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PURE INDUCTIVE LOGIC WITH FUNCTIONS

ELIZABETHHOWARTHAND JEFFREY B. PARIS

Abstract. We consider the version of Pure Inductive Logic which obtains for the language with equality
and a single unary function symbol giving a complete characterization of the probability functions on this
language which satisfy Constant Exchangeability.

§1. Introduction. Conventional InductiveLogic, as developed byRudolf Carnap,
see [1–4], largely worked within the framework of a unary first-order language and
countably many constants, without equality or function symbols. With some few
notable exceptions, in particular the article [8] of Gaifman and Snir which this
present article may be seen as developing, most contributions to the area continued
to use this rather impoverished context and it is only relatively recently that we have
seen a concerted effort to understand the subject for more general languages with
polyadic relations and equality, see, for example, [11,13]. Adding function symbols
to the language still remains somewhat neglected however, and it is to this topic that
the present article aims tomake a contribution by giving a characterization along the
lines of de Finetti’s Theorem1 of those probability functions, for a language with
just equality and a single unary function symbol, which satisfy the fundamental
principle in Inductive Logic of Constant Exchangeability.2

There is, in our view, a good reason why adding function symbols to the language
of Pure Inductive Logic is not entirely natural and from some standpoints this could
explain why this field has largely lain fallow. To explain this reason we need to first
explain what we see as the basic problem that Pure Inductive Logic is attempting
to answer: Imagine an agent inhabiting a structure M for a predicate language L
with all the elements ofM named by the constant symbols a1, a2, a3, . . ., of L, and
with the agent otherwise knowing nothing about M . We now ask the agent what
probability she would give to some sentence � of L being true inM .
Of course except in the situation when � is a tautology or contradiction the
agent would, on the face of it, have a completely free choice here. However we
now add that the agent’s answer should be rational, by which, for want of any
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better explanation, we mean that the agent should try to give the same answer as
a second like-minded agent in a similar situation but with whom there can be no
communication. One such immediate constraint that this imposes (we would claim)
on our agent’s answers as we vary � is that they should be coherent as probabilities,
that is that she is effectively picking a probability function3 w on the set of sentences
SL of L.
To date ‘rationality’ has been imposed or conferred on w by requiring that it
satisfies certain, at least arguably rational, principles. For example, that it should
respect symmetries, which may be justified in the way that we might argue it is
rational in the absence of any further information to give a coin probability 1/2 of
landing heads. However a word of warning is needed here. In Pure Inductive Logic
we assume that the agent in the unknown structureM genuinely has no knowledge
about the ambient structure M ; in particular the relation and constant symbols
of L are, as far as she is concerned, devoid of any interpretation. It may well be
that what one judges to be a ‘rational principle’ is based on some considerations of
actual, interpreted, real world examples. Nevertheless, in Pure Inductive Logic it is
the common idea behind these examples which is proposed as, to a greater or lesser
extent, a rational principle.
Rather a wide assortment of such principles has been proposed in the usual
situation where the language L has just relation and constant symbols, see, for
example, [13], and surely there are manymore still to come. However when it comes
to adding equality, and even more so when adding functions, our intuitions4 about
what seems to be rational are currently far less well developed. One reason for
this, we would suggest, is that the real world seems to provide but few examples of
functions, and those it does provide are so context specific as to deny, or at least
hide, any underlying rational principle.
Nevertheless in this article we shall describe how Pure Inductive Logic may be
extended to include the language with a single unary function symbol, the usual
constants a1, a2, . . ., and equality, but for the sake of simplicity no other relation
symbols. The key aim of this article will then be to prove a representation theorem
for probability functions on this language which satisfy the sine qua non rational
principle of Constant Exchangeability.

§2. Context. Apart from the concluding section we shall henceforth limit our
attention to the first-order language L with just equality, a single unary function
symbol F and countably many constants an for n ∈ N+ = {1, 2, 3, . . .}, the implicit
intention being that these name every element of the universe. Let SL/QFSL be the
set of sentences/quantifier-free sentences of L.
We define a probability function on SL to be a function w : SL→ [0, 1] such that
for all �, φ,∃x �(x) ∈ SL:
(P1) If � � then w(�) = 1.
(P2) If � � ¬φ then w(� ∨ φ) = w(�) + w(φ).
(P3) w(∃x �(x)) = limn→∞w(

∨n
i=1 �(ai)).

3To be defined shortly.
4At least these authors’.
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These (P1-3) are just as for the usual definition of a probability function in Pure
Inductive Logic, see, for example, [13], when we do not have equality or function
symbols, although now that we do the notion of logical implication in (P1-2) is
enhanced accordingly to include the equality axioms5 for L in addition to the usual
axioms/rules of the Predicate Calculus. Notice that the so-called Gaifman’s Axiom
(P3) reflects the abovementioned intention that the an name all the elements in the
universe.
For b1, b2, . . . , bm distinct constants ofL,Θ(b1, b2, . . . , bm) ∈ SL is a state descrip-
tion for b1, b2, . . . , bm if it is consistent (with the axioms of equality) and of the form
(up to logical equivalence)

m∧
i,j=1

(bi = bj)εi,j ∧
m∧
i,j=1

(F (bi) = bj)�i,j

where the ε, � ∈ {0, 1} and for φ ∈ SL, φ1 = φ, φ0 = ¬φ. The upper case Greek
letters Θ,Υ,Δ,Φ,Ψ will always denote state descriptions.
In the study of Pure Inductive Logic when we do not have function symbols,
state descriptions play an important role since by a result of Gaifman, [7], every
probability function is determined simply by its values on state descriptions. Indeed
if a probability function is defined on the quantifier-free sentences to satisfy (P1-2)
for these sentences then it extends uniquely to a probability function on all sentences.
Once function symbols are added however that need no longer hold; we require also
that already on the quantifier-free sentences the probability function is forced to be
total. In other words, for the case where we have a single function symbol F , for a
unique extension to SL to exist we require (as originally observed by Gaifman &
Snir [8, Basic Fact 1.2]) that already on QFSL,

(P4) For all i ∈ N+,

lim
m→∞w

( m∨
j=1

F (ai) = aj
)
= 1,

equivalently,

lim
n→∞ lim

m→∞w
( n∧
i=1

m∨
j=1

F (ai) = aj
)
= 1.

Notice that conversely ifw is a probability function on SL, that is satisfies (P1-3),
then it will satisfy (P4) since by (P3) this amounts to

w(∀x ∃y F (x) = y) = 1
which, now that we have the equality axioms to hand, holds by (P1). 6

Our representation theorem will assume the rationality assumption, almost uni-
versally accepted in this subject, that our probability functions are invariant under
permutations of constants. More precisely, that they satisfy:

5As given, for example, in [12].
6We do not need to also introduce additional constraints on w to ensure that the equality axioms get

probability 1 in the extension since, their being Π1, this follows from (P1) with � ∈ QFSL.
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The Principle of Constant Exchangeability, Ex
If �(a1, a2, . . . , an) ∈ SL and i1, i2, . . . , in ∈ N+ are distinct then

w(�(a1, a2, . . . , an)) = w(�(ai1 , ai2 , . . . , ain )).

It is straightforward to check that it suffices here to restrict � to be a state
description, exchangeability will then already be forced to hold for all of SL.
Throughout we shall assume, usually without explicit mention, that all the prob-
ability functions we are considering satisfy Ex. One useful consequence of this is
that in general we do not need to be too fussy about the subscripts we are using for
the ai , just as long as they are different.

§3. The representation theorem. In this section we will set up and explain our
representation theorem of probability functions satisfying Ex on this language L
with just equality and a single unary relation symbol F . The next section will then
give a proof of this representation.
Before embarking on the technicalities it may be helpful to give an informal
picture of what is going on. The main results of this article, Theorems 3.1 and
3.2, say that any probability function on L satisfying Ex is actually a, possibly
continuous, mixture of some very simple probability functions vg,h , and conversely.
So the basic pattern here resembles that of de Finetti’s Theorem (in the notation
of this article see [13, page 55]) and several other representation theorems in the
subject, see, for example, [11]. The functions vg,h also bear a similarity to some of
the basic building block functions used in that latter article, in particular the up̄, in
that we can think of them as randomly assigning colours to the constants according
to some probabilities.
In more detail, we can think of vg,h as assigning colours from
. . . ,−2,−1, 0, 1, 2, . . . (i.e., Z) to the constants a1, a2, a3, . . . , the probability that ai
is assigned colourm being g(m). The assignment of colours will uniquely determine
the state descriptions that the constants satisfy. The equality relations which hold
between the constants is determined by their given colours as follows: For i 	= j
if ai , aj both get assigned the same colour m > 0 then it is taken that ai = aj . In
all other cases it is taken that ai 	= aj . In particular then, even if ai , aj both get
assigned the same colour k ≤ 0 they are nevertheless still taken to be different, not
equal.
The function h specifies how the function F acts according to the colour of its
argument. So suppose that i, j are distinct, ai has been given colour m 	= 0 and aj
has been given colour k. If h(m) = k then it is taken that F (ai) = aj , otherwise
it is taken that F (ai) 	= aj . In the case however when ai is assigned the colour 0
(usually thought of as uncompromisingly ‘black’) it is taken that F (ai) = ai but
F (ai) 	= aj for j 	= i .
Overall, the probability the function vg,h gives to a state descriptionΘ(a1, . . . , am)
is the total probability of all ways of assigning colours to a1, . . . , am consistent with
h and such that Θ is the state description determined by that colouring.
It is convenient, and obviously nothing is lost, by having h defined only on colours
with non-zero probability. Beyond that there are certain other properties which we
need to impose on h. The first is that h only maps into those colours m with m ≥ 0
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and g(m) > 0, and h(m) = 0 just if m = 0 (and 0 is in the domain of h). Secondly
we require that h(−m) = m for m ≥ 0 whenever −m is in the domain of h. In turn
this means that we have to require of g not only that the sum of the probabilities
g(i) for i ∈ Z is 1 but that if g(−m) > 0 and m ≥ 0 then g(m) > 0.
We now restate this more formally.
Let g : Z → {r ∈ R : r ≥ 0} and h : S → S, where S = {m ∈ Z : g(m) > 0},
be such that

(i)
∑
m∈Z

g(m) = 1 and g(n) ≥ g(n + 1) for n ∈ N
+.

(ii) If m ∈ N and −m ∈ S then m ∈ S and h(−m) = m.
(iii) If 0 < m ∈ S then h(m) > 0. (1)

Notice then that if 0 ∈ S then h(0) = 0.
Let Θ(a1, a2, . . . , am) be the state description

m∧
i,j=1

(ai = aj)εi,j ∧
m∧
i,j=1

(F (ai) = aj)�i,j .

We say that a colouring � : {1, . . . , m} → S is compatible with Θ, h if for 1 ≤
i, j ≤ m
�(i) < 0 implies

(
(εi,j = 1 ⇐⇒ i = j) and (�i,j = 1 ⇐⇒ h(�(i)) = �(j))) ,

(2)
�(i) = 0 implies (εi,j = 1 ⇐⇒ i = j ⇐⇒ �i,j = 1), (3)

�(i), �(j) > 0 implies
(
(εi,j = 1 ⇐⇒ �(i) = �(j)) and (�i,j = 1 ⇐⇒ h(�(i)) = �(j))) .

(4)
Notice that in (2) h(�(i)) = −�(i). Now set

vg,h(Θ) =
∑
�

m∏
i=1

g(�(i)) (5)

where the sum is over those � compatible with Θ, h.

Theorem 3.1. vg,h extends to a probability function satisfying Ex.
Proof. To show that vg,h extends to a probability function it is enough to check,
see [13, page 42], that on state descriptions Θ(a1, a2, . . . , am), m ∈ N:

(i) vg,h(Θ(a1, a2, . . . , am)) ≥ 0,
(ii) vg,h(�) = 1,
(iii)vg,h(Θ(a1, a2, . . . , am)) =

∑
Φ(a1,...,am+1)|=Θ(a1,...,am)

vg,h(Φ(a1, a2, . . . , am+1)), (6)

and that the axioms of equality get probability 1. Of these (i) and (ii) are immediate.
As for (iii) suppose that the state description Θ(a1, a2, . . . , am) is

m∧
i,j=1

(ai = aj)εi,j ∧
m∧
i,j=1

(F (ai) = aj)�i,j

and � is compatible with Θ(�a), h, so � makes a contribution
∏m
i=1 g(�(i)) to

vg,h(Θ(�a)). Let 	 : {1, 2, . . . , m + 1} → S extend �. Then to continue to satisfy
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(4) the choice of the additional εs,t , �s,t for s = m + 1 or t = m + 1 is forced and
there is a unique state description Φ(a1, a2, . . . , am+1), necessarily extending Θ(�a),
such that 	 is compatible with Φ(a1, a2, . . . , am+1) and h. Since

∑
j∈Z
g(j) = 1,

m∏
i=1

g(�(i)) =
m∏
i=1

g(�(i)) ·
⎛
⎝∑
j∈Z

g(j)

⎞
⎠ =∑

	

m+1∏
i=1

g(	(i))

where the 	 range over all extensions of � to {1, 2, . . . , m + 1}, which gives, as
required for (iii) of (6), that

vg,h(Θ(a1, a2, . . . , am)) =
∑

Φ(�a,am+1)|=Θ(�a)
vg,h(Φ(�a, am+1)).

To see that vg,h satisfies Ex notice that if 
 is a permutation of {1, 2, . . . , m} and
Ψ(a1, a2, . . . , am) ≡ Θ(a
(1), a
(2), . . . , a
(m))

then � is compatible withΨ, h just if �
 is compatiblewithΘ(a1, a2, . . . , am), h. Thus
taking the sums over those �, 	 compatible with Ψ(a1, a2, . . . , am),Θ(a1, a2, . . . , am)
and h respectively,∑

�

m∏
i=1

g(�(i)) =
∑
�

m∏
i=1

g(�(
(i))) =
∑
	

m∏
i=1

g(	(i))

and
vg,h(Θ(a1, a2, . . . , am)) = vg,h(Θ(a
(1), a
(2), . . . , a
(m)))

follows.
From this (or directly) it is easy to see that vg,h continues to satisfy its above defi-
nition given in terms of a1, a2, . . . , am if we replace these by any (distinct) constants
for b1, b2, . . . , bm. Again we shall say that � is compatible with Θ(b1, b2, . . . , bm), h
if the above condition on compatibility holds with bi in place of ai .
Turning finally to (P4), it is enough by Ex to show that

lim
m→∞ vg,h

(
m∨
i=1

F (a1) = ai

)
= 1. (7)

Consider a state description Φ(a1, a2, . . . , am) such that

vg,h

(
Φ(�a) ∧ ¬

m∨
i=1

F (a1) = ai

)
> 0,

so since Φ is a state description Φ |= ¬∨mi=1 F (a1) = ai . For � : {1, 2, . . . , m} → S
to be compatible withΦ, h it must be the case that h(�(1)) 	= �(i) for i = 1, 2, . . . , m.
Thus summing over all state descriptions Φ for a1, a2, . . . , am we must have that

vg,h

(
¬
m∨
i=1

F (a1) = ai

)
≤

∑
h(�(1))/∈Rg(�)

m∏
i=1

g(�(i)).

But this sum is at most ∑
j∈S
g(j)(1 − g(h(j)))m−1

which, since g(h(j)) > 0 for j ∈ S and∑j g(j) = 1, tends to zero as m → ∞. �
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Notice that if |{i : g(i) > 0}| is finite then for some m, vg,h will satisfy

vg,h(∃x1, . . . , xm ∀y
m∨
i=1

y = xi) = 1,

so giving probability 1 to the universe being finite. Conversely if |{i : g(i) > 0}| is
infinite then vg,h will give probability 0 to the universe being finite.
Having now shown that the vg,h are (after extension) probability functions on SL
satisfying Ex we can state the main result of this article:

The Representation Theorem 3.2. Every probability function on SL satisfying
Ex is a convex mixture of such vg,h , and conversely.

The proof of the converse here is straightforward (using for (P3) Lebesgue’s
Dominated Convergence Theorem) so we shall concentrate on the first part. This
will be the content of the next section of this article.

§4. The proof of the representation theorem. In this section Theorem 3.2 will be
proved via several lemmas and a diversion into a nonstandard universe.Throughout,
w will be a probability function on SL which satisfies Ex.

Lemma 4.1. For any ε > 0,

lim
n→∞w

⎛
⎝ ∨
Θ∈Aε(n)

Θ(a1, . . . , an)

⎞
⎠ = 0,

where Aε(n) is the set of state descriptions Θ(a1, . . . , an) for which

|{i ≤ n : Θ(a1, . . . , an) |=
n∧
j=1

F (ai) 	= aj}| ≥ εn.

Proof. Suppose on the contrary that this sequence was bounded below by � > 0
for infinitely many n, for simplicity say all n. Notice that if Θ(a1, . . . , an) ∈ Aε(n)
and 
 is a permutation of {1, 2, . . . , n} then Θ(a
(1), . . . , a
(n)) ∈ Aε(n). Looking
at the set of such Θ(a
(1), . . . , a
(n)) as we vary 
 we see that the proportion of
Θ(a
(1), . . . , a
(n)) from this set for which

Θ(a
(1), . . . , a
(n)) |=
n∧
j=1

F (a1) 	= aj

is at least ε. Hence, using Ex,

w
(∨{Θ(�a) ∈ Aε(n) : Θ(�a) |=

n∧
j=1

F (a1) 	= aj}
) ≥ ε�.

So

lim
n→∞w

(
n∧
i=1

F (a1) 	= ai
)

	= 0

which contradicts that w satisfies (P4). �

https://doi.org/10.1017/jsl.2017.49 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.49


PURE INDUCTIVE LOGICWITH FUNCTIONS 1389

Lemma 4.2. Suppose that w is a probability function on SL, r,m ∈ N
+ and �i for

1 ≤ i ≤ rm�−1 are sentences of L with w(�i) ≥ � > 0. Then

w

⎛
⎝ ∨
�ε :
∑
i εi≥m

∧
i

�εii

⎞
⎠ ≥ �(r − 1)/r

where the εi ∈ {0, 1} for 1 ≤ i ≤ rm�−1.
Proof. Let

Ω�ε =
∧
i

�εii , N(�ε) =
∑
i

εi .

Notice that ∑
�ε

N(�ε)w(Ω�ε) =
∑
i

w(�i) ≥ rm.

Let
B =

∑
N (�ε)<m

N(�ε)w(Ω�ε), C =
∑
N (�ε)≥m

N(�ε)w(Ω�ε).

Then
B < m

∑
�ε

w(Ω�ε) = m,

so since N(�ε) ≤ rm�−1,
w
( ∨
�ε :
∑
i εi≥m

∧
i

�εii
) ≥ �(rm)−1C = �(rm)−1

(∑
�ε

N(�ε)w(Ω�ε)− B
)

≥ �(rm)−1(rm −m) = �(r − 1)/r,
as required. �
Notice that we cannot do much better than this because the �i could all be the
same sentence.

Lemma 4.3. Suppose that φ(a1, a2) ∈ SL and

w
( n+1∨
i=2

φ(a1, ai)
)
> � > 0.

Then there is 
 > 0 such that for all k eventually,7

w
(|{1 < i ≤ k : φ(a1, ai)}| ≥ 
k) > �. (8)

Proof. Let

w
( n+1∨
i=2

φ(a1, ai)
)
> � > � > 0.

Take �j in Lemma 4.2 to be

n(j+1)+1∨
i=nj+2

φ(a1, ai),

7Notice that |{1 < i ≤ k : φ(a1, ai )}| ≥ 
k can be expressed as a sentence of L, and even a
quantifier-free sentence if φ is quantifier free.
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and notice that by Exw(�j) > �. Furthermore in this casewe actually have infinitely
many of these�j . By Lemma 4.2 we can now conclude that for any natural number
m the probability w gives to the sentence

|{1 ≤ j ≤ rm�−1 :
n(j+1)+1∨
i=nj+2

φ(a1, ai)}| ≥ m

is at least �(r − 1)r−1 (since �−1 < �−1). Now pick r so large that �(r − 1)r−1 > � .
Then for r�−1 ≤ k ∈ N+,

w(|{1 ≤ j ≤ k :
n(j+1)+1∨
i=nj+2

φ(a1, ai)}| ≥ [kr−1�]) > �,

where as usual [..] indicates integer part of. Taking 
 = (2r)−1� gives the result
since k(2r)−1� < [kr−1�] for all k eventually. �
Corollary 4.4. Let � > 0. Then for some n,

w
( n∨
i=2

φ(a1, ai)
)
> � > 0 (9)

just if there is 
 > 0 such that for all k eventually,

w
(|{1 < i ≤ k : φ(a1, ai)}| ≥ 
k) > �. (10)

Proof. The forward direction is just Lemma 4.3 (with n in place of n+1). In the
other direction if (10) then for large k, k > 
−1,

w
(|{1 < i ≤ k : φ(a1, ai )}| ≥ 1) > �,

which gives (9). �
Let

� = lim
n→∞w(

n∧
i=2

F (a1) 	= ai).

Corollary 4.5. For 0 < � < 1− �, there is a 
 > 0 such that for all k eventually
w
(|{1 < i ≤ k : F (a1) = ai}| ≥ 
k) > �.

Proof. For large n,

w(
n+1∧
i=2

F (a1) 	= ai) < 1− �

so

w(
n+1∨
i=2

F (a1) = ai) > �.

The result now follows from Lemma 4.3 �
The next result is not needed in the proof of Theorem 3.2 but maybe aids insight
into what is going on.
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Proposition 4.6.

lim
n→∞w

(
F (a1) = a1 ∧

n∧
i=2

F (a1) 	= ai
)
= �.

Proof. From (P4) we must have that

lim
n→∞w

( n∨
i=1

F (a1) = ai ∧
n∧
i=2

F (a1) 	= ai
)
= �

and the result follows. �
Note that the probability of the sentence

|{1 < i ≤ k : F (a1) = ai}| ≥ 
k
is the same as the sum of the probabilities of state descriptions Θ(a1, . . . , ak) which
logically imply that sentence. As we shall see in future it will sometimes be useful to
think of the probabilities of quantifier-free sentences in terms of such sums.
By a directly similar proof to that of Lemma 4.3 but using

φ(a1, a1) ∨
n(j+1)+1∨
i=nj+2

φ(a1, ai)

throughout in place of
n(j+1)+1∨
i=nj+2

φ(a1, ai)

for j = 0, 1, 2, . . ., we obtain:

Lemma 4.7. Suppose that φ(a1, a2) ∈ SL and

w
(
φ(a1, a1) ∨

n+1∨
i=2

φ(a1, ai)
)
> � > 0.

Then there is 
 > 0 such that for all k eventually,

w
(
φ(a1, a1) ∨ |{1 < i ≤ k : φ(a1, ai)}| ≥ 
k

)
> �.

Using this lemma, (P4) and F (a1) = a2 for φ(a1, a2) we now obtain:

Corollary 4.8. For � < 1, there is a 
 > 0 such that for all k eventually

w
(
F (a1) = a1 ∨ |{1 < i ≤ k : F (a1) = ai}| ≥ 
k

)
> �.

We now use the conventional trick in this area of moving to a nonstandard
universe. Let U be a sufficiently large, transitive, set fragment of the ‘standard’ Set
Theoretic Universe V in which all the objects required herein exist and have their
usual properties. Let U ∗ ∈ V be a countably saturated elementary extension of
U (so with nonstandard natural numbers). In the proof that follows the reasoning
will go backwards and forwards between V and U ∗. Although whenever we feel
there is danger of confusion we shall include a parenthetic clarification, still it
seems expedient to say more about the relationship between V and U ∗ at this
point.
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Given b ∈ U ∗−U (the so called ‘non-standard’ elements) we will identify b with
the set, in V ,

{c ∈ U ∗ : U ∗ |= c ∈ b}. (11)

Unfortunately we cannot in general continue to make this identification for b ∈ U
because, as in the case of N, the set in (11) may acquire new nonstandard elements
not in b as such. For that reason for b ∈ U we will denote the set in (11) by b∗ when
this differs from b. Note then that there will be no difference when b ∈ V�0 (so in
particular for the individual natural numbers, codes for standard sentences etc.) so
these will have the same denotation, b, throughout.
Let N < 	 ∈ N∗ and let S be the set (in U ∗) of state descriptions Υ(a1, . . . , a	).8

Define (in the standardworldV ) ameasure on the algebra of subsets of S (according
to the abovementioned identification) which are in U ∗ by

X �→ ◦(w∗(∨X )),
where as usual ◦ denotes the standard part, and by using Carathéodory’s Theorem
let � be the 
-additive measure extending this measure on the 
-algebra (in the
standard world V ) generated by S. (Notice that we can apply this theorem since if
Ai for i ∈ N are subsets of S in U ∗ and

⋃
i∈N
Ai = A ∈ U ∗ then for some n ∈ N,⋃

i≤n Ai = A, otherwise N would be definable in U
∗.) Let

S0 = {Υ ∈ S : w∗(Υ) > 0}.
Notice that S0 has �-measure 1.

Lemma 4.9. The set of Υ ∈ S0 for which

	−1|{i ≤ 	 : Υ |=
	∧
j=1

F (ai) 	= aj}| is infinitesimal (or 0) (12)

has �-measure 1.9

Proof. From Lemma 4.1 for each n ∈ N+ w∗ of the disjunction of the set of state
descriptions Υ(a1, . . . , a	) ∈ S0 for which

|{i ≤ 	 : Υ(a1, . . . , a	) |=
	∧
j=1

F (ai) 	= aj}| ≥ 	/n

is infinitesimal. Hence this set has �-measure 0. Taking the union over n ∈ N+ of
these sets gives the result. �
Let S1 be the measure 1 set of Υ ∈ S0 satisfying (12) and let Γ(Υ) be the set of
Υ(a
(1), . . . , a
(	)) for 
 a permutation of {1, . . . , 	} (in U ∗). Notice that if Υ ∈ S1

then Γ(Υ) ⊂ S1.
The objects which will be defined in what follows will generally be functions of Υ
(or Γ(Υ)). Sometimes these definitions, and the results that follow will only hold,
or make sense, for a �-measure 1 set of Υ. Although it will not always be convenient
to make it explicit there will be an underlying assumption in these cases that the Υ

8Henceforth we will customarily shorten Υ(a1, . . . , a	) to Υ.
9Henceforth we will take as read ‘or 0’ after ‘infinitesimal’.
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concerned comes from this �-measure 1 set. In view of the result we intend to prove,
what happens outside of this �-measure 1 set will be irrelevant.
For Υ ∈ S1 set

i ∼Υ j ⇐⇒ Υ(a1, . . . , a	) |= ai = aj
for 1 ≤ i, j ≤ 	. Let H1, . . . ,H�10 be the equivalence classes of ∼Υ and define a
partial function � on {1, . . . , �} to itself by setting �(i) = j if for each k ∈ Hi there
is r ∈ Hj such that

Υ |= F (ak) = ar.
Since Υ ∈ S1

	−1|
⋃

{Hi : �(i) not defined }| is infinitesimal. (13)

We may assume that the ordering here is chosen so that H1, . . . ,Hκ are the
equivalences classes of ∼Υ for which � is defined and that

|H1| ≥ |H2| ≥ |H3| ≥ · · · ≥ |Hκ |.
Notice that from (13) � is defined on all the m ∈ N for which 	−1|Hm | is not
infinitesimal.
For Υ ∈ S1 let

K0 = {i : 	−1|{j : F (ai) = aj}| is infinitesimal and non-zero},
where (as usual) we have abbreviated Υ |= F (ai) = aj to just F (ai) = aj . So K0 is
in the 
-algebra generated by the subsets of {1, 2, . . . , 	} in U ∗. Similarly the set of
Υ for which 1 ∈ K0 is in the domain of � and has measure �. This follows since11

�(1 ∈ K0) = lim
n→∞�

(
0 < 	−1|{j : F (a1) = aj}| ≤ n−1

)
= lim
n→∞�

(
	−1|{j : F (a1) = aj}| ≤ n−1

)
= 1− lim

n→∞�
(
	−1|{j : F (a1) = aj}| > n−1

)
= 1− lim

n→∞�
( n∨
i=2

F (a1) = ai
)
,

= lim
n→∞�

( n∧
i=2

F (a1) 	= ai
)

= �.

Here the second equality follows from Lemma 4.9 (and arguing as in Lemma 4.1 to
get the property for a1) and the fourth by Corollary 4.4 and overspill (since U ∗ is
an elementary extension of U ).
Notice that for all Υ ∈ S1 for which 1 ∈ K0 then there is no (standard) 
 > 0
such that

|{j : F (a1) = aj}| > 
	.
10TheseH� , � etc. are functions ofΥbut to simplify the notation we shall suppress explicitly indicating

this dependence.
11By �(1 ∈ K0) we mean � of the set of Υ for which 1 ∈ K0.
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So for each n ∈ N,

�
(
1 ∈ K0 ∧

n∨
i=2

F (a1) = ai
)
= 0.

Hence by (P4) we must have that

�(1 ∈ K0 ∧ F (a1) = a1) = �(1 ∈ K0). (14)

Notice that (for �-measure 1 state descriptions Υ, as usual) if i ∈ K0 and i ∈ H�
then F (ai) = ai , �(�) = � and 	−1|{j : F (ai) = aj}| is infinitesimal so 	−1|H� | is
infinitesimal.

Lemma 4.10. For a �-measure 1 set of Υ ∈ S1 either F (a1) = a1 or
◦(	−1|{i ≤ 	 : F (a1) = ai}|) > 0.

Proof. From Corollary 4.8 for each n ∈ N+ there is a 0 < 
 ∈ R such that for all
k eventually (in V )

�
(
F (a1) = a1 ∨ k−1|{1 < i ≤ k : F (a1) = ai}| ≥ 
}

) ≥ 1− n−1.
Hence the set of Υ ∈ S1 such that either Υ |= F (a1) = a1 or

◦(	−1|{i : Υ |= F (a1) = ai}|) > 0
has �-measure at least 1− n−1 for each n ∈ N+. The result follows. �
Lemma 4.11. Let 0 < ε ≤ 1. Then for all n ∈ N eventually

�{Υ : |{j : F (aj) = aj ∨ |{i : F (aj) = ai}| > 	/n}| > (1− ε)	} > 1− ε.
Proof. By Lemma 4.10, for large n

�{Υ : F (a1) = a1 ∨ |{i : F (a1) = ai}| > 	/n} > 1− ε2. (15)

By Ex (15) holds too for any aj in place of a1. Let Υ(j) = 1 if

Υ |= F (aj) = aj ∨ |{i : F (aj) = ai}| > 	/n
and 0 otherwise. Then from (15),∑

Υ

w∗(Υ) ·Υ(j) > 1− ε2.

Summing over j and reversing the order of summation gives∑
Υ

w∗(Υ)
∑
j

Υ(j) > 	(1− ε2). (16)

Now let
M =

∑
{w∗(Υ) :

∑
j

Υ(j) ≤ 	(1 − ε)},

so∑
{w∗(Υ) : |{j : F (aj) = aj ∨ |{i : F (aj) = ai}| > 	/n}|

=
∑

{w∗(Υ) :
∑
j

Υ(j) > 	(1 − ε)} ≥ 1−M. (17)
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Over estimating the sum
∑
j Υ(j) if it is less or equal 	(1− ε) by 	(1− ε) and by

	 otherwise gives with (16),

	(1− ε2) < M	(1− ε) + (1−M )	
which simplifies toM < ε. Hence, with (17), as required,∑

{w∗(Υ) : |{j : F (aj) = aj ∨ |{i : F (aj) = ai}| > 	/n}| > 	(1− ε)} > 1− ε.
�

Corollary 4.12. For k ∈ N
+ and a �-measure 1 set of Υ ∈ S1 either

◦(	−1|Hk |) = 0 or ◦(	−1|H�(k)|) > 0.
Proof. Suppose on the contrary that this fails, so for some k there is a �-measure
� > 0 set of Υ,

◦(	−1|Hk |) > 0 and ◦(	−1|H�(k)|) = 0. (18)

Let m ∈ N be such that for a set of Υ of �-measure at least �/2,

	−1|Hk | > m−1 and ◦(	−1|H�(k)|) = 0. (19)

Let ε = min{◦(	−1|Hk|)/2, �/4}. By Lemma 4.11 there is an n > m such that for
a set of Υ of �-measure at least 1− ε,

|{j : F (aj) = aj ∨ 	−1|{i : F (aj) = ai}| > 1/n}| > (1− ε)	. (20)

Since �/2 > ε there is a set X of Υ of �-measure at least �/2− ε > 0 for which (19)
and (20) both hold. Since 	−1|Hk | > ε for Υ ∈ X there must be r ∈ Hk such that

r ∈ {j : F (aj) = aj ∨ 	−1|{i : F (aj) = ai}| > 1/n}.
Since for such Υ we have that ◦(	−1|H�(k)|) = 0 the disjunct

	−1|{i : F (aj) = ai}| > 1/n
must fail for j = r, so that F (ar) = ar . But then �(k) = k and

◦(	−1|H�(k)|) = ◦(	−1|Hk |) > 0,
contradiction. �
For Υ ∈ S1, n ∈ N

+, � ≤ κ set:12

Y =
⋃

{H� : �(�) not defined},
K0,n =

⋃
{H� : 	−1|H� | < n−1, �(�) defined and 	−1|H�(�)| < n−1},

K�,n =
⋃

{H� : 	−1|H� | < n−1, �(�) = � defined and 	−1|H�(�)| ≥ n−1},

B�,n =

{
H� if 	−1|H� | ≥ n−1,
∅ otherwise.

Note that for fixed n these sets K0,n, K�,n, B�,n , Y are all in U ∗ and that together
they form a partition of {1, 2, . . . , 	} since for Υ ∈ S1 (so 	−1|Y | is infinitesimal)
12Again these Y,K0,n etc. are functions of Υ but to simplify the notation we shall suppress explicitly

indicating this dependence.

https://doi.org/10.1017/jsl.2017.49 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.49


1396 ELIZABETHHOWARTHAND JEFFREY B. PARIS

and ◦(	−1|H� |) > 0, F (ar) must be defined on r ∈ H� and so �(�) will be defined.
Hence for n ∈ N+ (and a �-measure 1 set of Υ), in U ∗,

|K0,n|+
∑
�

|K�,n |+
∑
�

|B�,n |+ |Y | = 	. (21)

Furthermore, using Corollary 4.12,

K0 =
⋂
n∈N+

K0,n.

Let
K� =

⋃
k∈N+

⋂
k≤n∈N+

K�,n

B� =
⋃
n∈N+

B�,n,

so B� is H� if 	−1|H� | is not infinitesimal, otherwise it is ∅. Clearly then B� = ∅ for
N < �.
Also K� = ∅ for N < �. For suppose on the contrary that ∅ 	= H� ⊂ K� . Then
	−1|H� | is infinitesimal whilst �(�) = � and 	−1|H�(�)| ≥ n−1 for some n ∈ N+.
But since the sizes of the H� are decreasing this means � ≤ n (contradiction) since
if n < � thenH1,H2, . . . ,Hn+1 would be disjoint subsets of {1, 2, . . . , 	} each of size
at least 	/n, which is impossible.
By the same argument, B�,n = K�,n = ∅ for � > n.
To sumup thenwe nowhave that (for a�-measure 1 set) all except an infinitesimal
fraction of i ∈ {1, 2, . . . , 	} are in (exactly) one of

B1, B2, . . . , Bn, . . . , K0, K1, K2, . . . , Kn, . . . for n ∈ N.

Now for Υ ∈ S, Γ = Γ(Υ), set, as far as possible,13

g(0) = lim
n→∞

◦(	−1|K0,n|) and h(0) = 0 when g(0) > 0,

and for m ∈ N+

g(m) = ◦(	−1|Bm|) and h(m) = k when �(m) = k and g(m) > 0,
and

g(−m) = lim
n→∞

◦(	−1|Km,n|) and h(−m) = m if g(−m) > 0.

Since they are monotone the sequences for g(m) with m ≥ 0 do converge. As for
the case of g(−m) when m > 0 notice that for r ≥ n,∣∣|Km,n| − |Km,r |

∣∣ ≤ |K0,n| − |K0,r|+
∑

{|H� | : r−1 ≤ 	−1|H� | < n−1}
since the onlyH� which are subsets of just one ofKm,n,Km,r must either have been a
subset ofK0,n but notK0,r or must have become one of the B�,j for some n ≤ j ≤ r.
Hence the sequence for g(−m) also converges.
Notice that these definitions do indeed only depend on Γ = Γ(Υ).

13Again g, h are functions of Γ but we suppress explicit mention of this argument.
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The plan is now to show that on standard state descriptions, vg,h is infinitesimally
close tow∗ conditioned on

∨
Γ. First however we need to show that g, h satisfy the

conditions specified in the definition of vg,h . These are the contents of the next three
lemmas.

Lemma 4.13. ∑
i∈Z

g(i) = 1 and g(n) ≥ g(n + 1) for n ∈ N
+

for a �-measure 1 set of Γ.

Proof. The second part is immediate since the |H� | are decreasing in � .
Turning to the first part, from (21) and the fact that B�,n = K�,n = ∅ for � > n we
obtain that

|K0,n|+
∑
�≤n

|K�,n|+
∑
�≤n

|B�,n|+ |Y | = 	.

Hence taking standard parts

◦(	−1|K0,n|) +
∑
�≤n

◦(	−1|K�,n|) +
∑
�≤n

◦(	−1|B�,n |) = 1, (22)

since 	−1|Y | is infinitesimal. Now given ε > 0 let ε−1 ≤ m1 ∈ N be such that
◦(	−1|K0,n|) is within ε of g(0) for n ≥ m1 and let m1 ≤ m2 ∈ N be such that for
0 < � < m1 and n ≥ m2 each of the ◦(	−1|K�,n|) are within m−1

1 ε of g(−�). Then
by considering how theH� move between the K0,n, K�,n, B�,n we see that

◦(	−1|K0,n|) +
∑
�≤m2

◦(	−1|K�,n |) +
∑
�≤m2

◦(	−1|B�,n |)

must be at least 1− 2ε for all n ≥ m2. Hence
m2∑

i=−m2
g(i) ≥ 1− 2ε

and the required result follows. �
Lemma 4.14. Letm ∈ N

+.Then for a�-measure 1 set of state descriptionsΥ ∈ S1,
if g(−m) > 0 then g(m) > 0.
Proof. Suppose that g(−m) > 0. Then certainly for some n we must have that

|Km,n| > 0. But thatmeans that for some � ,H� ⊆ Km,n, �(�) = m and 	−1|H�(�)| ≥
n−1. Hence

g(m) = ◦(	−1|Bm|) = ◦(	−1|Hm|) ≥ n−1 > 0. �
Lemma 4.15. Letm ∈ N+. Then for a�-measure 1 set of state descriptionsΥ ∈ S1,
if g(m) > 0 then h(m) is defined, h(m) > 0 and g(h(m)) > 0.

Proof. For g(m) > 0 with m ∈ N+ we must have that ◦(	−1|Hm|) > 0. The
result now follows from Corollary 4.12. �
To summarize at this point, we have a �-measure 1 set S1 of state descriptions,
alternately sets Γ(Υ) since if Υ ∈ S1 and Δ ∈ Γ(Υ) then Δ ∈ S1. For each such
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Γ we have defined functions g : Z → {r ∈ R : r ≥ 0} and h : S → S, where
S = {m ∈ Z : g(m) > 0}, such that

(i)
∑
m∈Z

g(m) = 1 and g(m) ≥ g(m + 1) for m ∈ N
+.

(ii) If m ∈ N and −m ∈ S then m ∈ S and h(−m) = m.
(iii) If 0 < m ∈ S then h(m) > 0.

So these g, h, S satisfy the requirements given in (1) and vg,h is defined.

Lemma 4.16. Let Θ(a1, . . . , am) be a standard (i.e., in V ) state description. Then
for a �-measure 1 set of Υ ∈ S1 (or Γ = Γ(Υ)),14

| vg,h(Θ)− w∗(Θ |
∨
Γ) | (23)

is infinitesimal.

Proof. We first derive arbitrarily close approximations to the terms in (23).
Starting with the right hand term notice that

w∗(Θ ∧
∨
Γ) =

∑
Δ∈Γ
w∗(Θ ∧ Δ)

=
∑

{w∗(Δ) : Δ ∈ Γ and Δ |= Θ}
= w∗(Υ) · |{Δ ∈ Γ : Δ |= Θ}|, since w∗ satisfies Ex.

Now |{Δ ∈ Γ : Δ |= Θ}| is just the number of permutations 
 of 	 (in U ∗) divided
by the number of these permutations which fix Υ (that is, the number of elements
in Γ) all multiplied by the proportion of these for which

Υ(a
(1), a
(2), . . . , a
(	)) |= Θ(a1, a2, . . . , am), (24)

equivalently multiplied by the probability (in U ∗) of picking without replacement

(1), 
(2), . . . , 
(m) from {1, 2, . . . , 	} such that

Υ(a1, a2, . . . , a	) |= Θ(a
(1), a
(2), . . . , a
(m)). (25)

Since 	 > N this probability will differ by at most an infinitesimal if we drop
the requirement of not replacing previous choices. So if we take standard ε ∈
(0, 1/2] we can from now on assume, with a difference in overall probability of
at most ε, that the choice is made with replacement. This probability of picking

(1), . . . , 
(m) from {1, 2, . . . , 	} with replacement such that (25) holds will be our
starting approximationAR to the right hand side of (23).
Turning now to the left hand term in (23) let mε ∈ N+ be large enough that
mε ≥ ε−1, the statement of Lemma 4.11 holds with n = mε, and∑

|i|>mε
g(i) < ε/m.15 (26)

14We use the standard notation here that
∨
Γ stands for

∨
Δ∈Γ Δ(a1, . . . , a	 )

15Note that only by this latter requirement doesmε become dependent on Υ (for Υ ∈ S1) and in fact
that too can also be avoided by restricting to, say, a �-measure 1− ε subset of these Υ.
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We now use mε to approximate the expression (5) which gives the left hand side
of (23). Let j ∈ Z and 1 ≤ k ≤ m. Then if we change the sum in (5) to all
� : {1, 2, . . . , m} → S such that �(k) = j we obtain

∑
�

m∏
i=1

g(�(i)) = g(j)
∑
�

∏
i 	=k
g(�(i)) = g(j)

∏
i 	=k

(∑
r∈Z

g(r)

)
= g(j).

It follows that the sum of the contributions
∑
�

∏m
i=1 g(�(i)) to vg,h(Θ) where

� is compatible with Θ, h and some �(i) is outside [−mε,mε] is at most ε. The
reduced sum for (5), with the range of � restricted to [−mε,mε], will be our starting
approximationAL to the left hand side of (23).
Now let mε ≤ rε ∈ N be large16 and such that

| g(0)− 	−1|K0,rε | | +
mε∑
j=1

| g(−j)− 	−1|Kj,rε | | +
mε∑
j=1

| g(j)− 	−1|Bj,rε | |<
ε

m
.

(27)
Let � : {1, 2, . . . , m} → [−mε,mε] (so if � is compatible with Θ, h it gives one of
the summands in AL) and let

Xi =

⎧⎪⎨
⎪⎩
Bj,rε if �(i) = j ∈ [1, mε],
K0,rε if �(i) = 0,

Kj,rε if �(i) = −j ∈ [−mε,−1].
(28)

(Notice that for j ∈ Xi , F (aj) is defined.) Then the probability of picking

(1), 
(2), . . . , 
(m) so that for i = 1, 2, . . . , m, 
(i) ∈ Xi is

∏m
i=1 κi , where

κi = 	−1|Xi |, and

|
m∏
i=1

κi −
m∏
i=1

g(�(i)) | = |
m∑
j=1

(∏
i<j

κi

)
(κj − g(�(j)))

( ∏
j<i≤m

g(�(i))
) |

≤ |
m∑
j=1

(∏
i<j

κi

)
(|κj − g(�(j))|)

( ∏
j<i≤m

g(�(i))
) |

≤ ε

m

m∑
j=1

(∏
i<j

κi

)( ∏
j<i≤m

g(�(i))
)
. (29)

by (27).
Since

mε∑
j=−mε

g(j),
mε∑
j=1

	−1|Bj,rε |+
0∑

j=−mε
	−1|Kj,rε |

are both at most 1,

AC =
∑
�

m∏
i=1

κi ,

where the sum is over � : {1, 2, . . . , m} → [−mε,mε] compatible with Θ, h, is within
ε of AL and in turn within 2ε of vg,h(Θ).
16We shall shortly use this to impose further properties on rε.
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We now show that AC is close to AR for a large set of Υ, more precisely a set of
�-measure at least 1− 2mε. For this we need to show:
(i) For a set of Υ of at least �-measure 1− ε the probability of picking all of the

(i) ∈ Xi for Xi derived from � : {1, . . . , m} → [−mε,mε] compatible with Θ, h
with Υ � Θ(a
(1), . . . , a
(m)) is O(ε).
(ii) For a set of Υ of at least �-measure 1− ε the probability of picking all of the

(i) ∈ Xi for Xi derived from � : {1, . . . , m} → [−mε,mε] not compatible with Θ, h
with Υ |= Θ(a
(1), . . . , a
(m)) is O(ε).
We first tackle (i). By (28), the definitions of K0,rε , Kj,rε and Bj,rε (pages 1395–
1395),Hj and � (page 1393), g and h (pages 1396–1396) and the definition (2), (3),
(4) of compatibility of a colouring � with Θ, h, for (i) to happen for a particular
such �, it must be the case that one of the following holds:
(a)�(i) = �(j) = k ≤ 0, i 	= j, Θ |= ai 	= aj, Xi = Xj = Kk,rε , Υ |= a
(i) = a
(j).
(b)�(i) = 0, Θ |= F (ai) = ai , Xi = K0,rε Υ |= F (a
(i)) 	= a
(i).
Concerning (a), if this were to happen we would have 
(i), 
(j) ∈ H� for some
� with

r−1ε >
◦(	−1|H� |) > 0.

Since rε has been chosen greater than ε−1 the probability of making any choice of

(1), 
(2), . . . , 
(m) such that 
(i), 
(j) ∈ H� for such a H� is less than ε. Hence
the probability of a type (a) error is less than the number of possible i, j times ε.
Concerning (b), this would happen if for some �, 
(i) ∈ H� , 
(i) /∈ H�(�),

r−1ε >
◦(	−1|H� |), r−1ε > ◦(	−1|H�(�)|).

From Lemma 4.11, since rε is large,

�{Υ : |{j : F (aj) = aj ∨ |{k : F (aj) = ak}| ≥ r−1ε 	}| > 	(1− ε)} > 1− ε.

Hence for �-measure at least 1− ε the probability of picking such a 
(i) is at most
ε. It follows that for this set of Υ (or Γ) the probability of an error of type (b) is
again O(ε) for a set of Υ of measure at least 1−mε.
Now turning to (ii), by the same definitions as for (i), the only ways these errors
can occur are if one of the following holds:
(c) �(i) = −k ≤ 0, i 	= j, Θ |= ai = aj, Xi = Kk,rε , Υ |= a
(i) = a
(j).
(d )�(i) = 0, Θ |= F (ai) 	= ai , Xi = K0,rε Υ |= F (a
(i)) 	= a
(i).
By just the same argument as for (i)(a) we can see that the probability of an
error of the type (ii)(c) is O(ε). Similarly by the same argument as for (i)(b) for a
�-measure of at most 1−mε the probability of an error of type (ii)(d) is againO(ε).
Putting all these parts together now we have shown that for 0 < ε ∈ [0, 1] and a
set of Υ of �-measure at least 1− 2mε the terms in (23) are within a fixed constant
times ε of each other. The lemma follows. �
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To complete the proof of the Representation Theorem 3.2 notice that

w(Θ(a1, . . . , am)) = ◦w∗(Θ(a1, . . . , am))

= ◦(∑
Γ

w∗(Θ ∧
∨
Γ)
)

= ◦(∑
Γ

w∗(Θ |
∨
Γ) · w∗(

∨
Γ)
)

=
∫
Γ

◦(w∗(Θ |
∨
Γ)) d�(Γ), by Loeb measure theory,

see, for example, [5, pages 17 –20] or [6, Chapter 1]

=
∫
S1

vg,h(Θ) d�(Γ) by Lemma 4.16.

§5. Conclusions. In our view, including equality and function symbols rather
conflicts with the underlying motivation for Pure Inductive Logic. Nevertheless
taking the first step in this direction with equality and just one unary function
does yield a comprehensible and arguably attractive representation theorem for the
probability functions on this language satisfying Ex. A similar result can, we would
claim without actually writing out all the details, be shown if we additionally allow
finitely many relation and unary function symbols in the language. One can also
picture, and conjecture, a similar result even with polyadic function symbols added.
However, even if correct, finding a proof in the direction of Theorem 3.2 currently
looks no less than daunting.
We would finally remark that the Representation Theorem 3.2 we have found has
a noticeable similarity to the Representation Theorems given, for example, in [11]
for probability functions on polyadic (relational) languages satisfying Spectrum
Exchangeability.
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[11] J. Landes, J. B. Paris, and A. Vencovská, Survey of some recent results on spectrum

exchangeability in polyadic inductive logic. Synthese, vol. 181 (2011), no. 1, pp. 19–47.
[12] J. B. Paris, A Short Course in Predicate Logic, 2014. Available at http://bookboon.com/en/a-

short-course-in-predicate-logic-ebook.
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