easy to see that, if A is asymptotically tracially in P, then M, (A) is also
asymptotically tracially in P (cf. [31, Theorem 3.7.3]). Also see Theorem 9.11.

There are a number of properties in the C*-algebra theory which are known to
be preserved by asymptotic approxiamtion. We would like to exploit this further by
studying asymptotic tracial approximation as defined in Definition 3.1. We show that
some of these properties are even preserved by asymptotic tracial approximation.
Section 4 gives an incomplete list of them. Theorem 9.5 further reinforce this point
of view.

One may notice that, in Definition 3.1, B is not a C*-subalgebra of A. This is
different from the conventional tracial approximation. On the other hand, Propo-
sition 3.10 shows the similarity between asymptotic tracial approximation and the
conventional tracial approximation. Proposition 3.10 also justifies the terminology.
This may also partially explain our motivation. It is worth to point out that the
condition (2) in Proposition 3.10 shows that the map y, is approximately orthogonal
to 8, o a. Moreover, as in the conventional tracial approximation, if A does not have
(SP) property, then asymptotic tracial approximation becomes local approximation, a
fact that will be used several times in this paper.

Remark 3.3 Let P, be the class of finite dimensional C*-algebras and let P; be the
class of C*-algebras of one-dimensional NCCW complexes (see [13] for definition of
one-dimensional NCCW complexes), respectively. Since C*-algebras in Py as well
as in P; are semiprojective (see [13]), we will show in Proposition 3.11 that A is
asymptotically tracially in Py is equivalent to that A has tracial rank 0 (or A is tracially
AF), and A is asymptotically tracially in P, is equivalent to that A has generalized
tracial rank 1.
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Definition 3.4 Denote by € the class of exact C*-algebras and by N the class of
nuclear C*-algebras. For each n e Nu {0}, let N, be the class of C*-algebras with
nuclear dimension at most #n (see Proposition 5.11). Let Cz be the class of Z-stable
C*-algebras, let Cz s (and Cz ;) be the class of separable (and simple) Z-stable
C*-algebras, let Nz be the class of nuclear Z-stable C*-algebras, let N s (and N, ¢ 5)
be the class of separable (and simple) nuclear Z-stable C*-algebras, respectively.

Example 3.5 Let A be a unital separable residually finite dimensional C*-algebra,
i.e., there exists a sequence of finite dimensional representations {7; } of A such that
{m;} separates the points in A. Let us recall the construction in [12]. For instance, A
can be the full group C*-algebra of the free group of two generators. Let n; be the
dimension of 7t; (i € N), let m; =1and let m; = Hj-;i(nj +1)fori>2. ForeachieN,
define an injective *-homomorphism

hi:A® My, > A® My,,,, x> x® (m ®idy, )(x).

Let B :=lim; .00 (A ® My,,, h;), then B is simple separable unital with tracial rank 0
([12], see also [31, Example 3.7.7]). In particular, B is asymptotically tracially in Ny. In
fact, Dadarlat showed that, for any unital infinite dimensional simple AF-algebra C,
one can produce a unital separable simple nonexact C*-algebra B with tracial rank 0
such that Ko(B) = Ko (C) as ordered groups (see [12, Proposition 9]). In [43], Niu and
Wang showed that, for some choices of A, B can be constructed to be a simple separable
unital exact C*-algebra with tracial rank 0 but not Z-stable (so it is asymptotically
tracially in Ny but not Z-stable). However, we will see later that B is asymptoti-
cally tracially in Cz ;. Actually, every simple separable unital infinite dimensional
C* -algebra which is asymptotically tracially in N, is asymptotically tracially in Ny
(see Theorem 7.18).

Definition 3.6 A class of C*-algebras P is said to have property (H), if, for any B € P
and any nonzero projection e € B, eBe € P.

The following lemma is well known.
Lemma 3.7 For any € > 0, there exists § > 0 such that, for any unital C*-algebras A,

and B, any C*-algebra C, and, any p.c. maps (respectively c.p.c. maps) ¢ : A - Cand y :
B~ C,if[p(1a) - 9(14)*| < 8 and |(p(1a) + y(18)) = (9(14) + y(15))*] < 3, then
there exist p.c. maps (resp. c.p.c. maps) ¢ : A - C and y : B — C, satisfying

(1) ¢(14), ¥(1p) are projections and $(14) Ly(1g) and

2) o - ¢l <eand|y-y| <e.

Moreover, if 9(14) is a projection, one can take ¢ = ¢.

Proof Let ¢ >0. Put ¢ = min{e/(144+/2),1/4}. There exists a universal constant

8 €(0,&/16) such that if ||@(14) — ¢(14)?] < & and [(¢(14) +w(15)) - (¢(14) +
v(13))?| < &, then

(e3.1) ly(15) - w(1)*| < (e1/5)* and [p(La)y(18)] < (&1/5)”.

By Lemma 2.12 and (e3.1), there exist p.c. maps (respectively c.p.c. maps) ¢ : A - C
and ¢ : B - C, such that

(i) ¢(14) and §(1p) are projections and
(ii) o - @[ <& and |y -y <er.
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Note that if (1, ) is a projection, then one can simply take ¢ = ¢. By (e3.1) and (ii),
one has |¢(14)¥(15) ] < (&1/5)* + 2¢; < 3¢1. Then

(€3.2) [9(15) = (1= 9(14))9(15) (1 - ¢(1a))] < 621
Thus, ((1-¢a)¥(s) (1= ¢(14)))* mse, (1= 9(14))¥(15) (1= $(14))-

Then (see [31, Lemma 2.5.5], for example) there is a projection
q€C*((1-9(14))¥(15)(1 - ¢(14))) such that

(€3.3) g -v¥(1s)] < 36¢.

Therefore, (see [31, Lemma 2.5.1], for example) there exists a unitary u € C (orin C,
when C is unital) such that |1 — u| < 361/2¢; < ¢/4 and u*§/(13)u = q. Define
B — C by y(x) = u*y(x)u for all x € A. One then verifies that ¢ and ¥ meet the
requirements. |

Proposition 3.8 Let P be a class of C*-algebras. Let A be a unital simple C*-algebra
which is asymptotically tracially in P. Then the following conditions hold: For any unital
hereditary C*-subalgebra B c A, any finite subset F ¢ B, any ¢ > 0 and any b € B,\{0},
there exist a C*-algebra C in P, a unital hereditary C*-subalgebra C of C, c.p.c. maps
a:B—>C,B,:C—>B,andy,:B— BnB,(C)* (neN), such that

(1) the map « is u.c.p., Bn(1c), y. (1) are projections, and 15 = 5,(1¢c) + yn(1p) for
alln eN,

(2) x ~g yu(x)+ Pnoa(x)forall x € F and foralln €N,

(3) «aisan (T, €)-approximate embedding,

() lim 180 5) = Bu(3)n )| = Oand e[ ()] = L foralxy €
an

(5) yn(1p) Sp b foralln e N.

If, in addition, P has property (H), then C is in P, whence every unital hereditary
C*-subalgebra of A is also asymptotically tracially in P.

Proof Without loss of generality, we may assume that 15 € ¥ c B' and € < 1. Let §; <
£/64 be the universal constant (in place of §) in Lemma 3.7 associated with ¢/64 (in

the place of £). Let 8 := o= min{e, (8:/5)%,1}.

Since A is asymptotically tracially in P, there exist a C*-algebra Cin P and c.p.c
mapsa:A—C,fB3,:C—Aand j,: A— A(neN)such that

(') x w5 Pu(x) + Bn oa(x)forallx € FandforallneN,
(2") aisan (T, 8)-approximate embedding,

(3) 1limproo | Ba(x¥) = Bu(x)Ba(3)] = 0, limyereo |Ba(x)| = x| for all x,yeC,
and
(4") y2(14) Sa b, foralln e N.

Since [&(15) — a(15)?[ < & (see (2')), by Lemma 2.12, there exists a c.p.c. map a :
A — C such that a(1p) is a projection and

(e3.4) a(x) - a(x)| < %Hxﬂ for all x € 13Alp = B.
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Let C:= a(13)Ca(1p) be a unital hereditary C*-subalgebra of C. We may view «
as a map from B to C. Then, by (2'), (¢3.4), and by the choice of §, « is an (T, ¢)-
approximate embedding. Thus, (3) in the proposition holds.

By (3'), we have lim,, .o |8 (1¢) = B (1¢)?| = 0. Then, by Lemma 2.12, there exist
c.p.c. maps f3,, : C - A such that f8,, (1¢) are projections and

(e3.5) IBulc = Bull = 0 (as n - oo).
By (e3.4) and (e3.5), without loss of generality, we may assume that, for all n € N,
(€3.6) B o @(x) ~5./8 B o a(x) forall x € .
Then, from (e3.6) and (1),
|7 (1) + B 0 a(15)) = (7n(15) + Bu 0 €(18))?] < &1.

By Lemma 3.7 and the choice of 8, for each n € N, there exists a c.p.c. map y,, :
A — A such that
(i) $.(1) is a projection and §,,(15) L3, o «(14) and
(i) [ - 7l < /64

By (ii), (€3.6) and (1'), we have 1 ~,/3; Jx(18) + [;’n o a(1g). Then there exist uni-
taries u, € A (n € N) such that |14 — u, | < v2¢/32 and u* (§,(15) + P 0 a(15) )up =
1p (see [31, Lemma 2.5.1]). Define c.p.c. maps y,, : B — Bby y,(x) := u} 9, (x)u,, and
define c.p.c. maps 8, : C - B by ,(x) := u},(x)u,. Then (1) in the proposition
holds. By (3'), (e3.5) and the fact that u,, are unitaries, condition (4) in the proposition

holds.
By (ii) and the fact that |14 — u,| < \/2¢/32, we have
(€3.7) |V = Ful < €/4 and | By — Bal < €/4.

Then, by (e3.7), (3.6), and (1), condition (2) in the proposition holds.
By the fact that y,(15) is a projection, (e3.7), and [46, Proposition 2.2], we

4"
have y,(1g) ~ fi/a(yn(18)) S yn(18) S b. Thus, (5) in the proposition holds. The
proposition follows. ]

The following lemma is well known.

Lemma 3.9 Let A be a C*-algebra, ac A, and let p e A be a projection with
P Sa a. Then there exists s € A such that p = s*as. Moreover, if {a,} € I*(A), and
{pn} €1 (A) is a projection such that oo ({Pn}) Si=(a)jco(a) Too({@n}), then there
exists {s, } € [°°(A) such that s’s, = p, and s,s} € Her(ay) for all large n.

Proof Since p<$aa, there exists re A such that |p-r*ar|<1/2. Then
|p — prrarp| <1/2. Therefore, pr*arp is an invertible positive element in pAp.
Hence, by functional calculus there exists b€ (pAp), with |b] < /2 such that
p =bpr*arpb. Choose s = rpb. Then p = s*as.

For “Moreover” part, by what has been proved, there is t € I*°(A)/co(A) such that
Too ({Pn}) = t*14(a)t. Then there exists {¢,} € I°°(A) such that | p, — (¢t,)*at,| <
1/2 for all large n. Thus, by what has been proved, there is 7, € A (|7, < V2|t ])
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such that p,, = r;;ar, for all large n. Let s, = a,, r,. Then s)s, = p, and g, = 5,5, =
ai,/zrnr;ah/z € Her(a,). [

The following proposition provides another picture of Definition 3.1.

Proposition 3.10 Let A be a simple unital C*-algebra and P be a class of separable
C*-algebras with Property (H). If A is asymptotically tracially in P, then the following
holds:

For any finite subset F c A, any €>0, and any ac A, \{0}, there exists a
C*-subalgebra B c 1°°(A)/co(A) with unit 15 which is strictly embedded such that B
in P, and (recall notations defined in Notation 2.6)

(1) 1pia(x) ~¢ ta(x)1p forallx € T,
(2) 1pta(x)lp € Band |[1p1a(x)1g| > |x|| — € for all x € F, and
(3) ta(la) = 1B Si=(a)/co(a) La(a).

If P is a class of separable nuclear C*-algebras, then converse also holds.

Proof Assume that A is asymptotically tracially in P. Let F c A be a finite subset
with 14 € F,let e € (0,1),let a € A, with |a| =1, and let § := £*/4. By Proposition 3.8,
there exist a unital C*-algebra Bin P, c.p.c. mapsa: A - B,,: B —> A,andy, : A —»
An B, (B)* (neN)such that

(I') aisu.cp., Bn(1p) and y,(14) are projections, and 14 = $,(1g) + yn(14) for all
neN,

(2") x ws yu(x) +Proa(x)forall x e FandforallneN,

(3') aisan (F,§)-approximate embedding,

() 1Mo |B(9) — Bu()Ba(3) ] = 0 and limyoce [Ba (x)] = |1 for all x,y €
B, and

(5") yu(14) Sa fij2(a) forall n e N.

Note that (4’) induces a strict embedding B:B —I*(A)/co(A), x~
oo ({Bn(x)}), and that (2") shows that, for any x € &,

1B(1B)ea(x) = ta(x)B(16) =liﬁS£P IBnoa(la)x —xPnoa(la)]

<28 +limsup B, 0 «(14) (ya(x) + Bn o @(x)) = (yn(x) + B o a(x))Bn 0 a(14)|

20 +Timsup B, 0 6(10)6(a(x)) ~ Bu(a(x))f 0 (1)
=20+ hfis:jp [Ba(a(la)a(x) —a(x)a(ly))| <46 <e.

Thus, (1) of the proposition holds. For any x € &,
[B(18)1a(x)B(15) — Bo a(x)| = limsup | B4(15)xBn(15) = Bn o a(x)]

<d +liiris£p 1B (18)(yn(x) + Bnoa(x))Bn(1) = Pn o a(x)]
=0 +li1:1,s£p |Bn(18)Bn 0 a(x)Bn(1p) = Puoa(x)|= & <.
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Thus, B(1p)1a(x)B(1p) € B(B). By the estimation above, (4'), and by (3’), we also
have

[B(15)1a(x)B(18)| 2 [Bo a(x)] = & = a(x)] - & > x| =28 > | x] - &.

Thus, (2) of the proposition holds.

By (1), (5), and Lemma 3.9, there exist partial isometries s, € A such that
14 = Bu(1g) = 5,5, and s,s;, € Hera(fi/2(a)) for all large n. Let s = {s,} € [*°(A).
Then oo ($)* oo (s) = 14(14) — B(1p) and, since f1/4(a)f1/2(a) = fl/z(a),

(€3.8) Moo ($)T00 (8)" = oo ({805, }) = 7o ({ fiya (@) 305, f1y4(a) })

(e3.9) = fiya(ta(@)) oo (ss™) fiya(1a(a)) € Herpee a)/cy(a) (1(a)),
which implies that (3) of the proposition holds. This proves the first part of the
proposition.

For the second part, let us assume that P is a class of separable nuclear C*-algebras
and consider the converse. Let F ¢ A! be a finite subset, let ¢ > 0, and let a € A, with
la] =1.Let 8 := ;& and let F := F U (F - F). Suppose that (1), (2), and (3) hold for 7,
d, a, and some unital separable nuclear C*-algebra B € P. By (2) and the fact that B
is nuclear, and by a consequence of Arveson’s extension theorem (see [31, Theorem

2.3.13]), there exists a c.p.c. map a’ : [°°(A)/co(A) — B such that
(e3.10) 1pta(x)1p 725 & (114 (x)1p) forall x € F.

Define a c.p.c. map a : A - Bby x — o' (1g14(x)1p). For x, y € F, by (3.10) and (2),
we have |a(x)|| > [1pra(x)1p] = 28 2 | x| — 35, and
a(x)a(y) (‘;3‘.11(;)) 1ia(x)1pia(y)lp 'S; 1gia(xy)lp (2;;) a(xy).

Thus, (2) in Definition 3.1 holds. Since B is nuclear and separable, by the Choi-Effors
Lifting Theorem (see [9, Theorem 3.10]), there exists a c.p.c. map 8 : B - [*°(A) such
that 7., o § = idg. Let 8, : B - A be the nth component of 8. Applying Lemma 2.12,
we may also assume that f8,(15) is a projection for all large n. Since f8 is a strict
embedding, {8, } satisfies (3) in Definition 3.1.

Define a c.p.c. map y,: A— A by x » (14 - B,(15))x (14 — B (15)). Note that
yu(14) is a projection for all large n, and 7o ({y»(14)}) = 1(14) — 15. By (3) and
Lemma 3.9, we may also assume, for all large n, y,,(14) $a a. Hence, (4) in Definition
3.1 holds for all large n.

By (1), forall x € J,

1a(x) ~25 (1a(1a) = 1p)1a(x)(ta(1a) = 18) + (1pea(x)1p)
~25 (1a(la) = 1g)1a(x)(1a(la) — 1) + a(x)
= oo ({14 = Bu(18) })1a(¥) 7o ({14 = Bu(1p)}) + a(x)
Moo ({(1a = Bn(15))x(1a = Bn(18)) } + o a(x))
= Moo ({yn (%) + B o a(x)}).

Therefore, x 744 y,(x) + Bna(x) for all large n. Hence, (1) in Definition 3.1 holds for
all large n. It follows that A is asymptotically tracially in P. [ ]
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Proposition 3.11 Let Py be the class of finite dimensional C*-algebras and P, be
the class of one-dimensional NCCW complexes. Suppose that A is a unital simple
C*-algebra. Then A is asymptotically tracially in Py if and only A has tracial rank 0,
and, A is asymptotically tracially in P, if and only if A has generalized tracial rank at
most 1.

Proof It is clear, from the definition (see Theorem 6.13 and Lemma 5.5 of [33]
and Definition 9.2, Remark 9.3 and 9.5 of [21]), if A has tracial rank 0, then A is
asymptotically tracially in P, and, if A has generalized tracial rank at most 1, then
A is asymptotically tracially in ;. We will show the converse of these statements.

Suppose that A is asymptotically tracially in P; (i =0,1). Let Fc A,e>0and a ¢
A,\{0}. By Proposition 3.10, there is B € P; such that (1), (2), and (3) in Proposition
3.10 hold for £/4 (in place of &).

Let:: B —> I°°(A)/co(A) be the embedding. Since C*-algebras in both Py and P,
are semiprojective (see Theorem 6.22 of [13]), there is a homomorphism ¢ : B - A
such that, with p = ¢(15),

(i) px~expforallx e J,
(ii) pxp €;/» ¢(B) and ||pxp| > x| - e forall x € F, and
(iif) 1- p < a (see Lemma 3.9).

If i = 0, then B is finite dimensional, so is ¢(B). Therefore, by (i), (ii), and (iii)
above, A has tracial rank 0.

Ifi = 1, then ¢(B) is a quotient of a B. Then, by Lemma 3.20 of [21], there is a unital
C*-algebra By c ¢(B) which is in P; such that

(i) pxp €. By for all x € J. Therefore, A has generalized tracial rank at mostl. m

The proof of the following is standard and can be found in [33, Theorem 5.3] (see
also [31, Lemma 3.6.5]).

Proposition 3.12 Let P be a class of unital C*-algebras which satisfy property (H).
Let A be a unital simple C*-algebra which satisfies the first part of the conclusion of
Proposition 3.10 (associated with P). Then any unital hereditary C*-subalgebra C of A
also satisfies the first part of the conclusion of Proposition 3.10 associated with P, i.e.,
for any finite subset F c C, any € > 0, and any a € C,\{0}, there exists a C*-subalgebra
B c 1°(C)/co(C) with unit 15 which is strictly embedded such that B in P, and

(1) 1pia(x) ~e ta(x)1p forallx € F,
(2) 1pta(x)1p € Band |[1p1a(x)1g| > |x|| — € for all x € F, and
(3) 1a(1a) = 1B Si(a)/co(a) La(a).

4 Properties passing by asymptotical tracial approximations

In this section, it will be shown that, for certain classes of C*-algebras P, if a unital
simple C*-algebra A is asymptotically tracially in P, then A is actually in P.

Definition 4.1 Recall that a unital C*-algebra A is finite, if for any nonzero projection
p €A1y Sa pimplies p =14. A is called stably finite, if A ® M, is finite for all n € N.
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Proposition 4.2 Let A be a unital separable simple C*-algebra.

(a) Let Py be the class of unial finite C*-algebras. If A is asymptotically tracially in Py,
then A € Py.

(b) Let P be the class of unial stably finite C* -algebras. If A is asymptotically tracially
in Psr, then A € Pgy.

(c) Let Q be the class of separable quasidiagonal C*-algebras. If A is asymptotically
tracially in Q, then A € Q.

Proof For (a), assuming otherwise and that there is a projection p € A and there is
veA such that v*v =14 and vv*:=p#1,. Since A is asymptotically tracially
in Pf, and Py has property (H), then by Proposition 3.8, for any &> 0, with
F = {14, p,v,v*,1- p}, there is a u.c.p. map « : A > B for some unital finite C*-
algebra B which is an (&, ¢)-approximate embedding.

With sufficiently small ¢, we may assume that there is a projection e € B such that

(ed) Ja(La) - a(p)| > 1-1/64,

(e4.2) a(v) a(v) ~6q a(14) =1p and a(v)a(v)" ~i64 a(p) ~1/64 €.

It follows from (e4.2) that 15 and e are equivalent in B, and from (e4.1) that |15 — ¢| >
1/2, which contradicts the assumption that B is finite. In other words, A is in Py.

For (b), note that Bin P implies M,,(B) in P for all n € N. Therefore, (b) follows
from (a) and Remark 3.2.

For (c), let F c A' bea finite subset and let & > 0. By Proposition 3.8, there is a unital
quasidiagonal C*-algebra B and a c.p.c. map « : A — B such that

(e4.3) Ja(a)| > (1-¢/4)|a| and |a(ab) - a(a)a(b)| < /4 for all a,beF.

Since B is quasidiagonal, by [57, Theorem 1], there is a c.p.c.
map fB:B—F (for some finite dimensional C¥-algebra F) such that

B =1yl -e/16 and [B(xy) - B(x)B(y)] <&/16 for all x,yea(F). Let
¢ = foa. Then ¢ isac.p.c. map from A to F. Foralla € &,

(ed4)  |o(a)| =[Boa(a)]>[a(a)|-e/16> (1-¢/4)|al -&/16 > |a] -&.

Moreover, for all a, b € &F.

(e4.5) ¢(ab) = f(a(ab)) ~eys f(a(a)a(b)) ~eps flala))B(a(b)) = ¢(a)e(b).

It follows from [57, Theorem 1] that A is quasidiagonal. [
The following is taken from the proof of [30, Lemma 2.4].

Lemma 4.3 (cf. [30, Lemma 2.4]) Let A be a separable nonelementary simple
C*-algebra. Then there exists a sequence {d,} in A, such that |d,| =1,
(n+1)(dns1) 2 (dn) (recall the Definition 2.13) (n€N), and, for any x € A.\{0},
there exists N € N such that (dy) < (x).

Proof The proof is contained in the proof of [30, Lemma 2.4]. Let {x, } be a dense
sequence of the unit sphere of A, let z, = (x%x,)"? and y, = fij2(zn), n € N. The
proof of [30, Lemma 2.4] shows that, forany x € A, \{0}, (we may assume that || x| = 1)
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there exists N such that yy < x. Indeed, as exactly in the proof of [30, Lemma 2.4],
there is an integer N such that |x — zy| is sufficiently small, and, with 1/8 > ¢ > 0,

[ fe(x) = fe(an) | < €/4.
By [46, Proposition 2.2],

(e4.6) YN S fija(2n) S fepa(fe(zn)) S fe(x) S x.

Now let d; = y1/||»1]|. There are two mutually orthogonal nonzero elements z11,2; 5 €
Her(d,) (as in the proof of [30, Lemma 2.4]). By [30, Lemma 2.3], for example, there
is d, € Her(d; ), such that |d,|| = 1and d, < y2, 21,1, 21,2 It follows that 2(d, ) = (d).
Suppose dy, d,, ..., d, have been chosen so that |d;| =1,d; S y; (j=12,...,n),
and (j+1)(djn)z(d;) (j=12,...,n—1). There are n+1 mutually orthogonal
nonzero elements z, 1,22, ., Zn,n+1 € Her(d,), (as in the proof of [30, Lemma
2.4]). By [30, Lemma 2.3], for example, there is d,,,; € Her(d, ), such that |d,.1| =1
and dys1 S Yne1s Znyis i = 1,2,..., 1+ 1. It follows that (n + 1){dy41) 2 (dn).
By the induction, we obtain a sequence {d,} such that |d,| =1, d, S y», and
n{dy+1) 2 (dn), n € N. By (e4.6), forany x € A, \{0}, thereis N such thatdy < yn $ x.
]

Proposition 4.4 Let P be the class of separable purely infinite simple C*-algebra.
Suppose that A is a unital simple C* -algebra which is asymptotically tracially in P. Then
A is a purely infinite simple C* -algebra.

Proof We may assume that A is not elementary. Let a € A, \{0}. It suffices to show
that 14 < a ([11], see also [40]). We may assume that |a| = 1. By applying Lemma
4.3 to Her(a), we obtain two nonzero mutually orthogonal elements ay and a; with
lao| =1and ||a;| = 1such that ag + a; S a. Let b = f,/,(a;) and let & := 1/2'°. Since A
is asymptotically tracially in P, by Proposition 3.10, there exists a unital C*-subalgebra
B c 1 (A)/co(A) which is strictly embedded such that B in P, and

(1) 1pta(b) ~e 1a(b)1,
(2) lBlA(b)lg €¢ B, HlBlA(b)lBH > Hb“ - &, and

(3) 1a(1a) = 1B Si=(a)/co(a) ta(fij2(a0))-
By (2), there exists an element b, € B, such that

(e4.7) Ipea(b)1p — by| < e =1/2".

Since B is purely infinite, by [47, Proposition 4.11], there is x € B such that
x* fij2(b1)x = 1p. There exists a sequence of projections p,, € A such that 77, ({p}) =
1, where 7o : I(A) » I°(A)/co(A) is the quotient map. Then, we obtain
{xn},{b1,n} € 1™ (A) (with e ({x,}) = x and by = 7106 ({1, })) such that

(e4.8) nh_glo |5 fij2(br,n)%n = pul =0 and limsup ||p,bp, — b1n| < e.

Then (e4.8) (see [46, Proposition 2.2] again) implies that, for large n,

(64.9) Pn S fl/z(bl,n) andfl/z(bl,n) S Pnbpn‘
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On the other hand, by (3) and Lemma 3.9, 1~ p, S fi/2(ao) for all large n. It follows
that, for all sufficiently large n,

(6410) lA:(l_pn)+pn Sfl/z(ao)+b:f1/2(a0)+f1/2(a1)Sa. ||

Remark 4.5 Let A be a unital separable simple C*-algebra and let P be the class of
unital purely infinite simple C*-algebras. Suppose that A satisfies the conclusion of the
first part of Proposition 3.10 with P above. Then the proof of Proposition 4.4 shows
that A is purely infinite.

Theorem 4.6  Let T be the class of unital C*-algebras B such that every two-quasitrace
of B is a trace. Suppose that A is a unital separable C*-algebrasatisfying the following
conditions: For any € > 0, any y > 0, and any finite subset F c A, there exist a unital
C*-algebra Bin T, and c.p.cmapsoa: A— B, 3,: B—> A, andy,: A - A(neN)such
that
(1) ¢y yn(c) +Buoa(c) forallce FandneN,
(2) aisan (F,n)-approximate embedding,
(3) limyooo [ B (b1b2) = Bn(b1)Bn(b2)] =0 and lim, oo [Ba(b1)[ = |ba] for all
by, b, € B, and

(4) sup{t(y,(14)) : 7€ QT(A)} < eforallneN.
Then Ae7.

In particular, if A is a unital separable simple C*-algebra which is asymptotically
tracially in T, then A € 7.

Proof Let 7€ QT(A). Fix x,y € Ay, and fix 1/2> ¢ > 0. Choose 0 < § < ¢ which
satisfies the condition in [1, II. 2.6].

Fix 0 < 77 < 8. Choose F = {14, x, y,x + y}. Let B, a, 8, and y,, be as above asso-
ciated with ¢, # and J. By Lemma 3.7, we may also assume, without loss of generality,

(5) |yn(a)Bnoa(a)—Buoa(a)y,(a)| <dforallae FandallneN.
Let w be a free ultra filter on N. Let ] := {{a,} € I*°(A) :lim,, |a,| = 0}. Note that
J is an ideal of I*°(A). Let m, : I°°(A) — [*°(A)/] be the quotient map. Let 7, :
1°(A)/] = C be defined by 7, (7, ({an})) :=lim,_, (a,) for all {a,} € I*(A).
Note that 7, € QT (1°°(A)/J) (see the paragraph above [1, Corollary I1.2.6]).

Define  an  injective  *-homomorphism  from S:B—->A, by
B(x) = my({B1(x), B2(x),...}) for all xeB. Then 7,0 is a two-quasitrace
on B (with | 7, o B] <1). Since Bisin 7,

(e4.11)
lim 70 Bi(a(x) + () = 70 0 f(a(x) + () = 10 o f(a(x)) + 70 0 fa(y)

(e4.12) =lim 70 gi(a(x)) + lim 70 i(a(y))

(e4.13) =lim(70 fi(a(x)) + 70 fi(a(y))).
Therefore, there exists m € N, such that

(e4.14) 7o Bm(a(x) + a(y)) v 70 fm(a(x)) + 7o fm(a(y)).
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Note that, for any a € A, [7(a)| < ||7]|a] < |a| (see [1, I1.2.5, (iii)]). Then
T(x+y) g T(Bmoalx+y) +ym(x +y))
(by (5) and [1, I1.2.6]) ~|xsyje T(Bm o a(x +y)) + T(ym(x + ¥))
by (4) ®|xiye T(Bm o a(x +y))
(by (e4.14)) ~ To Bm(a(x)) + 70 Bm(a(y))
®(lx+lye T Bm(a(x)) + 7(ym(x))

+ 70 Bu(a(y)) + (ym(¥))
(by (5) and [1, IL.2.6]) ~(|x|+|y|)e T(Bm(a(x)) + ym(x)) + T(Bm(a(y)) + ym(¥))
(e4.15) (by (1)) 2y 7(x) + 7(p).

Let &, 7 - 0. We have 7(x + y) = 7(x) + 7(y). It follows that 7 is linear. In other
words, T is a trace.

To see the last part, assume that A is a unital separable simple C*-algebra which
is asymptotically tracially in 7. We may assume that A is infinite dimensional. Then,
for any ¢ > 0, by Lemma 4.3 (cf. [31, 3.5.7]), there is a nonzero positive element a € A
with ||a|| = 1such thatsup{d.(a) : 7 € QT(A)} < e. By the Definition 3.1 and applying
what has been proved, we conclude that every two-quasitrace of A is a trace. [ ]

Corollary 4.7  If A is asymptotically tracially in &, in particularly, in N, then QT (A) =
T(A).

The proof of the following is taken from the proof of [31, 3.6.10] (see also [32,
Theorem 3.4], [19, 3.3], and [18, 4.3]). Recall that a C*-algebra A is called has
(SP) property, if every nonzero hereditary C*-subalgebra of A contains a nonzero
projection.

Theorem 4.8 (cf. [31, Theorem 3.6.10]) Let 8 be the class of unital C*-algebras with
stable rank 1. Suppose that A is a unital simple C*-algebra satisfying the following
condition: For any finite subset F c A, any € >0, and any a € A, \{0}, there exists a
unital C*-subalgebra B c 1°(A)/co(A) which is strictly embedded such that B in §,
and

(1) 1p1a(x) ~e 1a(x)1p forallx € F,

(2) 1pta(x)1p € Band |[1g1a(x)1g| > |x|| — € for all x € F, and

(3) 1a(1a) = 1B Si(a)/co(a) ta(a).

Then A in 8. Consequently, if A is asymptotically tracially in 8, then A in 8.

Proof Note that C*-algebras in 8 are stably finite (see [31, Proposition 3.3.4]). One
may assume that A is infinite dimensional. Let x € A. It will be shown that, for any
€ € (0,1/2), there exists an invertible element y € A such that |x — y| < &. One may
assume that |x|| <1 and x is not invertible. As A is stably finite (see part (b) of
Proposition 4.2), one may assume that x is not one-sided invertible. To show that x
is a norm limit of invertible elements, it suffices to show that ux is a norm limit of
invertible elements for some unitary u € A. Thus, by [31, Lemma 3.6.9] (also see [45,
Lemma 3.5]), one may assume that there exists a nonzero element ¢; € A, such that
cax =xc =0.
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First consider the case that A has (SP) property. Then, by [3], Lemma 3.6.6],
there are nonzero mutually orthogonal projections pi, p, € Her(c;). Consider
A;=(1-p1)A(1- py). Since A is simple and has (SP) property, there is a nonzero
projection p] € A; such that p; < p; (see, for example, [31, Lemma 3.5.6]). Note x € A;.
Since § has property (H) (see [6, Corollary 3.6]), by Proposition 3.12, A; has the
same property that A has, namely, there is a projection g € [*°(A;)/co(A;) anda C*-
subalgebra B of [*°(A;)/co (A1) with B € 8 and with 15 = g such that
(1) [qra, (x) - 1a,(x)q] < €/32,

(2) qa,(x)q €32 B, and
(3) 1a,(14,) = q Si=(a))/co(ar) L4 (P1) Si=(a)/co(a) ta(P1)-
Write x1 = qia, (x)gand x; = (14,(14,) — q)t4, (x) (24, (14, — q)- Then, by (1), one has

(e4.16) 14, (x) = (a1 + x2) || < €/16.
Since B € 8, there is an invertible element y; € B such that
(e4.17) [x1 = | < e/16.

By (3'), there is v € I°(A)/co(A) such that v*v =14,(14,) —q =1a(1a — p1) — q and
w* <ia(p1). Set yy = x5+ (e/16)v + (e/16)v* + (£/16)(1a(p1) — vv*). Note that
y3:=x + (¢/16)v + (&/16)v* has the form

( X2 (8/16)1/*)
(e/16)v 0 ’

One checks that y; is invertible in Herje (4)/c,(4)((ta(1a = p1) — q) +vv™). There-
fore, y, is invertible in Herje(4)/c,(4)(ta(14) — ). Hence, y; + y, is invertible in
1°°(A)/co(A). Moreover,

(e4.18) |2 = y2|| < &/8.
Finally, one has (by (e4.16), (e4.17), and (e4.18))

fta(x) =+ )|l < ra(x) = Ger +x2) | + [0 = ]l + %2 = 2|
(e4.19) <ef16 +¢/16 + /8 = ¢/4.

Let zel®(A)/co(A) be such that z(y,+y2) = (y1+y2)z =1i=(a)/co(a)- Let
{z(m)}, {y(n)} €17 (A) such that 7 ({2(n)}) =2 and 7 ({y(n)}) = y1+ y2.
Then, for all large n, |z(n) y(n) — 14| <1/2 and | y(n)z(n) - 1| <1/2. It follows that
y(n) is invertible for all sufficiently large n. By (e4.19), for all sufficiently large n,

[x=y(m)l <e.

This proves the case that A has (SP) property.

If A does not have (SP) property, one does not choose p; and p,. However, there is
a € A, \{0} such that Her(a) has no nonzero projection. Replacing p; by a above.
Since y,,(14) is a projection, y,(14) < a implies that there is s € A such that s*s =
yn(14) and ss* € Her(a) (see Lemma 3.9) which forces y,,(14) = 0. Thus, in this case,
one may assume that y,, = 0. Argument becomes simpler. Indeed, choosing A; = A,
then x ~, /16 X1 %16 Y1-

The last part of the statement follows the first part and Proposition 3.10. [ ]
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Lemma 4.9 Let'W be the class of unital C*-algebras whose Cuntz semigroup is almost
unperforated (recall Definition 2.13). Let A be a unital simple C*-algebra which is
asymptotically tracially in W and a,b, c € A, \{0}. Suppose that there exists n € N
satisfying (n +1){a) < n(b). Then, for any ¢ > 0, there exist a;, a € A, and a projection
p € A such that

1) a~¢ a; + ay,

(2) a1 54 b, and

(3) ax < |allp Sac.

Proof Without loss of generality, one may assume that a, b, c € A, \{0} and € < 1/2.

Let {e; ;} be a set of matrix units of M,,,. Then a ® lel eii SaeM,, b® Y €.

Let r = Z:‘;il rij®e;j€A® My, such that a® Z,'-fll eii Mefoa T (b ® X7 €ii)r.
Set

F= {a,b}U{rl”j,r:j : i,j:1,2,...,n+1}.

Let M := 1+ |r| and choose & := a3 ()7 - Note that
n+l n+l
(e4.20) r’(b® Z €i,i)T Nejo4 r*((b-081)+ ® Z e;i)r.
i=1 i=

Note that W has property (H) (see the line following Definition 2.13). Since A is

asymptotically tracially in W, by Proposition 3.8, for any & > 0, there exist a unital

C*-algebra B with almost unperforated W(B), c.p.c. mapsa: A — B, f3; : B— A,and

yi: A— An f;(B)* (i € N) such that

(1) aisau.c.p. map, f8;(1p) and y;(14) are projections, and 14 = f3; (1) + y;(14) for
allieN,

(2) x~msyi(x)+Bioa(x)forallx e FandallieN,

(3') aisan (¥, §)-approximate embedding,

(4) lim; oo |Bi(xy) = Bi(x)Bi(y) ] = 0 and limy.0 || Bi (x)[ = |Ix| for all x, y € B,
and

(5") yi(14) Sa cforallieN.

By (3') and (e4.20), for some sufficiently small & (< (m )*), one has

n+l n+l n+l
oc(a)®Ze,1 8/16(2 06(7‘,])@)6,]) (((X(b) 61)+®Zell)(z ‘x(rzj)@ez])'
i,j=1 i,j=1
By [46, Proposition 2.2], with R := (Z:’}’il «(ri,j) ®eij),in B® My,
n+l n+l

(a(a) -¢/8)+ ® Z; eii=((a(a)® Z; eii)—¢/8)s

pS R*(((X(b) - 81)+ ® ilei’i)R S (oc(b) - 81)+ ® zn:l €.

Since W(B) is almost unperforated, one obtains («(a) —&/8), $p (a(b) — 81)..
Hence, there exists s € B such that

(a(a) —/8)s mejos ™ (a(b) = &1)ys.
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Then, by (4'), there exists N € N such that
(e4.2) (Bn(a(a)) —e/8)+ ~eps Py ((a(a) —€/8)+) mepaa P (s™ (a(b) = 61)+5)

(e4.22) me32 P (s™) (Bn(a(b)) = 61)+Bn(s).
Applying [46, Proposition 2.2], one has
(e4.23)

(Bn(a(a)) —e/4)+ Sa Pn(s™)(Bn(a(b)) = 81)+ Bn(s) Sa (Bn(a(b)) = 01)s.

Since Bn(a(b)) + yn(b) ~s b, with § < 8y, applying [46, Proposition 2.2] again (not-
ing yn(b) L Bn(B)), one has

(e4.24)

(Bn(a(b)) = 61)+ < (Bn(a(b)) = 8)+ < (Bn(a(b)) = 8)+ + (yn(b)) = )+ Sa b.
Choose a1 := (Bn(a(a)) —€/4), ay == yn(a) and p := yn(14). Then, by (e4.23) and

(e4.24), one has a; $4 b. Note that (5') shows a, < |a|p $a c. Thus a;, a, p satisfy
(2) and (3) of the lemma. By (2'),

awg yn(a) +Pn(a(a)) ~ea yn(a) + (By(a(a)) —e/4)+ = az + ar.
So (1) of the lemma is also satisfied and the lemma follows. [ |

Theorem 4.10  Let A be a unital simple C*-algebra which is asymptotically tracially in
W (see Lemma 4.9). Then A€ 'W.

Proof Leta,be M, (A):\{0} with |a| =1= ||| for some integer m >1. Let n € N
and assume (n +1){a) < n(b). To prove the theorem, it suffices to prove that a < b.

Note that, if B € W, then, for each integer m, M,,(B) € W. It follows that M, (A)
is asymptotically tracially in W. To simplify notation, without loss of generality, one
may assume a,b € A,.

First consider the case that A has (SP) property. By Lemma 4.3, Her(fi/4(b))+
contains 2# + 1 nonzero mutually orthogonal elements by, by,. . ., by, such that (b;) =
(bo), i =1,2,...,2n. Since A has (SP) property, choose a nonzero projection ey €
Her(by). Replacing b by g(b) for some g € Co((0,1]), one may assume that beg =
eob = eg. Putc = b — ey. Keepin mind that b = ¢ + eg, ¢ 1 e, and 2n{ey) < c = b — ey.
One has

(e4.25) (2n+2){(a) <2n(b) =2n({b-ep) + (eo)) < 2n{c) + (c) = (2n +1){c).
By Lemma 4.9, for any ¢ € (0,1/2), there exist a;, a, € A, such that
(1) aw~ep a1+ az,
(ii) a; Sa ¢, and
(ili) a, < |a|p Sa eo-
By (i), (ii), and (iii), and applying [46, Proposition 2.2], one obtains (recall bey = egb =
€o)
(e4.26) (a-¢€); Say+aySc+ey=b.

Since this holds for every ¢ € (0,1/2), one concludes that a < b.
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If A does not have (SP) property, choose by € A;\{0} such that Her(by) has
no nonzero projections. From (7 +1)(a) < n(b), Lemma 4.9 implies that a ~, a; +
az,a; S band a, < p S by. Projectionlessness of Her(by) forces p = 0, whence a, = 0.
Thus, one arrives

(e4.27) (a-¢€)y Sa sb.

It follows a < b and the lemma follows. ]

5 Order zero maps and nuclear dimension

Definition 5.1 ([62, Definition 2.3]) Recall that a c.p. map ¢ : A — B has order zero,
if, forany a,b € A, with a-b = 0, one has ¢(a) - p(b) = 0.

We would like to recall the following theorem.

Theorem 5.2 ([62, Theorem 3.3]) Let A and B be C*-algebras, and let ¢ : A - B
be a completely positive order zero map. Let C:= C*(¢(A)) c B. Then there exists
a positive element h € M(C) n C" with |h| = |¢| and a *-homomorphism m, : A —
M(C) n{h} such that ¢(a) = n,(a)h for all a € A. If, in addition, A is unital, then
h= (p(lA) e C.

Proposition 5.3 Let ¢ : A~ B be a c.p. order zero map. Let h and n, be as in
Theorem 5.2. If A is simple, then the map a ® x = m,(a) - x defines an isomorphism
y: A® C*(h) 2 C*(¢(A)). Moreover, foralla € A, |¢(a)| = |¢]| - |4a].

Proof If |¢| =0, then h =0 and there is nothing to prove. Assume that | ¢| # 0.
Since A is simple, 7, is injective and 7, (A) is also simple.

By (the proof of) [62, Corollary 4.1], y gives a *-homomorphism from A ® C*(h)
to C*(p(A)). Since (A) c y(A® C*(h)), y is surjective.

Let us show that y is injective. Since A is simple, kery = A® I, where I is
an ideal of C*(h) (see [3, Proposition 2.16.(2) and Proposition 2.17(2)]). Let
f(h) el for some f e Co(sp(h)\{0}). Then a® f(h) e A®I=kery for all ac
A, which implies that 7,(a)f(h) =0 for all aec A. It follows that ¢(a)f(h) =
Ty (a)hf(h) = f(h)my(ayh = f(h)g(a) and g(a)f(h) = mg(a)f(h)h = 0. Thus,
f(h) L C*(¢(A)) = C. Since f(h) € M(C), this implies f(h) = 0. Thus, I = {0}. In
other words, y is injective.

Moreover, recall, from Theorem 5.2, |¢| = |h|. Then, for ac A, |¢(a)| =
[h-mg(a)] = [y(mg(a) @ h)| = |7y (a) ® h|| = [my(a)] - [B] = |a] - [o]. u
Remark 5.4

(1) For the case that A is a matrix algebra, the proposition above was obtained in the
proof of [28, Proposition 5.1].

(2) Considerp:CoC - CaC, (x,y) — (x,y/2). Then ¢ is an injective norm one
c.p.c. order zero map, but ¢ is not an isometry since ||@((1,2))[| =1<2 = [|(1,2)].
Thus, the last statement of Proposition 5.3 would fail without the assumption that
A is simple.

The following proposition shows the existence of inverse *-homomorphism for
norm one c.p. order zero map from simple C* -algebras.
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Proposition 5.5 Let A be a simple C*-algebra, B be another C*-algebra, and let
¢ : A— B be a nonzero c.p. order zero map. Then there exists a *-homomorphism

y:C*(9(A)) > Asuch thaty o ¢ = @] -ids and ¢ o ylg(a) = [ @] - idy(a).

Proof We will use the same notation as in Proposition 5.3, such as h, 7y, and the
isomorphism: y : A® C*(h) - C*(¢(A)), a® x = my(a) - x.

Note that C*(h) = Co(sp(h)\{0}) and |¢|| = || Define a *-homomorphism y :
A®C*(h) > Aby y'(a® f(h)) = f(|h])a for all a€ A and f € Co(sp(h)\{0}),
and definey =y’ 0 p™1: C*(9(A)) — A. Then, with the identity function 1 : sp(h) —
sp(h), foranya € A,

yog(a)=y oy (my(a)h) =y (a®1) =alh] = |¢]a.

Therefore, for acA, ¢oy(p(a))=¢oy oy (my(a)h)=¢oy'(a®h)=
o(|olla) = |¢|¢(a). The proposition follows. [

Proposition 5.6  Let A be a C*-algebra, F be a (nonzero) finite dimensional C* -algebra,
andlet o : F — A be an injective c.p. order zero map. Then there existsac.p. map f: A -
F such that 5 o a = idp.

Moreover, if a is an isometry, one may choose f3 to be a c.p.c. map.

Proof Write F=My, & &My, (n,ki,....k, €N) and «;:=a|y, : My, > A
(i=1,2,...,n). Then, by Proposition 5.5, there exists a *-homomorphism
Bi: C*(ai(My,)) > My, such that m& oaj=idy, . Then the map
B:C*(ay(My,)) @@ C*(ay(My,)) - F = My, & @ My, defined by
B((x1s...s%,)) = (ﬁﬁm),..., ﬁﬁi:ﬁ)) is a cp. map. Since a is a cp. order
zero map, C*(a;(Mg,)) are mutually orthogonal (i=1,2,...,n). Thus,
C*(a1(My,)) @ ® C*(ay(Myg,)) is a C*-subalgebra of A. By Arveson’s extension
theorem, f8 has a c.p. extension f8: A — F with 8o« =idp. Moreover, if « is an
isometry, then f3 is a *-homomorphism. Hence the extension 3 can be chosen to be a
c.p.c. map. |

Definition 5.7 Let F = My, @ --- ® M, be a finite dimensional C*-algebra. Let A be
a C*-algebraand ¢ : F — A be a linear map. Define

lolll := max{{lgla, | : i=1,2,....n}.

Definition 5.8 Let A be a C*-algebra and F be a finite dimensional C*-algebra and
let ¢ : F - Abea c.p. map. Fix n € N. Recall that the map ¢ is called n-decomposable
(see [28, Definition 2.2]), if F can be written as F = Fy @ --- & F,, (where F; is a finite
dimensional C*-algebra) such that ¢|F, is a c.p. order zero map (i = 0,1,...,n). If, in
addition, each ¢|r, is assumed to be contractive, then ¢ is called piecewise contractive
n-decomposable map.

Remark 5.9 Note that Theorem 5.2 implies the kernel of a c.p. order zero map is
always an ideal (also see [29, Lemma 2.7]). Thus, for a c.p. order zero map ¢ : F — A,
where F is finite dimensional, one can write F = ker ¢ @ F;, where F, is an ideal of F.
Note that |, is injective.

Proposition 5.10 Let A and C be C*-algebras, and B be a finite dimensional
C*-algebra. Suppose that «: A — B and f3: B — C are c.p. maps such that f3 is
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n-decomposable. Then there exist it < n € N u {0}, a finite dimensional C*-algebra B=
By @ - @ Bj; which is a summand of B, a c.p. map & : A — B, and a c.p. i--decomposable
map f3: B — C such that

(1) Bod=Poa,

(2) |&] < min{|B o af, o] - [[|[[]}, and

(3) /3|B,- is a c.p.c. order zero isometry (i = 0,1,..., 7).

Proof Let 71 be the minimal integer such that 8 is 7i-decomposable. Then we can
write B = By @ --- @ Bj;, (where each B; is a direct summand of B) such that S, is a
nonzero c.p. order zero map. By Remark 5.9, we can write B; = ker(f|5,) ® B;, where
B; is direct summand of B;. Then Bl5, is a nonzero injective c.p. order zero map (i =
0,1,...,7). Define B := By @ --- ® B;. Note that B is a direct summand of B.

Write B = My, ® -+ ® My, where m, ky, ..., ky € N. Let Pj: B - M, be the pro-

jection map. Set oc(j) = Pjoaand BV = ﬁ|M (j=1,2,...,m). Note that each ﬁ(j) is
a c.p. order zero map. Define @) := | (/) Hoc(f) and ﬂ(]) ”/3(:)”/3 =12,..

By Proposition 5.3, each /3 () isa c.p.c. order zero isometry. Note that

(e5.1) Boa(x)= Zﬁ(j) oa(x) = Zﬁ(j) o &) (x) for all x ¢ A.

=1 =1
Define c.p. mapsoc A—>B=M, & &M, byx B (@M (x),...,a™ (x))and § :
B=My, & & My, —>Aby(x1,...,xm)'—> i > B (x;).

Write, for each i, B; = @s, My, where S is a subset of {1,2,...,m}. Again, since
Bls, is a c.p. order zero map, B(My;) L B(My, ), if j# j' and j,j' € S; for each i
{0,1,...,7}. In other words, B[z, is a sum of mutually orthogonal c.p.c. order zero
isometries. Hence, f3| 3, is still a c.p.c. order zero isometry. Therefore, (3) holds.

For any x € A, by (5.1), we have o &(x) = Z;"zlf;’(j)(d(j)(x)) = foa(x). Thus,
(1) holds.

Let a € AL. Recall that () is a c.p.c order zero isometry (j = 1,2, ..., m). We have

2D (a)] = |FP (@ (a))] < | Zﬁ(’)(tx(’)( NI

(eS 1)

[Boala)] <[Beoal.

Thus, |&(a)| = max{|&?(a)|:j=1,2,....,m} < |Boal, which implies
[&| < ||B o «f. Also note that

Jé] = max{ & : j=1,2,..., m} = max{ e[ - [8D] : j=1,2,...., m)
2 <max{|a®]:j=12,....m}- 18l < Ja] - IIBI
So (2) holds. ]

Definition 5.11 ([52, Definition 2.2] and [63, Definition 2.1]) Let A and B be
C*-algebras and let h: A — B be a *-homomorphism. Recall that h has nuclear
dimension at most n, and denote by dimp, /1 < n, if the following conditions hold:
For any finite subset ' c A and any ¢ > 0, there exist finite dimensional C*-algebras
Fo,....,F,and,cp.maps 9: A - Fo®---®F,andy: Fy &--- & F,, > Bsuch that

(1) yoo(x)~, h(x)forallx e F,
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(2) |o] <1,and
(3) y|F, isac.p.c. order zero map, i = 0,1,...,n.

We say A has nuclear dimension at most #, and denoted by dimp,. A < n, if
dimp,cidg < n.

The following may be known to experts.

Proposition 5.12 Let h:A— B be a *homomorphism of C*-algebras and
neNu{0}. Then dim,, h <n if and only if the following holds: For any finite
subset F c A and any € > 0, there exist a finite dimensional C*-algebra F, c.p. maps
¢:A— Fandvy:F — Bsuch that

(1) yoe(x)~e h(x) forallx € F and

(2) vy is n-decomposable (see Definition 5.8).

Proof The “only if” part is trivial. For the “if” part, let I c A be a finite subset and
lete> 0. Set § := W Choose e € A, such that exe ~4 x for all x € F.

By our assumption, there exist a finite dimensional C*-algebra F, c.p. maps
¢ :A— Fand y: F — Bsuch that
(1) wop(x)w~s h(x)forallx e {eye: yeTF}u{e*} and
(2) v is n-decomposable.

Definea c.p. map ¢ : A > F by x ~ 1159 (exe) for all x € A. Then, for any a € A7,

o1 1 2y GYOY 1 )
lvog(a)l = ~lwogleae)] < —lyop(e)] < = ()] +d) <1
It follows
(e5.3) lyogl <1

By Proposition 5.10, there exist a finite dimensional C*-algebra F, and c.p. maps ¢ :
A — Fand ¢ : F - B, such that

") yog=yog,

") ¢l <lye¢l <1 and

(3") v is a piecewise contractive n-decomposable c.p. map.

Then, by (2) and (3"), ¥, ¢ and F satisty (2) and (3) of Definition 5.11. For all
xeJ,

h(x)

T (by (17)) ~ 1 by ) 1 N 1
7o9() 7 yod(x) = mpvoplexe) B h(exe) =y s

SERNYICOR

By the choice of §, we have h(x) ~, ¥ o ¢(x). Then, by Definition 5.11, we have
dimp, 1 < n. [

Corollary 5.13 Let A be a C*-algebra and let n € N. Then dimy,,; A < n if and only if
the following conditions hold: For any finite subset 3 c A and any € > 0, there exist a
finite dimensional C*-algebra F and c.p. maps ¢ : A — F and y : F — A such that

(1) yo@(x) me x forallx € F and

(2) vy is n-decomposable.
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Proposition 5.14  Let A, B, and C be C*-algebras, {e) }1ca be an approximate identity
of A, 9 : A— B, y: B — C be c.p. maps with |y o ¢| <1, and let e > 0. Suppose that
a €A, such that |y o ¢(a*) —yog(a)?| <eand be B such that b commutes with
{9(ea)}aca. Then

lim sup (9 ()6) ~¥(p(@))¥(p(e2)0)| < /7 o] and
@4)  limsup[y(bp(a)) - vlp(e)D)ylp(@)] < 1b.

Proof We will show that the first inequality holds. The second one holds by taking
conjugate of the first one. Put M := |a| + |a||>. Let 6 > 0. Choose § > 0 be such that

€55 (0CIyl+ [vllgl +1) + VM +D(Jy[+1)o+e) [b] </ [b] +6.

Let A, € A such that, for any A > A, any x € {a,a?},

(e5.6) e;/zxel/ ~g x and yo <p(e)t xe)t %) w5 W o ().

Fix A > ;. Note, for any x € A,, we have OS(p(e;/zxei/z) <|x|¢(er). Thus,

go(e/l\/zxe/\ ) e Herg(¢(en)). Note  that {E,:=(/n+9(er))  p(er) }nen
forms an approximate identity for Herg(g(ey)). It follows that
lim, -, o0 H(p(ei/zxel/z) - El,/zgo(e;/zxe;/z)
such that, for x € {a,a

EY | =0. Therefore, there exists 7 >0

(e5.7)

‘P(e)L xe)L )"’6 90(6/\)1/2

(n+ ()™ (e *xe)?) - (+ p(e2)) p(er) .

Define the following c.p. maps:
(e58) §:A>B, xv (n+p(en) ™ p(e)’xe}*)- (n+p(er)) ™ and

(€5.9) V:B—>C, xey(p(er)xq(e))?).
We claim that |¢|| < 1. Indeed, for any x € A,
[9G) | = [ (1 + @(en)) ™2 - (e *xe)) - (n+ p(e2)) ™|
(e5.10)
<[+ (en))™ - per) - (n+9(ex)) ™) = [9(er) - (1 + 9(ex)) '] <1.

We  also  claim  that ] <1 Indeed, for any xeB!,

19| = lw(p(er)xp(en) )] < [w(o(er)) < lwo glflex] <1 Thus, [§/] <1.
Note that, by (e5.7) and (e5.6), for x € {a, a*}, we have

(e5.11) G0 p(x) g0 v o p(e)*xe)?) w5 o p(x).
Then we have, applying (e5.11),

Fo@(a)® mu(yjns Vo ¢la) yog(a)
(by (e5.11) and [y o | < 1) ur(lylans o @(a)’me yo o(a’)
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(e5.12) (by (e 5.11)) N(|lyl+1)e ¥ O (/3(112).
Then,

¥(9(a)) - y(p(e)b) = y o p(a)y(p(er)bo(er)"?)
=yog(a)y(b)
(by (e 5.11)) »(jy|+1)8)6] ¥ © (a)y(b)
(by (e 5.12) and Lemma 2.11) NS W(p(a)b)
= y(p(er)*§(a)bo(er)"?)
= y(p(er)*¢(a)g(er)"?b)
(by (€57)) ~yyuro v () *ae))b)
(e5.13) (by (5.6)) ~|yjels]6 ¥(p(a)b).
By (e5.5), we have y(¢(a)) - y(¢(er)b) ~ai2,9 y(9(a)b). Thus,

limAsuP lw(p(a)b) —y(p(a))y(p(er)b)] < (2 +6)]b].

Let 6 — 0. The proposition then follows. ]

Theorem 5.15 Let A and B be C*-algebras, h : A — B be a *-homomorphism, and let
neNuU{0}. Then dim,yc h < n if and only if the following condition holds: For any
finite subset G c A, and any € > 0, there exist a C*-algebra C, a finite subset G c C,, a
finite dimensional C*-algebra F and, c.p. maps ¢ : C — F and y : F — B such that

W) h(9) e wo(9),

(2) v is n-decomposable, and o

(3) yog(xy) me yoo(x)-yog(y)forallx,yeGu(§-9).

Proof For the “only if” part,let C = A,let G = Gandlet M := {|z| : ze Gu (G- §)}.
Put 0 := min{l, M} Since dimypy¢ h < 1, by Definition 5.11, we can choose a finite
dimensional C*-algebra F and, c.p.c. maps ¢ : A — F and y : F — B such that
(') h(x) ~g yog(x)forallx e Gu(G-G)and
(2') v is n-decomposable.
Then, by (1), we have
(3) yoop(xy) v h(xy) = h(x)h(y) ¥ameo)p Yo p(X)yop(y)  for  all
ye5u(5-9).

Note that, by the choice of 8, we have (2M + 1+ 6)6 < . Thus, the “only if” part holds.

For the “if” part, let Gc AL be a finite subset and let ¢ > 0. There exists
81 > 0 such that, for all x € A} and for all y € A with |y| <2, if yx ~5 xy, then
xM2yx2 ngj4(niny yx. Choose 8 := min{ s, (5309 )%, (2)?}. Let e € Al be such
that

(e5.14) exeng x for all xe GU(G-9).

By our assumption, there exist a C*-algebra C, a finite subset G c C,, and a finite
dimensional C*-algebra F and, c.p. maps ¢ : C - F and  : F — B, such that
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(") h(§u{e}) co 7o $(5),
(2") ¥ is n-decomposable, and
(3") Yo p(xy) w5 Fog(x)-§og(y)forallx, yeGu(§-5).
By Proposition 5.10, there exist 71 < n, a finite dimensional C*-algebra F = Fy &
-+ @ Fj,and c.p. maps ¢ : C - Fand y : F — B, such that

(1) yog=jopand
(2"") ylg, is a c.p.c. order zero isometry, i = 0,1,..., 7.

By (1"), for each x € h(G U {e}), there exists a(x) € G such that x ~5 /o ¢(a(x)).
Then, by (1), we have

(e5.15) yop(a(x)) ~sx for all x e h(Su{e}).

Note that G c A',. Then, by (e5.15),

(e5.16) lyop(a(y))| <1+6 for all yeh(Gu{e}).
Combining (3"), (1), (¢5.15), and (e5.16), for any x, y € h(G), we have

(e5.17)
yog(a(x)a(y)) ~s yoplalx))yop(a(y)) ~a.ss xy o pa(y)) ~5 xy.

In particular,
(e5.18) [wog(a(x)a(y))| <1+ (3+9)d for all x,yeh(9).

Defineacp.map ¢ : C > Fbyx — m(p((x(h(e))xa(h(e))). Then, for any x €
CL, by (e5.18), we have

o lw(e(a(h(e))xa(h(e)))] _ [v(e(a(h(e))®)]
lyoe@)l = 1+(3+0)0 : 1+(3+0)0 <l

Thus,

(e5.19) lyoqf <.
Let x € h(§). Then

Vo pal)) = 7Y PN a(Dalh(e))
(by () and (1)) % 1355 (a(h(e)y o plax)alh(e)))
(by (3), ("), and (€516)) %5 {55 5w o gla(h(e)v
o p(a(x))y o 9(a(h(e)))
(by (€515)) g m

(e5.20) (by (e5.14)) ~4 G0 Nyg X.
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Also, for x € h(G), we have

yog(a(x)?)
= arasV o ela(h(e))a(x)a(h(e)))
(by(3 ):?d ) mwoq}((x(h(e))a(x))otpoq)((x(x)oc(h(e)))
Er DN mnd €310 sy o g(alh(e)) v o g(a(x))?
Yo g(a(h(e)))
(by (e 5.15)) h(e)x*h(e)
N48(1+5) 1+(3+6)0
by (e 5.14) P
by m: ) 1+(3+8)8 40 X,

(e5.21)

By (e5.21) and (e5.20), we have

(e522)  yo@(a(x)?) Masars) X Mos(zes) Wo §la(x))? for all x € h(G).

Let p; betheunitof F;, i =0,1,..., 7. Then each p; is a central projection of F. We
now apply Proposition 5.14. Recall ¢ : C - F and v : F — B are c.p. maps such that
[wo @] <1 (see (€5.19)). Thus, by (e5.22) and Proposition 5.14, there exists a positive
eler/nent ¢ € C! such that, for x € h(3), the following hold (note, (8(32 +228))? <
66'2):

y(9(a(x))) - y(9(c)pi) meou> ¥(9(al(x))pi)
(e5.23) =y(pip(a(x))) mesr2 Y(9(c)pi) - v(9(a(x))).
Note that y(¢(c)p:) = w(§(c)V2pip(c)"?) is a positive element, and, by (e5.19),
(e5.24) lw(@(c)pi)l = lw(@(c)?pid(c)*)] < ly(@(e)] < ] 1.

Also note that |y(¢(a(x)))| <1+8<2 for all x € h(G). By (5.23), y(¢(c)p:)
approximately commutes with {y(p(a(x))):x € h(G)} within 128"/2, and, by the
choice of § and 4;, we have

¥(@()p)? - y(@(a(x))) - y(9()pi)"* » e y(@(a(x))) - w(§(c)pi)
(€5.25) mes2 W(P(a(x))p;) for all x € h(9G).

By (2”"") and by Proposition 5.6, there exists c.p.c. maps 3; : B > F; such that
(€5.26) Bioylr, =idp, i=0,1,..., 1.

Define c.p maps (i= c 1) yi:A—>F; by

x> Bi (w(<p(c)p )1/2 h(x)-y(p(c)p; )1/2) and define c.p. map y:A—>F=
Fo® - ®F; by x = (yo(x),...,ya(x)). Forx € G,
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yoy(x) = z voyi(x) = z v o B (W(@()p)? - h(x) - y(§(c)pi) )

(by (e 5.20),(e 5.24)) &

R10(n+1)6 Z(:) yo Bi (W(()p) - y(p(a(h(x)))) - w(§(c)pi)'?)

N(by (e 5.25))

& ot 2w B (W3 a(h(x)))p0)

(0 (€220 p(LRCMpr £ z ¥(9(a(h(x)))p)= w(p(a(h(x)))

(by '(Ve 5.20))
@.27) (x).

Note, by the choice of § (< (W"H))Z), we have 10(n +1)8 + § +6(n + 1)82 +
109 < e. Thus, there exist a c.p. map y : A - F and a c.p. n-decomposable map ¢ : F —
A such that h(x) ~, o y(x) for all x € G. Finally, by Proposition 5.12, dimyyuc h < n.

]

Proposition 5.16 Let A and B be C*-algebras, h : A — B be a *-homomorphism and
let 1 : h(A) — B be the embedding. Then dimyp,, h = dimyy, 1.

Proof First, we note dimyyc ki = dimyyc (1 0 ) < dimpy ¢

Next, if dimpyc /1 = oo, then we are done. Hence, we may assume that dimpyc i = n
for some n e Nu {0}. Let G c h(A), be a finite subset and let & > 0. Then there exists
a finite subset G ¢ A such that

(e5.28) 1(9) =5 =h(5).

Choose M = max{||x|| +1: x € G} and 8 := '2“(‘1';[{;;2 Since dimpyc h < 1, there exist a

finite dimensional C*-algebra F, and c.p. maps ¢ : A - F and v : F — B such that
(1) yoo(x) ~s h(x)=1(h(x)) for all xeGU(G-G)u(5-G-6)u(5-G-G-9)

and
(2) yis n-decomposable.

Then (e5.28) and (1) show
(€5.29) 1(9) ce yo9(9).
By (1), forall x € Gu (G- G), we have
(€5.30) [yop(x)] <+[h(x)]<d+M
Therefore, using (1) and (5.30), we have
yoo(xy) ~s h(xy) = h(x)h(y) #(mz+6)5 h(x)¥ 0 9(y) Hsmz+s) ¥ o @(x)y o o(y).
Then, by the choice of §, we have
(e5.31) yop(xy) ~ wop(x)yog(y) for all x,yeGu(§-9).
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Then (e5.29), (2), together with (e5.31), show that (with A in place of C), the
conditions of Theorem 5.15 are satisfied. Therefore, we have dimp,. ¢ < n = dimp, h.
| |

The following corollary shows that the image of a *-homomorphism of finite
nuclear dimension must be exact.

Corollary 5.17 Let A and B be C*-algebras. If h : A — B is a *-homomorphism with
dim,,c h < oo, then h(A) is exact.

Proof By Proposition 5.16, the embedding ::h(A) - B satisfies dimpyct =
dimyy h < oo. Thus, ¢ is a nuclear map. It follows that h(A) is exact (see [47, 6.1.11]).
]

By [25, Theorem 2.8], every separable exact C*-algebra admits an embedding
into the Cuntz algebra O,. By [63, Theorem 7.4], one has dimp,. O, = 1. Thus, every
embedding of separable exact C*-algebra into O, has nuclear dimension at most 1.
Therefore, it seems to be interesting to observe the following statement.

Proposition 5.18 Let h : A — B be a *-homomorphism such that h(A) is a hereditary
C*-subalgebra of B. Then dimy,;,c h = dim,,,,c h(A). Moreover, if B is separable and h( A)
is a full hereditary C*-subalgebra of B, then dim,. h = dim,,. B.

Proof First, let us assume that h is surjective. Then the embedding i : h(A) - B is
the identity map idg. By Proposition 5.16, we have dimpyc h = dimpy ¢ = dimpyc idp =
dimyc B.

Now we assume that C := h(A) is a hereditary C*-subalgebra of B. Then by 5,
Proposition 1.6] (also see [51, Proposition 2.4]), dimyyc h = dimpy,c B¢, where k€ :
A — C is the homomorphism defined by h(a) = h(a) for all a€ A (but h: A -
B). Now since h€ is surjective, by what we have proved, dimpyc b = dimpy, he =
dimyyc h(A). Moreover, if B is separable and h(A) is a full hereditary C*-subalgebra
of B, by [63, Corollary 2.8], then dimpyc B = dimpyc h(A) = dimpyc h. [

Corollary 5.19 Let A be a C*-algebra and I c A be a closed ideal. If the quotient map
n: A > A/I has finite nuclear dimension, then A[I also has finite nuclear dimension.

6 A criterion for generalized inductive limits becoming finite
nuclear dimension

Definition 6.1 ([2] Generalized inductive system) Let A, be a sequence of
C*-algebras and ¢, : Ay > A, be a map (m < n). We say (A,, ¢m,n) forms a
generalized inductive system if the following hold: For any k € N, any x, y € A, any
A € C, and any € > 0, there exists M € N such that, for any n > m > M,
@) @mn(Pkm(x) + Pkm (1) = (9, (x) + P (¥))] < &
2) |@mn(Apk,m(x)) = Api,m(x)| <&,
3) |@mn(@rm(x)") = P (x)*] <&,
4) | @m,n(9r,m(X)9k,m(¥)) = 9kn(X) P, ()] < & and
(5) sup, [ @i,r(x)] < oo.

The system is called p.c. (or c.p.c.), if all ¢, , are p.c. maps (or c.p.c. maps).
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If (Ay,@m,n) forms a generalized inductive system, then the following is a
C*-algebra which we call it the generalized inductive limit of (A,, @ n):

oo

lirrln(An, Omn) = {7 ({@ni(a), pn2(a),...}):neN,ac A,,}”'H c I:IIA,,/EEAn,

where ¢, := 0 for m > n, and ¢, , :=ida,. For i € N, define (see [2, 2.1.2, 2.1.3])
Qirco 1 A > limy (A, @) By X = oo ({@i1(x), 9i2(x),... }).

Notation 6.2 Given a sequence of C*-algebras A, and a sequence of maps ¢, : A, —
Ay, for m < n, define @, to be the composition of @, Pm+1s - - > Pn_1:

Pm,n = Ppn-1°¢Py—20--0 Py A, Ay,

and define ¢, n := 0 for m > n, and define ¢, , := ida,. We say (A, ¢, ) forms a gener-
alized inductive system, if (A, Qm,n ) forms a generalized inductive system. Accordingly
lim, (A, @m,n) will be denoted by lim,, (A, ¢,).

Lemma 6.3 Let A, be C*-algebras and ¢, : A, > A1 be p.c. maps (or c.p.c. maps),
n=12,... Let om,, be defined as in Notation 6.2. If, for any keN, any € >0,
and any x,y € A}, there exists m > k such that, for all n>m, ¢ ,(x)@kn(y) e

Omon(Pk,m (X)Qkm(¥)), then (A, ¢n) forms a p.c. (or c.p.c.) generalized inductive
system.

Proof Since ¢, are p.c. (or c.p.c.) maps, (1), (2), (3), and (5) in Definition 6.1 are
satisfied. It remains to show that (4) in Definition 6.1 holds.
Let k € N, let a,b € A}, and let € > 0. By the assumption, there exists M € N such

that, forany i > M, ¢ i (a) - 9k,i(b) ~¢/2 @u,i(9k,m(a) - @, (b)). Then, for any n >
m > M, we have

q’m,n((PkM(a) ’ q’k,m(b)) Rel2 q’m,n(‘PM,m(q’k,M(a) ’ (Pk,M(b)))
= oumn(@k,m(a) - 91, (D)) ~e2 Pion(a) - Pk, ().

Thus, (4) in Definition 6.1 holds for any a, b € Aj.. Since Alk . generates Ay as linear
space, then (4) in Definition 6.1 holds for any a, b € Ax. Lemma follows. [ ]

Lemma 6.4 Let (A;, ¢j,i) bea p.c. generalized inductive system of C*-algebras. Then,
for any n,k €N, any finite subset F c Ay, and any € > 0, there exists M > k(e N)
such that, for any j>i> M, any my,my <neN, and any x1, X2, . ..» Xmys Y1 Y25+ +»
Ym, €T,

i (H Pri(xe) - T1 ‘Pk,i()’r)) Ne Qi (H svk,i(xr)) “ Qi (H (Pk,i()’r)) :
r=1 r=1 r=1 r=1

Proof It suffices to show that, for any k, n € N, any € > 0, and any finite subset F ¢
A}, there exists M > 0 such that (1< [ < n), for j > i > M,

! !
(e6.1) @i i([Toxi (%)) ~e [T @k,j(xr) for all xi,xs,...,x € F.
r=1 r=1

This follows from Definition 6.1 and the induction on # immediately. The case n = 2
follows from (4) in Definition 6.1. Assume the above holds for 2, 3,. . ., n — 1. Then, for
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0 = ¢/3, there exists My > 0 such that, for any j > i > M,

v I
(e6.2) @i i([Tori(x)) ~s [ [ pr,j(xr) for all x, e F(A<r<l' <n-1).
r=1 r=1

For all x, € F, with y = Hi;l ¢ri(x,)and z = @i ; (xp41) (1< 1" < 1" +1< n), there is
M, > 0 such that, for K > j > My, ¢ x(9i,;(¥)9i,i(2)) ~5 ¢i,x(y)9i,k(z). Then
I'+1

(e6.2)
@ik ([T orj(x)) = 5 9ix(9ij(»)9i,j(2) s 9ix(¥)9ik(2)

r=1
’
(6.2) I'+1
A Hﬁ”k,K(xr)- u
r=1

We end this section with a sufficient and necessary condition for a c.p.c. generalized
inductive limit having finite nuclear dimension.

Theorem 6.5 Letn e Nu{0}. Let (A;, ¢;,;) be a c.p.c. generalized inductive system of
C*-algebras. Let A = 1im; (A;, ¢;,;). Then dim,,c A < n ifand only if the following hold:

Forany i € N, any finite subset G c A;, and any € > 0, there exist a finite dimensional
C*-algebra F, a c.p. map a : A; — F, and an n-decomposable c.p. map f3: F — A such
that

Pi0(x) me foa(x) for all x €.

Proof For the “only if” part, let us assume that dimp,c A <n. Let i e N, let § c A;
be a finite subset, and let ¢ > 0. There exist a finite dimensional C*-algebra F, a c.p.c.
map o' : A — F, and an n-decomposable c.p. map : F — A such that, for all x € G,
Pioo (%) me foa’ (@i 00(x)). Define a c.p.c. map a := &’ 0 @; o. Then, for all x € G,
Pi,o0 (X) e B0 (9i,00(x)) = o a(x).

For the “if” part, we will apply Theorem 5.15 to show that dimy,c id4 < n.

Let G c A, be a finite subset and let £ > 0. Choose N := 1+ max{||x| : x € G} and

choose § := min{1, 4(N7£+1)} There exist k € N and a finite subset § ¢ (Ax ;4 such that

(e6.3) {(x?: x € G} c5 9100 (8).

Since A = lim;(A;, ¢;,j) is a generalized inductive system, there exists M; > k € N
such that, for any j > i > M; ¢ Nand any x € §,

(e6.4) [9i,j (@i (%)) = 9i, ()] < 6.
Hence, for any i > M; € N, we have
(6.5) |@i00 (9,6 (%)) = Pro0 (x)[ < S forall x € §.

By Lemma 6.4, there exists M > M; € N, such that, for any j > M, any 1 < m, m, <
4 eN,and any x1, X2, . .., Xmy> V1> Y25 -« > Yy € 95

(e6.6)
P, (H Pkm(%r) - Hl <Pk,M()’r)) N P, (Hl <Pk,M(xr)) “OM,j (Hl <Pk,M(yr)) :
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Let G := {@rm(x)?: x € §} c (Ap),. Then, by (¢6.6), we have

(€6.7)  oum,j(xy) s oum,j(x)om,j(y) forallx,y e U (G- G) and forall j > M.
Consequently, we have

(6.8) PM,00(XY) %5 PM 00 (%) P 00 (y) forall x, y € GU (G- ).

Let Ny := 1+ max{sup . y{[¢n,j(x)[ : x € GU (G- 9)}}. By the assumption of the
theorem, there exists a finite dimensional C*-algebra F, a c.p. map « : Ay - F, and
an n-decomposable c.p. map f3 : F — A such that

(6.9) gDM,oo(x)%Nil Boa(x)foralx e Gu(G-9)u(3-G-5)u(5-5-5-9).

For any a € G, by (¢6.3), there exists x, € § such that a/? ~5 ¢y oo (x,). Then

a= (‘11/2)2 N(2N+6)8 Pk,o0(%a)? (by (e6.3))
N(2N+6)6 <PM,oo(§0k,M(xa))2 (by (e6.5))
e SDM,oo(SDk,M(xa)Z) (by (e6.8))
ng o (@i m(xa)’) € foalS). (by (6.9))

Thus, G c, Boa(G).Forx,ye Gu(G-G), by (6.9), (¢6.8), and (e6.9) again,

(€6.10)  Boa(xy) ~s PMo0(XY) ¥5 Pa00(X)PM,00(¥) 26 foa(x)Boa(y).

Therefore, B o a(xy) ~. Boa(x)Boa(y)forallx,yeGu(G-9G). Then, by Theo-
rem 5.15, we have dimp, id4 < n. Consequently, dimp, A < #. [ ]

7 Simple C*-algebra of finite tracial nuclear dimension

Definition 7.1 Let A and Bbe C*-algebrasandlet¢ : A -~ Bbeamap. Lete > 0. If, for
any a;, a, € AL with aja; = 0, we have | ¢(a;)¢(a,)| < & then we say ¢ is an e-almost
order zero map.

Definition 7.2 Let A be a C*-algebra and let F be a finite dimensional C*-algebra.
Let ¢ : F - A be a c.p. map and let n e NuU {0} be an integer. The map ¢ is called
(n, €)-dividable if F can be written as F = Fy @ --- @ F,, (where F; are ideals of F) such
that ¢|, is a c.p.c. e-almost order zero map for i = 0,1,..., n.

The next two propositions follow from the projectivity of the cone of finite dimen-
sional C*-algebras.

Proposition 7.3  For any finite dimensional C*-algebra F and any € > 0, there exists
0 > 0 such that, for any C*-algebra A and any c.p.c. map ¢ : F - A which is §-almost
order zero, there exists a c.p.c. order zero map y : F — A satisfying ||¢ — y|| < e.

Proof Let F be fixed. If such § described in the proposition does not exists, then,
there exist 9 > 0, a sequence of C*-algebra A,, and c.p.c. maps ¢, : F - A, such
that ¢, is 1/n-almost order zero, and, for any n € N and any c.p.c. order zero map
y:F — A,, wehave |¢, — y| > &.
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Define a c.p.c. order zeromap @ : F — ]2, An/ Doy Ay by x = 0o ({@n(x)}).
Then, by [58, Proposition 1.2.4], ® has a c.p.c. order zero lift ¥ : F — [T, A,. Let v,
be the components of ¥ corresponding to A ,,. Since lim, o ||@,(x) — v, (x)]||= 0 for
all x € F, and the unit ball of F is compact, there exists ng such that ||@,,, — ¥, | < €0/2.
This leads to a contradiction. Thus, § does exist and the proposition follows. [ ]

Proposition 7.4 Let F = My, ® My, @ --- & My, be a finite dimensional C*-algebra
with a standard generating set G¥ (see Notation 2.4) in the unit ball of F.

(1) For any ¢>0, there exists 06;(¢)>0 such that, for any
neNu{0}(n<r), any C*-algebra A and any (n,&(¢))-dividable c.p. map
¢ : F — A, there exists a piecewise contractive n-decomposable c.p. map y : F - A
satisfying ¢ - y| < e.

(2) For any € >0, there exists 6(¢) >0 such that, for any ne Nu{0} (n<r),
any >0, and any (n,0o)-dividable c.p. map a:F — A (for any C*-algebra
A), and any c.p.c. map f:B:= C*(a(F)) — C (for any C*-algebra C) which is
(a(GF), 8,(&))-multiplicative, B o a is an (n, o+¢)-dividable c.p. map.

Proof For (1), by Proposition 7.3, there exists 8, (&) > 0 such that, for any C*-algebra
A and any §,(¢)-almost order zero c. p c.map x : F — A, there exists a c.p.c. order zero
map y : F — A satisfying |y - v| < 5.

Now let ¢ : F > Abean (n, 6;(¢))-dividable c.p. map, i.e. F can be written as F =
Fy @ --- @ F,, such that each ¢|r, is a c.p.c. §(¢)-almost order zero map. Then n < r.

Let 71; : F — F; be the quotient map. Note that idr = Z}LO ;. Then ¢ o 7rjis a c.p.c.
1 (¢)-almost order zero map on F, j=0,1,...,n. By the choice of 61(8) there are
c.p.c. order zero maps Yo, Y1, ..., ¥, : F = A such that |y; - =
fore, y:= 3.7 o yjomj : F > Ais piecewise contractive n- decomposable c.p. map and
Iy =1 =T(v—9) o (Lo m)| = | Saly - g o m) o <

For (2), write F = Fy & F; @ - ® F,, such that «|, is a g-almost order zero map
(0 < i < n). One observes that if ,8 is (a(GF), 8)-multiplicative, then

(e71) IB(a(a)a(b)) - Boa(a)Boa(b)|<d for all a,begE.

Since GF is a standard generating set (see Notation 2.4) and the unit ball of F is
compact, for any ¢ > 0, one can find a universal constant §,(¢) > 0 independent of
a (but dependent of F) such that

(e7.2) sup [B(a(a)a(b)) - foa(a)foa(b)]<e

lallo]<1

if Bis (a(G%), 82(¢) )-multiplicative. Thus, o a|f, isa (o + €)-almost order zero map
(0<i<n). n

Definition 7.5 Let F be a finite dimensional C*-algebra and let & > 0. Define
A(F, ¢) := min{d;(¢), 82 (), 82(8:1(¢€)),1/2}> 0,
where 8;(¢), 6,(¢) and 8,(8;(¢)) are as given in Proposition 7.4.

Definition 7.6  Let A be a unital simple C*-algebra and let n € Nu {0}. We say that
id4 has tracial nuclear dimension no more than #, if, for any finite subset J' c A, any
€>0,and any a € A, \{0}, there exist a finite dimensional C*-algebra F, a c.p.c. map
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a : A — F, anonzero piecewise contractive n-decomposable c.p. map f§: F — A, and
acpcmapy:A— AnB(F)*, such that

(1) x ~¢ p(x) + Poa(x)forall x € Fand
(2) y(14) 54 a.
If id 4 has tracial nuclear dimension no more than n, we write Trdimp,.id4 < n.

Note that, for any simple unital C*-algebra A, we have Trdimpy id4 < dimpyidg =
dimpy A. Later, we will show that Trdimy,, id4 < # is equivalent to the statement that
A is asymptotically tracially in N,,.

Proposition 7.7 Let A be a unital simple separable C*-algebra and let n e Nu {0}.
Assume that Trdimp,ida < n. Then, for any finite subset I c A, any € >0, and any
a € A \{0}, there exist a finite dimensional C*-algebra F, a c.p.c. map a: A—F, a
nonzero piecewise contractive n-decomposable c.p. map : F — A, and a c.p.c. map y :
A — An B(F)* such that

(1) x = p(x)+Boa(x)forallx € F,

(2) y(14) $a a, and
(3) [|Boa(x)| > x| -eforallxed.

Proof Let JF c A be a finite subset, let ¢ >0 and let a € A, \{0}. Let Fc X;c X,
--- ¢ A be finite subsets such that U,,,»1 X,,, is norm dense in A. Since Trdim, . ids < n,
for each m € N, there exist a finite dimensional C*-algebra F,,, a c.p.c. map a,, : A —
F,,, a nonzero piecewise contractive n-decomposable c.p. map f,, : F, = A, and a
c.p.c. map y,, : A - An B,,(Fp)* such that, for all m,

(i) x~e ym (x) + Bm o am(x) forall x € X,,, and

(i) ym(la) Sa a.

Define a c.p.c. map T': A > [°(A)/co(A) by x = 7o ({p1(x),y2(x),...}) and
define a c.p. map ®: A — I1°(A)/co(A) by x = 7o ({f1 0 a1(x), f2 0 az(x),...}).
Since Y (A)L(Bm © am(A)), we have T(A)L®(A). Note that, by (i), we have 14 =
I' + @. It follows that ' and @ are *-homomorphisms.

If ® is a zero map, then 14 =T. Thus, there exists mgeN such that
14 = Y, (14) || < 1/2. Therefore, y,,,(14) is invertible in A. Then p,,, (14 ) LBy (Fomy )
implies B, (Fm, ) = {0}, which is contradict to that f3,,,, is a nonzero map. Hence, ®
can not be a zero map. In other words, ®(14) is a nonzero projection which has norm
one. Thus, there exist natural numbers m; < m, < --- such that

(e7.3) 1Bm, © &, (14| 21-1/i, i =1,2,...

Define a *-homomorphism V:A->I°(A)/co(A) by
X = oo ({Brmy © Ay (%), By © Amy(x),...}). By (e73) and Proposition 2.7, ¥
is a strict embedding. Therefore, there exists s € N such that

(e74) 1B, © o, (x)] > ] — & for all x €.
Set F:=Fy , &= &y, §:= Bm,,and y := y,,.. The proposition follows. [ ]

Remark 7.8 Note that condition (3) in Proposition 7.7 implies that f is nonzero.
Therefore, in the light of Proposition 7.7, in Definition 7.6, we may replace the
condition that 8 # 0 by condition (3) in Proposition 7.7.
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The following proposition is extracted from the proof of [63, Proposition 2.5] (see
also [28, Lemma 3.7, Proposition 3.8]).

Proposition 7.9  Let A bea C*-algebra, let n € N U {0}, and let 0 < & < 5. Let ag, a; €
A be norm one positive elements. Suppose that F is a finite dimensional C*-algebra,
a:A— Fisacp.c map and p: F — Ais a piecewise contractive n-decomposable c.p.
map. If B o a(ay)aq ~; B o «(ay), then there exist a C*-subalgebra F c F, a c.p.c. map
& : A — F, and a piecewise contractive n-decomposable c.p. map B : F — Hery(ao) such
that, for any x € A, with x < ay, | o a(x) - f o &(x)| <10(n +1)e/s.

Proof Write F=Fy & - @ F, such that each f|, is a c.p.c. order zero map (i =
0,1,...,n). Let y(x):[0,1] > {0,1} be the characteristic function of the interval
[€/2,1]. Since F is a finite dimensional C*-algebra, p := y(a(a,)) is a projection in
F. Note that p < jza(ay). Let F := pFp. Then f|; is still a piecewise contractive n-
decomposable c.p. map. Moreover, for each i, pF; p is a C*-subalgebra of F; with unit
pi = plg, p. Thus, B|pF,p is also a c.p.c. order zero map. Moreover,

1BlpE:p (PLE,) (1= a0)|* = |(1 - a0)B(plE,)* (1= ao)| < (1= a0)B(p)(1 - ao)|
< 81%”(1— ao)B(a(ar))(1-ap)| < R

Then, by [28, Lemma 3.6], there exists a c.p.c. order zero map f3; : pF;p — Her4(ao)
satisfying

(e75) |Blprp (%) = Bi(x)| < 8% for all x € (pF;p)’.

Define F:= pFp = pFop & - @ pF,p, and define a c.p.c. map a: A-F, x
pa(x)p, and define a c.pmap fB:F — Hera(ao), x = X1y fi(pixp;). Note that

ﬂ| pFip = Bi. Thus, ﬂ is a piecewise contractive n-decomposable c.p. map. It follows,
for x € A, with x < g;< 1,

(e76) |(1-p)a(x)] = (1= p)a(x)*(1-p)|"* <[ (1~ p)a(a) (1 - p)|"* < .
Then

n

Boa(x)-Poa(x)= Zﬁ(lF a(x)1g,) = Bi(pia(x)pi)

M: I

ﬁ(lF a(x)1F,) = Bi(1p, pa(x)plF,)

i

(by (e 75)) Ng(n+1)el/s Z ﬂ(lF; ‘x(x)lF;‘) - ﬂ(lFlp“(x)plFl)
i=0

(by (e 7.6) and B|F, are c.p.c. maps) ~y (4114 > B(1pa(x)1E,) - (1, a(x)1E,) = 0.
i=0
u

Proposition 710 Let A be a unital simple C*-algebra with Trdimy,,.ida < n for some
integer n > 0. Then, for any finite subset F c A, any € > 0 and any a € A, \{0}, there
exist c.p.c. maps ¢ : A~ Aandy: A— An @(A)*, afinite dimensional C*-algebra F,
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a c.p.c. map o : A — F, and a piecewise contractive n-decomposable c.p. map f3: F —
Her(¢(14)) such that

(1) x ~e p(x) +@(x) forallx € F,

(2) 9(14) and y(1,) are projections and 14 = y(14) + ¢(14),

(3) y(1a) Sa a,

(4) ¢ - Boa| <e and

(5) ¢ is an (F, €)-approximate embedding.

Proof Without loss of generality one may assume that Fc A'. Let
8= min{z%, (%)2} Since Trdimg,..ida <n, there exist a finite dimensional
C*-algebra Fy, a c.p.c. map a : A - Fj, a piecewise contractive n-decomposable c.p.
map ' : F; > A,andacp.c.mapy : A—> An S'(F)* such that

() xmsy'(x)+ B oa(x) forallx e Fu (F-F)u{la},

(2') y'(14) Sa a,and

(3) B oa(x)| = |x| - b forallx e F.

Since (1) holds for x =14 and y’(14) € f'(F;)*, one has

(e7.7) B oa(la) ms (B o a(la))>

It follows from Lemma 2.12 that there is a c.p. map ¢ : A — A such that, p := ¢(1,) is
a projection in C*(f" o a(14)) and

(e7.8) lo(x) - B o a(x)] <58Y%|x| for all x € A.

By (1) again, one has y’(14) ~5 y'(14)*. Applying Lemma 2.12 again, one also obtains
ac.p.c.map y: A - Asuch that q := y(14) is a projection in C*(y'(14)) and

(79) ly(x) -y (x)] < 58"2|x| for all x ¢ A,

Since y'(14)" o a(14) = 0, it follows that gp = 0. By (1'), (¢7.8), (¢7.9), and the choice

of 8, p+ g =14. It follows that 8’ o a(A) c pAp. Let F = oc(lA)Floc(lA)”.H and f8 =
B'|F,- Then F is a finite dimensional C*-algebra and 8 maps F into Her(¢(14)) = pAp.
Note that f is also a piecewise contractive n-decomposable c.p. map.

By (1), (¢7.8), and (€7.9), and by the choice of §, one checks that (1) and (4) hold.
Since p + g = 14, (2) also holds. Since y(14) € C*(y’(14)), by (2'), one concludes that
(3) holds.

By (1'), since the image of y’ is in B ¢(F;)*, one has

(e710)
Y ()Y (p) + Broa(x)p oal(y) = (y'(x) + B oa(x))(y' (¥) + B o aly))
~5(1+06) x(y'(y) + B oa(y))
nsxy gy (xy) + B oa(xy) for all x,yed.

Using the fact that the image of y is in Bn ¢(F;)* again, one obtains

(e7.11) B'oa(x)B oa(y) ~scrs) B oa(xy) for all x,yed.
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In other words, ' o « is (F, §(2 + &) )-multiplicative. By (e7.8) and the choice of §,
one checks that ¢ is (&, ¢)-multiplicative. Finally, for any x € F, by (e7.8) and (3'),

(e712) (o) msgue [B o a(x)| = |Boalx)] ~s |x].
Hence, (5) holds. [ |

Proposition 711 Let A be a simple unital C*-algebra and let n e Nu{0}. If A is
asymptotically tracially in Ny, then Trdimy,.ids < n.

Proof LetJ c Albeafinite subset,lete > 0andleta € A,\{0}. We may assume that
1 € F. Let § := ™MLe} Since A s asymptotically tracially in N,, by Proposition 3.8,

n+5
there exist a unital C*-algebra B with dimy,¢ B < #, and c.p.c. maps f3; : B — A, u.c.p.

maps o’ : A — B,and y; : A > An ;(B)* (i € N) such that
(1) x ~g pi(x)+Pioa’(x)forall x e FandforallieN,
(2) o isan (F, §)-approximate embedding,
(3) limio [[Bi(xy) = Bi(x)Bi(y)| = 0 and lim; oo || Bi (x)] = x| for all x,y € B,
and
(4) y;(14) SaaforallieN.
Since dimy,c B < n, there exist a finite dimensional C*-algebra F and a c.p.c.
map ¢ : B — F, and a piecewise contractive n-decomposable c.p. map y: F - B,
such that

(e713) x~s yo(x)foralxea(F).

By condition (3), there exists m € N such that ||8,, o a'(x)| > |a'(x)]|| - & for all
xeJF and B, oy : F—> Hera(Bm(B)) is an (n, A(F, §))-dividable c.p. map, where
A(-,-) is defined in Definition 7.5. Then, by the definition of A(F, §) and Propo-
sition 74, there exists a piecewise contractive n-decomposable c.p. map : F —
Her (B (B)) such that
(e7.14) IB~Bmoyl <.

Sety =y, and & = @ o &’. Then, by (1), (¢7.13), and (e7.14), we have
X ms p(x) + foa(x) for all x eTF.

Moreover, y(A) L B(F) and (by (4)) y(14) < a.
It remains to show that 8 # 0. By (2) and the choice of m, we have ||, 0 a’(14)| >

1-28. Then
(e 7.14) (e 7.13)
1Bogod (1a)| ~5 [Bmowogoa (1a)| =5 |Bmoa (la)]21-26.
Thus,  # 0. |

The proof of the following proposition is almost the same as the proof for finite
nuclear dimension case, see [63, Proposition 2.5].

Proposition 712 Let A be a simple unital C*-algebra with Trdimy,,.ida < n for some
integer n and let B c A be a unital hereditary C*-subalgebra. Then Trdimy,,.idp < n.

Proof LetJ c B! be afinite subset with 13 € F, let ¢ > 0 and let b € B, \{0}. Choose
1 > 0 such that

@15 ((epm)P<y2® and 10(n+ 1) ()2 <
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Since Trdimy, ids < #, there exist a finite dimensional C*-algebra F, a c.p.c. map
a: A — F, a piecewise contractive n-decomposable c.p. map f: F — A, and a c.p.c.
map y: A > An B(F)* such that
(1) x =~y p(x)+Poa(x)foralxed,

(2) y(14) $a b,and
(3) |Boa(x)| > ||x|| - n for all x € F (see Remark 7.8).

Since p(A) LB(F), by (1), ||Bea(lp)|<(1+7n). It follows that
Boa(lp)* < (1+1)pB o a(lp). Therefore,

(e7.16) |4 =18)B o a(1p)|* = [ (1a ~18)B o a(1p)* (14 ~ 18) |
(e717) <@+m)|(1a-1p)Boa(lp)(la - 1)

(e7.18) <(1+m)(a=15)(Beoa(lp) +y(15))(1a — 15)|
(e719) <@+n)((1a —1)15(1a — 1p) | +17) = (1+ 7)1

Since y is a c.p.c. map, a similar but simpler estimate shows that
(e720) [(1a = 18)y(x) [ < 1 for all x €.

By the choice of n and by Proposition 7.9 (le_tting aop = a; = 1p), there exists
a C"-subalgebra FcF, a cpc. map a:A—F, and a piecewise contractive
n-decomposable c.p. map 3 : F — Her (1) = B such that, for any x € B,

(€721) 1B o a(x) - o)l <100+ )((1+ ) /.
By (e7.21) and (3) and the choice of #, for x € &, we have

|Ba(x)] 2 x| - e

Define a c.p.c. map y: B > B, x — 1gp(x)1p. Then y(1p) $a (1) < p(14) $Sa b.
Since B is hereditary C*-subalgebra of A, we have y(15) $p b.
Finally, for x € F, by (7.20), y(x) ~y,12 13y (x)1p = j(x) for all x € F. Therefore,

X~y p(x) + B oa(X) Mig(uat) ((Len)yn)ssagrz P(X) + Ba(x) for all x €.
Note that 10(n + 1) ((1+ 1)7)"/'® + 242 < &. It follows that Trdimp,. idp < 7. ]

Proposition 7.13 (cf. [20, Proposition 3.4]) Let A be a unital C*-algebra and let X c
A be a finite subset. Suppose that, for each x € X, fi/,(x) is full in A. Then, there exist
0(Sx) > 0 and a finite subset Gx c A such that, for any unital C*-algebra B and any
u.c.p. map y : A — B which is (Gx, 0(Gx))-multiplicative, f,/,(y(x)) is a full element
of B for each x € X.

The following lemma is a construction of simple generalized inductive limit of
C* -algebras.

Lemma 714 Let {A;} be a sequence of unital separable C*-algebras and let ¢; : A; —
Aiyr beu.cp. maps (i € N). Let X; = {x;1,Xi2,... } ¢ AL, be a countable dense subset
Of AIH_, X,’)k = {x,-,l, . ,.x,"k} (l, ke N), and Yk = Ulgigk(pi,k(Xi,k). Then (Ai, gD,)
forms a generalized inductive system and lim;(A;, ¢;) is simple, if the following hold
forany k e N:
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(1) fij2(a) is full in Ay forall a € Fy := Yy 0 B%’I(Ak) (recall Notation 2.1) and
(2) @i is ex-multiplicative on Yy U (ulsjgk%k(ggk)) , where

I
£ = Egjgri{l,a(ggj)}

(see Proposition 713 for G5, and a(S,), see Notation 6.2 for ¢ r.).

Proof First we show that (A;, ¢;) forms a generalized inductive limit. Let k e Nu
{0}, y1,y, € A}, \{0} and &> 0. Then there exist f;,, € N such that y, Ne/a Xk,
and y; ~gy Xi, 1, Note that 372, &; < co. Thus, there is m > max{Kk, t;, t,} such that
Y iom €i < &/4.Then, forall j > m, by the choice of Y}, we have ¢ (X1, ), 9k, (%k,1,) €
Y;. By (2), for all i > m, ¢; is &;-multiplicative on {@x ;(xk,s, )> ¢k,i (xk,s, )} Hence,
Pm,j is >I7) &;-multiplicative on { @k (Xk.1,)s Pk.m (Xk.1,) }. Then, for all j > m,

Pr,i (1) 0k,j(2) = Om,j(@Pk,m (1)) - P, j (P, (¥2))
Ne/4 q’m,j(q’k,m(xk,tl)) : ?m,j(ﬁok,m(xk,tz))
Mot Pm(Pkm (¥ ) - Qrm (¥k,r,))

Neja Pm,j(Pk,m (V1) - Pkom(12))-

By the choice of m, we have ¢ j(y1) - ¢k,i(¥2) e @m,j(Pk,m (V1) - @k,m(y2)) for
all j > m. By Lemma 6.3, (A;, ¢;) forms a generalized inductive system.

Now we show that A :=lim;(A;, ¢;) is simple. It suffices to show that every norm
one positive element of A is full. Let a € A, with |a| = 1. Then, there exist k,s €
N such that |a — @k 0o (xk,s)| < 1/4. Let r > max{k,s} be such that |k ,(xx)| >
3/4. Then, we have ¢ ,(xgs) € F, =Y, OB%)I(Ar). Condition (2) shows that, for

all j>r, ¢, is Z{: e;-multiplicative on Gg,. By the choice of ¢; (i € N), the map
@r.00 18 0( G, )-multiplicative on Gg,. Then, by Proposition 713, fi/5(@k,c0(Xk,s)) =
S172(@r.00 (@1, (xk,5))) is a full element of A. Since |a — @k o0 (xk,s) || <1/4, by [46,
Proposition 2.2], fi/5(@k,e0 (Xk,s)) = ¢*ac for some ¢ € A. Thus, a is also a full element
of A. Since a is arbitrary, so A is simple. ]

The following is a construction of simple separable unital finite nuclear dimension
C* -algebras using generalized inductive limits.

Lemma 7.15 Let n e NU{0}. Let {A;} be a sequence of unital separable C*-algebras

and ¢; : A; > Ay beu.c.p. maps (i € N). Let X; = {x;1,%i2,... } € A}, bea countable

dense subset of A}, let X; i :={xi1,Xi2 ..., Xk} and let Y := Ucjcx @ k(X))

(i,k e N). Let Fy = C and let By : Fy — A; be the zero map. Then (A;, ¢;) forms a

generalized inductive limit and A :=lim;(A;, ¢;) is simple with dim,,. A < n, if the

following hold for all k € N:

(1) forallae Fy:= YN B%,I(Ak), fij2(a) is full in Ay,

(2) there exist a finite dimensional C*-algebra Fy, a c.p.c. map ay : Ay - Fy, and a
piecewise contractive n-decomposable c.p. map By : Fx — Ay such that ¢y (x) ~1
B o ag(x) for all x € Y, and

(3) ¢ is ex-multiplicative on

Yie U (Uiejek 9,k (S3,)) U (Viejer @ik (Bi-1(S57)))
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where

1 1
& = mm{l 0(9s,), A(Fj-1,-)} and
4K 1<jsk j

GFi-t is the standard generating set of Fj_y in Fjl-_1 (see Proposition 7.13 for G5, and
0(9s,), see Definition 7.5 for A(~, —), and see Notation 6.2 for ¢ i).
Proof By Lemma 7.14, (A;, ¢;) forms a generalized inductive system and A :=
lim;_ o (A;, 9;) is a simple C* -algebra.
To show dimp,cA<n, let ieN, ¢ > 0, and F c A}, be a finite subset. By the
definition of Y}, there exists m > i + 1+ 2 such that ¢;, m(&") Ce/a Y,
By (3), @m+1,00 18 X372 pms1 € multlpllcatlve on ﬁm(SF ). By the choice of ¢;, one

has Z] ms1 € < A(Fs 7) Then ¢41,00 © B is an (n, 81( ))-dividable map (see
Definition 75 and part (2) of Proposition 7.4). By Proposmon 7.4, there exists a
piecewise contractive n-decomposable c.p. map f3 : F,, — A such that

(e7.22) B = ¢mit,c0 © Bm| <1/m.

For any x € 7, there exists y € Y,, such that ¢; ,,(x) ~./4 y. Then

(2) (e 22)
Piroo (%) = Qo0 (Pi,m(x)) e Pm,oo () ~e Pmtlo0 © Bm o am(y) Boam(y)
(e723)  w: Boomopim(x).
Then, by Theorem 6.5 (with a,, © ¢; ,, in place of «), dimpyc A < 7. ]

Theorem 716  Let n € NuU {0}. Let A be a simple separable unital infinite dimensional
C*-algebra and Trdimy,.ids < n. Then, A is asymptotically tracially in Ny, s s (recall
Definition 3.4 for the class Ny s s).

Proof Let Jc B (As) be a finite subset with 1, €, let £€(0,1), and let
ae A \{0} with |a| =1 Since A is simple, unital and infinite dimensional, A
is non-elementary. Thus, there exist a sequence of norm one positive elements
@05 a1, ..., an,...in Hers(fi/2(a))+\{0} such that a;La;, i # j (see Lemma 4.3).

Let Ag := A. Let Fy := F and let ¢ := ¢/8. Since Trdimyy,cid, < 1, by Proposition
710, there exist two c.p.c. maps @q : Ag = Ag, Yo : Ag = Ag N @o(Ag)*, and a finite
dimensional C*-algebra Fy, and a c.p.c. map ag : A9 — Fo, and a piecewise contractive
n-decomposable c.p. map Sy : Fy — Hera, (¢o(14,)) such that
(0,1) x ~¢, Yo(x) + @o(x) for all x € Fy,

(0,2) ¢o(14,) and yo(14,) are projections, and 14, = yo(14,) + ¢o(14,)
(0,3) yo(1a,) Sa, @0

(0,4) |@o — oo ao| < €, and

(0,5) @o is an (Fy, &9 )-approximate embedding.

Define A; := Her, (¢o(14,)). Note that A; is a simple separable unital nonelemen-
tary C*-algebra, and there exists a; € A1, \{0} such that d; $4 a;. There exists a norm
one c.p.c. order zero map x; : M; = C — A;. Let Z; c y;(M;) be a finite subset which
isa 2 A(My,1)-net of y;(My}).

Let X; = {x1,1,X12,... } € A}, be a countable dense subset of A}, and let X ; :=
{x,j:1<j<k}, keN. Set Y] := Uici19i1(Xi1)= X110 (with @11 =idy,), Z; = Zy,
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and Y{ = YN Bs ;(A;). Note fi/5(b) # 0 and (since A is simple) therefore is full in
A, forallb e Y. Let G := Gys and 0(Gy;) be as in Proposition 7.13 associated with the
set Y/ (in place of X). Define

Fri=o(Fo) U1 UG1UBe(§™) U Z; and
1
er:= o min{0(Gy,), A(Fo, 1), A(Mi, 1), /4, }.

By Proposition 7.12, Trdimyex tnucida, < n. By Proposition 7.10, there exist two c.p.c.
maps @1 : A; = A, y1: A; > AN @1(Ap)*, afinite dimensional C*-algebra Fy,a c.p.c.
map «; : A; — F, and a piecewise contractive n-decomposable c.p. map f;: F; —
Hery, (¢1(14,)) such that
(L) x g y1(x) + @1(x) forall x € F7,

(12) ¢1(14,) and y1(14,) are projections and 14, = y1(14,) + ¢1(14,),
1,3) y1(1a,) $a, a1,

(1,4) |1 - Broay <&, and

(L5) ¢y is an (J1, € )-approximate embedding.

Assume that, for 1 < k € N, we have constructed, for each 1< j <k, a hereditary
C*-subalgebra A; := Hery, , (¢j-1(14,,)) € A, aj € Aj,\{0} with a; $4 aj, and X; =
{xj1,%j2,...} A5+, Yj := Uici<j@i,j(Xi,;) (see Notation 6.2 for ¢; ), Yj’ =Y;n
Bs 1(4)), a(9y}{) >0and §;:= Syjl as in Proposition 7.13 associated with Y (in place
of X), a finite subset Z; ¢ yy.1(Mj,,) which is a $A(Mj,1/j)-net of xi (M), Zj:=
Ui<i<j@i,j(Zi), and a norm one c.p.c. order zero map x; : M; - Aj, a finite subset

(e7.24)
Fj = 00,/(Fo) U Yj U (Uicicj9i,j(5)) U (Uicicj@i,; (Bie (§5))) U Zj c A,
and
= %lrnjn{a(Syg),A(Fi_l, L A, ), e/a) 50, 1< <k (and ¢ = ¢/8),
<i<j ' 1 1

and there exist two c.p.c. maps ¢;: A; > Aj, y;: Aj > Ajn¢;(A;j)*, afinite dimen-
sional C*-algebra Fj, a c.p.c. map «;:A; — Fj, and a piecewise contractive n-
decomposable c.p. map B; : F; — Hera,(¢;(14,)) such that

(o 1) x~, yi(x) + 9j(x) forall x € I,

(2) ¢j(1a;) and y;(14,) are projections and 14, = y;(1a;) + ¢;(14;),

G:3) yi(la;) Sa; aj,

(:4) [9j = Bjoajf <¢jand

(j»5) ¢jisan (J;,¢;)-approximate embedding.

Define Ay := Hery, (¢x(1a,)). Note that there exists dx; € (Ag+1)+\{0} such
that dg4; $a ak+1- Also note that Ay, is simple, separable, unital, and nonele-
mentary. Then, by [26, Proposition 4.10], there exists a norm one c.p.c. order
zero map Yk41 : Mgs1 = Agsr. Let Ziyy © xee1(My,,) be a finite subset which is
a $A(Mp, 75 )-net of xi1(Mp,;). Let Xipr = {Xpr1,1 Xke1,25- - - } € (Ags1)} be a
countable dense subset of (Ax,;), and let X,y = {Xk4,jr1<j< i}, i €N Let
Yis1 0= Utcjek19).k41(Xj ke1) and Ziyy = Uicjera19j,k+1(Z;). Note that fi/,(b) is full
in Ag. Set Yy, = Y N B%)l(AkH), U(SYiH) > 0, and finite subset Gy, := 9y’:+1 be
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as in Proposition 7.13 associated with Y, (in place of X). Define

Fre1:= 90,k41(F0) U Vi U (Vrcick19i,k41(Gi))
U (Uisisks1 @ik (Bic1 (GF))) U Ziy

min {o(Sy ),A(Fj_l,i),A(Mj,E),e/él} > 0.

(6725) and Ek41 = W 1<j<k+1 k+1

(Note Fy.q is a finite set.)

Note also Trdimpycida,,, <7 (by Proposition 7.12). Then, by Proposition 7.10,
there exist two c.p.c. maps Qg1 : Ag1 = Agsls Va1 Akl = Agp1 N @p1(A)4 a
finite dimensional C*-algebra Fj.,;, and a c.p.c. map &y : Axs1 = Fis1, @ piecewise
contractive n-decomposable c.p. map Si.1 : Fir1 > Hera,, (¢x+1(14,,,)) such that

(k+1,1) x~g,, Yir(X) + @ra1(x) forall x € Fyyy,

(k+1,2) ¢ri(la,,,) and ygs(la,,) are projections, and 1a, , = yir1(la,,,) +
(pk+1(1Ak+1)’

(k+1,3) yir(lag,,) Sap, ke

(k+1,4) [@rs1— Prs1© k1] < €k41, and

(k+1,5) @rs1isan (Fii1, €x41)-approximate embedding.

Then, by induction, for each k € N, we obtain a hereditary C*-subalgebra Ay c A,
ay € Agy\{0} with a; $4 ax, anorm one c.p.c. order zero map yj : My — Ay, a finite
subset ) c Ay satisfying (e7.25), and & > 0 satisfying (e7.25), and, there exist two
c.p.c. maps ¢y : Ay = Ak, Vi : Ap > Ar N @ (Ax)*, a finite dimensional C*-algebra
Fy, a c.p.c. map oy : Ay — Fy, and a piecewise contractive n-decomposable c.p. map
Bi : Fx = Hery, (¢« (14, )) such that conditions (k,1) to (k, 5) hold.

By Lemma 7.15 (see (k+1, 4) and (k+1, 5)), (A, ¢ ) forms a generalized inductive
system and A :=limy(Ay, ¢x) is a simple separable unital C*-algebra which has
nuclear dimension at most #.

Let us now show that A is infinite dimensional. For 4 < k € N and for all m > k,
by (m,5) and the choice of Z,, and &,,, the map ¢y o, is 1 A(My, ¢ )-multiplicative
on Zj. Since Zj is iA(Mk, %)-net of xx(M}), the composition ¢ co 0 yk : My —
A is A(Mj, ¢ )-almost order zero. Then, by Proposition 7.4, and the definition of
A(My, ), there exists a c.p.c. order zero map fi : My — A such that | fx — ¢k e ©
xkl| < 1. By (m,5), for m >k, we have ¢k o0 0 xi(Ing,)| 21— 1 — X2k & 2 1/2,
whence 1| > [¢k,00 © ¥k — % 21— X2 & — 2 > 0. Thus, jx is nonzero. Since A
admits nonzero c.p.c. order zero map jx : My — A (for all k > 4), A must be infinite
dimensional.

Note that 11 = 7o ({91(14,), 92(14,),...}) and

Too(La) = 14 = oo ({11(1a,), 20 yi(1a,)s - })-

i=1

Since, y;j(1a;) S d; S aj, and a; 1 a;(i # j), for all keN, Z?:l yi(1a,) S Zi_leak <
fij2(a). It follows

(7.26) Moo (14) =14 Sie=(a)/co(4) @-
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For x € J and k €N, xla, e, (yo(x) + @o(x))1a, = 9o(¥)Lae %, (y1(90(x)) +
P1(90(x)))1a, = 0.2(x)1a, me, =+ My Po,k-1(%)1a, = @0,k-1(x). Similarly, we have
L X mykr, ®0,k-1(x). Thus, 14, x wyketg, Xla,. Note that 2Y 720 & < & Hence,

(e7.27) Lita(x) me 1a(x)1y.

Moreover, 14, x1a, ¥yt 90,k-1(x) implies

(e7.28) Lita ()11 % oo ({90,1(%), 0,2 (x),}) € A,
By Proposition 3.10 (see (7.27), (e7.28), and (e7.26)) A is asymptotically tracially in
Nis,s- [

Corollary 7.17  Let A be a simple separable infinite dimensional unital C* -algebra, then
the following are equivalent:

(1) A is asymptotically tracially in N, for some n e Nu {0},
(2) Trdimy,cids < n for some n e Nu {0}, and
(3) A is asymptotically tracially in N, s s for some n € Nu {0}.

Proof Note that (3) = (1) is automatic. (1)= (2) follows from Proposition 711, and
that (2) = (3) follows from Theorem 7.16. [

Theorem 718 Let n € NuU {0}. Let A be a simple separable unital infinite dimensional
C*-algebra and A is asymptotically tracially in N,,. Then A is asymptotically tracially in
NZ,s,s-

Proof This follows from Theorem 7.16 and [60, Theorem 7.1]. [ |

8 Z-stable generalized inductive limits

The following notation is taken from [59] with a modification.

Notation 8.1 (cf. [59, Notation 2.2]) Let A be a unital C*-algebra, n e N, ¢ > 0, and
let F c A be a finite subset. If y : M, - Ais a c.p.c. map and v € A' such that

@ vy -(a-y(m))l <e

(ii) va*w(efg)) - <e

(iii) | [w(y), x]|| < € for all x € F and for all y € M},

(iv) |[v,x]| < eforall x € F, and

(V) yis c.p.c. e-almost order zero map (recall Definition 71),

then we say y and v satisfy the relation Ra(n,F, €) or the pair (¢, v) satisfies the relation
Ra(n, F, ).

Lemma 8.2 Let A be a unital C*-algebra, n € N, € > 0, and let I c A be a finite subset.
Suppose that a c.p.c. map y : M,, — A and v € A" satisfy the relation R4 (n, F, ). Sup-
pose also that Bis a unital C*-algebra, ¢ : A - Bisau.c.p. mapand0 < § < A(My, €) is
a positive number (see Definition 7.5 for the definition of A(—, —)). If ¢ is §-multiplicative
on Fuy(GMn) u {v,v*,vv*} (recall that G~ is the standard generating set of M,,, see
Notation 2.4), then ¢ o y and ¢(v) satisfy the relation Rg(n, p(F), 2¢ + 36'/2).

Proof We verify this as follows.
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M o) e(v) = (A5 = poy(lu,))| ~s [@(v*v) = (9(14) = @ o y(lag,)) | < & (see
(i) of Notation 8.1).

(2)
lo(p() pow(e?) —o(M)p()*| mas lo(v*)g o y(el?) — p(vv)|
(Lemma 2.10) " "
s o (D)) - ()|
((iii) of Notation 8.1)
(e8.1) < €.

(3) Letx € Fand y € M, Then, by Lemma 2.10, ¢ o y(y)9(x) ~g/2 ¢(v(y)x). Sim-
ilarly, (x)@ o y(y) wau2 9(xy(y)). Thus, [[¢ o y(y), 9(x)]] < & + 26" (using
(iii) of Notation 8.1).

(4) Let x € F, then |o(v)o(x) - ¢(x)o(v)] ~25 |@(vx —xv)| < & (using (iv) of
Notation 8.1).

(5) By Definition 7.5 and (v) of Notation 8.L poyis 2¢-almost order zero map.

Thus, ¢ o ¥, ¢(v) satisfy the relation R (1, p(F), 2¢ + 36"/2). ]

Also recall the following proposition (with a mild modification):

Proposition 8.3 (cf. [59, Proposition 2.3]) Let A be a separable unital C*-algebra.
Then A is Z-stable if and only if the following condition holds: For any n € N, any finite
subset F c A, andany 0 < e < 1, therearem € N, ac.p.c. map ¢ : My, > Aandv € Al
satisfying the relation R o(mn, F, €).

Proof Note that if A is Z-stable, then Z (hence the dimension drop algebra Z, ,,41)
is unitally embedded into (I°°(A)/co(A)) N A’ (see [23, Theorem 8.7], see also [54,
Theorem 2.2]). It follows from “(iv) = (iii)” of [49, Proposition 5.1] that there is
an order zero map ¥ : M, — (I°(A)/co(A)) N A" and V € (I°(A)/co(A))" satisfy
condition (i), (ii) and (v) with ¢ = 0. There is a c.p.c. map ¥ : M,, > [*(A) and
there is a {v,} € (I°°(A))! such that, 7., o ¥ = ® (see [58, Proposition 1.2.4]) and
Tloo({Vn}) = V. Then the “only if” part follows.

For the “if” part, let n € N, let F c A, be a finite subset, and let 0 < ¢ < 1. Choose
N :=1+max{||x| : x € F} and § := min{A(M,, e/2N), (¢/4)*} (see Definition 7.5 for
the definition of A(—, —)). Then, by our assumption, there are m € N, a c.p.c. §-almost
order zero map ¥ : M,,, — A and v € A' satisfying the relation R4 (mn, ¥, 8).

Let h: M,, = My, be a unital embedding such that el(’T") < h(el(j) ). Then, yo h:
M, — Aisa c.p.c. §-almost order zero map. By the choice of § and the definition of
A(M,, ¢/2N), there exists a c.p.c. order zero map ¢ : M,, > Asuch that |y o h — ¢ <
¢/2N. Then one has

[vv* 9 (el —vv* | mepan [vv o h(el) = vv* | = vy (14 — yo h(el}))2vv* |2
< Jov* (La =y o h(e ) [Y2 < ov* (Lo — y(elT™))wv* | V2
< [ov (Lo = y(efy)[2 < 812,

Thus, ¢, v satisfy (ii) in the relation R4 (1, F, €). One easily checks that ¢ and v also
satisfy the rest terms in the relation R4(n, F, €). Since ¢ is an order zero c.p.c. map,
[59, Proposition 2.3] applies and A is Z-stable. [ ]
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Lemma 8.4 Let A; be a unital separable C*-algebra and let ¢; : A; - A;41 be u.c.p.
maps (i € N). Let X; = {x;1,%i2,...} ¢ A, be a countable dense subset of A%, let
Xik={xi1, X2, » Xi }andlet Yy == Uik @ik (Xi 1) (i, k € N). Set Ag = Ay, Yo =
{0} c A() and Po = idAO 1A0 g Al.

Then the system (A;, ;) forms a generalized inductive system and A :=lim; (A;, ¢;)
is a simple and Z-stable C* -algebra, if the following conditions hold for any n € N:

(1) fija(x) isfullin A, forallx € F, := Y, 0 B%’I(An),

(2) there exista c.p.c. map ¥, : My — A, and v, € A, such that v,, and v,, satisfy the
relation jQAn (n!, ¢n-1(Yu-1), %), and

(3) ¢u is e,-multiplicative on

Y, u (U1stn<Pj,n(9’fj)) @] (Ulgjgn (<Pj,n o 1//]‘(9Mj!)
H{9jn (7)), 9n (Vi) @in (vivi)}))

where
T lstSn OIS 7 ! o

GM is the standard generating set of M, (see Proposition 713 for G, and o (SGs,),
and see Notation 6.2 for ¢ i).

Proof By Lemma 7.14, (A;, ¢;) forms a generalized inductive system and A :=
lim;(A;, ¢;) is a simple C*-algebra. We will show that A is Z-stable.

Lete > 0,n € Nandlet F c AL be a finite subset. Then, there exists n; > n € N such
that

(e8.2) Fce Pnoo(Yn)

oo
i=n,

Choose n, > n; such that n%' +3(X%2, €)% < ¢/8. By our assumption, there exist a

c.p.c.map Yy, : My, — Ay, and vy, € A} such that

(') the pair (y,,,, v»,) satisfies the relation ka"z (n2), @u,-1( Y1), n%') and
(2') forany k > n,, the map ¢ (from A to Ay,;) is ex-multiplicative on

Y U@n, ko an(gM”!) U{@n,k(Viy)> (Pﬂz,k(vnz)*’ §Dnz,k(VnzV;2)}~

By (2'), for any k > ny, ¢, ¢ is (Yu, Uy, (GMm) U s v Vv b Zfznz &i)-
multiplicative. Therefore, @, co is (Y, U Vn, (GMm) U s Vi s Vi Vi, b i, €i)-
multiplicative. Note that 72, & < A(My,1, %ﬂ) Then, by Lemma 8.2, the pair

(Pry,00 © Wny> Pny,00 (Vi ) satisfies the relation

v 2 .
RA(”Z!, (Pnz,w(¢n2—l(Ynz—l))> 72' + 3( Z Ei)l/z)'

i=ny

By (e8.2), we have F ce @y, 00(Pn,-1(Yn,-1)). Also note n%, +3(X%,, )/ < ¢/8.

Therefore, the pair (¢, o> @n,.00(Va, ) satisfies the relation R4 (n,!, F, ). Thus, by
Proposition 8.3, A is Z-stable. ]
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Lemma 8.5 Let A be a unital simple C*-algebra which is asymptotically tracially in
Cz.,s (see Definition 3.4). Then, for any finite subset F c A, any € >0, any n € N, and
any a € A, \{0}, the following conditions hold.

There exist a separable unital C*-algebra B and a u.c.p. map o : A — B such that

(1) aisan (F,e/2)-approximate embedding, andfor any finite subset G c B, there exist
threec.p.c. mapsff: B—> A, y: A— (Boa(A)) , w: M, > Hera(foa(ly)), and
v e Herp(Boa(la))! such that

(2) Boa(la), y(14) are projections and 14 = fo a(14) + y(14),

(3) x~; foa(x)+y(x) forallx €T,

(4) Bisa (S, ¢)-approximate embedding.

(5) y(14) $a a, and

(6) y and v satisfy the relation szerA(ﬁoa(lA)) (n,Boa(F),e).

If, in addition, A is assumed to be asymptotically tracially in N, then B above can be
chosen to be nuclear.

Proof Let J c A be a finite subset. Without loss of generality, we may assume that
[x| <1 forall x € F. Let e € (0,1), let n € N, and let a € A, \{0}. Since A is simple,
unital, and asymptotically tracially in €z, A is nonelementary. Then, there exist
ag,a; € Hera(a),\{0} such that aga; = 0. Let § := min{(&/8)2, A(M,, ¢/4),1/2}.

By [54, Corollary 3.1], Cz,s has property (H). Then, by Proposition 3.8, there exist
a unital separable Z-stable C*-algebra Band cp.c. maps @: A— B, ;: B— A, and
7itA— An(B;oa(A))* (i € N) such that

(1) a(ls) =1z, ﬁi_(lg) and ;(1,) are projections, 14 = B;(13) + 7;(14) forall i € N,
(2') x~5 Pi(x) + Bioa(x) forallx e FforallieN,

(3') @isan (J,§)-approximate embedding, ) )
(4) limioeo |Bi(xy) = Bi(x)Bi(y)] = 0 and lim; .o B (x)[ = x| for all x, y € B,

and
) 7:(1a) Sa ao for all i € N.Since B is Z-stable, by Proposition 8.3, there is a c.p.c.
order zero map ¥ : M,, — B and there is 7 € B! such that
(6') the pair (, 7) satisfies the relation R (1, &(F), ¢/8).Set B := Band a := &. Then,
by (3'), (1) holds.Let G c B be a finite subset containing ¢(GM») u {#, #*, ¥9*}.
By (4') and (6'), for a sufficiently large k € N, the following (7") and (8") hold:
(7") The map /3k isan (a(¥) u G, §)-approximate embedding.
(8') The pair (B o ¥, Bx (7)) satisfies the relation fRHerA(,Bk(lB)) (n, Br(a(F)), e/4).

Set G:=G, B = Br, ¥ := Yk, ¥ := fr o W, v := Bx (). Then, by (1), (2) above holds,
by (2'), (3) holds, by (7), (4) holds, by (5), (5) holds, and, by (8"), (6) holds. This
proves the first part of the lemma.

If, in addition, A is also assumed to be asymptotically tracially in N, then, by
Proposition 3.8, Hera Bi(13)) is simple and asymptotically tracially in N. There exists
ay € Her4(Bx(13))+\{0} such that a; $4 a;. Since Hers (B (1)) is asymptotically
tracially in N, by Proposition 3.8, there exist a unital nuclear C*-algebra B and
c.p.c.maps & : Hers (Bx(13)) = B, B;i : B— Hera(fx(13)),and J; : Hera (Bx(15)) —
Her4(Bx(13)) n B:(B)* (i € N) such that

(1) @ is au.c.p. map, (1) and §;(Bx o &(14)) are projections, B (1) = f:(15) +
9i(Br(13)) foralli € N,
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@) x~5Pi(x) +pBio a(x) forall x € B oa(JF)andforallieN,

(3") &isa (B o G(F) U Br o #(5M) U {Be(v): Be(v)* Be(v)*}, 6)-approximate
embedding,

(&) Tim oo [5(53) — B (6) i ()] = 0 and i B2 = ] for all %, y € B
and

(5") $i(Br o &(14)) SHera(Be(1;)) @2 foralli e NLeta = do Bx o &. Then, since 8 <
€/8, by (3') and (3"), (1) of the lemma holds. Let G c B be a finite subset. By
(4'), there exits a large m € N such that

(6) P s a (GUdoBrod(F)Udo f(P(GH)) U (a0 fe(v).&o fu(v) do
Br(vv)*}, §)-approximate embedding.

Then, by the choice of §, and by (7'), (3”), and (6"), the map S, o & o i
is 3-multiplicative on a(F) u ¥(GM") u {#,v*, ?9* }. Moreover, by (8') and
Lemma 8.2, we Ahave i ) i

(7") the pair  (BmodoBrowW, Pmodofi(v)) satisfies the relation
fRHerA(ﬁmo&oBk(lg)) (1, Bm 0 & o Bi(a(F)),50).

Define f:= fm> y:=x+PmoPro@ Wi=PmodoProw, and v:i=fyuodo
Br (). Since §x (A) L o fr 0 &(A), we have that y := J + P, 0 B © @ is also a c.p.c.
map. Then, by (1') and (1), (2) holds, by (2") and (2"), (3) holds, by (6"), (4) holds,
by (5’), (5), and by the fact that a, $4 a; and agLay, and ag + a1 $a a, (5) holds.
Finally, by (7”), (6) holds. n

The following lemma is well known.

Lemma 8.6 Let A be a C*-algebra and B be a nuclear C*-algebra. If there exist c.p.c.
maps a : A - Band 3 : B - A such that o a = idy4, then A is also nuclear.

Proof LetJ c Abeafinite subset and let € > 0. Since B is nuclear, there exist a finite
dimensional C*-algebra F and two c.p.c. maps ¢ : B — F, and v : F — B such that
a(x) ~g/qg1+1) Vo ¢(a(x)) for all x € F. Note that poa: A - Fand foy: F— A
are c.p.c. maps. For any x € F, x = f(a(x)) ~: (o ¢(a(x))). Thus, A is nuclear.

u

Theorem 8.7 Let A be a simple separable unital C*-algebra. Assume that A is
asymptotically tracially in Cy ;. Then, for any finite subset I c A, any € > 0, and any
a € A \{0}, there exists a unital C*-subalgebra B c 1°(A)/co(A) which is strictly
embedded such that B in Cg, s s, and

(1) 1gta(x) me 1a(x)1p forallx € F,
(2) 1BIA(X)IB €¢ B and ||IBIA(X)IB|
(3) 1ta(la) = 1B Si=(a)/co(a) tala).

> |x| —eforallx € F, and

Moreover, if, in addition, A is also asymptotically tracially in N, then A is asymptot-
ically tracially in Ny, 5 s (see Definition 3.4).

Proof Letd c Bi,(A,) bea finite subset, lete € (0,1) and let a € A, \{0}. We may
assume that A is infinite dimensional. Since A is also simple and unital, we further
assume that A is nonelementary. Then, there exists a sequence of mutually orthogonal
norm one positive elements {a, } in Hers(a).+\{0}.
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Choose Ag=A and Yy ={0} c Ag. Let ¢ =idy, : Ag > Ao. Set & := /100,
y1: My(=C) > Hers(¢o(la,)) the unital *-homomorphism, and set v; =14 €
Hers(¢o(14,))(= A). Let By = C, let By : By = Ay be the zero map, and let W ; =
{0} forall i e N.

We claim that, for each k € N, we can make the following choices:

(k-1) A hereditary C*-subalgebra A = Hera(@x-1(14,_,)) C 4,

(k-2) apositive element ay € (Ax)+\{0} such that a; <4 ay,

(k-3) a countable dense subset Xy = {xy1:=14,,Xk,2,... } C Alk, and finite subsets
Xk,i = {lAk} U {xk,j :1< ] < l} c Alk (i eN),

(k-4) a finite subset Yi = Ui<j<ck @)k (Xj k) N B%’I(Ak) c Ag,

(k-5) a finite subset Gy, c Ay, and a positive number ¢(Gy, ) > 0 as in Proposition
713,

(k-6) a finite subset Fj c Ay such that (see Notation 6.2 for notation ¢; ;)

T =i (Fu Y u (Ulsjsk¢j,k(9Yj)) U (Ulsjgk¢j,k(/3j—1(Wj—l,k)))
(€8.3) U (Uicjek (95k (v (§M) U{0jk(vi)s 01k (Vi) 01k (viv])}) s
(k-7) a positive number

1 £

1
(e8.4) €= g I mln{a(Sy) A( ]n,ﬁ),ﬁ

|3

(k-8) a unital C*-algebra By, and a c.p.c. map ay : A — By, such that By is a
separable unital (if, in addition, A is asymptotically tracially in N, By is also
nuclear) C*-algebra, and «y is an (Fy, €x/2)-approximate embedding,

(k-9) acountable dense subset Wy = {wg 1, Wk 2,...} C B}(, and finite subsets Wy ; =
{Wk,laWk,2> . )Wk,i} C Bk (i € N),

(k-10) a finite subset Gy = oy (Fx) < By,

(k-11) a c.p.c. map S : By = Ay, and a c.p.c. map pi : Ax = (Br o ax(Ax))* such
that the following (k-12)-(k-15) hold:

(k-12) i o ax(14) and yi (14, ) are projections, and 14, = B o ax(1a,) + ¥ (1a, )

(k-13) x ~g, B o ar(x) + yr(x) forall x € Fy,

(k-14) B isa (Gk, €k )-approximate embedding,

(k-15) yx(1a) Sa dr

(k-16) a c.p.c. map Yyy1 @ M(gery — Hera(Br o ax(1a,)), and an element v, €
HerA([3k oak(1la,)) such that the pair (g1, vii1) satisfies the relation

jzHerA(ﬁkotxk(lA))(k' /gk ° ‘xk(‘rfk) (k+1)|) and

(k-17) ac.p.c. map ¢ := B o ay : Ap - Ag.

We make our choices recursively. For the case k =1:

(1-1) Define A := Hers(¢o(14,)) = A.

(1-2) Choose a; := a;.

(1-3) Choose a countable dense subset X; = {x;,1,x12,... } ¢ A},, and let X;; :=
{14, u{x,j:1<j<i}c Al (ieN).

(1-4) Set Y = Xl,l N B%,l(Al+)'

(1-5) Choose Gy, and 0(Sy,) as in Proposition 7.13.
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(1-6) Choose

Fi=pi(F)unu (Ulsjslq)j,l(gyj)) U (Uicj<19j1(Bj-1(Wj-11)))
(e8.5) U (Uigja (@51 (vi(5M) U{9ja(v) 0jn (V) 9jn(vivi)})) -

(1-7) Choose

£
100

(¢86) 1= g min{o(50), MMy, ). 105

41 1<j

Since A, is asymptotically tracially in Cz (and is asymptotically tracially in
N), by Lemma 8.5, we can further make the following choices:

(1-8) There exist a separable unital (nuclear, in case that A is asymptotically tracially
in N) C*-algebra B; and a c.p.c. map a; : A; - By such that «; isan (F7, &/2)-
approximate embedding, and,

(1-9) a countable dense subset W; = {wy 1, wy1,...} c Bl and finite subsets W, ; :=
{wi,1,wi,2,...,wy,i} (i €N),

(1-10) and a finite subset G := a;(F1), and

(1-11) there exist a c.p.c. map f3; : By -~ Aj and a c.p.c. map y; : A; — (froa1(Ar))*
such that

(1-12) Broa(14) and y1(14,) are projections, and 14, = B 0 o1 (14,) + y1(14,),

(1-13) x g, Proay(x) +y1(x) forall x € Fy,

(1-14) Byisa (Gy, & )-approximate embedding,

(1-15) ))I(IA) SA (Ell, and

(1-16) there exist a c.p.c. map y,: My — Hera(f10oa1(1s,)), and an element
v € Hery (Bioai(14,))! such that the pair (y,, v,) satisfies the relation
RHerA(ﬁloal(lA))(ZE’ﬁl o a1 (1), %)‘

(1-17) Define ¢y := 51 o &y which is a c.p.c. map from A; to A;.

Assume, for k > 1 € N, we have made the choices (j-1)-(j-17) for all 1 < j < k. Then,
for k + 1, we make the following choices:

(k +1-1) Define A,y := Hera(¢x(1a,))-

(k+1-2) Choose agy; € (Agy1)+\{0} such that ax,, Sa agyi-

(k +1-3) Choose a countable subset Xy ; = {X41,1, Xks1,2>- - - } € (Ags1)} which
is dense in (Aj.1)! and choose Xy, == {14, } U {xksn,ji1<j<if(ie
N).

(k+1-4) Choose Y, := Ulgj<k+1§0j,k+1(Xj,k+1) n B%,l(AkH)-

(k+1-5) Let Gy,,, and 0(Gy,,,) be as in Proposition 713.

(k+1-6) Let

Frar = @1k01(F) U Yiwr U (Urgjernn @, k41(Sy,))
U (Ulsjsk+1¢j,k+l(ﬁj—l(I/Vj—l,kJrl)))
u (Ulsjsk+l(Pj,k+1(1//j(9Mﬂ )
U{@jka(vi)s @ik (vi)™ (Pj,k+1(VjV;)}) .
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(k+1-7) Let
1 €

n {0(9y,) MM =) 105
i

e8.7 €
( ) k+1 = 100

4k+1 1<]<k
Since Ay, is asymptotically tracially in Cy (and is asymptotically
tracially in N), by Lemma 8.5, we can further make the following choices:
(k +1—8) There exist a separable unital (nuclear, in the case that A is asymptotically
tracially in N) C*-algebra By, and a c.p.c. map ax41 : A1 = By such
that a4 is an (Fyy1, €k41/2)-approximate embedding, and,
(k+1-9) a countable dense subset Wii1 = {Wks1,1, Wks1,2, - - - } € By,> and finite
subsets Wii1,i = {Wki1,1 Wks1,25 - - > Wha,i ) (i €N),
(k +1-10) and for Gs1 = &k1(Fks1)C Biss
(k+1-11) there exista c.p.c. map P41 : Brs1 = Ak and ac.p.c. map pyiq : Agsg —
(Bi+1 © ags1(Ags1))* such that
(k+1-12) Brs1oaks1(la) and ypi41(la,,,) are projections, and 1s,,, = Brs1©
a1 (Lag,,) + Vi1 (Lag, )
(k+1-13) x w,,, P+ © Oks1(x) + yrr1(x) for all x € Fyyq,
(k+1-14) Brs1isa (Gks1> €k+1)-approximate embedding,
(k+1-15) prs1(la) Sa dxs1, and
(k+1-16) there exist a c.p.c. map izt M(kiay = Hera(Brer 0 ar1(la,,,))
and an element vi,; € Herg(Brs1 © ags1(la,,,))" such that the pair
(Wk+2,Vik+2) satisfies the relation fJVQHerA(,;kHWH(IA))((k +2), Brs10
(xk+l(3:k+l)ﬁ)~
(k+1-17) Define g1 := Pr+1 © Aks1-

Therefore, by induction, for each k € N, we have made choices (k-1)-(k-17).

For each k € N, by (k+1-1), we may view @ as a map from Ay to Ag,;.

Since Ay is simple, f/,(x) is full in Ay for each x € i N B3 41 (A ). Then, by (k-
4), (k-8), (k-14), (k-6), (k-7), and by Lemma 8.4, we conclude that (A, ¢x) forms a
generalized inductive limit which is simple, separable, unital, and Z-stable. We denote
this generalized inductive limit by A.

If in addition A is also asymptotically tracially in N, then each By are chosen to be
nuclear as mentioned above. We claim that A is nuclear.

Denote the map a1 © Sk : Bx = Bry1 by 0k (keN). Let ke N, let 21,25 € B}(
and let & > 0. Then there are i, i, € N such that z; ~5/5 wi,;, and z; ~g/5 Wi, Let
K €N such that K > max{k, i1, i, 5} and ;¢ < 2. Note that 6; ; = a; 0 ¢; i1 0 B;
for j>ie N (see Notation 6.2 for the notation 8, ;), then by (K-10) and (K-6),
Ok, x(Wr,i,)> Ok, k(Wk,1,) € Gk. For any j > K, keep using (i-14) and (i-8) for j > i > K,
we have

Ok,j(Ok,k (Wi,i,) Ok k (Wk,i,)) = Mavl 9K1(9k k(Wk,i)) Ok, i (Ok,k (Wi,i,))-

Note that 2 ¥, & < 8/2. Then, for any j > K,

0k, (Ox,x(21) 0k k(22)) ~5/4 Ok, O,k (Wi,i,) Ok,k (W, i)
~o/2 0k, (Ok, k(Wi )) Ok, j (Ok k(Wi i)
~s/4 Ok,j(0k,k(21))0k,j (0 k(22)) = Ok, j(21) 0k, j(22).
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Then, by Lemma 6.3, (B, 0y ) forms a generalized inductive limit. Since 0 is a c.p.c.
map for all k € N, by [2, Proposition 5.1.3], limy_, o (B, ak+1 © Sx) is @ nuclear C*-
algebra.

Recall that 8y : By - Ay and ay : Ax — By are c.p.c. maps, and @i = fBx o oy (see
(k-17)). By the commutative diagram

91 P2 P3

A A, Ay — > e A
eye
oy [1%) a3
B; b B, L B; O ... B

we obtain two c.p.c. maps a : A - Band 8 : B — A such that f o & = id; . By Lemma
8.6, A is also nuclear. This proves the claim.

Now back to the general case. We embed A into [ (A)/co(A) as follows. Let x €
Ag. Define

l((Pk,OO(x)) = 7T°°({0’ 0,...,0, q)k,k(x)’ ¢k,k+1(x); .. }),
where 7o, : [*°(A) - I°°(A)/co(A) is the quotient map. By (k-17), (k-8), and (k-14),
(e8.8) liminf @ ken(x)] > 1-4 " &) |x]| > (1/2)[ x| for all x € Fy.

It follows (see Proposition 2.7) that : defines a strict embedding from A into
1°°(A)/co(A). Note that

1; = oo ({91(14,), 92(14,),...}) and

-1 - nm<{y1<1A1>,i1y,-<1A,.>,...}>.

For all k € N, by (k-15) and by the fact that a; L a; (i # j), we have Y yi(la,) S
Zle ar S a. It follows that
(c8.9) ta(1a) = L Si=(a)/eo(a) 1a(@)-

For x € ¥ and k >2 €N, using (j-13), (j-12), (j-17), and (j-1) for 1< j<keN,
repeatedly, we have

xla, ~e (y1(x) + 91(x))a, = e1(x)1a, = @1,2(x)1a,
ve, (P2(912(%)) + @3(91,2(x)))1a, = @1,3(x)1a,
(e8.10) Ney o Ney PLk(%)1a, = @i (x).

Similarly, we have 14, x Ryl ¢1,k(x). Thus, 14,x Myyit, x1l4,. Note that
237 €i < & Hence,

(e8.11) Liia(x) me 1a(x)1;  forallx e F.
By (e8.11) and (e8.10), we also have

(e8.12) Lita ()i we 1a(x)15 7 Moo ({@1a(x)}) €1(A)  forallx € F.
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This proves the first part of the theorem. If, in addition, A is asymptotically tracially
in N, by the claim above, A € Ny, , ;. Since C*-algebras in Ny, ; ; have property (H)
(see [54, Corollary 3.1]), by Proposition 3.10, A is asymptotically tracially in Nz ; .

]

9 Simple C*-algebras which are asymptotically tracially in Cz ; or
inN,

Theorem 9.1 Let A be a simple separable unital C*-algebra which is asymptotically
tracially in Cy ;. Then, either A has stable rank 1, or A is purely infinite. Moreover, if A
is asymptotically tracially in Co, s and is not purely infinite, A has strict comparison for
positive elements.

Proof Suppose that A is a unital separable simple C*-algebra which is asymptotically
tracially in Cg ;. Let P; be the class of unital separable simple Z-stable C*-algebras
which are purely infinite and let P, be the class of unital separable simple Z-stable
C* -algebras which have stable rank 1. Then either (I) or (II) hold:

(I): For any finite subset F c A, any ¢ > 0, and any a € A, \{0}, there exists a unital
C*-subalgebra B c I°°(A)/co(A) which is strictly embedded such that B in Py,
and
(1) 1p1a(x) me 1a(x)lp forall x € F,

(2) 1p1a(x)1p €. Band |[1pea(x)1p| > | x| — € for all x € F, and
(3) ta(1a) = 1B Si=(a)/co(a) La(a).
(II): The same statement holds as in (I) but replacing P; by P,.

We may assume that A is infinite dimensional. By Lemma 4.3, there is a sequence
of nonzero positive elements {d,} c A, such that d,,; $d, for all n €N, and, for
any x € A;\{0}, there exists N such that d, S x for all n > N. Let ¥, c A be an
increasing sequence of finite subsets of A whose union is dense in A. Since A is
asymptotically tracially in Cy ;, by Theorem 8.7, there exists a sequence of decreasing
positive numbers {¢,} with lim,_ . ¢, =0 and a sequence of unital C*-algebras
By € Cz ¢ such that

() |1g,ta(x) —1a(x)1p, | < € for all x € Fy;
(2') 1p,1a(x)1p, €, By forall x € Fy, and
(3) 1a(1a) = 1B, Si=(a)/co(a) ta(di).

If there are infinitely many By which are purely infinite, then, since, for any a €
A, \{0}, there is K such that di < a, (I) holds.

Otherwise, by [48, Theorem 6.7], (II) holds. It follows from the proof of Proposition
4.4 (see also Remark 4.5) that, if (I) holds, A is purely infinite. On the other hand, if
(II) holds, by Theorem 4.8, A has stable rank 1. This completes the proof of the first
part of the theorem.

For the last part, by [48, Theorem 4.5] and by Theorem 4.10, W(A) is almost
unperforated. Then, by the proof of [48, Corollary 4.6], A has strict comparison. Note
that the proof of [48, Corollary 4.6] refers to the proof of [46, Theorem 5.2], where
quasitraces are used (see also [46, Theorem 4.3] and [1, Theorem I1.2.2], as well as [44,
Proposition 2.1]). u
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Corollary 9.2 Let A be a simple separable unital C*-algebra which is asymptotically
tracially in N, for some integer n > 0. Then, either A has stable rank 1, or A is purely
infinite. Moreover, if A is not purely infinite, A has strict comparison for positive elements.

Proof We note, by Corollary 717, that A is asymptotically tracially in N,, ; s, where
Nn,s,s is the class of unital separable simple C*-algebras with nuclear dimension at
most #n. By [60], C*-algebras in N, ; ; are nuclear simple Z-stable C*-algebras. Thus,
Theorem 9.1 applies. ]

Theorem 9.3 Let A be a simple separable infinite dimensional unital C*-algebra. Then
the following are equivalent:

(1) A is asymptotically tracially in N,, for some n e Nu {0},

(2) A is asymptotically tracially in N, s ; for some n € Nu {0},

(3) A is asymptotically tracially in N¢ s s, and

(4) A is asymptotically tracially in N and is asymptotically tracially in Cy ;.

Proof (1) = (2) follows from Theorem 716, (2) = (3) follows from [60, Corollary
7.3], (3) = (4) is trivial, (4) = (1) follows from Theorem 8.7 and [8, Theorem A]. =

Lemma 9.4 (see [38, Lemma 8.2]) Let A be a unital separable nuclear simple

C*-algebra which is asymptotically tracially Ny ¢ (for some integer d > 0). Then, for

any integer k > 1, there is a sequence of order zero c.p.c. maps L, : My — A such that

{L,(e)} is a central sequence of A for a minimal projection e € My, and such that, for

every integer m > 1,

(€9.1) lim ng){IT(Ln(e)m) —1/k[} = 0.

Proof The proof follows the same lines of that of [38, Lemma 8.2] with some minor

modifications. Fix k € N. Fix a dense subset {xj,x,, ...} of the unit ball of A and let

Fn={x1,%2,.. ., %, } with 14 = x; (n € N). Let y,, > 0 be in the fifth line of the proof

of [38, Lemma 8.2]. By Lemma 4.3, there is a sequence {a,} of A,\{0} such that

0 < d.(an) <1/4n* (n € N). By Corollary 7.17, A is asymptotically tracially in N .

Therefore, by Proposition 3.8, for each n € N, there exists a C*-algebra B,, € Ny ¢ and

c.pcmapsa, : A — By, B, By > Ajandy, j: A—> An B, i(By)* (j € N),such that

(1) yn,j(1a) and p, =B, ;(1p,) are projections, 1=7y, ;j(14)+ B, ;(1s,), and
457 (IA) =1p,,

(2) xi~y,jon Yn,j(Xi) + Pujoan(x;) foralll<i<mandall jeN,

(3) ayisan (F,,1/2")-approximate embedding,

() iy By (£7) — B (5B (7) | = 0 and lim e |8 s(0)] = || for al
X,y €B,,and

(5) ¥n,j(14) Sa a, for all j € N.Note that one also has

(6) |pn,jx —xpn,j| <1/2" " forall x € F,.

By [60, Lemma 5.11] (since B € N ), for each n, there is an order zero c.p.c. map
¥, : My — B, such that

(€9.2) I[¥.(c), an(x)]] <1/2" for all c € My and x € F,, and

(e9.3) inf{r(¥,(1pm,)) : 7€ T(B,)} >1-1/4n.
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Consider, for each m, ¥y, 1y = Br,m © Yy : My = Pu,mApn,m. Note that, by (4), for each
n € N, there exists m(n) € N such that, for all m > m(n), ¥, m is a A(My, y,/2")-
almost order zero map (recall Definition 7.5 for A(—, -)), and

(€9.4) I[Brm © ¥n(€)s Bum © &n(x)]]| < yn/2" for all c e M} and x € F,.
Claim: For fixed n, there is m(n) > m(n) such that, for all m > m(n),
inf{r(¥p,m(1pr,)) : 7€ T(A)} 21-1/2n.
Otherwise, there would be a subsequence {m(I)} and 7,,(;) € T(A) such that

Tm(l) o ﬁn,m(l) o \Ijn(le) <Il- 1/2}’1.
Let t; be a weak*-limit of the sequence of contractive positive linear functionals
{Tm(1y © Bu,m(1)} of By. Then to (¥, (1ar,)) < 1-1/2n. On the other hand, by (5) and
(1), to(1,) > 1—1/4n*. Moreover, by (4), t, is a positive tracial functional with | fo| >
1 - 1/4n?. 1t follows from (e9.3) that to (¥, (1ar,)) > (1-1/4n*)(1-1/4n) >1-1/2n.
This proves the claim.
Forall c € M} and x € F,, one has

[0Br,mny @ ¥a(c), x]]
(by (2))

Ry /21 H [ﬁn,m(n) ° "Pn(c)’ Yn,m(n)(x) + ﬁn,m(n) O &n (X)]H
b (by (e 9.4))
(€9.5) O By © Yn () By © (]| < yuf2".

Since Wy, m(ny is @ A(Mg,y,/2")-almost order zero map, by the choice of
A(My, y4/2") (see Definition 7.5 and Proposition 7.4), one obtains a sequence of order
zero c.p.c. maps @, : My — A such that

(€9.6) | = Buym(ny © all < yu/2" for all neN.
By (€9.5), as well as the claim, for n > 3, one has

(€9.7) [®,(c)x —xD,(c)| < min{1/4n,y,} for all ce M} and x € F,, and

(€9.8) inf{r(®,(1y,)) : 7€ T(A)} 21-1/n.

There isahomomorphism ¢,, : Co((0,1]) ® My — Asuchthat®,(c) = ¢, (1 ® a) for
all c € My, where ((t) = tforall € (0,1]. Let c,, = ('/". Define L, (¢) = ¢, (c, ® ¢) for
all ¢ € M. It is an order zero c.p.c. map from My to A. Choose a minimal projection

e; € M. Then

(e9.9) (La(e))" = gn(c™ ®e) = 9u(1® &)™) = ©,(e)™".

One then verifies that, for this L,, (e9.1) holds exactly the same way as the proof of
[38, Lemma 8.2]. ]

Theorem 9.5  Every unital separable simple nuclear C* -algebra which is asymptotically
tracially in N,, is Z-stable and has nuclear dimension at most 1.

On the other hand, every unital separable simple nuclear C*-algebra which is
asymptotically tracially in Co, s also has nuclear dimension at most 1.
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Proof Let A be a unital separable simple nuclear C*-algebra which is asymptotically
tracially in N,, for some non-negative integer n. By Theorem 9.3, A is asymptotically
tracially in N, ; . By Corollary 9.2, and by [4, Corollary 9.9], we may assume that
A has stable rank 1 and has strict comparison. We first prove that A is Z-stable. The
proof of this is exactly the same as that of [38, Theorem 8.3] but using Lemma 9.4 (By
the exactly the same argument for the proof of (ii) implies (iii) in [41], using Lemma
9.4 instead of [41, Lemma 3.3], one concludes that any c.p. map from A to A can be
excised in small central sequence. As in [41], this implies that A has property (SI).
Using Lemma 9.4, the same proof that (iv) implies (i) in [41] shows that A is Z-stable).

Then, by [8, Theorem A], A has finite nuclear dimension. It follows from [8,
Theorem B] that A has in fact nuclear dimension at most 1.

Finally, the last statement follows the first part of the statement and part (4) of
Theorem 9.3. ]

Corollary 9.6 (cf. Cor. 9.6 of [21])  Every unital separable simple nuclear C*-algebra
which has generalized tracial rank at most 1 is Z-stable.

Lemma 9.7 Let A,B,C;,D; be C*-algebras (i e N), and let a; : A— C;, i : B~ D;
be c.p.c. maps such that

a:A— IjCJG}Ch avr e ({a;(a)};) and

B:B ﬁpi/@ni, b e ({Bi(D)})

are *-homomorphisms. Then the following map is also a *-homomorphism:

[}

(e9.10) y: A®B—[[(Ci® Di)/é(ci ®D;), a®bwr me({a;(a)® Bi(b)}i).

i=1
If, in addition, both o and f3 are strict embeddings, so is y.

Proof Notethata; ® f;:A®B—>C;®D;,a®bwr a;(a)® ;(b) are c.p.c. maps.
Thus, y is also a c.p.c. map. Fix d € A, b € B. Since « and f3 are *-homomorphisms, we

have
(e9.11) lim o (ad”) - ai(d)ai(a)”] + |B:(bb*) - Bi(b)Bi(b)*| = 0.
Then,

(€912) y(a®b)-y(d®b)" = oo ({@i(a) ® Bi(D)}i) - oo ({@i (@) ® Bi(D)}:)*
(€9.13) = oo ({ (@i (@)ai(a)") @ (Bi(B)Bi (D)) }4)

(914)  (by (e 9.11)) = 7o ({(ai(ad)") ® (Bi (bD)")}) = y((da*) @ (bb"))
(e9.15) ==yp((a®b)-(a®b)*).

Similarly, we have y(d ® b)* - y(d ® b) = p((a ® b)* - (¢ ® b)) (see, for example,
[7, Proposition 1.5.7.(ii)]). Thus, d ® b lies in the multiplicative domain of y. Since the
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linear span of elementary tensor products is dense in A ® B, we see that A ® B lies in
the multiplicative domain of y. In other words, y is a *-homomorphism.

Assume in addition both « and f are strict embeddings. If y is not a strict
embedding, then there exist zo € A ® B, ¢ > 0, and a subsequence {m; };cn c N such
that

(€9.16) limsup [am, ® Bm,(20) | < |20 - &.

i—oo

By what has been proved, the following map is also a *-homomorphism:

(e9.17)
y:A®B -~ ﬁ(Cmf ® Dmi)/@(cmi ® D), @b oo ({am, (@) ® B, (D) }4)-

i=1
By (e9.16),  is not an isometry. Thus, § could not be injective. By [3, Lemma
2.12(ii)], ker j (which is an ideal of A ® B) contains a nonzero elementary tensor
product ag ® by. Then
0= [[7(a0 ® bo)| = limsup(||ety, (a0) ® B, (bo)|)

= lim sup [[am, (ao)[ - | Bm, (bo) |

(o, B are strict embeddings) = lim ||y, (ao)| - im {8, (bo)|= [lao| - |bol,

which is contradict to the assumption that ag ® by # 0. Hence, y is a strict embedding.
]

Lemma 9.8 Let A; and A, be C*-algebras and let F c A1 ® A, be a finite subset.
Then, for any € > 0, there exist finite subsets G; c A; (i=1,2) and § >0 such that,
for any C*-algebras By, and B,, and, for any c.p.c. maps «;: A; - B; which are
(Gi, 8)-approximate embeddings, the map o; ® ap : A; ® Ay > By ® B, is an (F,¢)-
approximate embedding.

Proof Without loss of generality, we may assume that 0<e<1 Let
M :=1+max{|x| : x € F}.Let F; c A; (i = 1,2) and n be some integer such that F; =
Fr(i=12)and F ct; Fb2 where T2 = {1 x; ® yi:x; € T, and y; € Fy}. Let
M; =1+ max{||x| : x e F-?}.

Keeping Lemma 2.10 in mind, it is straightforward to see that there exists o > 0
such that, forany c.p.c. maps «; : A; - B; (i = 1,2, B; are C*-algebras), if a; is (F;, 8p)-
multiplicative (i = 1,2), then a; ® @y : A, ® A, » B, ® B, is (F2, § )-multiplicative,
and, hencea; ® a; : A} ® A, — By ® B, is (F, ¢)-multiplicative. Let F; c F;; c F; , ©
-+ be finite subsets of C* (J7;) such that U;enT; j is dense in C*(F;) (i = 1,2).

Now let us assume the lemma does not hold. Then there exists a sequence of
C*-algebras B; ,, and c.p.c. maps «; »,, : A; = B, such that a; ,, is an (F;,,,, 6o /m)-
approximate embedding (i =1,2, m e N), and a3, ® A2, : A1 ® Ay > B,y ® Bo iy
is not an (&, ¢)-approximate embedding (m € N). However, since F; ¢ &F; ,,, by the
choice of 8y, and by the fact that a; ,, ® ay,,, is (F, €)-approximate multiplicative, for
each m, there must be some z,,, € F ¢ F2 such that

(€9.18) [t1,m ® a2,m(zm)|| < l|2mll — €.
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Since "2 is a finite subset, by (9.18), there exists zo € F>* and an increasing
sequence {m;} c N such that

(€9.19) loct,m; ® aa,m;(20) | < |20 — & for all jeN.
Note that the map &; : Ay = [T;_; Bi,m/ @oey Bi,m defined by a = 7o ({a1,m(a)})

and the map &, : Ay = [T Ba,m/ @jeey B2, defined by a — 7o ({a2,m(a)}) are
strict embeddings. Then, by Lemma 9.7, the following is also a strict embedding:

y:A1® Ay > [[(Bim ® Boyw)/ @D (Bim ® Bam),
m=1

m=1
a®br o ({oy,m(a) ® az,m(b)}).
But this contradicts with (9.19). The lemma then follows. [

Notation 9.9 Let X;, X, be two classes of C*-algebras. Denote X(; ® X, := {A® B:
A € Xy, B e X,}, where each A ® B is the spatial tensor product.

Recall the following result (see [3, Lemma 2.15], also see [47, Lemma 4.1.9]):

Lemma 9.10 (Kirchberg’s Slice Lemma) Let A and B be C*-algebras, and let D be a
nonzero hereditary C*-subalgebra of the spatial tensor product A ® B. Then there exists
a nonzero element z € A® B such that z*z = a ® b for some a € A, b € B, and zz* € D.

Theorem 9.11 Let Xy, X, be two classes of C*-algebras. Let A and B be unital simple
separable infinite dimensional C*-algebras. Assume that A is asymptotically tracially
in Xy and B is asymptotically tracially in X,. Then the spatial tensor product A ® B is
asymptotically tracially in X, ® X,.

Proof LetFc A® B, letce (A® B),\{0}, and let 1/4 >¢ > 0. By Kirchberg’s Slice
Lemma (see Lemma 9.10), there exists a € A,\{0} and there exists b € B,\{0}, such
that

(€9.20) a®b Sagp C.

Note that A and B are nonelementary. Then one may choose d, d € Hers(a).\{0}
and b, b ¢ Her,(b):\{0} such thatdld, d ~4 d, b1b,and b ~4 b (see Lemma 4.3, for
example).

Since A and B are simple and unital, there exist k€N, r,7,,...,7, € A, and
S1,82,...5Sk € B such that 14 = Z:‘:l riar; and 1p = Zles,-*l;si. Since A and B are
simple and infinite dimensional, so are Her4 () and Her(b). Then (see Lemma 4.3)
there exist mutually orthogonal positive elements aj, a,,. .., ax.; € Hera(d).:\{0}
and mutually orthogonal positive elements by,b, ..., bi,; € Hers (), \{0} such that
a1 ~p Ay ~4 *+ ~4 Aky and by ~g by ~p -+ ~p by (recall Definition 2.13 for the defi-
nition of “~”).

Let N € N, let F; c A, and let F, c B be finite subsets such that

N
(6921) SFCS/Z {ZX,‘@}/i inEg:I,y,‘Eéz}.
i=1

By Lemma 9.8, there exist finite subsets F, c A, F, ¢ B, and 8y > 0 such that, for
any C*-algebras Dy, D, and any c.p.c. maps #;: A — Dy, and 4, : B — D,, if #; is
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an (J, 8y )-approximate embedding (i = 1,2), then 7, ® #§, : A® B - D; ® D, is an
(F, ¢)-approximate embedding.

Let F;:=F;uF;, i=12 Let M:=1+max{|x|:xeJF,uT,}. Choose &:=
min{8o, 50y areye ) - Note 282 < 8 < M/4.

Since A is asymptotically tracially in X;, there exist a C*-algebra C; in X;, and c.p.c
mapsa:A— Cy, fi:C— Aandy; : A - A (i € N) such that
(1) x~spi(x)+Pioa(x)forallx e FyandforallieN,
(2) aisan (J1, §)-approximate embedding,

(3) lim; o [[Bi(xy) = Bi(x)Bi(y)]| = 0 and lim,, o0 | Bi(x)[ = |x| for all x, y € G,
and
(4) yi(14) Sa a1(~ agyy) forall i e N.
Since B is asymptotically tracially in X5, there exist a C*-algebra C, in X,, and c.p.c
maps ¢ : B— C;,v¥;: C; - B,and 0; : B — B (i € N) such that
(') x5 0;(x)+y;0p(x)forall x € F, and forall i € N,
(2) ¢isan (F,,8)-approximate embedding,

(3) lim; oo [yi(xy) = wi(x)yi(p)| = 0andlim, o |yi(x)[ = x| forallx, y € Cy,
and
(4) 0,(1g) $p by (~ bryy) forall i € N.

Note that C; ® C, is in X; ® X,. Now define a c.p.c. map
(e9.22) p=a®¢:A®B - (C ®C,.

By (2), (2') and by the choice of &, 8, F1, F1, T2, and T, the map p is an (T, ¢)-
approximate embedding. Hence, (2) of Definition 3.1 holds.
For i € N, define a c.p.c. map

(€9.23) w; = ﬂ,’ QYi: Ci®C, > AQ®B.

Define c.p.c. maps f3: C; — I°(A)/co(A) by x = 7o ({f1(x), f2(x),...}) and y:
Cy = 1°°(B)/co(B) by x = oo ({¥1(x), ¥2(x), ... }), respectively. Then, by (3) and
(3

p and y are strict embeddings. By Lemma 9.7, the map
w:C;®Cy > I°(A®B)/co(A® B) defined by x®y+- m.({fi(x)®
v1(y), f2(x) ® wa(y),...}) is also a strict embedding: This is equivalent to say
that (3) of Definition 3.1 holds.

Note that by (1) and (1") above, for i € N, one has

14 ® 1 ~26(148) (Bi o a(la) +yi(1a)) ® (yi o 9(1p) + 0:(15))
=Bioa(ly) ®yiog(lp)
+7i(1a) ® yio ¢(1p) + fi o a(la) ® 0;(1p) + yi(1a) ® 0;(1p).

Thus,

lyi(la) @ vio9(1p) + Bioa(ls) ® 0;(1p) +yi(1a) ® 0:(18) |
<1+28+28%<1+36.

https://doi.org/10.4153/50008414X21000158 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000158

1000 X. Fuand H. Lin

It follows that the map defined below
0i:A®B—-> A®B,

X®y (yi(x)®yiogp(y) +Bica(x)®0;(y) +yi(x) ® 0:(y))

1+ 38
is c.p.c. map (i € N). By (1) and (1'), for x € F; and y € F,, and for any i € N, one has

(e9.24) x® Yy ~Mas(mrs) (Bioa(x)+yi(x)) ® (viop(y) +0:i(y))
(€9.25) =Bica(x)®yiop(y)+yi(x) ®yiop(y)
(e9.26) +Bioca(x)®0;(y) +yi(x) ®0;(y)
(€9.27) mapzs Wi o p(x ® y) +0;(x ® ).
Then, for Z;‘il xj®y; with x; € F1,y; €5, (j=1,2,...,N), and, for any i € N, one
has
N N
(e9.28) ij ® ¥ MINM(M+1)5 Z wiop(xj®y;)+0i(x;®yj)
= =1

N N
(9.29) :inP(ij®yj)+0i (ij@’%‘)'

j=1 j=1
Thus, by the choice of §, (1) of Definition 3.1 holds.
Claim: Foralli € N, 0;(14 ® 13) $ ¢ in A ® B. Indeed, one has

k k
(9.30) yi(la)®@viop(lp) Sa1®1lp=a; ® Z Tbs;) Za,-@b, and

(e9.31) Bioa(la)®0;(1p) S1a®b; = Zr ar,)®b1$2 ® b;, and
i=1 i=1
(e9.32) Yi(lA) ® 0,‘(13) Sa1®by ~ agp @ by,
Then,

(1 + 38)0’,‘(1A ® 13) = y,(lA) ®Y;o §0(13) + ﬁi © a(lA) ® 61(13)
+yi(1A)®0'(13)

(6Lab1bit))s Za ®b) +(Za®b)+ak+1®bk+1

i=1
k+1

i=1

k
sQaeb)+ (Y aeb)

i=1 i=1

saeb+aob<(a+a)e(b+b)sa®bsec.
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This proves the claim. Then (4) of Definition 3.1 holds. It follows that A® B is
asymptotically tracially in X; ® X,. [ ]

Corollary 9.12  Let A and B be unital separable simple C* -algebras which are asymp-
totically tracially in N,,. Then the spatial tensor product A ® B is asymptotically tracially
in N].

Proof Note that N, ® N, c N,y (see [63, Proposition 2.3(ii)]). Therefore, by
Theorem 9.11, A ® B is asymptotically tracially in N5,;. By Theorem 9.3, A® B is
asymptotically tracially in Ny,115. It follows from [8, Corollary C] that A® B is
asymptotically tracially in Ny ¢ . [ ]

Corollary 9.13 Let A be a unital separable simple C*-algebra and let B be a unital
separable simple C*-algebra which is asymptotically tracially in Cy . Then the spatial
tensor product A ® B is asymptotically tracially in Cz, .

Corollary 9.14  Let A be a unital separable simple C*-algebra which is asymptotically
tracially in N and let B be a unital separable simple C*-algebra which is asymptotically
tracially in N.. Then the spatial tensor product A ® B is asymptotically tracially in N;.

Corollary 9.15 Let A be a unital separable simple nuclear C*-algebra and B be a
unital separable simple C* -algebra which is asymptotically tracially in N,,. Then A ® B
is asymptotically tracially in N,.

Remark 9.16 (1) There are unital separable nuclear simple C*-algebras which are not
asymptotically tracially in N, for any n > 0.

Let A be one of Villadsen’s examples of unital simple AH-algebras which has
stable rank r > 1 (see [56]). Then A is nuclear and it is finite. However, if A were
asymptotically tracially in N, for some integer n > 0, then, by Theorem 9.1, A would
have stable rank 1 as it cannot be purely infinite.

(2) There are unital separable nuclear simple C*-algebras which have stable rank 1
but are not asymptotically tracially in N, for any n > 0.

Let A be another construction of Villadsen's AH-algebra (see [55]) which is a unital
separable nuclear simple C*-algebra and has stable rank 1. However, A does not have
strict comparison for projections, this fact together with Theorems 9.1 and 8.7 implies
that A is not asymptotically tracially in N, for any n > 0.

(3) There are unital separable nuclear simple C*-algebras which have stable rank 1
and unperforated K, group, but are not asymptotically tracially in N, for any n > 0.

Let A be Toms’s construction (see [53, Corollary 1.1]). Then A is a unital separable
nuclear simple C*-algebra with stable rank one which has unperforated K, group, but
the Cuntz semigroup of A is not almost unperforated. Then, by Theorems 9.1 and 8.7,
A is not asymptotically tracially in N, for any n > 0.

Example 9.17 Let B be a unital separable simple C*-algebra which has tracial rank
0 but not exact (see [12], for example). Let C be any unital nuclear separable simple
C*-algebra. Consider A = C ® B. Since B is a nonexact C*-subalgebra of 4, it follows
that A is not exact (see [47, 6.1.10(i)]) (thus non-nuclear) either. By Theorem 718, B
is asymptotically tracially in Ny ; . By Corollary 9.13, A is asymptotically tracially in
Cz,s. Since Cis nuclear and B is asymptotically tracially in N, then, by Theorem 9.11, we
have that A is asymptotically tracially in N. Then, by Theorem 8.7, A is asymptotically

https://doi.org/10.4153/50008414X21000158 Published online by Cambridge University Press


https://doi.org/10.4153/S0008414X21000158

1002 X. Fuand H. Lin

tracially in Nz ; ;. This provides a great number of examples of unital separable simple
C*-algebras which are asymptotically tracially in N ; ; but not exact. For example,
one may choose C to be a unital simple AH-algebra. Moreover, though C ® B are

not

exact, they are “regular” in the sense that they have almost unperforated Cuntz

semigroups and has strict comparison.
In a subsequent paper, we will show that unital separable simple C*-algebras which
are not exact but can exhaust all possible Elliott invariants.
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