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Abstract

We consider residue expansions for survival and density/mass functions of first-passage
distributions in finite-state semi-Markov processes (SMPs) in continuous and integer
time. Conditions are given which guarantee that the residue expansions for these func-
tions have a dominant exponential/geometric term. The key condition assumes that the
relevant states for first passage contain an irreducible class, thus ensuring the same
sort of dominant exponential/geometric terms as one gets for phase-type distributions
in Markov processes. Essentially, the presence of an irreducible class along with some
other conditions ensures that the boundary singularity b for the moment generating func-
tion (MGF) of the first-passage-time distribution is a simple pole. In the continuous-time
setting we prove that b is a dominant pole, in that the MGF has no other pole on the ver-
tical line {Re(s)= b}. In integer time we prove that b is dominant if all holding-time
mass functions for the SMP are aperiodic and non-degenerate. The expansions and pole
characterisations address first passage to a single new state or a subset of new states, and
first return to the starting state. Numerical examples demonstrate that the residue expan-
sions are considerably more accurate than saddlepoint approximations and can provide
a substitute for exact computation above the 75th percentile.
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1. Introduction

Semi-Markov processes (SMPs) are widely used to describe the passage of a stochastic
system through its states. The generality of the SMP model is such that it has found application
in widely diverging subjects such as reliability theory, queueing theory, as well as in multistate
survival analysis [15]. In such applications, it is often the transient behaviour of the SMP which
is of interest, as reflected in the survival and density/mass function of the random variable X
defined as a first-passage time from one state to some other states. For example, in reliability
theory, if X is the first-passage time to a subset of failed states, then S(t)= P(X ≥ t) is the
reliability function for the system. In multistate survival analysis, if X is the lifetime of a
patient, then it is modelled as the first-passage time of an SMP through multiple clinical states
to a fatal state or a collection of such states.
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Asymptotic expansions for the survival and density/mass functions of the first-passage time
X have been proposed in the author’s previous work in [4, 5]. The leading terms in these
expansions assume the form of a gamma survival/density function in continuous time and
a discrete gamma in integer time. This paper provides the fundamental requirements that a
finite-state SMP must satisfy in order for these expansions to be valid, as explained in more
detail below. The expansions are determined from the moment generating function (MGF)
M(s) of X, which, subject to mild conditions, is shown to be convergent on {s ∈C : Re(s) < b}
for b > 0.

In continuous time, it was shown in [5] that if the MGF M has a simple pole at b > 0 and
this pole is dominant in the sense that M is analytic on {s ∈C : Re(s) < b+ ε =: b+}\{b} for
some ε > 0, then, subject to certain other technical conditions, the survival S(t) and density
f (t) for X have Exponential (b) residue expansions of the form

S(t)= e−bt−β−1

b
+ o

(
e−b+t), f (t)= e−bt(−β−1)+ o

(
e−b+t), t→∞, (1)

where β−1 =Res{M(s), b} is the residue of the simple pole at b.
In the current work, we show these expansions apply to first-passage distributions in SMPs

whose relevant transient states form an irreducible class (in which all states communicate).
The expansions apply to first passage from one state to a new state (Section 3.1.1, Theorem 1),
to first passage to a subset of new states (Section 4.1), and to first return to a starting state
(Section 4.2.2, Theorem 3). The two keys to showing this are Proposition 3 (Section 3.1),
which proves that b is a simple pole when transient states are irreducible, and Proposition 4,
(Section 3.1) which proves that b is a dominant pole.

In integer time, comparable Geometric
(
e−b

)
residue expansions for the survival S(n) :=

P(X ≥ n) and mass function p(n)= P(X = n) were developed in [6]. These expansions are
given by

S(n)= e−bn −β−1

1− e−b
+ o

(
e−b+n), p(n)= e−bn(−β−1)+ o

(
e−b+n), n→∞, (2)

and were shown to hold under much the same conditions: that b is a simple dominant pole of
M, but also that p(n) is aperiodic and non-degenerate.

In the current paper we show that the expansions in (2) apply to first-passage distribu-
tions of SMPs when the relevant transient states form an irreducible class. In integer time,
Proposition 3 (Section 3.1) proves that b is a simple pole and, subject to additional aperiodic
and non-degenerate requirements on the holding-time distributions in states, Propositions 4–5
(Section 3.1) prove that b is also a dominant pole. Thus these expansions apply to first passage
to a new state (Section 3.1.1, Theorem 1), to a subset of new states (Section 4.1), and to first
return to a starting state (Section 4.2.2, Theorem 3).

To avoid a proliferation of notation, we use S as a survival function in both continuous and
integer time; the argument t or n distinguishes the context. We continue this use of notation for
other functions. For example, the leading expansion terms in (1) and (2) are defined as S1(t)
and S1(n) respectively, even though they are different functions in continuous and integer time.

The residue expansions in (1) and (2) mimic those which may be obtained in finite-
state Markov processes in which the leading term is the inversion of the dominant term in
a partial-fraction expansion of the rational MGF M for a phase-type distribution. In both
continuous-time Markov chains (CTMCs) and discrete-time Markov chains (DTMCs), the
Perron–Frobenius theory for the infinitesimal generator matrix Q and the transition probability
matrix P ensure that b is a dominant pole.
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The necessity that b is a dominant pole in these two classes of time-homogeneous Markov
processes does not carry over to the greater generality of SMPs or to time-heterogeneous
Markov processes. Consider a two-state SMP in which the process starts in the working state 1
and goes directly to the failed state 2. This is also a Markov process but is time-heterogeneous
unless the holding time in state 1 is exponential. Taking the holding time in state 1 to have den-
sity f (t)= 2e−t(t− sin t) for t > 0, its MGF is M(s)= 2(1− s)−2(1+ i− s)−1(1− i− s)−1

with a 2-pole at 1 and simple poles 1± i. The pole at 1 contributes the O(te−t) term in the
density, while the simple poles add an O(e−t) term. Following O’Cinneide [19], we do not say
that 1 is a dominant pole, and according to Theorem 1.1 of his paper, the density f (t) does not
represent a phase-type distribution and is oscillatory with frequency 2π into its infinite tail.

There are two main contributions of this paper. First, we identify irreducibility of the tran-
sitional states in the sojourn as the main fundamental condition to ensure that the residue
expansions in (1) and (2) apply with relative errors of exponentially small order. The means
for showing this is to prove that such irreducibility and other conditions lead to a first-passage
MGF M whose convergence bound b is a positive and simple dominant pole. This then ensures
the non-oscillatory exponential/geometric expansions in (1) and (2). These results are proved
by applying Perron–Frobenius theory to the Laplace–Stieltjes transform of the semi-Markov
kernel.

The second main contribution is to develop some of the author’s more informal results in
[1, 3] and provide a more mathematically rigorous basis for them as given in Propositions 2–5.
These results are needed to formally prove that the convergence bound b is a positive, simple,
and dominant pole of the SMP, thus facilitating the main results of the paper.

1.1. Implications, extensions, and background

The similarity of the expansions for Markov processes and SMPs reinforces the insensitiv-
ity properties pertaining to SMPs discussed by Tijms in [23, Section 5.4]. Tijms’s discussion
centres on stationary SMPs and notes the insensitivity of the stationary distribution to details
of the holding-time distributions for the SMP (they depend only the individual mean holding
times). The insensitivity property here applies to the transient behaviour within arbitrary SMPs
(stationary or transient) and may be stated as follows. Any two processes, whether Markov or
semi-Markov, will exhibit the same first-passage behaviour to order o

(
e−b+t

)
or o

(
e−b+n

)
if

their first-passage MGFs share a common convergence bound b > 0 as a simple dominant pole
with the same residue β−1 < 0. The distributional details of the individual holding-time dis-
tributions matter only insofar as they end up summarised in the specific values for b and β−1.
Perhaps this helps to explain why Markov processes can be useful for applications in which
holding times are known not to be memoryless and independent of the destination state but
rather to reflect the properties of an SMP.

If all relevant transient states are progressive, so they cannot be returned to upon exit, then
first passage in a finite-state process must necessarily occur in a bounded number of steps using
a bounded count of distinct pathways. Expansions for first passage in these settings are detailed
in Theorem 5 of Section 7.7 in the supplementary material and have leading terms which are
of Gamma(m, b) or Discrete Gamma(m, b) form.

When relevant transient states for first passage are both progressive and irreducible, expan-
sions as in (1) and (2) are given in Theorem 2 (Section 3.3.1). The same sort of expansions
hold for first-return distributions as noted in Theorem 4 (Section 4.2.3). The form of these
expansions is largely due to the presence of an irreducible class of states which allows for
an unbounded number of steps as well as a countably infinite number of distinct pathways
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for passage. The unbounded nature of indefinitely feeding back amongst the relevant transient
states is reflected in the value of b > 0, which we interpret as the asymptotic hazard rate for
exit from the irreducible class; see Section 3.1.4 for details.

Developing such expansions relies on working with a tractable form for the first-passage
MGFs. This entails using the cofactor ratio in (4), which was first developed in [1] and is
summarised in [3, Chapter 13]. Previous derivations of such MGFs can be found in the devel-
opment of Mason’s loop-sum rule [17, 18] in electrical engineering, which is a ratio of sums
expressed in terms of all feedback loops involved in first passage. Also, Pyke [21] and Howard
([13], [14, Sections 10.10, 11.11]) gave a representation for the first-passage MGF as an entry
in the matrix computation in (5). That these two other formulas agree with (4) was shown
in [2].

To develop the residue expansions above, new results must be shown to hold for the cofactor
expression in (4) for the first-passage MGF. First we prove in Proposition 2 (Section 2.4) that
it can be analytically continued beyond its convergence domain. Furthermore, in the same
proposition we prove that an equivalent expression in (9), which expresses the MGF as the
sum over all distinct pathways, may also be analytically continued. These new results facilitate
the proof for the residue expansions, which are based upon using Cauchy’s residue theorem.

The presence of multiple relevant irreducible classes complicates the nature of the pole b, as
discussed in Section 5. Examples using identical irreducible subsystems which exist in parallel
or in series connections lead to b as either a simple pole or as a 2-pole, respectively.

Two numerical examples in Section 6 demonstrate that the expansions achieve substantially
greater accuracy than ordinary saddlepoint approximations. In the continuous-time example,
exact computations used to check this accuracy rely on inverting the MGF by numerically
integrating along the path of steepest descent, which asymptotically takes the bearing θ = 0.
Inversion using vertical contour integration with bearing θ = π/2 and inside the convergence
domain lacks sufficient accuracy to assess expansion accuracy. Above the 75th percentile,
the expansions can replace exact computation in these models and potentially in other SMP
models.

The paper does not address SMPs with countably infinite state spaces unless first passage
only depends on a finite portion of the state space. For example, in a birth–death process
on {0, 1, . . .}, the results apply to first passage from 0→m, but not to first return to 0.
The conditional MGF for the latter sojourn time X given X <∞ has convergence domain
{s ∈C :−∞< Re(s)≤ b}, where b is not a pole but rather a branch point of the square root
function.

The residue expansions do not apply to SMPs with heavy-tailed holding-time distributions
whose MGFs have convergence regions Re(s)≤ 0. The cofactor rules for the first-passage MGF
F1N in (4) and first-return MGF F11 in (25) are still valid with convergence domain Re(s)≤ 0,
and this leads to two options for inversion. Either one uses saddlepoint approximation if the
first-passage MGF is steep at s= 0 (a sufficient condition is that F ′1N(s) ↑∞ as s ↑ 0), or
else one uses numerical inversion, which is best implemented by following a path of steepest
descent from the negative real axis.

2. Notation and basic properties for a semi-Markov process

A finite m-state SMP is characterised by its m×m semi-Markov kernel matrix{
pijGij(t) : i, j ∈ Im

}
, where Im = {1, . . . , m} is the state space. Row i of this matrix is a vector

of sub-distributions which characterises the process for exiting from state i as a competing
risk situation. Transition is to state j with probability pij and, with destination j ensured, the
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holding time in state i has distribution Gij. Any distributional consideration of two or more
successive state transitions entails convolving sets of sub-distributions in the time domain. The
even more complicated analysis of a sojourn through Im becomes quite intractable unless these
convolutions are considered in terms of their Laplace–Stieltjes transforms, i.e.

Tij(s)= pij

∫ ∞
0

estdGij(t)= pijMij(s), i, j ∈ Im.

The pair (i, j) is a branch, and the transform Tij(s) is referred to as a (branch) transmittance
and is defined as the product of a transition probability and an MGF. Suppose the convergence
domain for Mij(s) is either {s ∈C : Re(s) < bij} or {s ∈C : Re(s)≤ bij} for bij > 0. If pij = 0 it
is convenient for notational purposes to assume that bij =∞. With the set of possible branches
with pij > 0, we suppose in the continuous-time setting that the distributions {Gij(t) : pij > 0} in
the semi-Markov kernel matrix admit density functions {gij(t) : pij > 0} for which the inversion
formula applies to {Mij(s) : pij > 0}. Minimal assumptions for this to hold are that {gij(t) :
pij > 0} are locally of bounded variation for all values of t > 0; see [11, Theorem 24.3].

The Laplace–Stieltjes transform of the semi-Markov kernel is the m×m matrix function

T(s)= {Tij(s)
}= {pij

}
 {Mij(s)
}

:= P
M(s),

which also characterises the SMP. The matrix T(s) is the one-step transmittance matrix of
the SMP and is the Hadamard product of the transition probability matrix P and M(s). The
importance of T(s) as compared to the semi-Markov kernel is that it provides a direct means
by which sojourn times over state space Im can be analysed and approximated either by residue
expansions or saddlepoint approximations. We refer to the DTMC with transition probability
matrix P as the jump chain for the SMP.

2.1. First-passage distributions to a new state

For any two states in Im, the probability of first passage from one state to the other and the
associated sojourn-time MGF can be written explicitly in terms of the transmittance matrix
T(s). For notational convenience and without loss in generality, suppose the sojourn time X
starts in state 1 at time zero and stops upon entering state m. The distribution of X has first-
passage transmittance defined as

f1mF1m(s)=E

(
esX1{X<∞}

)
, (3)

where f1m = P(X <∞) is the probability of first passage from 1→m �= 1 and F1m(s) is the
conditional MGF of X given {X <∞}, i.e. the MGF for sojourn time. In [1] it is shown that
the transmittance (3) is determined from T(s) as

f1mF1m(s)= (m, 1) cofactor of Im −T(s)

(m, m) cofactor of Im −T(s)
:= (−1)m+1|�m; 1(s)|∣∣�m; m(s)

∣∣ , (4)

where |�m; 1(s)| and
∣∣�m; m(s)

∣∣ are the (m, 1) and (m, m) minors of Im −T(s) and Im is an
m×m identity matrix.

Historically, an expression for f1mF1m(s) was first derived by Mason [17, 18] in terms
of a ‘loop-sum formula’ used to determine the transfer function connected with complex
feedback control systems; see [20]. The loop-sum formula is equivalent to a ratio of the
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non-zero permutation sums of the cofactors involved in (4), as shown in [2]. Later, Pyke
(in [21, Theorem 4.2]) and Howard (in [13] and [14, Sections 10.10, 11.11]) showed that
f1mF1m(s) is the (1,m) entry of the matrix

T(s) {Im −T(s)}−1
([
{Im −T(s)}−1

]
d

)−1
, Re(s)≤ 0, (5)

where the operation [A]d preserves the diagonal entries of A and sets off-diagonal entries
to 0. The equivalence of (5) to (4) was shown in [2]. Neither Mason’s loop-sum formula
nor (5) lends itself to dealing with the nature of the convergence bound b for F1m or with
computational efficiency when T(s) reflects complicated state transitions and/or large m.

2.2. Relevant states and convergence domain

The expression (4) requires that all relevant states to the sojourn 1→m are included in
the state space Im of the SMP. For numerical stability, it is also best that only such states are
included. A state is not relevant to passage 1→m if it is not 1 or m and cannot possibly be a
transient intermediate state during the sojourn. For example, any absorbing states or absorbing
irreducible classes of states which block the passage 1→m are not relevant and are presumed
not to be in Im. The existence of such non-relevant absorbing states accessible from state
1 ensures that row sums for P are not all 1 and that f1m < 1 when Im = {relevant states for
1→m}. Throughout, we make the following non-restrictive assumption concerning the SMPs
considered:

(R1→m) The finite state space Im consists of exactly those states that are relevant to passage
1→m.

Without further assumptions, the general convergence domain for (4) is {s ∈C : Re(s)≤ 0}.
With the assumption CD1→m below, concerning the components of �m; 1 and �m; m, the con-
vergence domain is {Re(s) < b} where b > 0 is the smallest positive zero of

∣∣�m; m(s)
∣∣. Proof

of this result is contained in Proposition 2 below. The assumption CD1→m is as follows:

(CD1→m) The convergence domains for
{
Mij(s) : (i, j) ∈ Im−1 × Im

}
, in the first m− 1 rows

of M(s) take the form (−∞, bij) or (−∞, bij] with min(i, j)∈Im−1×Im bij > 0 (assuming bij =∞
when pij = 0).

If Im includes all relevant states of the SMP and at least one non-relevant state, then (4)
continues to hold except at s= 0. This is now formalised, with the proof given in Section 7.1
of the supplementary material.

Proposition 1. (Non-relevant states.) Suppose CD1→m holds but R1→m does not, and there
is at least one non-relevant state in Im. Then f1mF1m(s) in the expression (4) has a removable
singularity at s= 0. The order of the singularity, or the number of derivatives needed with
l’Hôpital’s rule to find the limit as s→ 0, is the number of irreducible and absorbing subchains
for the non-relevant states in Im.

Assuming R1→m and restricting Im to relevant states is necessary for numerical stability in
the computation of (4) near s= 0. Furthermore, it allows for explicit evaluation of (4) at s= 0
to determine f1m as

f1m = f1mF1m(0)= (−1)m+1|�m; 1(0)|
|�m; m(0)| ≤ 1

without having to use l’Hôpital’s rule.
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2.3. Compound distributional representation

Additional insight into the form of F1m(s) in (4) has recently been provided in [4,
Proposition 3, Section 7], where it is characterised as a compound distribution. Assuming
passage from 1→m occurs, then the sojourn time X is the compound distribution

X|{X <∞} D=
m−1∑
i=1

m∑
j=1

1
{
Nij ≥ 1

} Nij∑
k=1

Hijk. (6)

Here, Nij counts the number of transitions i→ j in the jump chain for the SMP during its
sojourn, and

{
Hijk : k≥ 1

}
are independent and identically distributed as Gij. Thus, the (i,

j)th term on the right-hand side is the total time spent in state i before passing to j during
the sojourn. The joint conditional probability generating function (PGF) of N= {Nij : (i, j) ∈
Im−1 × Im

}
for the jump chain is

P(Zm; | X <∞) := E

⎛⎝ ∏
i∈Im−1

∏
j∈Im

z
Nij
ij | X <∞

⎞⎠= (m, 1) cofactor of Im − P
Z
(m, m) cofactor of Im − P
Z

, (7)

where Z= {zij : i, j ∈ Im} is m×m, and Zm; is Z with its last row removed. The choice of
notation Zm; reflects the fact that the right-hand side of (7) does not depend on the last row of
Z, despite its appearance there. The matrix Zm; with index pairs in Im−1 × Im could be further
limited by eliminating those pairs whose transition probabilities pij = 0; however, doing so
would create a notational quagmire which we avoid. As it stands, (7) is correct, since Nij = 0
with probability 1 (w.p. 1) when pij = 0, so that (7) embodies the full generality of the joint
PGF during first passage from 1→m.

The cofactor expression (4) for F1m(s) may be interpreted as the compound MGF
P{Mm; (s)|X <∞} for the compound distribution in (6), where Mm; (s) is M(s) with its last
row removed.

2.3.1. Convergence domain. The convergence domain in R
(m−1)×m for P

(
Zm;| X <∞) in

(7) is O defined as the largest connected neighbourhood of 0 ∈R(m−1)×m (lcn0) for which∥∥λ1
(
P̃
Z

)∥∥< 1, where P̃ is P with its mth row replaced by zeros, λ1(·) denotes the eigen-
value of largest modulus for the matrix argument, and ‖ · ‖ denotes the complex norm. We
write this as

O= lcn0

{
Zm; ∈R(m−1)×m :

∥∥λ1
(
P̃
Z

)∥∥< 1
}

. (8)

Let Z2 = {(i, j) ∈ Im−1 × Im : pij = 0
}

with complement Z̄2 = Im−1 × Im\Z2. If (i, j) ∈Z2, then

the corresponding factor zij in Zm; has convergence domain R, and λ1
(
P̃
Z

)
is constant with

a change in zij. For components (i, j) ∈ Z̄2, if all such components in Z̄
2 are non-negative, then

λ1(P̃
Z) is real, non-negative, and non-decreasing in each such zij; see Section 7.2 of the
supplementary material. Thus, with each component of Zm; ranging over (0,1],

λ1
(
P̃
Z

)≤ λ1
(
P̃
 11T)= λ1

(
P̃
)= λ1

(
Pm; m

)
< 1, Z ∈ [0, 1]m×m,

where Pm; m is P without its mth row and mth column. To show the last inequality, consider
the case when the subset of states Im−1 has one or more irreducible classes. Then λ1

(
Pm; m

)
is the Perron–Frobenius eigenvalue for one of these subblocks, all of which are <1 owing to
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the removal of the mth column; see Section 7.2 of the supplementary material for more details.
Thus λ1

(
Pm; m

)
< 1 and O includes the unit square [0, 1](m−1)×m in its interior. Alternatively,

if all states in Im−1 are progressive and not repeatable, then λ1
(
Pm; m

)= 0, so O=R
(m−1)×m.

Convergence in the square [0, 1](m−1)×m may be expanded to convergence in
[− 1, 1](m−1)×m. Since P is a PGF, we have for any real-valued Zm; that |P(Zm; | X <∞)| ≤
P(‖Zm; ‖ | X <∞), where ‖Zm; ‖ denotes the (m− 1)×m matrix of componentwise moduli.
Thus, O⊃ {Zm; ∈ [− 1, 1](m−1)×m}.

The convergence domain in R for F1m(s) expressed as the compound MGF in (4) is the
largest neighbourhood of 0 in which λ1

{
P̃
M(s)

}
< 1 or

lcn0
[
s ∈R : λ1

{
P̃
M(s)

}
< 1

]= {s < b}.

Subject to the conditions R1→m and CD1→m, b is the smallest positive zero of
∣∣�m; m(s)

∣∣ if
Im−1 contains at least one irreducible subset of states; this follows from Perron–Frobenius the-
ory as shown in Section 7.2 of the supplementary material. If all states in Im−1 are progressive
states, then b=min

{
bij : i ∈ Im−1, j ∈ Im\{1}

}
. The value s= 0 is in the interior of this set and∣∣�m; m(s)

∣∣> 0 for s≤ 0. Thus, b > 0 and the first-passage distribution has all its moments.

2.4. As a countably infinite mixture summing over all distinct pathways

The first-passage distribution with MGF F1m(s) may also be represented as a countably infi-
nite mixture distribution using the total probability formula. The mixing components represent
distinct pathways from 1→m, and these components are products of one-step transmittances
along the distinct pathways. More specifically, let P= {p} denote the countably infinite col-
lection of distinct finite-step pathways for first passage from 1→m, and let Tp(s) be the
transmittance of pathway p, defined as the product of all one-step transmittances along that
pathway. For example, if p is the pathway 1→ 2→m, then Tp(s)= T12(s)T2m(s).

Proposition 2. (Sum over all distinct pathways.) Under the conditions R1→m and CD1→m,
the cofactor expression for f1mF1m(s) given in (4) agrees with the sum over all distinct path-
ways as expressed in (9) on the convergence domain {s ∈C : Re(s) < b} where b is the smallest
positive zero of

∣∣�m; m(s)
∣∣:

f1mF1m(s)=
∑
p∈P

Tp(s), Re(s) < b. (9)

In the analytic continuation of f1mF1m(s) given by {Re(s)≥ b}, the identity (9) continues to
hold on

R=
{

s ∈C : Re(s)≥ b and max
(i,j)∈Im−1×Im : pij>0

‖Mij(s)‖< 1

}
. (10)

The representation of the first-passage transmittance as the sum in (9) over all distinct path-
ways was first considered in [2], which showed directly that the right side of (9) takes the very
compact form given in (4) for {Re(s) < b} but not for s ∈R. We provide a different formal
proof of (9), as well as the extension of the identity (9) to the set R, in Section 7.3 of the sup-
plementary material. This extension to R is fundamental and needed to derive the expansions
in Theorem 1 using Cauchy’s deformation theorem. Further discussion of such passage-time
distributions is found in [1] and [3, Chapter 13].
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3. Asymptotic expansions for first-passage distributions

Expansions for such distributions will be provided in three common settings: when all
transient states form an irreducible class (and therefore communicate), when such states are
progressive and no state may be repeated, and when transient states have both progressive
states and an irreducible block. For all settings, the conditions needed for valid expansions are
simple and quite weak.

3.1. Relevant states form an irreducible class

Consider SMPs in which all states in Im−1 communicate to form an irreducible class. The
transient states in Im−1 may be reentered an indefinite number of times, but the process is
certain to either arrive at state m or leave Im altogether (without arriving at m) in finite time
with a finite number of steps. Practical examples for such settings have been given in [1] and
[3, Chapters 13–15].

Let bI =min(i,j)∈Im−1×Im−1 bij, define L= {(i, j) ∈ Im−1 × Im−1 : bij = bI
}
, and let bmin =

min(i,j)∈Im−1×Im bij. The next result has a long and rather difficult proof, given in Section 7.4 of
the supplementary material.

Proposition 3. (Simple pole b.) Consider a continuous- or integer-time SMP satisfying the
conditions R1→m and CD1→m. Let the transient states Im−1 form an irreducible class. With
the additional conditions Lreg and FS→m below, F1m(s) has convergence bound b such that
b < bmin and b is a simple pole of F1m(s):

(Lreg) For some branch b ∈L, the convergence domain for Mb(s) is regular, i.e. it is the
open set {s ∈C : Re(s) < bI}.

(FS→m) We have b < mini∈Im−1 bim, where {bim} are the convergence bounds for MGFs of
the final step into state m.

In the majority of applications, all components of Mm; (s) are regular, so that both Lreg
and CD1→m hold. Since the condition R1→m is without loss in generality, the conditions of
Proposition 3 are minimal and simple: that transient states Im−1 form an irreducible class and
the necessary condition FS→m holds.

The bound bmin for b is often quite crude, as b is typically much closer to 0. A value
b1 > 0 is an upper bound for b if the smallest row sum of Tm; m(b1) exceeds 1. This result
follows from the fact that b solves 0= |�m; m(b)| = |Im−1 −Tm; m(b)|, so that 1 is the Perron–
Frobenius eigenvalue for Tm; m(b). By Corollary 1 to Theorem 1.5 in [22], if the smallest row
sum of Tm; m(b1) exceeds 1, then Tm; m(b1) has a Perron–Frobenius eigenvalue larger than 1,
and hence b < b1. The value b is therefore close to 0, since all row sums of Tm; m(0)= Pm; m

are typically close to 1.
The generality of Proposition 3 allows Mm; (s) to have non-regular components. For exam-

ple, Mij(s) can have convergence region (−∞, bij], as would occur with an inverse Gaussian
MGF, if (i, j) ∈ (Im−1 × Im)\L. The result does not specify what happens if all members of
L are non-regular. Indeed, b < bmin may very well still hold (see the example in Section 6.1),
since Lreg is not a necessary condition; only FS→m is necessary. Neither condition is necessary
for the convergence bound b to be a simple pole.

An important consequence of Propositions 2 and 3 is that the cofactor ratio in (4) provides an
explicit expression for the analytic continuation of F1m(s) just across its convergence boundary
{s ∈C : Re(s)= b}, as stated in the next proposition. The somewhat involved proof is given in
Section 7.5 of the supplementary material. Propositions 2–5 together lead to simple asymptotic
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expansions of exponential/geometric form for first-passage survival and density functions, as
given further below in Theorem 1.

Proposition 4. (Dominant pole b.) Assume R1→m and CD1→m, that the transient states Im−1
form an irreducible class, and either that Lreg and FS→m hold or else that the conclusions of
Proposition 3 hold. Then b is a dominant pole as detailed in the following two cases:

Continuous time. Apart from the pole at b, F1m can be analytically continued to {s ∈
C : Re(s) < b+ ε0}\{b} using the expression (4) for some ε0 > 0.

Integer time. Suppose |�m; m(b+ iy)| �= 0 for 0 �= y ∈ (−π, π ]. Then, apart from the pole at
b, F1m can be analytically continued into the principal convergence domain {s ∈C : Re(s) <

b+ ε0, −π < Im(s)≤ π}\{b} using the expression (4) for some ε0 > 0.

Assuming the conclusions of Proposition 3 rather than their sufficient conditions Lreg and
FS→m widens the applicability of Proposition 4. This happens for the example in Section 6.1
where the condition Lreg fails but its conclusions hold.

In the CTMC setting, the same result forms part of a characterisation for the class of phase-
type distributions as shown by O’Cinneide [19, Theorem 1.1]. He showed that the dominance
of the pole b is a necessary and sufficient condition for the distribution to be of phase type. Thus
the result above extends the necessity part of this result to a general class of continuous-time
SMPs.

In integer time, this result cannot hold with the same generality since the first-passage
mass function could be d-periodic. We say the mass function {p(n) : n≥ 0} is aperiodic if
1= gcd{n2 − n1 : p(n1) > 0 < p(n2) and n2 > n1}, where gcd indicates the greatest common
divisor. With periodicity, the simple pole at b is replicated by an additional d− 1 simple poles
equally spaced along the vertical line {b+ iy : 0 �= y ∈ (−π, π ]}. For example, with p= 2,

b+ iπ is also a simple pole.
If the first-passage mass function is aperiodic, then it remains unclear whether or not mul-

tiple poles can occur along this vertical line, and that is the reason for the extra condition
in Proposition 4. In the much simpler DTMC setting, if the class Im−1 is aperiodic, then the
first-passage mass function must be aperiodic and its MGF must have a dominant pole at b.
This follows from the Perron–Frobenius theory of [22, Theorem 1.1] as applied to the primitive
matrix Pm; m in the expression

∣∣�m; m(s)
∣∣= |Im−1 − Pm; mes|; see Section 3.4.2 and Corollary 3

for further consideration. Along the same lines, [19, Theorem 1.2] showed that this dominance
characterises phase-type distributions of the type we consider here for DTMCs, in which the
relevant states form an irreducible class.

In practice, it is perhaps simplest to just check for no zeros of |�m; m(b+ iy)| for y ∈ (0, π ]
along the upper half of the convergence boundary, since the lower half assumes complex conju-
gate values for |�m; m(b− iy)|. Checking for zeros is unnecessary when the sufficient condition
of the next proposition holds. The proof is in Section 7.5.2 of the supplementary material.

Proposition 5. (Alternative conditions in integer time for a dominant pole b.) The
non-degenerate and aperiodic condition ND-A1→m below suffices for guaranteeing that
|�m; m(b+ iy)| �= 0 for 0 �= y ∈ (−π, π ]:(
ND−A1→m

)
In integer time, the one-step mass functions for transitions from Im−1→ Im

are non-degenerate and aperiodic.

The condition ND-A1→m is violated by a DTMC in which all one-step mass functions are
degenerate at 1.
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3.1.1. Residue expansions. The expansions in Theorem 1 below apply to the conditional dis-
tribution of the first-passage time X given X <∞. This conditional distribution is a proper
distribution which sums to 1 and has MGF F1m(s). The theorem applies when X has either a
non-defective distribution with f1m = P{X =∞}= 0 or a defective distribution with f1m > 0.
The distribution is defective if the process may be diverted into a non-relevant state not in
Im−1, thus preempting passage 1→m. This occurs when the row sums of Pm; are not all 1.

For integer-time SMPs, the geometric expansions and their errors hold under minimal
assumptions. For continuous-time SMPs, exponential expansions with errors are given, but
they require some additional weak assumptions. One such assumption concerns a blockade B
for passage 1→m in Im, which is defined as a minimal set of branches or transition steps from
Im−1→ Im which, when removed, prohibits passage from 1→m. Another assumption con-
cerns an unbounded-step blockade BU for passage 1→m, which is a minimal set of branches
from Im−1→ Im which, when removed, prohibits passage from 1→m using an unbounded
number of steps; for such a blockade, it suffices to remove enough branches so that all feedback
loops in Im−1 are broken. The proofs are long and involved and therefore given in Section 7.6
of the supplementary material.

Theorem 1. (Geometric and exponential expansions.) Suppose that the conditions R1→m

and CD1→m hold and that the transient states Im−1 form an irreducible class. Also sup-
pose either the conditions Lreg and FS→m used in Proposition 3 or else the conclusions of
Proposition 3 that b < bmin is a simple pole of F1m(s). Denote by β−1 =Res{F1m(s); b} the
residue of F1m(s) at b, which takes the form

β−1 =
∣∣�m; m(0)

∣∣∣∣�m; 1(0)
∣∣

∣∣�m; 1(b)
∣∣

tr
[
adj{�m; m(b)}� ′m; m(b)

] . (11)

Here, adj{·} denotes the (m− 1)× (m− 1) adjoint of the matrix argument, and � ′m; m(b)=
d�m; m(s)/ds|s=b.

Integer time. Subject to the additional integer-time conditions in either Proposition 4 or
Proposition 5, the first-passage survival and mass functions of X|X <∞ have Geometric

(
e−b

)
tail expansions as n→∞ given by

S(n) := P(X ≥ n|X <∞)= S1(n)+ RS
1(n) := e−bn −β−1

1− e−b
+ RS

1(n),

p(n) := P(X = n|X <∞)= p1(n)+ R1(n) := e−bn(−β−1)+ R1(n). (12)

The mass function error R1(n) in (12) is

R1(n) := e−b+n 1

2π

∫ π

−π

F1m(b+ + iy)e−iyndy= o
(
e−b+n), n→∞, (13)

where b+ = b+ ε for sufficiently small ε > 0. The survival function error RS
1(n) is the same

integral with the additional integrand factor
(
1− e−b+−iy

)−1.

Continuous time. Subject to the additional blockade assumption B1→m below, the first-
passage survival function for X|X <∞ has an Exponential (b) tail expansion given by

S(t)= S1(t)+ RS
1(t) := e−bt−β−1

b
+ RS

1(t), (14)
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where β−1 is the residue in (11). The error is

RS
1(t) := e−b+t 1

2π

∫ ∞
−∞

F1m(b+ + iy)

b+ + iy
e−iytdy= o

(
e−b+t), t→∞. (15)

The condition B1→m is as follows:

(B1→m) A blockade B⊂ Im−1 × Im for passage 1→m exists such that each member (i, j) ∈B
has

∥∥Mij(b+ + iy)
∥∥q

integrable in y for a sufficiently large q= q(i, j)≥ 1.

Subject to the assumptions BT V1→m, ZD1→m, and UB1→m below, the first-passage density
function has expansion

f (t)= f1(t)+ R1(t) := e−bt(−β−1)+ R1(t), (16)

with error R1(t)= o
(
e−b+t

)
as in (15) but without the factor b+ + iy in the denominator of the

integrand:

(BT V1→m) A blockade B⊂ Im−1 × Im for passage 1→m exists such that each member (i, j) ∈
B has one-step transition density gij(t) with finite total variation.

(ZD1→m) We have eb+tgij(t)→ 0 as t→∞ for all (i, j) ∈ Im−1 × Im.

(UB1→m) An unbounded-step blockade BU ⊆ Im−1 × Im−1 exists such that each member
(i, j) ∈BU ⊆ Im−1 × Im−1 has

∥∥Mij(b+ + iy)
∥∥q

integrable in y for sufficiently large q=
q(i, j)≥ 1.

In integer time when F1m is periodic, expansions of order o
(
e−b+n

)
can be obtained if the

single-term expansions in (12) are replaced with multiple-term expansions which capture the
residues of all poles on the boundary {s= b+ iy : Im(y) ∈ (−π, π ]}; see [6, Section 9.4].

In continuous time, the ‘smoothness’ assumptions B1→m and UB1→m apply to powers of
Mij(b+ + iy), which is the characteristic function for the tilted density eb+tgij(t). These con-
ditions imply that its q(i, j)-fold convolution leads to a bounded and continuous density [12,
Section XV.3, Theorem 33]. Such assumptions allow, for example, gij to be Gamma (aij, bij)
for any aij > 0, including unbounded/discontinuous densities with 0 < aij ≤ 1. However, for
density expansions, blockades satisfying BT V1→m must exclude transitions with unbounded
gamma densities and aij < 1. The condition ZD1→m is very weak, since a density gij which
violates it would have to be quite ‘lumpy’ into its infinite tail, given that b+ < bij.

A variety of other conditions which commonly hold could have been used in place of
ZD1→m and UB1→m to get the density expansions of Theorem 1. Corollary 1 formalises one
such result, motivated by the fact that, like the conditions ZD1→m and UB1→m, the conditions
apply to the class of CTMCs. A proof is given in Section 7.6.2 of the supplementary material.

Corollary 1. (Alternate conditions for density expansions.) The conclusions concerning the
density expansion of Theorem 1 continue to hold if the conditions ZD1→m and UB1→m are
replaced with ONE1→m and MIN 1→m below:

(ONE1→m) If p1m > 0, then there exists T0 such that
∫∞
−∞M1m(b+ + iy)e−itydy is

uniformly integrable for t > T0.
(MIN 1→m) Apart from a one-step passage, if the minimum number of steps for passage

1→m is q≥ 2 steps, then assume
∥∥Mij(b+ + iy)

∥∥q
is integrable in y for all (i, j) ∈ Im−1 × Im.

3.1.2. Applicability to Markov chains. If an SMP is a DTMC or a conservative CTMC, then
to apply Theorem 1 the following assumptions are made: only relevant states are considered
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(R1→m), and the transient states of Im−1 form an irreducible class. The conditions Lreg and
FS→m of Proposition 3 hold automatically. The other assumptions depend upon whether time
is continuous or integer-valued.

In conservative CTMCs, denote the exit rate from relevant state i by −qii > 0, so that
Mij(s)= (1+ s/qii)−1. This ensures that all conditions of Theorem 1 and Corollary 1 hold.
Thus, the survival and density expansions in (14) and (16) hold. In the condition ONE1→m, the
uniform integrability of the exponential MGF M1m follows from using an integration-by-parts
argument while the condition MIN 1→m holds with q= 2.

For DTMCs, the condition ND−A1→m is violated since each one-step distribution is
degenerate at 1. However, ND−A1→m holds when pii > 0 for all i ∈ {1, . . . , m− 1} if the
process is reformulated so that all one-step feedback transitions are removed. This alternative
reformulation, for first-passage purposes, is the Markov process in which one-step return to
state i is not allowed and exit from state i to a different state j �= i has a Geometric (pii) hold-
ing time with transition probability pij/(1− pii). It is in this form that Theorem 1 applies to a
DTMC.

If a DTMC is aperiodic (a single pii > 0 ensures this), then [19, Theorem 1.2] showed
that F1m must have a simple real-valued dominant pole on its convergence boundary since
it represents a phase-type distribution. See Section 4.4.2 for more discussion of DTMCs.

In both DTMCs and CTMCs the expansions of Theorem 1 are well established, since PGF
F1m( ln s) and MGF F1m(s) respectively are rational and the expansions follow directly from
their partial-fraction expansions. The importance of Theorem 1 is that it rather applies to SMPs
whose transmittance matrix T consists of non-rational one-step MGFs.

3.1.3. Relationship to literature. The expansions in Theorem 1 were first developed in [4,
Section 7] and were derived using proofs with stronger and different conditions. These proofs
used Darboux’s theorem in integer time and the Ikehara–Wiener Tauberian theorem in con-
tinuous time, with both of these theories finding their origins in analytic number theory. This
previous work, however, was limited to providing only the expansion orders as o

(
e−bn

)
and

o
(
e−bt

)
, whereas Theorem 1 provides explicit integral-form error terms for R1(n), RS

1(n),
R1(t), and RS

1(t) which have these asymptotic orders. As will be seen in Section 6.2, this
explicit integral form allows these errors to be approximated by using saddlepoint methods.
This then improves the expansions by allowing additive saddlepoint corrections as described
in [5, Section 2.4] and [6, Section 3].

The development here goes beyond that of [4, Section 7] by basing assumptions on more
fundamental properties of the SMP. In this previous work, b was assumed to be a simple pole,
whereas in Proposition 3 this property is proved and follows from the more basic assumption
that the states in Im−1 are irreducible. Also, in previous work, F1m was only shown to be ana-
lytically extendable to {Re(s)≤ b}\{b}, whereas in Proposition 4 it is shown to be analytically
extendable to {Re(s) < b+ ε0}\{b} for some ε0 > 0. This may seem to be a minor extension,
but it is crucially needed in order to use Cauchy’s deformation theorem in deriving the results
of Theorem 1. Finally, the conditions placed on the one-step densities {gij(t)} to get a first-
passage density expansion are weaker than the Tauberian-type conditions in [4], which require
that tilted versions of these densities are ultimately monotone decreasing for large t.

3.1.4. The asymptotic hazard rate for exit from the class Im−1. From Theorem 1, the asymp-
totic hazard rate for the sojourn from 1→m, which reflects the tail of the distribution of F1m,

is b > 0 in continuous time and 1− e−b in integer time and is consistent with the findings in
[4, Theorems 1–2]. No finite-step or finite-time aspect of the transient process determines the

https://doi.org/10.1017/apr.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.4


1304 R. W. BUTLER

value of b. Its value is associated with a sojourn that maintains itself in perpetual transience
by continuing to feed back within the class Im−1. Thus the value b is characterised only by the
transitional properties within the class Im−1, and this is reflected in its value as the smallest
positive root of

∣∣�m; m(s)
∣∣. It is therefore natural to refer to b as the asymptotic hazard rate for

exit from the irreducible class Im−1.

3.2. All relevant states are progressive

We now consider the case in which the transient states of Im−1 are progressive, so these
states can only be entered a single time during a sojourn. This means self-looping is not
allowed, so pii = 0 for all i ∈ Im−1. When this occurs, the denominator factor for F1m is∣∣�m; m(s)

∣∣≡ 1 for all s. To show this, order the states in Im−1 in such a way that if transi-
tion i→ j is possible in a single step then i < j. The resulting matrix Tm; m(s) has zeros in all
entries on or below its diagonal. Thus,

∣∣�m; m(s)
∣∣= |Im−1 −Tm; m(s)| = 1 and, from (4),

F1m(s)= (−1)m+1|�m; 1(s)|. (17)

The non-zero portion of the permutation sum of the cofactor in (17) enumerates all possible
disjoint pathways that the sojourn can take from 1→m. Thus the distribution of X is a finite
mixture/convolution distribution. The sojourn-time MGF F1m(s) has convergence domain {s ∈
C : Re(s) < b} or {s ∈C : Re(s)≤ b} with 0 < b=min

{
bij : (i, j) ∈ Im−1 × Im, i < j

}
. Let L={

(i, j) ∈ Im−1 × Im, i < j : bij = b
}

denote the set of one-step branches with b as the common
convergence bound.

Asymptotic expansions continue to hold in both integer and continuous time, but now F1m

shares the same convergence domain as the one-step MGFs in L. Since its convergence domain
is no longer a proper subset of the domains for all the one-step components of �m; 1(s),
different assumptions are needed to obtain the expansions, and these concern the analytic con-
tinuations of one-step MGFs in L as specified in Theorem 5. The proof is in Section 7.7 of the
supplementary material.

3.3. Relevant states are progressive and irreducible

Suppose an SMP consists of both transient states in T and a single irreducible subchain
J with a stationary distribution. If states 1 and m are both in T (J ), then the other states in
J (T ) are not relevant to first passage 1→m, so Im−1 comprises only the relevant states in
T (J ). This leaves the case 1 ∈ T and m ∈J where the relevant states for passage are those
relevant from T ∪J . Not all states in J \{m} are necessarily relevant, as those reachable only
after passing through state m are not relevant to the first passage.

In all three settings above, if state m is removed from the relevant class, then Im−1 con-
sists entirely of transient states, but there may be 0, 1, 2, . . . , m− 2 irreducible subclasses.
(There are m− 2 such classes when exit from each of the states 2, . . . , m− 2 is return to that
same state or else direct passage to state m). The next subsection deals with the most common
situation, in which there is a single irreducible subclass in Im−1.

3.3.1. Relevant states are progressive with one irreducible subclass. Consider the general class
of SMPs in which the states in Im−1 may be partitioned into a progressive class P of size p and a
single irreducible subclass I of size I =m− 1− p. The designation of I as irreducible simply
means that PII , the I × I subblock of P, satisfies the condition that Pn

II > 0 componentwise
for some n.
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Upon distinguishing two classes P and I of relevant states, it becomes necessary to dis-
tinguish those progressive states P1 ⊆P that can be realised before entering into I and those
P2 ⊆P realised after leaving I. The two subsets are disjoint since any state which could be
entered both before and after I would not be progressive.

There are two possible models, determined by whether 1 ∈ I or 1 ∈P1. The two models
use state decompositions Im−1 = I ∪P2 and Im−1 =P1 ∪ I ∪P2, respectively. We assume
the latter, which includes the former by taking P1 =∅. Thus, Proposition 6 and Theorem 2,
stated below, apply to both settings, where P1 =∅ means the rows and columns for P1 are not
in the matrices �m; m(s) and �m; 1(s).

Within this general class structure for Im−1 and subject to mild conditions, exponential and
geometric asymptotic expansions hold for the first-passage distribution from 1→m which
reflect the asymptotic hazard rate b associated with the irreducible subset I. To show this,
order the pi states in P i so the P i ×P i block of T(s), denoted by TP iP i(s), consists of zeros
on and below its diagonal. The smallest positive value of b that solves

0= ∣∣�m; m(s)
∣∣=

∣∣∣∣∣∣∣∣
⎛⎜⎜⎝

Ip1 −TP1P1 (s) −TP1I (s) −TP1P2 (s)

0 II −TII (s) −TIP2 (s)

0 0 Ip2 −TP2P2 (s)

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣

= |II −TII (s)| (18)

is the asymptotic hazard rate for the class I.
The following results extend Propositions 2–4 to deal with this more general class of SMPs.

Proposition 6. (Sum over all distinct pathways, simple dominant pole b.) Suppose that the
conditions R1→m and CD1→m hold and that the relevant set Im−1 for passage 1→m can be
partitioned into a progressive class P =P1 ∪P2 and an irreducible class I. Let b > 0 be the
asymptotic hazard rate for the irreducible class I defined as the smallest positive root of (18).
Then the following hold:

(A) The conclusions of Proposition 2 apply to f1mF1m(s), as given in (4). This concerns the
agreement of (4) with the expression (9), as the sum of transmittances over all distinct path-
ways from 1→m, on the convergence domain {Re(s) < b}, as well as its agreement with (9)
on its analytic continuation to R⊂{Re(s)≥ b} as defined in (10).

(B) With the additional assumptions LIreg and PIFS→m given below, the conclusions of
Proposition 3 hold, so b < bmin := min{bij: (i, j) ∈ Im−1 × Im} and b is a simple pole of F1m:

(LIreg) Take bI =min{bij : (i, j) ∈ I × I} and L= {(i, j) ∈ I × I : bij = bI}. For some branch
b ∈L, the convergence domain for Mb(s) is regular, i.e. it is the open set {s ∈C : Re(s) < bI}.
(PIFS→m) We have b < min(i,j)∈W bij where W = (P1 × Im)∪ [(I ∪P2)× (P2 ∪ {m})] .

(C) Assume the conditions LIreg and PIFS→m above or else the conclusions of part B.
Then, in continuous time, b is a dominant pole, in that an ε0 > 0 exists such that F1m can be
analytically extended to {Re(s) < b+ ε0}\{b} using (4). In integer time, the same conclusions
hold with analytic continuation to the principal convergence region if one of these conditions
holds: either (i) |�II (s)| := |II −PII (s)| has a unique zero at b along {b+ iy : y ∈ (−π, π ]},
or else (ii) ND−A1→m holds, as stated in Proposition 5.
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The proofs are given in Section 7.8 of the supplementary material. The proof of 3C requires
proving that (−1)m+1|�m; 1(b)|> 0. The argument for this differs from the simpler setting of
Proposition 3 and requires a long and quite difficult argument.

Proposition 6 sets the stage for developing the expansions and conclusions of Theorem 1 but
with the class of transient relevant states expanded so that Im−1 =P ∪ I rather than just I. The
proof for Theorem 2 follow the same arguments as those used in Theorem 1 and Corollary 1.
The residue has a slightly different form due to the identity in (18).

Theorem 2. (Expansions with progressive states and a single irreducible subclass.)
Suppose that the conditions R1→m and CD1→m hold and that the relevant states Im−1 for
passage 1→m can be partitioned into a progressive class P =P1 ∪P2 and a single irre-
ducible class I. Furthermore, assume the conditions LIreg and PIFS→m in Proposition 6B,
or else assume b < bmin and b is a simple pole. Denote the residue of F1m(s) at b by

β−1 = |�II (0)|∣∣�m; 1(0)
∣∣

∣∣�m; 1(b)
∣∣

tr[adj{�II(b)}� ′II(b) ]
, (19)

where �II (s)= II −TII(s) .

Integer time. With the additional integer-time conditions of Proposition 6C, the mass and
survival function expansions of Theorem 1 hold with residue β−1 as in (19).

Continuous time. The survival function expansion in Theorem 1 holds with residue (19) sub-
ject to the condition B1→m of Theorem 1. The density function expansion holds subject to the
conditions BT V1→m and ZD1→m of Theorem 1 and UBI1→m below:

(UBI1→m) An unbounded-step blockage BU ⊂ I × I exists such that for all (i, j) ∈BU,

‖Mij(b+ + iy)‖q is integrable in y for a sufficiently large q= q(i, j)≥ 1.
The density function expansion holds if the conditions ZD1→m and UBI1→m are replaced

with the alternative conditions ONE1→m and MIN 1→m from Corollary 1.

3.4. First passage in Markov processes

The conclusions of Theorems 1, 2, and 5 apply to CTMCs, and it is perhaps useful to see
how the established results for phase-type distributions relate to such SMP results as given
in Corollaries 2 and 3 below. We continue to assume the condition R1→m, so Im consists of
exactly those states relevant to first passage 1→m.

3.4.1. Continuous-time Markov chains. Let Q= {qij} denote the m×m infinitesimal generator
or intensity matrix of a CTMC, and suppose the chain is conservative with qij ≥ 0 and qii < 0
with qii ≤−qi· = −∑j �=i qij. Strict inequality qii <−qi· occurs if state i can lead to a non-
relevant state. The relationship between Q and the transmittance T(s) is

T(s)=W(s)P,

where W(s)= diag{(1+ s/qii)−1 : i= 1, . . . , m} contains the MGFs of Exponential (−qii)
holding times, and P= (pij) is the transition probability matrix of the jump chain with

pij =
{

qij/(−qii) if i �= j,
0 if i= j.
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Suppose relevant states Im−1 =P ∪ I with progressive states P =P1 ∪P2 and irreducible
states I. Exact first-passage density and survival functions conditional on a finite passage time
are derived in Section 7.9 of the supplementary material as

S(t)= ξT
1 exp

(
Qm; mt

)
Q−1

m; mqm

ξT
1 Q−1

m; mqm

, f (t)= ξT
1 exp

(
Qm; mt

)
qm

−ξT
1 Q−1

m; mqm

, (20)

where ξT
1 is a 1× (m− 1) indicator of state 1, qm = (q1m, . . . , qm−1,m)T , and

Qm; m =

⎛⎜⎜⎝
QP1P1 QP1I QP1P2

0 QII QIP2

0 0 QP2P2

⎞⎟⎟⎠ ,

where QII is the intensity matrix for the block of irreducible transient states, etc. States in
P1 and P2 are ordered so QP1P1 and QP2P2 have zeros below the diagonal. Let b > 0 be the
eigenvalue of −QII with smallest real part (which is necessarily positive).

Corollary 2. (Continuous-time conservative Markov chain.) For the chain as described
above, suppose b < bP := min{−qii : i ∈P1 ∪P2} so that b is the eigenvalue of −Qm; m with
the smallest real part. Then the expansions of Theorem 2 apply so that

S(t)= e−bt−β−1

b
+ o

(
e−b+t) and f (t)= e−bt(−β−1)+ o

(
e−b+t), (21)

where β−1 =Res{F1m(s); b}, b < b+ < b2 =min
[{

Re(λj) : j≥ 2
}
, bP

]
, and

{
λj : j≥ 2

}
are

the non-dominant eigenvalues of −QII .

The derivation of Corollary 2 is given in Section 7.9 of the supplementary material. The
residue computation for β−1, as it relates to the dominant eigenvectors of Qm; m, is given in
Equation (50) in the supplementary material.

3.4.2. Discrete-time Markov chains. Similarly, suppose the relevant states of a DTMC are
Im−1=P1 ∪ I ∪P2. Here, we change the definition of a progressive state to allow it to have
self-loops. We say state i ∈P is ‘progressive’ if it can be exited only once to a different
state, thus allowing pii > 0. Also suppose I is an irreducible aperiodic class of size I. The
transmittance for the chain is Pm; mes. The smallest positive solution to

0= ∣∣�m; m(s)
∣∣= ∏

i∈P1∪P2

(
1− piie

s)× ∣∣II − PIIes
∣∣ (22)

determines b, the edge of the convergence domain. We suppose b=− ln λ1 where λ1 > 0
is the Perron–Frobenius eigenvalue of PII . We know that λ1 ∈ (0, 1) since at least one row
sum of Pm; m is strictly < 1. Exact expressions for the conditional first-passage survival and
mass functions given finite passage time are derived in Section 7.10.1 of the supplementary
material as

S(n)= ξT
1 (Im−1 − Pm; m)−1Pn−1

m; mpm

ξT
1 (Im−1 − Pm; m)−1pm

, p(n)= ξT
1 Pn−1

m; mpm

ξT
1 (Im−1 − Pm; m)−1pm

, n≥ 1, (23)

where pm = (p1m, . . . , pm−1,m).

https://doi.org/10.1017/apr.2022.4 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.4


1308 R. W. BUTLER

Corollary 3. (Discrete-time Markov chain.) For the chain described above, let I be an irre-
ducible aperiodic class with b < bP := min{i∈P1∪P2 : pii>0} (− ln pii). Then expansions for S(n)
and p(n) in (23) are

S(n)= e−bn −β−1

1− e−b
+ o

(
e−b+n) and p(n)= e−bn(−β−1)+ o

(
e−b+n) (24)

for b < b+ < b2, where β−1 =Res{F1m(s); b} and b2 =min
[{Re(− ln λj) : j≥ 2}, bP

]
, where

{λj : j≥ 2} are the non-dominant eigenvalues of PII .

For the same chain as described above, if I is instead periodic with period d≥ 2, then∣∣�m; m(s)
∣∣ has d equally spaced zeros on the boundary {s ∈C : Re(s)= b} of the convergence

domain for F1m. The other d− 1 zeros contribute additional terms of order O
(
e−bt

)
to those

given in (24).

Proof of Corollary 3 is given in Section 7.10 of the supplementary material. The residue
β−1 is expressed in terms of the dominant eigenvalue and eigenvectors of Pm; m in Equation
(52) in the supplementary material.

Of course, in all of these Markov settings, the expansions have already been well estab-
lished, since MGF F1m(s) and PGF F1m( ln s) respectively are rational and the expansions
follow directly from their partial-fraction expansions. The importance of Theorems 1, 2, and
5, however, is their applicability to SMPs without rational transmittance matrices T(s). What
Theorems 1, 2, and 5 also demonstrate is an insensitivity property such as that discussed in [23,
Section 5.4]: SMPs in general exhibit the same sort of exponential/geometric tail behaviour as
occurs with phase-type distributions of Markov processes.

4. Additional sojourn types with poles

Other types of sojourns, which might at first seem different from the first-passage context
1→m �= 1, are essentially related, and theorems from Section 3 with some modifications can
be applied as discussed below.

4.1. First passage to a subset of states

First-passage sojourns from 1→D where D includes two or more states of an SMP are
equivalent to first passages to a lumped state m constructed from D. Suppose relevant state
space Im−1 ∪D for passage 1→D where Im−1 = {1, . . . , m− 1}. Let m be the lumped state
for D such that one-step passage from i ∈ Im−1 to m has transmittance Ti·(s)=∑j∈D Tij(s).
In this setup, the first-passage transmittance from 1→D is just the first-passage transmittance
from 1→m as treated in Section 3 by using the cofactor rule in (4). The only modifications are
to the last column of the m×m matrix T(s), which is now

{
T1·(s), . . . , Tm−1,·(s), ∗}T , where

∗ indicates that the last component is not used in the cofactor rule.

4.2. First return to state 1

Let X be the first-return time to state 1 when the process enters state 1 at time 0. The
transmittance E

(
esX1{X<∞}

)
for first return 1→ 1 is given in [3, Section 13.2.6] as

f11F11(s)= 1− |Im −T(s)|
|�11(s)| , (25)
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where |�11(s)| is the (1,1) minor of Im −T(s). Assume R1→1 or that Im = {1, . . . , m} contains
all relevant states and no non-relevant states for the sojourn 1→ 1. A cofactor expansion of
|Im −T(s)| along its first row corresponds to a one-step argument and gives

f11F11(s)= 1−
⎡⎣1− T11(s)+

m∑
j=2

(−1)1+j{−T1j(s)} |�1j(s)|
|�11(s)|

⎤⎦
= T11(s)+

m∑
j=2

T1j(s)fj1Fj1(s), (26)

where fj1Fj1(s) is the first-passage transmittance from state j �= 1 to 1 in (4). This relationship
embodies the one-step argument and naturally leads to a characterisation of the distribution of
X|X <∞ as a finite-mixture distribution in which

X|X <∞=
{

H11 w.p. p11/f11,

H1j + Xj1 w.p. p1jfj1/f11, j≥ 2,

where H1j has MGF M1j, the first-passage random variable Xj1 has MGF Fj1, and all random
variables are mutually independent. The first-return probability f11 = p11 +∑m

j=2 p1jfj1 is the
expression (26) evaluated at s= 0. Note that if Im is irreducible and P has row sums which are
all 1, then |Im −T(0)| = 0, so f11 = 1.

4.2.1. Other relevant states are progressive. If all states in Im\1 = {2, . . . , m} are progressive
(but state 1 is not), then |�11(s)| = 1 and the non-zero terms in the permutation sum for 1−
|Im −T(s)| enumerate all distinct first-return pathways. In this case, a result like Theorem 5
in Section 7.7 of the supplementary material can be stated to provide integer- and continuous-
time expansions. Such a result requires the assumption CD1→1, which is the same as CD1→m

but now applies to all one-step MGFs in T(s). The assumptions ACL and ZML are needed
but now apply to a new L= {(i, j) ∈ Im × Im : bij = b} where b=min(i,j)∈Im×Im bij. For density
expansions, the comparable assumptions BT V1→1, ONE1→1, and MIN 1→1 pertaining to
passage 1→ 1 rather than their counterpart 1→m �= 1 must also hold.

4.2.2. Other relevant states are irreducible. Alternatively, if states in Im\1 form an irreducible
class, then expansions analogous to those in Theorem 1 hold for first return to state 1, as
now formalised. Proof is in Section 7.11 of the supplementary material. Suppose b > 0 is the
smallest positive zero of |�11(s)|. Let bmin =min(i,j)∈Im×Im bij, bI =min(i,j)∈Im\1×Im\1 bij, and
L= {(i, j) ∈ Im\1 × Im\1 : bij = bI}. Here, let Lreg impose regularity on some Mij(s) for which
(i, j) ∈L, and let FS→1 denote the assumption that b < min{bij : i= 1 or j= 1}.
Theorem 3. (First-return expansions with irreducible states.) Suppose that the conditions
R1→1 and CD1→1 hold and that Im\1 forms an irreducible class. Additionally, assume Lreg
and FS→1 hold. Denote by β−1 =Res{F11(s); b} the residue of F11 at b, which takes the form

β−1 = −1

f11

|Im −T(b)|
tr
[
adj{�11(b)}� ′11(b)

] < 0, (27)

where f11 = p11 +∑m
j=2 p1j(−1)j+1|�1j(0)|/|�11(0)|.
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Integer or continuous time. Then b < bmin and b is a simple pole.

Integer time. In this setting, suppose the additional condition that either |�11(s)| has a unique
zero at b on {b+ iy : y ∈ (−π, π ]} or else ND−A1→1 holds (which is the condition ND−
A1→m but now pertaining to all one-step transitions from Im to Im). Then b is a dominant pole.
Also, the conditional first-return survival and mass functions and error expressions take the
form in Theorem 1 using the residue β−1 in (27).

Continuous time. Then the simple pole b is a dominant pole.

Additionally, suppose B1→1 (which places absolute integrability conditions like those in
B1→m on MGFs forming a blockade for passage 1→ 1). Then the conditional first-return
survival function has an expansion and error expression as given in Theorem 1 using the
residue (27).

Suppose BT V1→1 holds and either conditions ZD1→1 and UB1→1 (as in Theorem 2)
or else ONE1→1 and MIN 1→1 (as in Corollary 1) hold. Then the conditional first-return
density expansion and error expression are as given in Theorem 1 using residue (27).

In Theorem 3, the assumptions Lreg and FS→1 ensure that b < bmin and b is a simple pole.
The additional results in both integer time and continuous time also hold if we instead choose
to assume that b < bmin and b is a simple pole.

4.2.3. Other relevant states are progressive and irreducible. If states in Im\1 =P1 ∪P2 ∪ I
are both progressive (P1 ∪P2) and irreducible (I), as introduced for Theorem 2, an analogue
of Theorem 2 holds for first return to state 1. Suppose b > 0 is now the smallest positive
zero of |�II (s)| and the asymptotic hazard rate for the irreducible set I. In this context,
set bmin =min{bij : (i, j) ∈ Im × Im}, bI =min{(i, j) ∈ I × I}, and LI = {(i, j) ∈ I × I : bij =
bI}. The condition LIreg requires that Mij is regular for some (i, j) ∈LI. Also suppose the
condition PIFS→1, which requires

b < min
[
bij : (i, j) ∈ {i= 1 or j= 1} ∪

(
P1 × Im\1

)
∪
{(

I ∪P2
)
×P2

}]
.

Theorem 4. (First-return expansions with progressive states and one irreducible class.)
Assume R1→1 and CD1→1 and suppose Im\1 partitions so that Im\1 =P1 ∪P2 ∪ I, where
P1 and P2 are progressive states before and after entering I, where I is an irreducible class.
Also, assume the conditions LIreg and PIFS→1. Denote by β−1 =Res

{
F11(s); b

}
the residue

of F11 at b, which takes the form

β−1 =Res{F11(s); b} = −1

f11

|Im −T(b)|
tr
[
adj{�II (b)}� ′II (b)

] < 0, (28)

where f11 = p11 +∑m
j=2 p1j(−1)j+1|�1j(0)|/|�II (0)|.

Integer or continuous time. Then b < bmin and b is a simple pole.

Integer time. In this setting, suppose the additional condition that either |�II (s)| has a unique
zero at b on {b+ iy : y ∈ (−π, π ]} or else ND−A1→1 holds. Then b is a dominant pole.
Furthermore, the expansions for the conditional survival and mass function are as given in
Theorem 1 using the residue (28).

Continuous time. Then the simple pole b > 0 is also a dominant pole.

Additionally, suppose B1→1. Then the conditional survival function for the first return has
an expansion and error expression as given in Theorem 1 using the residue (28).
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Suppose the condition BT V1→1 holds, and either ZD1→1, and UBI1→1 hold (as in
Theorem 2), or else ONE1→1 and MIN 1→1 hold as in Corollary 1. Then the conditional
density expansion and error expression for the first return are as given in Theorem 1 using the
residue (28).

The last results of Theorem 4 stated under the categories of integer time and continuous
time also hold if we assume that b < bmin and b is a simple pole.

5. Sojourns with two or more relevant irreducible classes

If the relevant state space consists of a progressive class and two or more irreducible classes,
then the conclusions of Theorems 2 and 4 may continue to apply as concerns first-passage
distributions from 1→m and 1→ 1, but under revised conditions.

These conditions for first passage 1→m can get very complicated even for the setting
Im−1=P ∪ I1 ∪ I2 with two irreducible classes. The conditions depend on what transitions
are possible amongst the classes P, I1, and I2. If

c→ indicates the presence of one-directional
communication between subsets of states, then we may have I1

c→ I2 or I2
c→ I1, but not

both, since the two classes are disjoint irreducible classes. If we allow I1
c→ I2, then P can be

partitioned into three progressive classes P =P1,2 ∪P2\1 ∪P\2 characterised by state transi-
tion orderings such that 1 ∈P1,2 c→ I1

c→P2\1 c→ I2
c→P\2→{m}. Additional ordering of

states within the three sets P1,2, P2\1, and P\2 according to the
c→ relation leads to an

expression for T(s) in block form which has zero blocks below the diagonal blocks. Thus,∣∣�m; m(s)
∣∣= |�I1I1 (s)| × |�I2I2 (s)|. If the asymptotic hazard rate for I2 is b > 0 and strictly

smaller than that for I1 (the case when they are equal is discussed below), then b is a simple
zero of

∣∣�m; m(s)
∣∣ and the conclusions of Theorems 2 and 4 follow subject to the following

conditions in both integer and continuous time: R1→m; CD1→m; a suitably modified LI2reg to
account for feedback within I2→ I2; and PIFS→m, which accounts for transitions involving
progressive states. One must also assume that |�m; 1(b)| �= 0, which is no longer guaranteed
from the composition of Im−1. Then, in integer time, the expansions of Theorem 1 hold if
|�m; m(b+ iy)| has no further zeros for 0 �= y ∈ (−π, π ] or else ND−A1→m holds. In contin-
uous time, the survival expansion holds subject to B1→m, and the density expansion holds with
BT V1→m, ZD1→m, and UBI1→m, where the last assumption must account for infinite-step
pathways in I1 ∪ I2. In the setting for first return to state 1, only minor modifications to these
conditions are needed to make them relevant for 1→ 1 passage. A simple pole still occurs at
b > 0, and the numerator value |Im −T(b)| < 0 is ensured.

One notable class of SMP examples violates the conditions above. Suppose I1 and I2
represent identical subsystems, so that TI1I1 (s)≡TI2I2 (s). Assume these subsystems are con-

nected in series so that P1,2 c→ I1
c→ I2

c→m. In this case, the two irreducible classes have
the same asymptotic hazard rate, and so b is a 2-zero of

∣∣�m; m(s)
∣∣. Typically in this setting

|�m; 1(b)| �= 0, so that b becomes a 2-pole for F1m(s). This leads to a Gamma (2,b) or a Discrete
Gamma (2, b) tail with an expansion of the type given in Theorem 5 of the supplementary
material.

Another class of examples connects these identical subsystems in parallel, as occurs when
there are redundant subsystems in place. In this context, P1,2 c→ I1

c→m and P1,2 c→ I2
c→

m are parallel pathways with no communication between I1 and I2. Again
∣∣�m; m(s)

∣∣=
|�I1I1 (s)| × |�I2I2 (s)| and b is a 2-zero. However, in this setting |�m; 1(b)| = 0 and b can
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be shown to be a 1-zero of the numerator. Hence, b is a simple pole, and an expansion as in
Theorem 1 exists but with the alternative residue computation

β−1 =Res{F1m(s); b} = 1

f1m

∂|�m; 1(s)|/∂s
∣∣
s=b

∂2
∣∣�m; m(s)

∣∣/∂s2
∣∣
s=b /2

= 2

f1m

tr
[
adj
{
�m; 1(b)

}
� ′m; 1(b)

]
tr
[
adj
{
�m; m(b)

}
� ′′m; m(b)+Dadj

{
�m; m(b)

}
� ′m; m(b)

] ,
where Dadj{�m; m(s)} = ∂adj{�m; m(s)}/∂s is (m− 1)× (m− 1) and has components which
are computed as derivatives of determinants.

6. Numerical examples

6.1. Reliability system

A system consists of four components, each of which has an Exponential (1/4) failure time.
Let components 1–3 be repairable, but not component 4. The system ultimately fails at time X
which is the time of failure of component 4. Let all failure and repair times be independent, and
suppose the repair times for components i= 1, 2, 3 are Inverse Gaussian

(
μi, σ 2

i

)
with mean

μi and variance σ 2
i , so the process is semi-Markov.

The SMP can be modelled with five states, of which 0 indicates that the system is working
and i ∈ {1, . . . , 4} indicates that component i has failed. The exit time from the working state
0 is Exponential (1). The MGF for an inverse Gaussian

(
μi, σ 2

i

)
distribution is

Ni(s)= exp

[
μ2

i

σ 2
i

{
1−

√
1− 2sσ 2

i /μi

}]
, Re(s)≤ μi

2σ 2
i

,

so that the first-passage MGF from 0→ 4 from (4) becomes

F(s)= 1/4(1− s)−1

1− 1/4(1− s)−1
∑3

i=1 Ni(s)
= 1/4

1− s− 1/4
∑3

i=1 Ni(s)
. (29)

The middle expression in (29) demonstrates that there is some discretion in our characterisation
of the SMP in terms of the choice of states for expressing system failure. We can eliminate
states 1–3 and consider a two-state SMP in which states 1 and 2 are respectively the working
and failed system states. This has SMP transmittance matrix

T(s)=
⎛⎝1/4 (1− s)−1 ∑3

i=1 Ni(s) 1/4 (1− s)−1

0 0

⎞⎠ ,

and system failure time is the first-passage time from 1→ 2 for T(s), which gives the same
MGF as in (29).

As a numerical example, suppose the Inverse Gaussian
(
μi, σ 2

i

)
repair times have(

μi, σ 2
i

)= (1/2, 1/2), (1,1), and (2, 2). Then for the two-state SMP, b11 = 1/2 and b12 = 1,
and the condition Lreg of Proposition 3 does not hold. Despite this, the conclusions of
Proposition 3 still hold, and the MGF F(s) has a simple pole at b= 0.1228, which is the
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TABLE 1. Exact survival and density values S(t) and f (t) are compared with expansion values S1(t) and
f1(t) as well as saddlepoint approximations Ŝ(t) and f̂ (t) for t= 5, 10, 20, 40, and 80. A bold digit denotes
the last digit which agrees with exact computation when both are rounded. Percentage relative errors (%
rel. err.) 100{S1(t)/S(t)− 1}for the approximations are provided.

t= 5 % 10 % 20 %
rel. err. rel. err. rel. err.

S(t) 0.494 662 99 0.267 467 411 0.0783 519 58
S1(t) 0.494 118 −0.110 0.267 446 6 −0.02779 0.0783 518 97 −0.04766
Ŝ(t) 0.494 568 0.091 0.267 481 0.02508 0.078646 0.3764

f (t) 0.0610 498 0.0328 475 18 0.02961 937 185 3
f1(t) 0.0606 63 −0.633 0.0328 467 36 −0.0391 0.02961 933 8 −0.03352
f̂ (t) 0.0685 00 12.21 0.0361 9.976 0.01047 8.911

t= 40 % 80 %
rel. err. rel. err.

S(t) 0.02672 472 428 917 6 0.04495 363 960 497 072 452 3
S1(t) 0.02672 472 428 81 −0.07161 0.04495 363 960 497 072 44 −0.014171
Ŝ(t) 0.02679 83 1.10 0.04505 557 2.06

f (t) 0.03825 600 879 431 1 0.05608 163 106 199 218 151 2
f1(t) 0.03825 600 878 85 −0.06702 0.05608 163 106 199 218 11 −0.014720
f̂ (t) 0.020896 8.575 0.040660 8.480

asymptotic failure rate of {1} for the two-state model or for I = {0, 1, 2, 3} in the five-state
model. The MGF also has branch points at 1/2 and∞ and simple poles at 2.305± 0.089i.

The accuracy of the survival and density expansions for time to failure in Theorem 1 is
compared to that of ‘exact’ and saddlepoint computations in Table 1. The survival saddlepoint
approximation Ŝ(t) is the approximation of Lugannani and Rice [16] given in [3, Section 1.2.1],
and the saddlepoint density approximation f̂ (t) is the standard one in [3, Section 1.1.2]. The
residue expansions are more accurate than the saddlepoint approximations for all values of t
except at t= 5 near the median, where Ŝ(5) is more accurate than S1(5). The greater accuracy
of S1 and f1 is quite dramatic, and these expansions provide close to exact computations for
many practical purposes.

As t→∞, the relative error of S1(t) and f1(t) must approach 0, and this can be seen in the
table. The saddlepoint approximations have the property that

100

{
Ŝ(t)

S(t)
− 1

}
→ 	(1)

	̂(1)
− 1� 8.444%← 100

{
f̂ (t)

f (t)
− 1

}
, t→∞. (30)

These limits hold since the two-state SMP satisfies Corollary 4 in [8, Section 4.1.2], which
establishes the limiting relative error for such saddlepoint approximations when used in con-
junction with the cofactor rule of (4). At t= 80 the relative error for the saddlepoint density
is 8.480% and close to the limit 8.444% with clear evidence of convergence. The table
shows much slower convergence in relative error for the Lugannani–Rice approximation, an
observation that was also noted in [8, Section 6.1, Ex.8, and Section 6.1, Ex.1].
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Not only are the expansions more accurate than the saddlepoint approximations, they also
provide simpler and more useful expressions for later computation, which take the form

S1(t)= 0.912 902 842 295 exp(−0.122 770 963 311 290 t) ,

f1(t)= 0.112 077 961 358 exp(−0.122 770 963 311 290 t) . (31)

An approximate reliability function for the system is explicit in (31) and when inverted gives an
explicit expression for quantile computation. Such simplicity is not possible using saddlepoint
approximations since each value of t requires root-finding to solve for its saddlepoint.

For statistical inference in stochastic modelling settings in which the likelihood is
intractable, the density expression f1 provides a useful and easily computed expression for
likelihood computation. Suppose the system parameter θ concerning the transmittance T(s; θ )
is unknown and the data {ti} consist of overall times to system failure. To make inferences about
a hypothesised value θ , the intractable likelihood

∏
i f (ti; θ ) can be approximated quite simply

by the expansion product
∏

i f1(ti; θ ) with convergence bound b and its residue as functions of
θ . Computation of the saddlepoint product

∏
i f̂ (ti; θ ) is much more difficult and plagued by

the need to computed a saddlepoint for each ti as a function of θ .

6.1.1. Inversion formulas and integration paths. The exact computations in Table 1 were per-
formed using numerical contour integration that roughly follows the path of steepest descent.
Before considering this, we first show why inversion should not be performed staying in the
convergence domain for F . The discussion below applies to quite a few applications in which
the cofactor rule in (4) is inverted.

Inside the convergence domain. From the inversion formula, f (t) may be written as

f (t)= 1

2π i

∫ ε+i∞

ε−i∞
F(s)e−tsds= e−εt

π

∫ ∞
0

Re
{
F(ε+ iy)e−ity} dy (32)

for any ε ∈ (0, b). Quite often when using the cofactor rule in (4), the integrand in (32)
is not absolutely integrable, and we show this for the reliability example. In (29), note
that ‖Ni(ε+ iy)‖→ 0 as y→∞ since ε+ iy is in the convergence domain of Ni. Thus,
F(ε+ iy)∼ (1− ε− iy)−1/4 as y→∞, and

Re
{
F(ε+ iy)e−ity}∼ 1

4
Re

(
e−ity

1− ε− iy

)
= sin(ty)

4y
+O

(
y−2). (33)

The right side of (33) is not absolutely integrable in y and is only conditionally integrable. For
large y, half the absolute value of the right side of (33) is a lower bound for the absolute value
of the left side. Thus, by the comparison theorem for integrals, the integrand in (32) is not
absolutely integrable.

The inversion for S(t) uses (32) but with the additional term 1/(ε+ iy) inside the curly
braces. Thus,

Re

{F(ε+ iy)

ε+ iy
e−ity

}
∼ cos(ty)

4y2
+O

(
y−3). (34)

The integrand on the left of (34) is absolutely integrable by the same argument: take twice the
right-hand side of (34) as an upper bound and apply the comparison test for integrals. Thus,
accuracy using vertical contour inversion for S(t) with absolute integrability fares only slightly
better than for f (t).
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Considerable computational time was used to numerically integrate accurately along the
vertical line {b/4+ iy : y > 0} inside the convergence domain up to y= 500. The line segment
was broken into 30 pieces with each piece requiring about 45 seconds of CPU time to achieve
desired error bounds. For S(5) this resulted in accuracy to 8 significant digits. In the computa-
tion of f (5), integration was extended up to y= 1000 and led to accuracy to only 4 significant
digits for f (5). Computation of the integrand order at b/4+ 500i and b/4+ 1000i for the two
inversions S(5) and f (5) were O(10−7) and O(10−5) respectively, in line with the reported accu-
racy. Based on the accuracy of the expansions shown in Table 1, this is less than the accuracy
of S1 and f1 for values t≥ 10 and above the 75th percentile of the distribution.

Path of steepest descent. We first determine the ultimate direction of steepest descent. Taking
s= reiθ and letting r→∞, we have ‖Nj

(
reiθ

)‖ =O
(
e−cj
√

r
)

for some cj > 0, j= 1, 2, 3, when
θ �= 0. Thus, F(s)∼ (1− s)−1/4 and the steepest descent path ends up roughly following the
steepest descent path for an Exponential (1) MGF. This would start at say b/4 and bend
clockwise into its analytic continuation to asymptotically approach the horizontal line y= π i.
Accordingly, our integration started at y= b/4 and proceeded vertically to b/4+ iπ , then fol-
lowed a horizontal line out to b/4+ 50+ iπ . This is less than 10% and 5%, respectively, of the
numerical effort used above for vertical contour integration inside the convergence domain to
determine S(5) and f (5). We say ‘less than’ because the integrand was not as ill-behaved as with
the vertical contour, so segments typically took less that 45 seconds each. Changes to the exact
path were implemented to check accuracy and led to the same computational values when com-
puted to the 30 digits of floating point accuracy used when performing Maple computations.
At y= b/4+ 50+ iπ, the values of the integrands were of order O(10−115) and O(10−113) for
S(5) and f (5), suggesting accuracy close to the 30 digits used in the computations.

6.2. Community bicycles

Suppose community bicycles are available at two locations, 1 and 2, in a small town. When
rider usage ends, the bicycles must be returned to one of these two locations. Consider a new
bicycle which starts in location 1 and moves amongst the locations until it is stolen either by
a user or from a user, whereupon it arrives at the new location 3. The duration of community
usage of the bicycle X is the first-passage time from 1→ 3 and is measured in integer time.
Usage times for individual riders clearly depend upon both the location at which usage starts
and the intended destination of the rider/thief. Thus the process which describes the bicycle’s
location is best modelled as an integer-time SMP.

Let the SMP model have three states, and take all one-step MGFs as Poisson (λ) restricted
to {1, 2, . . .} with MGF N (s; λ)= {exp (λes)− 1}/(eλ − 1). Assume the transmittance
matrix is

T(s)=
⎛⎜⎝ 0.7 N (s; 2) 0.2 N (s; 2) 0.1 N (s; 1)

0.65 N (s; 11) 0.3 N (s; 3) 0.05 N (s; 9)

0 0 0

⎞⎟⎠
and the initial state is 1. From the jump chain, the mean number of visits to locations 1 and 2
before passage to 3 is computed as (1, 0)

{
I2 −TI2I2 (0)

}−1 = (7 7
9 , 4 4

9

)
, so the bicycle averages

12 2
9 usages before its theft. The mean and standard deviation of the first-passage time are

computed from derivatives of F13 as 59.64 and 70.26 respectively.
Since N (s; λ) is an entire function, all singularities of F13 must be zeros of its denomina-

tor. This leads to simple poles at b= 0.0138 091 and b2 = 0.171 477. First-order expansions
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FIGURE 1. Plot of F13(s)e−35s for s ∈ (0, 0.21). Vertical lines locate poles at b= 0.014 and b2 = 0.171.
Saddlepoints are critical values of the graph at ŝ1 = 0.079 and ŝ2 = 0.134.

S1(n) and p1(n) using the pole b are provided in Table 2 below for n= 35, 85, 200, and 400.
The arguments leading to the first-order expansions also allow second-order expansions S2(n)
and p2(n), which make additional use of the pole b2 as described in [6, Section 2.3]. These
expressions are easily computed as

S2(n)= e−bn −β−1

1− e−b
+ e−b2n−(β2)−1

1− e−b2
, p2(n)= e−bn(−β−1)+ e−b2n{−(β2)−1},

where the first terms in the expressions are S1(n) and p1(n), and (β2)−1 =Res
{
F13(s), b2

}
.

The first-order expansions may also be improved by using the corrected values S1(n)+
R̂S

1(n) and p1(n)+ R̂1(n), where R̂S
1(n) and R̂1(n) are saddlepoint approximations for expansion

errors RS
1(n) and R1(n) represented in terms of the contour integral in (13) of Theorem 1. To

get these approximations, we deform the error contour integrals to pass through saddlepoints
lying on the real axis in (b, b2) as described in [6, Section 3]. For example, consider n= 35.
In the integral expression for R1(35) there are two saddlepoints for its integrand in (b, b2),
given as ŝ1 = 0.07946 and ŝ2 = 0.1340. The saddlepoint at ŝ1 has steepest descent paths in
horizontal directions 0 and π , while ŝ2 has steepest descent directions ±π/2. Figure 1 shows
this saddlepoint geometry in terms of the plot of the inversion integrand F13(s)e−35s for p(35)
over s ∈ (0.01, 0.21). The vertical lines locate the poles at s= b and b2. The graph is flat at
ŝ1 = 0.079 and ŝ2 = 0.134, so these are critical values and hence saddlepoints. The concave
shape at ŝ1 means that this saddlepoint has steepest descent directions 0 and π . The convex
shape at ŝ2 means the steepest descent directions are perpendicular in directions ±π/2 (this
follows since both saddlepoints are simple with non-zero second derivatives for F13(s)e−35s at
these points). The geometry is the same for all values of n with roughly the same saddlepoint
values.

The saddlepoint ŝ2 and not ŝ1 is the appropriate choice of saddlepoint for use in the approxi-
mation R̂1(n), as has been discussed in [5, Sections 2.5 and 3.2.1]. The appropriate expressions
for R̂1(n) and R̂S

1(n) are given in [6, Section 3] with R̂S
1(n) using a slightly different saddlepoint

from ŝ2.
A comparison of approximation procedures in Table 2 confirms all the conclusions deter-

mined from the previous example. From Table 2 with n= 35 and n= 85, and below the 75th
percentile, the second-order expansions are most accurate; they are followed closely by the
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TABLE 2. Exact values of survival and mass functions S(n) and p(n) are compared with first-order
expansion values S1(n) and p1(n) as well as second-order expansion values S2(n) and p2(n). First-order
expansion errors RS

1(n) and R1(n) along with their saddlepoint approximations R̂S
1(n) and R̂1(n) are shown,

together with first-order expansions corrected by these error approximations, denoted by S1(n)+ R̂S
1(n)

and p1(n)+ R̂1(n). The standard saddlepoint approximations Ŝ1(n), Ŝ2(n), and p̂(n) are described in the
text.

n= 35 % 85 %
rel. err. rel. err.

S(n) 0.502 688 519 6 0.251 782 278 912
S1(n) 0.502 2 −0.0953 0.251 782 19 −0.04363
RS

1(n) 0.03479 0.07914

R̂S
1(n) 0.03524 9.456 0.07982 7.470

S1(n)+ R̂S
1(n) 0.502 734 0.02901 0.251 782 286 0.05271

S2(n) 0.502 688 35 −0.04335 0.251 782 278 0 −0.06350
Ŝ1(n) 0.508 7 1.197 0.252 9 0.428 6
Ŝ2(n) 0.508 1 1.069 0.252 7 0.354 6

p(n) 0.02695 7375 0.02345 299 142 0
p1(n) 0.02689 −1.006 0.02345 2978 −0.03387
R1(n) 0.04700 0.07134
R̂1(n) 0.04876 25.18 0.07156 16.44
p1(n)+ R̂1(n) 0.026975 0.253 0.02345 299 36 0.04636
p2(n) 0.02696 28 0.0787 0.02345 299 23 0.04259
p̂(n) 0.00852 22.47 0.00390 12.85

n= 200 % 400 %
rel. err. rel. err.

S(n) 0.0514 455 023 880 0 0.02325 018 533 224 07
S1(n) 0.0514 455 023 84 −0.08688 0.02325 018 533 202 −0.08688
RS

1(n) 0.011354 0.012224

R̂S
1(n) 0.015268 −100. 0.015163 −99.9

S1(n)+ R̂S
1(n) 0.0514 455 023 84 −0.086880 0.02325 018 533 202 −0.08688

S2(n) 0.0514 455 023 84 −0.086880 0.02325 018 533 202 −0.08688
Ŝ1(n) 0.0518 0.639 9 0.023293 1.330
Ŝ2(n) 0.0517 0.571 0 0.023292 1.278

p(n) 0.03705 531 206 359 0 0.04445 735 209 475 0
p1(n) 0.03705 531 206 31 −0.08689 0.04445 735 209 44 −0.08688
R1(n) 0.013486 0.014307
R̂1(n) 0.016422 −99.9 0.031538 −100.0
p1(n)+ R̂1(n) 0.03705 531 206 31 −0.08688 0.04445 735 209 44 −0.08688
p2(n) 0.03705 531 206 31 −0.08688 0.04445 735 209 44 −0.08688
p̂(n) 0.000773 9.553 0.0000485 8.767
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saddlepoint-corrected first-order expansions and then by the first-order expansions, the latter
being entirely adequate for most applications. At the 95th percentile with n= 200 and above,
the first-order approximations achieve the same very high accuracy as the second-order expan-
sions and the saddlepoint-corrected first-order expansions. This may in part be explained by
the asymptotic nature of the approximations as n→∞.

Conventional saddlepoint methods for S(n) and p(n) are less accurate than first-order expan-
sions for all values of n displayed. For the survival S(n), these approximations are denoted by
Ŝ1(n) and Ŝ2(n) and are the continuity-corrected approximations suggested in [10, Section 6]
and described in detail as P̂r1 and P̂r2 in [3, Section 1.2.3]. The mass function approximation
p̂(n) is the standard approximation given in [3, Section 1.1.5]. The limiting relative errors of
Ŝ1(n), Ŝ2(n), and p̂(n) are given in (30), and the error for p̂(400) reflects such convergence.
That such convergence should hold follows from [8, Section 6, Corollary 8 and Theorem 7(a)].

For integer-time distributions, the computation of exact values is considerably easier, since
the inversion contour is now finite over {ε+ iy : y ∈ (−π, π )} for ε > 0 and integration can be
reduced to the positive half. To achieve sufficient accuracy when determining the accuracy
of the approximations, each numerical inversion required several minutes for smaller n and
perhaps a minute for larger n.
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