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Curvature instability of a vortex ring
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A global stability analysis of Kelvin’s vortex ring to three-dimensional disturbances
of infinitesimal amplitude is made. The basic state is a steady asymptotic solution of
the Euler equations, in powers of the ratio ε of the core radius to the ring radius,
for an axisymmetric vortex ring with vorticity proportional to the distance from the
symmetric axis. The effect of ring curvature appears at first order, in the form of a
dipole field, and a local straining field, which is a quadrupole field, follows at second
order. The eigenvalue problem of the Euler equations, retaining the terms to first order,
is solved in closed form, in terms of the Bessel and the modified Bessel functions. We
show that the dipole field causes a parametric resonance instability between a pair of
Kelvin waves whose azimuthal wavenumbers are separated by 1. The most unstable
mode occurs in the short-wavelength limit, under the constraint that the radial and the
azimuthal wavenumbers are of the same magnitude, and the limiting value of max-
imum growth rate coincides with the value 165/256ε obtained by Hattori & Fukumoto
(Phys. Fluids, vol. 15, 2003, p. 3151) by means of the geometric optics method. The
instability mechanism is traced to stretching of disturbance vorticity in the toroidal
direction. In the absence of viscosity, the dipole effect outweighs the straining field
effect of O(ε2) known as the Moore–Saffman–Tsai–Widnall instability. The viscosity
acts to damp the former preferentially and these effects compete with each other.

1. Introduction
Vortex rings are invariably susceptible to wavy distortions, leading sometimes to

violent wiggles and eventually to disruption (Maxworthy 1972, 1977; Widnall &
Sullivan 1973). It has been found that the Moore–Saffman–Tsai–Widnall instability,
abbreviated as the MSTW instability, is responsible for the genesis of the unstable
waves (Widnall, Bliss & Tsai 1974; Moore & Saffman 1975; Tsai & Widnall 1976;
Widnall & Tsai 1977; Shariff & Leonard 1992). Note that this is an instability for a
straight vortex tube subjected to a straining field in a plane perpendicular to the
tube axis.

When viewed locally, a thin vortex ring looks like a straight tube. For simplicity,
we restrict our attention to the Rankine vortex, a circular core of uniform vorticity.
Because of circular-cylindrical symmetry, the Rankine vortex is neutrally stable and
supports a family of three-dimensional waves of infinitesimal amplitude, known as
Kelvin waves. The vortex ring induces, on itself, not only a local uniform flow that
drives a translational motion as a whole, but also a local straining field akin to a pure
shear, in the meridional plane, with principal axes tilted by π/4 from the symmetric
axis (Widnall et al. 1974). This is a quadrupole field proportional to cos 2θ and sin 2θ ,
in terms of local polar coordinates (r, θ) in the meridional plane, with its origin at the
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Figure 1. Toroidal coordinates (r, θ, s) comoving with the ring. The origin r =0 in the
meridional plane coincides with the centre of the core. s is the arclength parameter along the
centre circle.

core centre and with θ = 0 along the travelling direction (see figure 1). This field breaks
the circular symmetry of the core by deforming it into an ellipse, and feeds parametric
resonance between two Kelvin waves whose azimuthal wavenumbers are separated
by 2 (Gledzer et al. 1975; Moore & Saffman 1975; Tsai & Widnall 1976; Gledzer &
Ponomarev 1992; Eloy & Le Dizès 2001; Fukumoto 2003). In the short-wavelength
regime, the MSTW instability becomes the elliptical instability found by Bayly (1986)
(see also Waleffe 1990; Leweke & Williamson 1998), implying the ubiquity of the
MSTW instability (Kerswell 2002); the influence of neighbouring vortices is, in the
leading-order approximation, incorporated as a linear shear flow.

However this picture might be too crude to fit a curved vortex tube. The asymptotic
solution of the Navier–Stokes or the Euler equations for a thin vortex ring in powers
of a small parameter ε, the ratio of the core to the ring radii, starts with a circular-
cylindrical vortex tube at O(ε0). A vortex ring is characterized by curvature of vortex
lines. This feature manifests itself, at O(ε1), as a local dipole field proportional to cos θ

and sin θ . The quadrupole field comes merely as a correction at O(ε2) (Dyson 1893;
Fraenkel 1972; Fukumoto & Moffatt 2000; Fukumoto 2002). Despite its dominance,
the dipole field has not attracted as much attention as it deserves. This may be because,
in a typical situation of planar flows, the local dipole field is trivially associated
with the degree of freedom of coordinate translation. But in three dimensions, it
is an essential ingredient for vortex-line curvature. This paper addresses a possible
instability when the dipole field comes into play.

According to Krein’s theory of parametric resonance in Hamiltonian systems
(MacKay 1986), a single Kelvin wave cannot be fed by perturbations breaking the
circular symmetry. An instability becomes possible only for superposition of at least
two modes with the same wavenumber and the same frequency. Subjected to the dipole
field, two Kelvin waves with angular dependence eimθ and einθ can be amplified cooper-
atively at the intersection points of dispersion curves if the condition |m − n| = 1 is met.

The linear stability analysis was fully formulated by Widnall & Tsai (1977, herein-
after referred to as WT77), but the dipole effect has not been studied. Fukumoto &
Hattori (2002) verified that a combination of the axisymmetric (m = 0) and the bending
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Curvature instability of a vortex ring 79

(n= 1) waves indeed leads to parametric resonance. The local stability analysis of
Hattori & Fukumoto (2003), based on the geometric optics method devised by
Lifschitz & Hameiri (1991), disclosed the existence of more unstable resonance via
the dipole field.

These results stimulate us to examine all possible resonant azimuthal-wavenumber
pairs (m, m +1) of Kelvin waves. It will be shown that the most dangerous instability
mode takes place in the limit of m → ∞. Unlike the instability of quadrupole-field
origin, not all multiple eigenvalues result in resonance. The necessary condition for
instability, brought out by Krein’s theory, is either that the eigenvalue collision occurs
between a positive- and a negative-energy mode or that the collision eigenvalue is zero.
The energy of Kelvin waves, which was calculated by Fukumoto (2003), is instrumental
in making a distinction between resonant and non-resonant eigenvalue collisions.

In § 2, we give a concise description of the problem setting for a linear stability
analysis. We allow for small viscosity and the Navier–Stokes equations to be handled
are written down in Appendix A. The Kelvin waves are recalled in Appendix B.
Section 3 seeks the solution of the linearized Navier–Stokes equations. Remarkably,
Kelvin’s vortex ring admits a closed-form solution, in terms only of the Bessel and the
modified Bessel functions, for the disturbance velocity field, and so do the growth rate
and the width of the unstable wavenumber band. Computer algebra is indispensable in
deriving the solution, and the detailed form of the solution is relegated to Appendix C.
Section 4 is concerned with the inviscid resonance instability. We present numerical
examples of growth rate, band width and unstable velocity field for some choices of
azimuthal wavenumber pairs. The explicit solution is amenable to an asymptotic
analysis, and the short-wave asymptotics is dealt with in § 5, supplemented by
Appendix D. A comparison with the local stability analysis, made by Hattori &
Fukumoto (2003), reveals the passage from global to local instability. The asymptotic
form of the eigenfunction shows that stretching of the toroidal vorticity of the
disturbance field is the source for instability. In § 6, the present instability at O(ε)
is compared with that at O(ε2) with viscosity taken into consideration. Section 7 is
devoted to a summary and conclusions.

2. Setting of linear stability problem
The global linear stability analysis in three dimensions was formulated by WT77.

We employ their notation. As an extension, we make an attempt to treat weak viscous
dissipation in parallel with the treatment of Eloy & Le Dizès (2001).

Kelvin’s vortex ring is a thin axisymmetric vortex ring, in an incompressible inviscid
fluid, with vorticity proportional to the distance from the axis of symmetry. It
propagates steadily in the direction of the axis of symmetry with translation speed
given by

Γ

4πR

{
log

(
8R

σ

)
− 1

4

}
, (2.1)

where Γ is the circulation carried by the ring, σ is the core radius and R is the ring
radius. Our assumption is that the radius ratio ε is very small:

ε = σ/R � 1. (2.2)

An expression for the flow field outside the core was written out in full to O(ε4) by
Dyson (1893). The flow field both inside and around the core can be found in WT77
and Fukumoto (2002). In reality, it is the interior flow field that is indispensable for
our purpose.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

26
78

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004002678


80 Y. Fukumoto and Y. Hattori

We introduce toroidal coordinates (r, θ, s) comoving with the ring as shown by
figure 1. In the meridional plane s = 0, the origin r = 0 is maintained at the centre
of the circular core and the angle θ is measured from the direction parallel to the
axis of symmetry, the x-axis say, and thus (r, θ) may be thought of as local polar
coordinates. The centre circle penetrating the toroidal ring is parameterized by the
arclength s. The global Cartesian coordinates (x, y, z) are then expressed by

x = r cos θ, y = (R + r sin θ) cos(s/R), z = (R + r sin θ) sin(s/R). (2.3)

We normalize the radial coordinate r by the core radius σ , the velocity by the maxi-
mum azimuthal velocity Γ/2πσ , the time t by 2πσ 2/Γ and the pressure by ρf (Γ/2πσ )2

with ρf being the density of fluid. Let the r and θ components of the velocity field
be U and V , respectively, and the pressure be P inside the core (r < 1). The velocity
potential for the exterior irrotational flow is denoted by Φ . Appendix A contains the
Navier–Stokes equations expressed in the toroidal coordinates.

The basic flow is expanded in powers of ε, the first-order truncation of which takes
the form

U = εU1(r, θ) + · · · , V = V0(r) + εV1(r, θ) + · · · ,
P =P0(r) + εP1(r, θ) + · · · for r < 1,

}
(2.4)

Φ = Φ0(θ) + εΦ1(r, θ) + · · · for r > 1. (2.5)

The leading-order flow is the Rankine vortex as expressed, in dimensionless form, by

V0 = r, P0 = 1
2
(r2 − 1), Φ0 = θ. (2.6)

The first-order flow field is a dipole field:

U1 = 5
8
(1 − r2) cos θ, V1 =

(
− 5

8
+ 7

8
r2
)
sin θ, P1 =

(
− 5

8
r + 3

8
r3
)
sin θ,

Φ1 =

(
1
8
r − 3

8r
− 1

2
r log r

)
cos θ.


 (2.7)

To this order, the circular form of the core boundary (r = 1) remains intact.
The velocity field for r > 1 is

U1 = − 3
8

(
1 − 1

r2
+ 4

3
log r

)
cos θ, V1 = − 1

8

(
1 − 3

r2
− 4 log r

)
sin θ. (2.8)

Disregarding the terms with log r , (2.8) is equivalent to the flow past a circular cylin-
der of unit radius with uniform velocity −3ε/8 in the x-direction at infinity. More
appropriately, this may be interpreted as a flow induced by a vortex pair of curvature
origin. Vortex lines of a steady vortex ring are stretched on the convex side and are
contracted on the concave side of the torus. As a result, the vorticity is enhanced on
the convex side and is weakened on the concave side, producing effectively a vortex
pair (Fukumoto 2002).

We examine the evolution of three-dimensional disturbances of infinitesimal ampli-
tude superposed on the above steady flow. Following the prescription of Moore &
Saffman (1975) and Tsai & Widnall (1976), we expand the disturbance velocity ṽ, the
disturbance pressure p̃ and the external disturbance velocity potential φ̃ in powers of
ε to first order:

ṽ =Re
[
(v0 + εv1 + · · ·)ei(ks−ωt)

]
, p̃ = Re

[
(π0 + επ1 + · · ·)ei(ks−ωt)

]
,

φ̃ =Re
[
(φ0 + εφ1 + · · ·)ei(ks−ωt)

]
,

}
(2.9)
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Curvature instability of a vortex ring 81

where the symbol Re designates the real part. In keeping with this form, the wave-
number k and the frequency ω, non-dimensionalized by 1/σ and Γ/(2πσ 2) respectively,
are also expanded as

k = k0 + εk1 + · · · , ω = ω0 + εω1 + · · · . (2.10)

The disturbed edge of the core is expanded as

r = 1 + f̃ 0(θ, s, t) + εf̃ 1(θ, s, t) + · · · . (2.11)

3. Effect of the dipole field
The flow field v0, π0 and φ0 and the dispersion relation ω0 = ω0(k0) of Kelvin waves

are contained in Appendix B (see, for example, Kopiev & Chernyshev 1997; Kop’ev &
Chernyshev 2000). Our concern is the modification of Kelvin’s dispersion relation due
to the symmetry-breaking action of the O(ε) dipole field.

3.1. Linearized equations

We assume that the viscosity ν is so small that the circulation Reynolds number RΓ

is at least of O(ε−1):

RΓ =
Γ

ν
� O(ε−1). (3.1)

The toroidal component of the disturbance velocity is designated by w. Equations
governing the amplitude vector v1 of the disturbance velocity and the amplitude π1

of the disturbance pressure of O(ε), inside the core (r < 1), are derived from the
Navier–Stokes equations written in toroidal coordinates (r, θ, s), in Appendix A, as

−iω0u1 +
∂u1

∂θ
− 2v1 +

∂π1

∂r
=

(
iω1 − ∂U1

∂r

)
u0 − U1

∂u0

∂r
− V1

r

∂u0

∂θ

−
(

1

r

∂U1

∂θ
− 2V1

r

)
v0 + ν̃

{(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− k2

0 − 1

r2

)
u0 − 2

r2

∂v0

∂θ

}
, (3.2)

−iω0v1 + 2u1 +
∂v1

∂θ
+

1

r

∂π1

∂θ
=

(
iω1 − 1

r

∂V1

∂θ
− U1

r

)
v0 −

(
∂V1

∂r
+

V1

r

)
u0

− U1

∂v0

∂r
− V1

r

∂v0

∂θ
+ ν̃

{(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− k2

0 − 1

r2

)
v0 +

2

r2

∂u0

∂θ

}
, (3.3)

−iω0w1 +
∂w1

∂θ
+ ik0π1 = −ik1π0 + (iω1 − r cos θ)w0 − V1

r

∂w0

∂θ
− U1

∂w0

∂r

+ ik0rπ0 sin θ + ν̃

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− k2

0

)
w0, (3.4)

where the normalized viscosity ν̃ of O(ε0) is

ν̃ =
2πν

Γ ε
=

2π

RΓ ε
. (3.5)

The equation of continuity is

∂u1

∂r
+

u1

r
+

1

r

∂v1

∂θ
+ ik0w1 = −u0 sin θ − v0 cos θ + ik0rw0 sin θ. (3.6)
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82 Y. Fukumoto and Y. Hattori

The amplitude function φ1 of the velocity potential for the disturbance flow of O(ε),
outside the core (r > 1), satisfies

∂2φ1

∂r2
+

1

r

∂φ1

∂r
+

1

r2

∂2φ1

∂r2
− k2

0φ1 = 2k0k1φ0 − sin θ
∂φ0

∂r
− cos θ

r

∂φ0

∂θ
− 2k2

0rφ0 sin θ. (3.7)

The boundary conditions require that the normal component of the velocity and
the pressure be continuous across the interface (r =1) of the core:

u1 =
∂φ1

∂r
,

π1 − iω0φ1 +
∂φ1

∂θ
= iω1φ0 − ∂Φ1

∂θ

∂φ0

∂θ
.


 (3.8)

The shape of disturbed core boundary is found from

iω0f1 − ∂f1

∂θ
+ u1 = −iω1f0 + V1

∂f0

∂θ
− ∂U1

∂r
f0. (3.9)

The right-hand sides of (3.2)–(3.9) include the coupling of Kelvin waves with the
dipole field (2.7) of O(ε). Note that (3.2)–(3.4), (3.6) and (3.7) correspond to (7.1a–e) of
WT77, augmented with viscous terms, and that (3.8) and (3.9) correspond to (7.2) of
WT77. We follow WT77’s formulation, generalized to higher azimuthal-wavenumber
resonance.

Suppose that a pair of Kelvin waves whose azimuthal wavenumbers differ by 1 are
simultaneously put at O(ε0):

v0 = v
(1)
0 eimθ + v

(2)
0 ei(m+1)θ . (3.10)

Here and hereafter, we use superscripts (1) and (2) for the m and the m + 1 waves
respectively. In view of the dipole field on the right-hand sides of (3.2)–(3.7) and the
boundary conditions (3.8), the wave excited at O(ε) is found to possess the following
angular dependence:

v1 = v
(1)
1 eimθ + v

(2)
1 ei(m+1)θ + v

(3)
1 ei(m−1)θ + v

(4)
1 ei(m+2)θ . (3.11)

A similar form is given to π0, φ0 and π1, φ1. Excitation, at O(ε), of a pair of waves
with the same azimuthal wavenumbers as at O(ε0) implies a possibility of parametric
resonance.

The leading-order disturbance is, from Appendix A,

φ0 = Km(k0r)α
(1)
0 eimθ + Km+1(k0r)α

(2)
0 ei(m+1)θ ,

π0 = Jm(η1r)β
(1)
0 eimθ + Jm+1(η2r)β

(2)
0 ei(m+1)θ ,

}
(3.12)

where Jm and Km are, respectively, the Bessel function of the first kind and the modi-
fied Bessel function of the second kind, m being their order, α

(1)
0 , α

(2)
0 , β

(1)
0 and β

(2)
0 are

constants, and η1 and η2 are the radial wavenumbers of the m and the m +1 waves
respectively as defined by (B 4) and (B 8). Likewise, the interior velocity field (u0, v0,

w0) is expressible as superposition of expressions (B 3) for the m and m +1 waves.
Upon substituting from (3.12), (3.7) becomes

M(1)
[
φ

(1)
1

]
= 2k0k1Km(k0r)α

(1)
0 + ik0

{
1
2
Km(k0r) − k0rKm+1(k0r)

}
α

(2)
0 , (3.13)

M(2)
[
φ

(2)
1

]
= 2k0k1Km+1(k0r)α

(2)
0 + ik0

{
k0rKm(k0r) − 1

2
Km+1(k0r)

}
α

(1)
0 , (3.14)

where

M(i) =
d2

dr2
+

1

r

d

dr
−
(

m2
i

r2
+ k2

0

)
(i = 1, 2) , (3.15)
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with m1 = m and m2 =m + 1. A general solution of (3.13) and (3.14), finite at infinity,
is found to be

φ
(1)
1 = Km(k0r)α

(1)
1 − k1rKm+1(k0r)α

(1)
0

+
i

4
{k0r

2Km(k0r) + (2m + 1)rKm+1(k0r)}α(2)
0 , (3.16)

φ
(2)
1 = Km+1(k0r)α

(2)
1 − k1rKm(k0r)α

(2)
0

+
i

4
{(2m + 1)rKm(k0r) − k0r

2Km+1(k0r)}α(1)
0 , (3.17)

where α
(1)
1 and α

(2)
1 are constants added to the homogeneous parts of the solution.

For the vortical disturbance in the core, (3.2)–(3.6) constitute a coupled system of
ordinary equations for the amplitude functions of r . An efficient method for numerical
integration of the eigenvalue problem is to adapt, to the ring geometry, the inner-
product formulation of Moore & Saffman (1975) which was originally derived for an
elliptically strained vortex tube. Its details are left out.

Analytical handling becomes feasible, to a large extent, by collapsing (3.2)–(3.6), at
the outset, to second-order ordinary differential equations for the disturbance pressure
π(1)

1 and π(2)
1 . After some computer algebra, we are left with

L(1)
[
π(1)

1

]
=

{
8k2

0ω1

(ω0 − m)3
− 2k1

k0

η2
1

}
Jm(η1r)β

(1)
0 − i

{[
1

2
+

3m

2(ω0 − m − 1)

− 5k2
0

4

(
1

(ω0 − m)2
− 1

(ω0 − m − 1)2

)
(r2 − 1)

]
η2Jm(η2r)

+

[
1 +

8ω0 − 9m − 1

2(ω0 − m)2
− 7ω0 − 9m − 19

4(ω0 − m − 1)2

]
k2

0rJm+1(η2r)

}
β

(2)
0

+
32iν̃k4

0

(ω0 − m)5
Jm(η1r)β

(1)
0 , (3.18)

L(2)
[
π(2)

1

]
=

{
8k2

0ω1

(ω0 − m − 1)3
− 2k1

k0

η2
2

}
Jm+1(η2r)β

(2)
0 +

i

4

{[
4 +

7ω0 − 9m + 10

(ω0 − m)2

− 2(8ω0 − 9m − 8)

(ω0 − m − 1)2

]
k2

0rJm(η2r) −
[
2 +

6(m + 1)

ω0 − m − 2

+5k2
0

(
1

(ω0 − m)2
− 1

(ω0 − m − 1)2

)
(r2 − 1)

]
η1Jm+1(η1r)

}
β

(1)
0

+
32iν̃k4

0

(ω0 − m − 1)5
Jm+1(η2r)β

(2)
0 , (3.19)

where η1 and η2 are defined by (B 4) and (B 8) respectively, and

L(i) =
d2

dr2
+

1

r

d

dr
− m2

i

r2
+ η2

i (i = 1, 2). (3.20)

The boundary conditions (3.8) are, for the m wave,

u
(1)
1 − ∂φ

(1)
1

∂r
= 0, π(1)

1 − i(ω0 − m)φ(1)
1 = iω1φ

(1)
0 +

m + 1

8
φ

(2)
0 , (3.21)

and, for the m +1 wave,

u
(2)
1 − ∂φ

(2)
1

∂r
= 0, π(2)

1 − i(ω0 − m − 1)φ(2)
1 = iω1φ

(2)
0 − m

8
φ

(1)
0 . (3.22)
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3.2. Disturbance field and growth rate

WT77 omitted the solution for v1. We are now ready to construct the solution of
(3.18) and (3.19) and to calculate the O(ε) correction ω1 to the eigenfrequency from
the boundary conditions (3.21) and (3.22).

By appealing to symbolic calculus, the solution of (3.18) and (3.19) is obtained in
closed form solely in terms of the Bessel functions. The resulting expressions for π(1)

1 ,

π(2)
1 , u

(1)
1 and u

(2)
1 , the enforcement of the boundary conditions (3.21) and (3.22) and

the solvability conditions on them are written down in Appendix C.
We recapitulate the procedure of Moore & Saffman (1975) and Tsai & Widnall

(1976). For the moment, we leave out the viscosity. Simultaneous excitation of at least
two Kelvin waves is requisite for instability, being indicative of parametric resonance.
The postulation that the solvability conditions (C 11) and (C 12) have a non-trivial
solution of β

(1)
0 �= 0 and β

(2)
0 �=0 gives rise to ω1. Instability is implied when Im[ω1] > 0

and we write its growth rate as σ1 = |Im[ω1]|. In the case of instability, the growth
rate takes its local maximum value σ1max at k = k0, namely k1 = 0, and Im[ω1] > 0
only over a limited wavenumber range of width 2ε�k1 centred on k = k0. The desired
formulae for σ1max and �k1 are obtained from (C 11) and (C 12) as

σ 2
1max = − (ω0 − m)3(ω0 − m − 1)3(ω0 − m + 1)(ω0 − m + 2)(ω0 − m − 2)(ω0 − m − 3)

1024k4
0(2ω0 − 2m − 1)4

× h2

f (1)f (2)
, (3.23)

�k2
1 = − (ω0 − m)3(ω0 − m − 1)3(ω0 − m + 1)(ω0 − m + 2)(ω0 − m − 2)(ω0 − m − 3)

1024k2
0(2ω0 − 2m − 1)4

× f (1)f (2)h2

d2
, (3.24)

where

d = (ω0 − m)(ω0 − m + 2)(ω0 − m − 2)f (2)g(1)

− (ω0 − m − 1)(ω0 − m + 1)(ω0 − m − 3)f (1)g(2), (3.25)

and the form of f (1), f (2), g(1), g(2) and h is given in (C 13)–(C 17).

4. Examples of inviscid resonance
To give an illustration, we carry out a numerical computation of the stability

characteristics for two cases. We begin with a resonance mode of the simplest
azimuthal structure.

4.1. Resonance between the 0, 1 waves

The dispersion relation of Kelvin waves of m = 0 (dashed lines) and m =1 (solid
lines) is displayed in figure 2. The isolated branch of m =1, starting from ω0 = 0, is
drawn with a thick solid line. Infinitely many branches emanate from (k0, ω0) = (0, 1)
for m =1 among which forty branches, twenty upward and twenty downward, are
drawn. These modes are named the radial modes since the eigenfunctions have
non-trivial radial nodal structure. A wave with |ω0| > 1 rotates faster than the basic
circulatory flow and is called a cograde mode, which is distinguished from a wave
with |ω0| < 1, a retrograde mode (Saffman 1992). In contrast, an isolated branch and
the counterpart of the retrograde modes are missing for the axisymmetric mode.
Given the wavenumber k0, the modes with ω0 and −ω0 share a common property of
a cograde radial mode.
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3

0 5 10 15 20

ω0

k0

Figure 2. Dispersion relation of the axisymmetric wave m= 0 (dashed lines) and the helical
wave m= 1 (solid lines) on the Rankine vortex. The isolated branch of m= 1 is shown with a
thick line. The symbols are discussed in the text.

–0.015

–0.010

–0.005

0

0 0.025 0.050 0.075 0.100

ω0

k0

Figure 3. Close-up view of figure 2 near (k0, ω0) = (0, 0).

A positive axisymmetric mode (ω0 > 0) crosses every retrograde mode of m =1
once, and may cross some of higher cograde branches of m =1 twice. A negative
axisymmetric mode (ω0 < 0) collides, if its branch index is high enough, with some
of the retrograde radial modes of m =1, twice for each. The isolated mode of m =1
crosses branches of m =0 at small values of k0 as is seen from the close-up view in
figure 3 of near the origin of figure 2.

The growth rate (3.23) is calculated at many of intersection points. A collision of
eigenvalues of the 0, 1 waves does not necessarily result in instability. Stability is lost
only at intersection points between positive branches of m =0 and retrograde radial
modes of m =1, and not otherwise. This behaviour is in stark contrast with that of the
MSTW instability. In the latter case, every eigenvalue collision potentially involves
parametric resonance (Eloy & Le Dizès 2001; Fukumoto 2003). The energetics holds
the key to distinguishing non-resonant collisions from resonant ones, as will be
described in § 4.3.
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k0 ω0 σ1max �k1

0.8134868347 0.5970895378 0.05434123370 0.1022075453
1.018687659 0.7162537484 0.007063858086 0.01725321243
1.136862167 0.7794574187 0.008676095366 0.02449637577
1.214999401 0.8191926924 0.007511646111 0.02329133797

1.224505620 0.4217998862 0.03931853915 0.1093080415
1.650449151 0.5528357882 0.03769686682 0.1381880078
1.927505750 0.6329096309 0.004366456551 0.01889368333
2.126154076 0.6877694566 0.007048839587 0.03418778188

1.464572874 0.3290672352 0.02466638188 0.08406115354
2.059092345 0.4537065585 0.01547299060 0.07032354299
2.472533079 0.5364030938 0.03273541819 0.1773468081
2.783117712 0.5962177954 0.002632427093 0.01613293863

1.625453596 0.2707234248 0.01708461632 0.06631547378
2.351745150 0.3860821416 0.01652875697 0.08656816266
2.879959092 0.4669749326 0.004710163249 0.02962775154
3.289680122 0.5277784143 0.03038502117 0.2175329321

Table 1. The maximum growth rate εσ1max and the half-width ε�k1 of the unstable
wavenumber band to O(ε) for the (0,1) resonance. See text for details.

In table 1, we list the evaluated values of the growth rate and the unstable bandwidth
for low wavenumbers. The first four rows correspond to the first four intersection
points of the first positive axisymmetric mode (m =0) with retrograde radial modes
of m =1, marked with open circles in figure 2. The next four rows are along the
second mode of m =0 (solid circles), and then along the third mode of m =0 (open
squares) and the last four are along the fourth mode (solid squares). Since the torus
centre is a circle of radius R, an unstable mode is realizable only when the arclength
2πR coincides with some integral multiple of the wavelength 2π/k0. The unstable
bandwidth needs to be sufficiently broad.

A large growth rate is maintained to short wavelengths at intersection points
between the ith branch of m =0 and the ith branch of the retrograde radial modes
of m = 1. This sequence belongs to what we call the principal modes. Apparently, the
growth rate is relatively large at intersection points along the first retrograde mode of
m =1, but this mode decreases as the branch number i is increased. The half-width
�k1 is large at intersection points of large growth rate.

The origin (k0, ω0) = (0, 0) is the intersection point between the isolated branch of
m =1 and all branches of m = 0. For a general (m, m +1) resonance, (3.23) and (3.24)
tend, as k0 → 0 and ω0 → m, to

σ 2
1max =

(m + 1)(3m + 2)2(ω0 − m)5

32k4
0

, (4.1)

�k2
1 =

(m + 1)(3m + 2)2(ω0 − m)3

8(2m + 3)2k2
0

. (4.2)

From the dispersion relation of Kelvin waves at small values of k0 (Kopiev &
Chernyshev 1997; Fukumoto 2003), the frequency is at least ω0 = m +O(k0) as k0 → 0,
and therefore the limit of (4.1) and (4.2) as k0 → 0 should be taken as σ1max = 0 and
�k1 = 0. For the 0, 1-pair, the origin is a neutrally stable point. Incidentally, following
Crow (1970), calculation of the Biot-Savart law for vortex-ring stability to bending
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waves of long wavelengths was undertaken by Widnall & Sullivan (1973). Their
instability mode was found to be spurious by Widnall et al. (1974), in accord with
the result, in the localized induction approximation, of Arms & Hama (1965) that a
circular-line vortex is neutrally stable.

Among the intersection points examined so far, the maximum of growth rate is
attained at the first principal mode, namely at (k0, ω0) ≈ (0.8134868347, 0.5970895378),
though the maximum value σ1max ≈ 0.05434123370 is not very large. The corres-
ponding flow field is calculated, to O(ε0), from (3.10) with v

(1)
0 and v

(2)
0 provided in

Appendix B. The solvability conditions (C 9) and (C 10) give β
(2)
0 /β

(1)
0 ≈ 0.7276318666

at this point. With this value, the shape of the core boundary is drawn in perspective
view in figure 4. It is observed that the fore–aft symmetry is broken with larger
deformation on the front side. Flow visualization reflects pressure field. Figure 5
depicts contours of pressure on longitudinal planes θ = const. through the centre of
a rectified torus, and figure 6 depicts the same on several meridional planes s = const.
To fix the origin of the phase, we put t = 0. The line of local pressure minimum draws
a helix winding around the toroidal centre, with fore–aft symmetry broken.

The contours of toroidal velocity w0 on the cross-sectional plane k0s = ω0t are
drawn in figure 7. Only the interior region (r < 1) is shown. A strong toroidal or axial
current is induced over a very large region with the location of peak velocity pushed
backward from the core centre, and is accompanied by a small counter-current in the
front part of the core. The location of peak velocity winds helically around the torus
centre, and executes a circulatory motion around the centre. Figure 8(a) displays the
disturbance vorticity field (ω0r , ω0θ ) of O(ε0) projected on the same cross-sectional
plane. The contours of toroidal vorticity ω0s are shown in figure 8(b). The ring-like
vorticity structure in figure 8(a) corresponds to the strong toroidal flow in figure 7.
The toroidal vorticity is large at points where the toroidal current is weak.

We reason that, as with the cases of the elliptical instability (Waleffe 1990) and
of the instability due to multi-polar strain (Eloy & Le Dizès 2001), the instability
mechanism is attributable to parallelization between the stretching direction of local
shear and the disturbance vorticity. The strain tensor due to the first-order field (2.7)
of the base flow is

εr




− 5
4
cos θ 3

4
sin θ 0

3
4
sin θ 1

4
cos θ 0

0 0 cos θ


 = ε




− 5
4
x 3

4
y 0

3
4
y 1

4
x 0

0 0 x


 . (4.3)

Here local Cartesian coordinates (x, y, s)= (r cos θ, r sin θ, s) have been introduced
with some abuse of notation. The eigenvalues and their associated eigenvectors are

λ1 = εr

(
−cos θ

2
+

3

4

)
, e1 =




sin 1
2
θ

cos 1
2
θ

0


 , (4.4a)

λ2 = εr

(
−cos θ

2
− 3

4

)
, e2 =




cos 1
2
θ

− sin 1
2
θ

0


 , (4.4b)

λ3 = εr cos θ, e3 =


0

0

1


 . (4.4c)
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Figure 4. Shape of the disturbed vortex ring for the first principal mode of the (0, 1) resonance
excited at (k0, ω0) ≈ (0.8134868347, 0.5970895378). (a) ε = 0, (b) ε = 0.1627 (viewed from three
different perspectives).

The direction of maximum stretching is e3, the unit vector tangent to the ring centre
circle, for |θ | � π/3, and e1 otherwise. Fukumoto & Hattori (2002) calculated the
probability distribution function of angles between the disturbance vorticity vec-
tor and the eigenvectors for the first principal mode at (k0, ω0) ≈ (0.8134868347,
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Figure 5. Contours of pressure in the section θ = const. for the first principal mode of the
(0, 1) resonance excited at (k0, ω0) ≈ (0.8134868347, 0.5970895378). ε =0. (a) θ = 0, (b) θ = π/2.
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Figure 6. The same as figure 5 but on meridional planes. (a) k0s = 0, (b) π/4, (c) π/2,
(d) 3π/4, (e) π, (f ) 5π/4, (g) 3π/2, (h) 7π/4.

0.5970895378). A tendency of alignment of the vorticity vector was seen with e3 but
not with e1. It is vortex-line stretching in the toroidal direction that plays the leading
role of driving instability.

The magnitude of strain (4.3) increases with the distance r from the core centre and
takes its maximum at the core boundary r =1. In the geometric-optics approximation,
the growth rate for the wave-packet disturbance of short wavelength attains its
maximum on the streamline around the edge of the core (Hattori & Fukumoto 2003).
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Figure 7. Contours of disturbance toroidal velocity field w0 on the meridional plane k0s = ω0t
for the first principal mode of the (0, 1) resonance excited at (k0, ω0) ≈ (0.8134868347,
0.5970895378). The outer dashed line depicts the core boundary r = 1.

(a) (b)

Figure 8. Disturbance vorticity field in the meridional plane k0s = ω0t of the first principal
mode of the (0, 1) resonance excited at (k0, ω0) ≈ (0.8134868347, 0.5970895378). (a) The
meridional components (ω0r , ω0θ ). (b) Contours of disturbance toroidal vorticity field ω0s .
The outer dashed line depicts the core boundary r =1.

It follows that only the disturbance vorticity near the core boundary is relevant to
the growth rate. In § 5.3, we will discuss disturbance vorticity of short wavelength at
r = 1.

The growth rate of the principal modes diminishes as the branch label i becomes
larger. Calculation of intersection points of the dispersion curves and of the growth
rate at those points is extended to large wavenumbers and is plotted in figure 9. The
growth rate stays at relatively large values along the two sequences of intersection
points, rapidly converging to ω0 = 0.5 (figure 9a). One sequence is intersection points
between the ith cograde mode of m = 0 and the ith retrograde mode of m = 1 for
which the growth rate monotonically decreases with k0, and the other sequence
is a collection of intersection points between the (i +1)th cograde mode of m = 0
and the ith retrograde mode of m = 1 for which the growth rate is, except for the
first few intersection points, an increasing function of k0. Eloy & Le Dizès (2001)
called the latter the principal modes. We include both in the principal modes. Other
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Figure 9. Large-wavenumber behaviour of the (0, 1) resonance. (a) The intersection points
(k0, ω0) of the dispersion curves, (b) the maximum growth rate σ1max.
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Figure 10. Dispersion relation of Kelvin waves of m= 5 (dashed lines) and m= 6 (solid lines)
on the Rankine vortex. The isolated branches of m= 5 and m= 6 are shown with thick dashed
and solid lines respectively.

sequences do not die away in the short-wave limit, though they are much less active.
A mathematical analysis of the short-wavelength asymptotics is deferred to § 5, where
the limiting value will be found to be σ1max ≈ 0.02374715242 (the horizontal line in
figure 9b).

4.2. Resonance between the 5, 6 waves

To exemplify higher-wave resonance, we select the coupling (m, m + 1) = (5, 6) waves.
Their linear dispersion relation is drawn in figure 10, with dashed lines for m = 5 and
solid lines for m =6. The isolated branches are distinguished with thick lines.

The qualitative behaviour is no different from the 0, 1 waves. In the present case
also, destabilization occurs only at the intersection points between the cograde radial
modes of m =5 and the retrograde radial modes of m =6. The leftmost intersection
(k0, ω0) = (0, 5) remains as a neutrally stable point as shown by (4.1).

Table 2 shows the growth rate σ1max and the half-width �k1 at a few intersection
points of low wavenumbers. The first three rows corresponds to the first three
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k0 ω0 σ1max �k1

2.433397462 5.529409164 0.3195204618 1.693646977
2.794997045 5.600007679 0.05182563467 0.3171404496
3.052129222 5.648538465 0.02232672268 0.1506487379

2.880420743 5.451428636 0.1240269171 0.7815646681
3.374566751 5.522917879 0.2216027292 1.624125748
3.737569089 5.573915602 0.04184266135 0.3403360657

3.202485864 5.397522759 0.05173895123 0.3663210904
3.804020554 5.467647077 0.1025219849 0.8482766785
4.255939038 5.519004934 0.1737789499 1.602267351

Table 2. The maximum growth rate εσ1max and the half-width ε�k1 of unstable wavenumber
band to O(ε) for the (5,6) resonance. See text for details.

intersection points along the first cograde mode of m = 5, which are marked with
open circles in figure 10, the second three rows are along the second cograde mode
(solid circles), and the last three rows along the third cograde mode (squares). A
relatively large growth rate is maintained to short wavelengths at intersection points
of the same branch labels. Continuing calculation to large wavenumbers, we find that
the growth rate of the principal modes approaches σ1max ≈ 0.02374715242 in common
with the (0, 1) resonance (see § 5.1). The global maximum of the growth rate is at the
first principal mode (k0, ω0) ≈ (2.433397462, 5.529409164). It is noteworthy that the
maximum value σ1max ≈ 0.3195204618 for the (5, 6) resonance is substantially larger
than σ1max ≈ 0.05434123370 for the (0, 1) resonance. This contrasts with the MSTW
instability for which the growth rate of the principal modes is insensitive to azimuthal
wavenumber (Eloy & Le Dizès 2001; Fukumoto 2003).

For the first principal mode, the amplitude ratio of m = 6 to m =5 modes is
evaluated as β (2)/β (1) ≈ 0.9101456333 to O(ε0). Its core boundary and the pressure
contours, on longitudinal planes, are shown in figures 11 and 12. The contours of
disturbance toroidal velocity are depicted in figure 13, and the transversal disturbance
vorticity field (ω0r , ω0θ ) and the contours of disturbance toroidal vorticity ω0s in fig-
ure 14. The azimuthal modal structure of m =5 and 6 is recognized. The toroidal velo-
city is enhanced around θ = π, and correspondingly the toroidal vorticity is enhanced
around θ = 0. The vigorous disturbance field is confined to an annular region near
the edge of the core (r = 1).

In order to grasp overall instability characteristics in the (k0, ω0)-space, a calculation
of degenerate eigenvalues of the ith–ith radial modes of (m, m +1) resonance is
carried out over a wide range of k0 and m. The growth rate is plotted in figure 15.
The modes of m =1, 2, . . . , 10 and 20, 30, . . . , 60 are shown. Given m, the growth rate
of (m, m + 1) resonance decreases with the branch label i or the wavenumber k0 and
tends to σ1max ≈ 0.02374715242 as k0 → ∞. On the other hand, given the branch label,
the growth rate increases monotonically with m and approaches σ1max = 0.64453125
as m → ∞. The ways of approaching the two different short-wave limits will be
expounded in § 5.

4.3. Energetics

Krein’s theory of Hamiltonian spectra underlies the preceding numerical results.
A necessary condition for loss of stability at a double eigenvalue is either that the
eigenfunction consists of waves with opposite signed energy or that the eigenvalue is 0
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Figure 11. Shape of the disturbed vortex ring for the first principal mode of the (5, 6)
resonance excited at (k0, ω0) ≈ (2.433397462, 5.529409164). (a) ε = 0, (b) ε = 0.1622 (viewed
from three different perspectives).

(MacKay 1986; Marsden 1992; Dellnitz, Melbourne & Marsden 1992; Guckenheimer
& Mahalov 1992; Knobloch, Mahalov & Marsden 1994).

By taking advantage of Cairns’ formula (Cairns 1979), Fukumoto (2003) obtained
a neat expression for energy required to excite the Kelvin wave of azimuthal
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Figure 12. Contours of pressure in the section θ = const. for the first principal mode of the
(5, 6) resonance excited at (k0, ω0) ≈ (2.433397462, 5.529409164). ε = 0. (a) θ = 0, (b) θ = π/2.

Figure 13. Contours of disturbance toroidal velocity field w0 on the meridional plane k0s = ω0t
for the first principal mode of the (5, 6) resonance excited at (k0, ω0) ≈ (2.433397462,
5.529409164). The outer dashed line depicts the core boundary r = 1.

wavenumber m as

E =
2πω0

ω0 − m

{
1 +

(k0/η1)
2K|m|(k0)

k0K|m|−1(k0) + |m|K|m|(k0)

[
2(ω0 + m)

ω0 − m

+

(
m(ω0 + m)

2
+ k2

0

)
K|m|(k0)

k0K|m|−1(k0) + |m|K|m|(k0)

]}(
f

(1)
0

)2
, (4.5)

where f
(1)
0 is the displacement amplitude of the disturbed core r = 1 + f

(1)
0 exp[i(mθ +

k0z − ω0t)], and is linked to the amplitude β
(1)
0 of the disturbance pressure through

f
(1)
0 =

1

4 − (ω0 − m)2

{
−ηmJ|m|−1(ηm) +

|m|
ω0 − m

(
ω0 − m +

2m

|m|

)
J|m|(ηm)

}
β

(1)
0 . (4.6)
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(a) (b)

Figure 14. Disturbance vorticity field in the meridional plane k0s = ω0t of the first principal
mode of the (5, 6) waves excited at (k0, ω0) ≈ (2.433397462, 5.529409164). (a) The meridional
components (ω0r , ω0θ ). (b) Contours of disturbance toroidal vorticity field ω0s . The outer
dashed line depicts the core boundary r = 1.

0
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0.7
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σmax

k0

165
256

15
64π2

m

Figure 15. The growth rate of the principal resonance modes between the ith cograde modes
of the m wave and the ith retrograde modes of the m+1 wave for m= 1–60. The same symbol
is used for the same azimuthal wavenumber pair (m,m+ 1). The lowest sequence represented
by the symbol + corresponds to m= 0. The highest sequence represented by the symbol �

corresponds to m= 60.

Figure 16 shows graphs of Kelvin-wave energy, as a function of k0, for the first
few branches of (a) the axisymmetric wave m = 0 and, as an illustration for higher
modes, (b) m =5. Figure 16(a) shows the first five branches of m =0 on the ω0 > 0
side. The energy of the axisymmetric wave is all positive, and, at a given k0, the
ith branch of the negative mode (ω0 < 0) has the same energy as the ith branch of
the positive mode. For a fixed branch label i, the energy monotonically increases
with k0, while, given k0, the energy decreases with branch label. The energy of the
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Figure 16. The wave energy E normalized by 2π, as a function of k0, as given by (4.5) with
f

(1)
0 = 1. (a) The axisymmetric wave m= 0. The first five positive branches (ω0 � 0), labelled

n= 1, . . . , 5, are shown. (b) The m= 5 wave. The solid thick line corresponds to the isolated
mode, dashed lines to the first five branches of retrograde radial modes (|ω0| < 5), labelled
n= −1, . . . , −5, and solid lines to the first five branches of cograde radial modes (|ω0| > 5),
labelled n= 1, . . . , 5.

bending wave (m = 1) was illustrated in figure 8 of Fukumoto (2003). The energy of
the isolated mode and cograde radial modes of m =1 is positive over the entire range
of k0, and therefore resonance with the m =0 mode is ruled out. As is evident from
(4.5), alteration of the energy sign occurs at the point, k∗

0 say, where a dispersion
curve crosses the k0-axis. The energy of retrograde radial modes of m =1 is negative
in the range 0 <k0 <k∗

0 , and is positive for k0 > k∗
0 . Eigenvalue collisions of negative-

and positive-energy modes occur only between retrograde radial modes of m =1 and
upward modes of m = 0 in frequency range of 0<ω0 < 1, which is not in contradiction
with the numerical example of § 4.1.

In figure 16(b) for m =5, the thick line corresponds to the isolated mode, solid lines
to the first five cograde radial modes labelled with n= 1, . . . , 5, and dashed lines to
the first five retrograde radial modes labelled with n= −1, . . . , −5. The behaviour of
energy curves of m = 6 does not differ from figure 16(b). A first glance shows us a
simple rule for the energy sign. The energy of downward branches (the isolated mode
and retrograde modes) is negative, whereas that of upward branches (cograde mode)
is positive. It follows that eigenvalues of positive- and negative-energy modes meet
only for a cograde mode of m =5 and a retrograde mode of m =6. These multiple
eigenvalues lead to instability, with no exception.

Krein’s criterion by means of the energy signature furnishes merely a necessary
condition for instability, yet it in effect serves as a sufficient condition for instability
as well. The same is true of the MSTW instability (Fukumoto 2003). The coincidence
of the necessary condition with the sufficient condition is suggestive of the generic
nature of the dipole field perturbation (2.7) in Krein’s framework.

5. Short-wavelength asymptotics
The expression (3.23) for the growth rate suggests that a resonance pair with ω0

closer to m +1/2 is more influential. A universal feature manifests itself in the short-
wavelength limit in which ω0 converges to m +1/2. We have two wavelengths at our
disposal, namely the axial and the azimuthal wavelengths, and there are two ways
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Figure 17. (a) The maximum growth rate σ1max and (b) the half-width �k1 as functions of k0

for the principal modes of (0, 1) resonance. �, �l = 0; ×, �l = 1. The short-wave asymptotics
(5.2) and (5.3) are shown as dashed lines. The horizontal dashed line is the short-wave limit
σ1max = 15/(64π2).

of taking the short-wavelength limit. We begin with a simple azimuthal structure by
fixing m, and thereafter we turn to the limit of m → ∞.

5.1. Large k0 with m fixed

Asymptotic expansions of (k0, ω0) for degenerate eigenvalues of the m, m +1 waves
are made in Appendix D. The intersection frequency ω0 is given by (D 5), and the
wavenumber k0 by a solution of (D 7) for large integers l1 and l2 indexing branches
of the m and the m +1 waves respectively.

Substituting from (D5), (3.23) and (3.24) gives

σ1max =
15

64π2(�′l)2
+

√
15

32k0

{
m

π�′l

[
21

8
+

1

π2(�′l)2

]
+

1

2

[
−9

√
15

64
+

21

8π�′l

+

√
15

16π2(�′l)2
+

1

π3(�′l)3

]}
+ O

(
k−2

0

)
, (5.1a)

�k1 =
k0

2π2(�′l)2
+

m√
15π�′l

[
21

8
+

1

π2(�′l)2

]
+

1

2
√

15

[
−9

√
15

64
+

21

8π�′l

+

√
15

8π2(�′l)2
+

1

π3(�′l)3

]
+ O

(
k−1

0

)
, (5.1b)

where the definition (D 6) for �′l =2�l − 1 along with �l = l2 − l1 is used. The
finite value 15/(64π2(�′l)2) of the growth rate is the asymptote in the limit of
k0 → ∞, among which the modes specified by �l =0 and 1 have the largest growth
rate 15/(64π2) ≈ 0.02374715242. This limiting value is shared by all resonant pairs
(m, m +1) for finite values of m. These are the principal modes with slightly larger
growth rate for �l =1. Correspondingly, the eigenfrequency ω0 of the principal modes
with �l = 0, 1 attains a relatively rapid convergence to the limit ω0 = m +1/2 from
below and above respectively as is seen from (D5) and is exemplified in figure 9(a)
for the (0, 1) resonance. The unstable wavenumber band, to leading order, broadens
linearly in k0, and this broad-band nature guarantees the validity of the geometric
optics approach used by Hattori & Fukumoto (2003).

Variation of the maximum growth rate σ1max and the half-width �k1 of the un-
stable band with k0 is shown for the (0, 1) resonance in figure 17. The principal mode
with �l = 0 is plotted with squares and that with �l = 1 is plotted with crosses. The
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short-wavelength asymptotics are obtained by choosing m = 0 in (5.1). They become,
for �l = 1,

σ1max ≈ 0.02374715242 + 0.02104135307/k0,

�k1 ≈ 0.05066059182 k0 + 0.04805450688,

}
(5.2)

and, for �l = 0,

σ1max ≈ 0.02374715242 − 0.08399092777/k0,

�k1 ≈ 0.05066059182 k0 − 0.1760143589,

}
(5.3)

and are drawn with dashed lines. They fit fairly well even at moderate wavenumbers,
as small as k0 ≈ 3 say.

Taking a careful look at figure 9(b) for the (0, 1) resonance, it is seen that modes
other than the principal ones survive in the limit of k0 → ∞, which is confirmed from
(5.1). In harmony with this, the way of approaching ω0 =m + 1/2, as given by (D5),
is of O(k−1

0 ) for all values of �l with m/�′l finite. This situation is contrasted with
the MSTW instability for which the �l =0 mode has a special status (Eloy & Le
Dizès 2001; Fukumoto 2003).

Notice that the coefficients of the correction terms in the asymptotic expansions
(5.1), (D 5) and (D7) grow with m, being indicative of non-uniformity in the expan-
sions. At large values of m, a new regime appears, in which vigorous modes reside.

5.2. Large k0 and m with η1 ∼ η2 ∼ m

As m → ∞, the intersection points (k0, ω0) between cograde radial modes of m and
retrograde radial modes of m +1 are arranged so as to satisfy η1 ∼ η2 ∼ m (Eloy &
Le Dizès 2001). The asymptotic expansions for (k0, ω0) for those points are given, to
a high order in 1/m1/3, as (D 15) and (D 16) in Appendix D.2. In these, a1(<0) and
a2(<0) are the zeros of the Airy function Ai and play the role of the branch labels
for the m and the m +1 waves respectively. The first zero a1 ≈ −2.338107410 is linked
to the first cograde radial mode of m and a2 ≈ −2.338107410 to the first retrograde
radial mode of m +1.

A rapid approach to ω0 = m +1/2 as m → ∞ demands �a = a2 − a1 = 0. They are
at the crossing points between the ith branches of both m and m +1 radial waves,
and thus are inherited from the principal modes of �l =1. The growth rate and the
unstable bandwidth for the case of �a =0 are, from (3.23) and (3.24),

σ1max =
165

256

(
1 − 33499 |a1|

25872 × 21/3m2/3

)
+ O(m−1), (5.4)

�k1 =
11

8
√

15
m

(
1 − 7627 |a1|

25872 × 21/3m2/3

)
+O(m0). (5.5)

The common value σ1max = 165/256 is the asymptote. Among them, the longest-wave
pair with a1 = a2 ≈ −2.338107410, the first principal mode, has the largest growth
rate:

σ1max ≈ 0.64453125 − 1.548698742/m2/3, (5.6)

�k1 ≈ 0.3550234734m − 0.1942235728 m1/3. (5.7)

This is the most dominant mode of all possible resonance pairs. The increase, with
m, of growth rate for the first principal mode is illustrated, with crosses, to m =60 in
figure 18. Squares are asymptotic expansions (5.6) with k0 given by (D 15).
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Figure 18. Variation of the maximum growth rate σ1max with m for the resonance between the
first-first radial modes of the m, m+ 1 waves, shown with ×. m= 1, 2, . . . , 60. The short-wave
asymptotics (5.6) and (D 15) are shown with �.

It is worth noting that the limit σ1max = 165/256 coincides with the value obtained
by Hattori & Fukumoto (2003) through the geometric optics approach of Lifschitz &
Hameiri (1991). The present solution supplies us with its structure globally in space.
Recall that the angle between the normal to a streamline and the wave vector of the
WKB ansatz projected onto a meridional plane, at the initial instant, was denoted φ.
This limit corresponds to φ = π/2 and therefore the projected wave vector is parallel
to the streamline. On the other hand, the orthogonal case φ = 0 corresponds to the
preceding limit of fixed m, for which growth rate of the global mode is reduced from
the local one by factor (π/2)−2 as

σ1max → 15ε

256

(
π

2

)−2

as k0 → ∞ with m fixed, (5.8)

for a reason unknown to us. These correspondences are understood by recalling that
φ ∼ tan−1 C ′m/η

2/3
i in the present case and φ ∼ tan−1 Cm/ηi in the preceding case

(Hattori & Fukumoto 2003) for some constants C and C ′; note that, for the present
limit, the ‘effective’ wavenumber in the radial direction is estimated as ηiJ

′
m(ηir)/

Jm(ηir) ∼ η
2/3
i for 1 − r =O(m1/3) (Abramowitz & Stegun 1965). Incidentally, the

same factor (π/2)−2 was derived in the case of a planar hexapole perturbation, being
proportional to cos 3θ and sin 3θ , by Eloy & Le Dizès (2001).

In the case �a = a2 − a1 �= 0, convergence of the eigenvalue to ω0 =m + 1/2 is
slower. Consequently the resonance instability is weaker as is seen from

σ1max =
4365

3584 × 22/3 |�a| m1/3

{
1 +

7627

4074 × 22/3�a m1/3

}
+ O(m−1), (5.9)

�k1 =
97

112 × 22/3

√
3

5

m2/3

|�a|

{
1 +

7627

4074 × 22/3�a m1/3

}
+ O(m0). (5.10)

This mode is suppressed in the limit of m → ∞.
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5.3. Disturbance vorticity at the edge of the core

The local rate of strain (4.3) is strengthened in proportion to the distance r from
the core centre. Accordingly, the growth rate of a short-wavelength disturbance is
proportional to r and attains its maximum at the edge r = 1 of the core. We highlight
vortex-line stretching on the core boundary r =1.

5.3.1. Disturbance vorticity at r = 1 when k → ∞ with m fixed

First, we consider the asymptotic behaviour of the disturbance vorticity at the edge
of the core (r = 1 − 0) when k → ∞ but with m fixed. Our attention is focused on the
degenerate eigenvalues of �l = l2 − l1 = 1

The limiting behaviour of the ratio of the pressure coefficient is

β
(2)
0

β
(1)
0

= 1 + O
(
k−1

0

)
. (5.11)

Substituting from (5.11) and formulae in Appendices B and D.1, the limit of (3.10) is
evaluated at r = 1. Set

β̂0 = −16k2
0β

(1)
0

√
2√

15πk0

cos

(
η1 − (2m + 1)π

4

)
. (5.12)

The disturbance vorticity ∇ × v0 exp[i(k0s − ω0t)] of O(ε0) evaluated at r = 1 is written
to leading order, in components in the toroidal coordinates (r, θ, s), as

ω̃0|r=1−0 ≈ β̂0




− sinΘ cos 1
2
θ

4 sinΘ sin 1
2
θ

cos Θ cos 1
2
θ


 , (5.13)

where

Θ =
(
m + 1

2

)
θ + k0s − ω0t. (5.14)

5.3.2. Disturbance vorticity at r = 1 when m ∼ η1 ∼ η2 → ∞
Next we turn to the most unstable modes of m ∼ η1 ∼ η2 → ∞. For clarity, we

confine ourselves to the dominant case of �a = a2 − a1 = 0. In this limit,

β
(2)
0

β
(1)
0

= 1 + O
(
m−4/3

)
. (5.15)

Substituting from (5.15) and formulae in Appendix D.2, the disturbance vorticity,
when the boundary r = 1 is approached from inside, is reduced to

ω̃0|r=1−0 ≈ β̃0


cos Θ




−4 sin 1
2
θ

− cos 1
2
θ

√
15 cos 1

2
θ


+ sinΘ




−4
√

15 cos 1
2
θ

15
√

15 sin 1
2
θ

− sin 1
2
θ




 , (5.16)

where

β̃0 =
24/3m4/3

105
Ai′(a1)β

(1)
0 , (5.17)

with Ai′(x) being differentiation of Ai(x) in x.
Comparison of (5.16) with (5.13) shows that the large-m limit gives an additional

degree of freedom to the eigenfunction. Conceivably the augmented freedom renders
the vorticity vector liable to the stretching action of the straining field (4.3).
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Figure 19. The toroidal component ω̃0s of disturbance vorticity at the boundary r = 1 − 0 of
the core. (a) The short-wavelength limit with m maintained finite as given by (5.13). We choose
m= 0. (b) The limit of m ∼ η1 ∼ η2 → ∞ as given by (5.16). We choose m= 10. In both (a) and
(b), the solid line is the curve of ω̃0s |r = 1 as a function of θ for the phase Θ0 = k0s − ω0t = 0
and the dashed line is for the phase Θ0 = π/2.

Figure 19(a, b) depict the variation of the toroidal disturbance vorticity ω̃0s along
the peripheral circle r = 1 − 0 in the limit of k0 → ∞ with m fixed and in the limit of
m ∼ η1 ∼ η2 → ∞, respectively. Figure 19(a) corresponds to the (0, 1) resonance, and
only one wavelength is contained. As is obtained from (4.3), the toroidal strain is
x = cos θ . Positive strain in the toroidal direction is largest at θ = 0, monotonically
decreases with θ , changes its sign at θ = π/2 and reaches the minimum value at θ = π.
When Θ0 = k0s − ω0t =0, the toroidal vorticity takes a configuration susceptible to
amplification by stretching (the solid line), but, when Θ0 = π/2, the configuration is
out of phase with the stretching action (the broken line). In figure 19(b), ω̃0s given by
(5.16) is shown with the choice of m =10. The toroidal vorticity exploits the doubled
degrees of freedom to adjust itself to comply, at every phase, with the stretching
action of the strain.

6. Effect of elliptical deformation and viscosity
It is generally agreed that the elliptical deformation of the core is responsible for

instability. However the local pure shear appears at second order in ε, whereas the
curvature effect in question is of O(ε). We now inquire into the practical relevance of
the curvature effect.

6.1. Inviscid case

We again take the distribution vorticity to be linear in distance from the axis of
symmetry, though the growth rate and the unstable mode of the O(ε) effect sensitively
depend on the vorticity distribution as demonstrated by Hattori & Fukumoto (2003).
Kelvin’s vortex ring is the first-order truncation of asymptotic expansions of the Euler
equations, and a higher-order extension of expansions was accomplished by Dyson
(1893) (see also Fraenkel 1972; Fukumoto & Moffatt 2000 and Fukumoto 2002).
This represents a thin limit of the Fraenkel–Norbury family (Fraenkel 1970; Norbury
1973). Roughly speaking, the second-order term is looked upon as a pure shear flow
of strength

3Γ

16πR2

[
log

(
8

ε

)
− 17

12

]
, (6.1)

in terms of dimensional variables (Saffman 1978).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

26
78

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004002678


102 Y. Fukumoto and Y. Hattori

WT77 calculated the O(ε2) straining-field effect. For instance, the growth rate
ε2σ2max corresponding to the stationary mode with the simplest radial structure of the
MSTW instability is

σ2max ≈

√[
0.428 log

(
8

ε

)
− 0.4549

]2

− 0.1134. (6.2)

When ε is large, this mode becomes competitive with the principal modes of O(ε).
The second-order growth rate σ2max monotonically increases as ε is increased from

zero, takes the maximum value σ2max ≈ 0.338 at ε ≈ 0.660, and then monotonically
decreases with ε. For the first principal mode of the (6, 7) pair, σ1max ≈ 0.3414099690
and σ1max is larger for larger azimuthal-wavenumber pairs (m, m +1) (see figure 18).
It follows that εσ1max >ε2σ2max within the range of 0 < ε < 1. Being limited to lower
azimuthal wavenumbers, εσ1max >ε2σ2max when ε � 0.0281 for the (0, 1) resonance,
ε � 0.116 for (1, 2), ε � 0.200 for (2, 3), ε � 0.283 for (3, 4), ε � 0.369 for (4, 5), and
ε � 0.471 for (5, 6). At large values of ε, εσ1max >ε2σ2max. For the (5, 6) pair, this
occurs for ε � 0.850. Our asymptotic expansion cannot be justifiably applied in this
range.

This overall comparison implies that the O(ε) curvature effect exerts a major
influence, but the situation may not be that simple.

6.2. Viscous case

So far we have ignored the action of viscosity. The eigenvalues for the first principal
modes are arranged in a sequence of the intersection points of the dispersion curves
that are extended to the range of large radial, azimuthal and toroidal wavenumbers
η1, m and k0, and hence these modes entail substantial viscous dissipation.

Incorporating viscosity requires that we tackle the Navier–Stokes equations. A
reasonably systematic procedure of incorporating small viscosity, equivalent to the
treatment of Eloy & Le Dizès (2001), is given in Appendix C, and the inviscid formula
(3.23) is replaced by

εσ v
1max =

{
ε2σ 2

1max +
4π2k4

0

R2
Γ

(
�(1)

f (1)
− �(2)

f (2)

)2}1/2

− 2πk2
0

RΓ

(
�(1)

f (1)
+

�(2)

f (2)

)
, (6.3)

where �(1) and �(2) are defined by (C 19) and (C 20) respectively, and RΓ is the circu-
lation Reynolds number (3.1).

We restrict attention to the first principal modes. The curvature effect cannot
overcome the viscous damping effect at small Reynolds numbers. When RΓ exceeds
899.9024378/ε, only the (1, 2) mode can be sustained. When RΓ exceeds
1048.733698/ε, the (2, 3) mode becomes excited and, when RΓ ≈ 1401.899548/ε,
catches up with the (1, 2) mode. As RΓ increases, the dominant mode is successively
taken by a higher azimuthal-wavenumber mode. There is no parameter region for
which the (0, 1) mode is the strongest.

If we choose, for instance, RΓ =10000 and ε = 0.2, the largest growth rate σ v
1max ≈

0.1010467686 is attained for the (2, 3) mode. The growth rate of subdominant modes,
σ v

1max ≈ 0.09310201142 for the (3, 4) mode and σ v
1max ≈ 0.08239309841 for the (1, 2)

mode, is not very different. Since the principal (2, 3), (3, 4) and (1, 2) modes are excited
at k0 ≈ 1.503834658, 1.821017959 and 1.173528968, the number of waves round one
circuit of the ring is k/ε ≈ 8, 9 and 6 respectively.
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A rather good approximation to (6.3) is supplied by

εσ v
1max ≈ εσ1max − 2π

RΓ

[
k2

0 + (m + 1)2 + η2
1

]
. (6.4)

Inclusion of the radial wavenumber η1 signifies that, due to the finer radial structure,
the O(ε) instability is more susceptible to viscous damping than the O(ε2) instability,
if the axial wavenumber k0 is the same. This is because η1 ∼

√
15k0 for the principal

modes of the O(ε) instability, while η1 ∼
√

3k0 for those of the MSTW instability.
At a high Reynolds number to be discussed subsequently in comparison with the

O(ε) effect, the dominant unstable mode caused by the O(ε2) plane straining field
would be the first stationary helical–helical wave resonance, though the 0, 2-pair is
relatively strengthened as the viscosity is increased (Eloy & Le Dizès 2001). By virtue
of the symmetry of the m = ±1 modes, the resulting expression for dimensionless
growth rate σ v

2max takes a neat form:

ε2σ v
2max = ε2σ2max − 4πk2

0

RΓ

�(1)

f (1)
, (6.5)

where σ2max is substituted from (6.2) and

f (1) = 6

(
k0K0

K1

)2

+
8k0K0

K1

+ 2k2
0 + 3, (6.6)

�(1) = 12

(
k0K0

K1

)2

+
13k0K0

K1

+ 4k2
0 + 3, (6.7)

are obtained from (C 13) and (C 19) by setting m = −1 and ω0 = 0. The wavenumber
to be substituted is k0 ≈ 2.505 for the simplest radial mode. The O(ε2) instability does
not demand short wavelengths. The viscosity acts in favour of the straining effect,
and the second-order effect overturns the first-order one when RΓ is not very large.

Based on our model, we divide the parameter space (ε, RΓ ) into the regions domi-
nated by one of the modes under consideration as shown in figure 20. The solid
lines are concerned with the O(ε) instability modes. The left-hand thick line is the
cut-off curve RΓ ≈ 899.9024378/ε, below which all modes are damped. At (ε, RΓ ) ≈
(0.1265, 7115), this is replaced by the cut-off curve of the O(ε2) first helical–helical
wave resonance (the lower thick line). The band bounded by the thick line and the
adjacent line is the region where the (1, 2) mode is dominant, and is then followed by
the dominant region of the (2, 3) mode in increasing order in RΓ . The right-hand thick
line with RΓ increasing with ε, except at smaller ε, is the critical line for competition
between the first- and the second-order effects, to the left of which the O(ε) effect
surpasses the O(ε2) effect. For RΓ � 10000, the range of ε dominated by the O(ε)
effect is not wide, but it expands with RΓ for RΓ � 10000.

Our procedure is not complete, because the underlying steady flow (2.6) and (2.7)
does not satisfy the Navier–Stokes equations. The Gaussian distribution of vorticity
could be taken as a model for vortex rings in a practical situation (Weigand & Gharib
1997), though a broader distribution is envisaged by Maxworthy (1972, 1977) and
Saffman (1978). The local stability analysis of Hattori & Fukumoto (2003) shows that
the growth rate σ1max corresponding to the limit of k0 → ∞ with m fixed is larger for
the Gaussian core than for the uniform core. This result may have some implications
for the practical relevance of the curvature effect, if the above-mentioned cases of finite
m have a link with this limit. However, care should be exercised. The exponentially
growing instability, on average, corresponding to the limit of m ∼ η1 ∼ η2 → ∞
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Figure 20. The regions dominated by one of the (m,m+ 1) modes of the O(ε) effect. The
left-hand thick solid line is the cut-off curve below which no growing mode of O(ε) is permitted.
The azimuthal wavenumber m of the dominant mode (m,m+ 1) is indicated. The right-hand
thick line is the critical one, the right-hand side of which is superseded by the O(ε2) effect.

disappears for the Gaussian core. A global stability analysis of the Gaussian core is
left for a future study (cf. Eloy & Le Dizès 1999).

7. Conclusion
We have addressed the question of whether the O(ε) dipole field, the leading-order

effect of vortex-line curvature in Kelvin’s vortex ring, can bring about parametric
resonance between Kelvin waves whose azimuthal wavenumbers are separated by
one. The answer is positive. The influence of the quadrupole field of O(ε2) has been
thoroughly studied since the pioneering work of Widnall et al. (1974) and is now
understood within the category of the elliptical instability. Although the dipole field
precedes the quadrupole field, in the asymptotic solution of the Euler and the Navier–
Stokes equations, the former has attracted little attention. The dipole field also plays
the role of symmetry-breaking perturbations in the framework of Krein’s theory for
Hamiltonian systems (MacKay 1986; Dellnitz, et al. 1992). One difference is that, for
the O(ε) instability, eigenvalue collision of Kelvin waves does not necessarily lead to
instability. This is not the case with the MSTW instability of O(ε2). The energetics
accounts for this difference.

In passing we point out that the Coriolis force acting on a circulatory flow is also
viewed locally as a dipole field. The resonance between the m and the m + 1 Kelvin
waves, mediated by the Coriolis force, was investigated by Kerswell (1993), Mahalov
(1993) and Mason & Kerswell (2002).

Formally the dipole field is more influential than the quadrupole field by one order
in ε, but comparison requires numerical values of the growth rate. We have succeeded
in deriving formulae for the growth rate and the unstable bandwidth in closed form in
terms of the modified Bessel functions, from which the short-wavelength asymptotics
are deduced at once. The most unstable mode resides in the short-wavelength limit
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of m ∼ η1 ∼ η2 → ∞, and its growth rate is σ1max = 165/256, in accordance with the
value obtained, through the geometric optics approach, by Hattori & Fukumoto
(2003). Being restricted to the inviscid uniform core, εσ1max exceeds ε2σ2max for the
whole range of possible values of ε, 0 <ε < 1 say. But they are rather competitive.
Viscosity damps preferentially the O(ε) curvature effect because the wavelength of
the dominant modes of O(ε) is short in all spatial directions and because, given the
axial wavenumber k0, the radial wavenumber is larger for the O(ε) mode. For fat
cores, the MSTW instability may predominate. The critical value of ε depends on
RΓ , and the relative importance of the O(ε) effect is more and more pronounced as
RΓ is larger.

The mechanism of the O(ε) instability is attributable to vortex-line stretching by
the dipole field. The straining field (4.3) is not confined to the meridional plane, and
toroidal vortex lines undergo stretching on the front side of torus. In contrast to plane
pure shear, strain is strengthened as the core boundary r = 1 is approached, and as a
consequence the most unstable mode concentrates vorticity near the boundary of the
convex side. The alignment of vorticity vector with stretching direction at r = 1 − 0
is achieved only in the toroidal direction as verified by the neat form (5.16) of the
vorticity asymptotics as m ∼ η1 ∼ η2 → ∞.

Unlike the MSTW or the elliptical instability, the O(ε) instability result is highly
sensitive to the vorticity distribution as the local rate of strain varies from place to
place. The uniform vorticity in the core to O(ε0) does not faithfully mimic vortex
rings in practical flows. The vorticity is peaked near r = 0, decreasing with r , and the
region of large strain is located closer to the core centre. According to Hattori &
Fukumoto’s short-wavelength analysis, the Gaussian vorticity distribution eliminates
the instability mode corresponding to the limit of m ∼ η1 ∼ η2 → ∞, but accentuates
the mode corresponding to the limit of k0 → ∞ with m fixed. We expect that resonance
modes of finite m could be amplified for a peaked vorticity distribution, compared
with a uniform one. However, the global stability of a vortex ring with distributed
vorticity is not a straightforward extrapolation of the present result. Even spectra on
a circular-cylindrical vortex tube are yet to be determined. Not only discrete spectra
but also continuous spectra will take part in the dynamics and smear out Krein’s
picture for parametric resonance.

At present, no experimental evidence is available that can be tied to the (m, m +1)
resonance. Shariff, Verzicco & Orlandi (1994) conducted an elaborated numerical
simulation of three-dimensional vortex ring instabilities. Lead by the intuition of
Widnall et al. (1974), they focused their modal analyses on the stationary modes, and
left aside the non-stationary instability modes. Krasny, Lindsay & Nitsche (2002)
extended the vortex blob method to three dimensions, and thereby computed the
development of an undulation on the toroidal core formed by rolling up a cylindrical
vortex sheet. In their simulation, the number of waves is prescribed by the initial
disturbance, and remains unaltered throughout the temporal evolution. The same
is true of the experiment by Naitoh et al. (2002). If the growth rate did not differ
much among vigorous instability modes, the initial condition would have a decisive
influence on modal selection. The (0,1) resonance represents a helically winding axial
flow. Naitoh et al. (2002) claimed that the genesis of observed axial flow stems
from nonlinear process when the elliptical instability reaches a mature stage. Yet a
possibility might not be ruled out that the (0, 1) resonance serves as a seed for it.
Lugomer & Fukumoto (2005) found possible evidence for this resonance in vortex
rings of micron scale generated by a laser–matter interaction. But to discriminate
the instability driven by the dipole field from others is not straightforward. Direct
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numerical simulation of the Navier–Stokes equations is called for in order to obtain
evidence for the O(ε) instability.

Our explicit solution of the linear stability problem is helpful in making headway
in solving nonlinear modal interactions. The form of equations describing weakly
nonlinear evolution is available in the framework of the normal form theory as
developed by Guckenheimer & Mahalov (1992) and Knobloch et al. (1994). Our
solution will render feasible efficient and accurate calculation of their coefficients.

The present investigation rests on a particular solution of the Euler equations,
Kelvin’s vortex ring. This model may be too simplified to have much bearing on
instability and disruption of vortex rings in a realistic situation. We have clarified,
at least, that a vortex ring accommodates rich wavy structures of various origin.
Hopefully this paper serves as a stepping stone for an understanding of the evolution
of vortex rings in nature.

Y. F. was supported in part by a Grant-in-Aid for Scientific Research from the
Japan Society for the Promotion of Science.

Appendix A. Navier–Stokes equations in moving toroidal coordinates
In this appendix, we list the dimensionless equations written in the moving toroidal

coordinates (r, θ, s) defined by (2.3) and shown in figure 1. Refer to WT77 for the
details of the derivation.

An irrotational flow is a solution of the Navier–Stokes equations. The Laplace
equation for the velocity potential φ outside the core is

∇2φ =
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂θ2
+

1

h2
s

∂2φ

∂s2
+

ε

hs

(
sin θ

∂φ

∂r
+

cos θ

r

∂φ

∂θ

)
= 0, (A 1)

where

hs = 1 + εr sin θ. (A 2)

The Navier–Stokes equations to be solved inside the core are written in component
form as

∂u

∂t
+ (v · ∇) u − v2

r
− εw2 sin θ

hs

= −∂p

∂r
+

2π

RΓ

{
∇2u − u

r2
− 2

r2

∂v

∂θ
− εv cos θ

hsr

− 2ε sin θ

h2
s

∂w

∂s
− ε2

h2
s

sin θ(u sin θ + v cos θ)

}
, (A 3)

∂v

∂t
+ (v · ∇) v +

uv

r
− εw2 cos θ

hs

= −1

r

∂p

∂θ
+

2π

RΓ

{
∇2v − v

r2
+

2

r2

∂u

∂θ
+

ε cos θu

hsr

− 2ε cos θ

h2
s

∂w

∂s
− ε2

h2
s

cos θ(u sin θ + v cos θ)

}
, (A 4)

∂w

∂t
+ (v · ∇) w +

ε

hs

w(u sin θ + v cos θ)

= − 1

hs

∂p

∂s
+

2π

RΓ

{
∇2w +

2ε

h2
s

(
∂u

∂s
sin θ +

∂v

∂s
cos θ

)
− ε2w

h2
s

}
, (A 5)
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where RΓ is the circulation Reynolds number defined by (3.1) and

v · ∇ = u
∂

∂r
+

v

r

∂

∂θ
+

w

hs

∂

∂s
. (A 6)

The equation of continuity is

∇ · v =
1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

1

hs

∂w

∂s
+

ε

hs

(u sin θ + v cos θ) = 0. (A 7)

Appendix B. Kelvin waves
The expressions for the velocity field and the dispersion relation of Kelvin waves

are collected in this appendix. The details are found, for example, in Tsai & Widnall
(1976), Kopiev & Chernyshev (1997) and Fukumoto (2003).

The leading-order disturbance flow field of azimuthal wavenumber m is obtained
in the form of normal mode as

v0 = v
(1)
0 (r) eimθ , π0 = π(1)

0 (r) eimθ , φ0 = φ
(1)
0 (r) eimθ . (B 1)

By separately integrating the linearized Euler equations outside and inside the core
with radius given by (2.11) we find that

φ
(1)
0 = Km(k0r)α

(1)
0 for r > 1 + f̃ 0, (B 2)

and

π(1)
0 = Jm(η1r)β

(1)
0 ,

u
(1)
0 =

i

ω0 − m + 2

{
−m

r
Jm(η1r) +

ω0 − m

ω0 − m − 2
η1Jm+1(η1r)

}
β

(1)
0 ,

v
(1)
0 =

1

ω0 − m + 2

{
m

r
Jm(η1r) +

2

ω0 − m − 2
η1Jm+1(η1r)

}
β

(1)
0 ,

w
(1)
0 =

k0

ω0 − m
Jm(η1r)β

(1)
0

for r < 1 + f̃ 0,




(B 3)

where the radial wavenumber η1 is given by

η2
1 = [4/(ω0 − m)2 − 1]k2

0, (B 4)

and Jm and Km are respectively the Bessel function of the first kind and the modified
Bessel function of the second kind, m being their order, and α

(1)
0 and β

(1)
0 are arbitrary

constants. The non-singular conditions ω0 �= m and ω0 �=m ± 2 are to be kept in view.
The boundary conditions supply the relation between α

(1)
0 and β

(1)
0 as

α
(1)
0 = − iJm(η1)

(ω0 − m)Km(k0)
β

(1)
0 , (B 5)

and the dispersion relation

Jm+1(η1) =

{
2m

ω0 − m + 2
− k0Km+1(k0)

Km(k0)

}
η1

k2
0

Jm(η1). (B 6)
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The dispersion relation for a Kelvin wave of azimuthal wavenumber m + 1 is

Jm(η2) =

{
k0Km(k0)

Km+1(k0)
− 2(m + 1)

ω0 − m − 3

}
η2

k2
0

Jm+1(η2), (B 7)

and is also used to simplify the boundary conditions at O(ε) (Appendix C). Here η2

is the radial wavenumber of the m + 1 wave given by

η2
2 = [4/(ω0 − m − 1)2 − 1]k2

0 . (B 8)

The corresponding amplitude functions v
(2)
0 (r) and π(2)

0 (r) of the velocity field should
be expressed in terms of Jm(η2) and Jm +1(η2).

Appendix C. Closed-form solution for disturbance field and the solvability
conditions

This appendix is concerned with the closed-form solution of the O(ε) disturbance
field, the boundary conditions, and the solvability conditions for a possible parametric
resonance between Kelvin waves with azimuthal wavenumbers m and m +1. The
superscript 1 refers to the m wave, and 2 refers to the m +1 wave.

By inspection and with the help of computer algebra, a general solution of (3.18)
for the m wave, finite at r = 0, is manipulated to give

π(1)
1 = Jm(η1r)β

(1)
1 +

{
4k2

0ω1

(ω0 − m)3
− η2

1k1

k0

}
r

η1

Jm+1(η1r)β
(1)
0

+
i

16

{[
5(r2 − 1) +

(ω0 − m − 1)2(ω0 − m)2(ω0 − m + 2)

2k2
0(2ω0 − 2m − 1)2(ω0 − m + 1)

A1

]
η2Jm(η2r)

+
A2

2ω0 − 2m − 1
rJm+1(η2r)

}
β

(2)
0 +

16iν̃k4
0

(ω0 − m)5η1

rJm+1(η1r)β
(1)
0 , (C 1)

where β
(1)
1 is a constant and

A1 = 9ω4
0 − 18(2m + 1)ω3

0 + (54m2 + 54m + 1)ω2
0

− 2(2m + 1)(3m − 2)(3m + 5)ω0 + 9m4 + 18m3 − 23m2 − 32m − 8,

A2 = 9ω4
0 − 9(4m + 1)ω3

0 + (54m2 + 27m − 26)ω2
0

− (36m3 + 27m2 − 56m − 20)ω0 + 9m4 + 9m3 − 30m2 − 22m − 2.




(C 2)

Returning to the Euler equations (3.2) and (3.3), the disturbance radial velocity u
(1)
1 is

found to be

u
(1)
1 = i

{
− mJm(η1r)

(ω0 − m + 2)r
+

1

2

(
1

ω0 − m + 2
+

1

ω0 − m − 2

)
η1Jm+1(η1r)

}
β

(1)
1

+
iω1

(ω0 − m + 2)2

{[
m

r
+

4η2
1r

(ω0 − m − 2)2

]
Jm(η1r)

− 1

(ω0 − m − 2)2

[
ω2

0 − 2mω0 + (m + 2)2 +
8m

ω0 − m

]
η1Jm+1(η1r)

}
β

(1)
0

− ik1

{
k0

ω0 − m
rJm(η1r) +

m

k0(ω0 − m − 2)
η1Jm+1(η1r)

}
β

(1)
0

+
1

16

{
1

ω0 − m + 1

[
m

(
(ω0 − m)2(ω0 − m − 1)2

2k2
0(2ω0 − 2m − 1)2

A1 − 5

)
1

r

+
A3

(ω0 − m − 3)(2ω0 − 2m − 1)
r

]
η2Jm(η2r)
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+

[
A4

2(ω0 − m − 3)(2ω0 − 2m − 1)2
+

5k2
0

ω0 − m − 1
(r2 − 1)

]
Jm+1(η2r)

}
β

(2)
0 ,

− 4ν̃k2
0

(ω0 − m)2(ω0 − m + 2)2

{[
m − 4(ω0 − m + 2)k2

0r
2

(ω0 − m)2(ω0 − m − 2)

]
Jm(η1r)

r

− ω3
0 − 3mω2

0 + (3m2 + 4m + 4)ω0 − m(m2 + 4m − 4)

(ω0 − m)(ω0 − m − 2)2
η1Jm+1(η1r)

}
β

(1)
0 , (C 3)

where

A3 = 9ω5
0 − 9(5m + 3)ω4

0 + (90m2 + 108m + 1)ω3
0 − (90m3 + 162m2 − 11m − 11)ω2

0

+ (45m4 + 108m3 − 25m2 − 63m +14)ω0 − 9m5 − 27m4 + 13m3 + 52m2 + 3m − 8,

A4 = 9ω8
0 − 18(4m + 3)ω7

0 + 2(126m2 + 189m + 41)ω6
0 − 2(252m3 + 567m2

+ 252m − 8)ω5
0 + (630m4 + 1890m3 + 1290m2 − 98m − 87)ω4

0

− 2(252m5 + 945m4 + 880m3 − 116m2 − 262m − 27)ω3
0

+ 2(126m6 + 567m5 + 675m4 − 134m3 − 533m2 − 154m + 18)ω2
0

− 2(36m7 + 189m6 + 276m5 − 76m4 − 454m3 − 235m2 + 32m + 28)ω0

+ 9m8 + 54m7 + 94m6 − 34m5 − 279m4 − 216m3 + 24m2 + 68m + 16. (C 4)

Likewise, for the m +1 wave, we have

π(2)
1 = Jm+1(η2r)β

(2)
1 −

{
4k2

0ω1

(ω0 − m − 1)3
− η2

2k1

k0

}
r

η2

Jm(η2r)β
(2)
0

+
i

16

{[
A2

2ω0 − 2m − 1
− 9ω2

0 + 9(2m + 1)ω0 − 9m2 − 9m + 8

]
rJm(η1r)

+

[
5(r2 − 1) +

(ω0 − m − 1)2(ω0 − m)2(ω0 − m − 3)

2k2
0(2ω0 − 2m − 1)2(ω0 − m − 2)

A1

]
η1Jm+1(η1r)

}
β

(1)
0

− 16iν̃k4
0

(ω0 − m − 1)5η2

rJm(η2r)β
(2)
0 , (C 5)

and

u
(2)
1 = i

{
−1

2

(
1

ω0 − m + 1
+

1

ω0 − m − 3

)
η2Jm(η2r) +

(m + 1)Jm+1(η2r)

(ω0 − m − 3)r

}
β

(2)
1

+
iω1

(ω0 − m − 3)2

{
1

(ω0 − m + 1)2

[
ω2

0 − 2(m + 1)ω0 + (m − 1)2 +
8(m + 1)

ω0 − m − 1

]

× η2Jm(η2r) −
[
m + 1

r
− 4η2

2r

(ω0 − m + 1)2

]
Jm+1(η2r)

}
β

(2)
0

− ik1

{
m + 1

k0(ω0 − m + 1)
η2Jm(η2r) +

k0

ω0 − m − 1
rJm+1(η2r)

}
β

(2)
0

− 1

16

{
1

ω0 − m + 2

[
A4

2(2ω0 − 2m − 1)2
+

1

4

(
2ω0 − 2m − 1 − 5

2ω0 − 2m − 1

)
A1

− 4(2m + 1) + 5k2
0

(
1 +

2

ω0 − m

)
(r2 − 1)

]
Jm(η1r)

+
1

ω0 − m − 2

[
(m + 1)

(
(ω0 − m)2(ω0 − m − 1)2

2k2
0(2ω0 − 2m − 1)2

A1 − 5

)
1

r
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+
A3 + A1 + 3

[
20ω2

0 − 15(2m + 1)ω0 + 10m2 + 10m + 2
]

(ω0 − m + 2)(2ω0 − 2m − 1)
r

]
η1Jm+1(η1r)

}
β

(1)
0

− 4ν̃k2
0

(ω0 − m − 1)2(ω0 − m − 3)2

×
{

ω3
0 − 3(m + 1)ω2

0 + (3m2 + 2m + 3)ω0 − (m + 1)(m2 − 2m − 7)

(ω0 − m − 1)(ω0 − m + 1)2
η2Jm(η2r)

−
[
m + 1 +

4(ω0 − m − 3)k2
0r

2

(ω0 − m − 1)2(ω0 − m + 1)

]
Jm+1(η2r)

r

}
β

(2)
0 , (C 6)

where β
(2)
1 is a constant.

Substituting from (3.16), (C 1), (C 3) and the expressions in Appendix B and
evaluating them at r = 1, the boundary conditions (3.21) for the m wave are converted
into linear algebraic equations for α

(1)
1 and β

(1)
1 :

mKm − k0Km+1

i

ω0 − m +2

[
mJm(η1) − ω0 − m

ω0 − m − 2
η1Jm+1(η1)

]
−i(ω0 − m)Km Jm(η1)



[
α

(1)
1

β
(1)
1

]
=

[
F (1)

G(1)

]
, (C 7)

where we have made use of the shorthand notation Km = Km(k0) and Km +1 =
Km+ 1(k0). The dispersion relation (B 6) helps to simplify F (1) and G(1) by eliminating
Jm+1(η1) from these equations. The boundary conditions (3.22) for the m +1 wave

give linear algebraic equations for α
(2)
1 and β

(2)
1 :

−[k0Km + (m + 1)k0Km+1]
i

ω0 − m − 3

[
ω0 − m − 1

ω0 − m + 1
η2Jm(η2) − (m + 1)Jm+1(η2)

]
−i(ω0 − m − 1)Km+1 Jm+1(η2)




×
[
α

(2)
1

β
(2)
1

]
=

[
F (2)

G(2)

]
. (C 8)

Elimination of Jm(η2), by use of (B 7), achieves simplification of F (2) and G(2).
As is usually the case, the matrix in (C 7) is singular, and hence the vector (F (1), G(1))

must be constrained to its image space in order for (C 7) to be solvable for (α(1)
1 , β

(1)
1 ).

This solvability condition is

i(ω0 − m)F (1) +

(
m − k0Km+1

Km

)
G(1) = 0. (C 9)

The solvability condition for the m +1 wave is

i(ω0 − m − 1)F (2) −
(

m + 1 +
k0Km

Km+1

)
G(2) = 0. (C 10)

These conditions are rewritten into homogeneous linear algebraic equations for β
(1)
0

and β
(2)
0 as{

ω1f
(1) +

2k1

k0

(ω0 − m)(ω0 − m + 2)(ω0 − m − 2)g(1) + 2iν̃k2
0�

(1)

}
β

(1)
0

+
i(ω0 − m)4(ω0 − m + 2)(ω0 − m − 2)Jm+1(η2)

32k2
0(2ω0 − 2m − 1)2(ω0 − m − 1)Jm(η1)

hβ
(2)
0 = 0, (C 11)
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− i(ω0 − m − 1)4(ω0 − m + 1)(ω0 − m − 3)Jm(η1)

32k2
0(2ω0 − 2m − 1)2(ω0 − m)Jm+1(η2)

hβ
(1)
0

+

{
ω1f

(2) +
2k1

k0

(ω0 − m − 1)(ω0 − m + 1)(ω0 − m − 3)g(2) + 2iν̃k2
0�

(2)

}
β

(2)
0 = 0.

(C 12)

In these,

f (1) = m
[
ω3

0 − (3m + 4)ω2
0 + 3m2ω0 − m(m2 − 4m − 8)

]
+ 2k2

0(ω0 − m)2

+ 4
[
(m + 1)ω2

0 − 2m2ω0 + m(m2 − m − 4)
]k0Km+1

Km

− 2(ω0 − m + 2)(ω0 − m − 2)
k2

0K
2
m+1

K2
m

, (C 13)

f (2) = (m + 1)
[
ω3

0 − (3m − 1)ω2
0 + 3(m + 1)2ω0 − m3 − 7m2 − 3m + 3

]
+ 2k2

0(ω0 − m − 1)2 − 4
[
mω2

0 − 2(m + 1)2ω0 + (m + 1)(m2 + 3m − 2)
]k0Km

Km+1

− 2(ω0 − m + 1)(ω0 − m − 3)
k2

0K
2
m

K2
m+1

, (C 14)

g(1) = −
(

m − k0Km+1

Km

)[
m(ω0 − m − 1) +

k0Km+1

Km

]
, (C 15)

g(2) =

(
m + 1 +

k0Km

Km+1

)[
(m + 1)(ω0 − m) +

k0Km

Km+1

]
, (C 16)

h = (ω0 − m)(ω0 − m − 1)

{
(m + 1)(ω0 − m + 2)

k0Km+1

Km

+ m(ω0 − m − 3)
k0Km

Km+1

− 2m(m + 1)

}
A1 + 2k2

0A5 + (2ω0 − 2m − 1)k3
0

{[
A1 − 6

(
3ω2

0 − 3ω0 − 3m2 + 1
)]

× Km+1

Km

−
[
A1 − 6

(
3ω2

0 + 3ω0 − 3m2 − 6m − 2
)] Km

Km+1

}
, (C 17)

where

A5 = 9ω6
0 − 36(2m + 1)ω5

0 + (225m2 + 225m + 46)ω4
0 − 9(2m + 1)(20m2 + 20m − 3)ω3

0

+ (315m4 + 630m3 + 126m2 − 189m − 38)ω2
0 − m(m + 1)(2m + 1)

× (72m2 + 72m − 115)ω0 + 27m6 + 81m5 + 12m4 − 111m3 − 71m2 − 2m + 4.

(C 18)

The coefficients associated with the viscous effect are

�(1) = −m

[
ω2

0 − 2(m + 1)ω0 + m2 + 2m + 4 +
16m(ω0 − m − 1)

(ω0 − m)2

]
+ 4k2

0

+

[
ω2

0 − 2mω0 + m2 + 8m + 4 +
16m(ω0 − m − 2)

(ω0 − m)2

]
k0Km+1

Km

− 4(ω0 − m + 2)(ω0 − m − 2)

(ω0 − m)2
k2

0K
2
m+1

K2
m

, (C 19)
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�(2) = (m + 1)

[
ω2

0 − 2mω0 + m2 + 3 +
16(m + 1)(ω0 − m)

(ω0 − m − 1)2

]
+ 4k2

0

+

[
ω2

0 − 2(m + 1)ω0 + m2 − 6m − 3 +
16(m + 1)(ω0 − m + 1)

(ω0 − m − 1)2

]
k0Km

Km+1

− 4(ω0 − m + 1)(ω0 − m − 3)

(ω0 − m − 1)2
k2

0K
2
m

K2
m+1

. (C 20)

Appendix D. Short-wavelength asymptotics of the dispersion relation
We shall carry out asymptotic expansions of (k0, ω0) for intersection points between

dispersion curves of the m and the m + 1 Kelvin waves, valid at large k0 in § D.1, and
valid at large m with η1 ∼ η2 ∼ m in § D.2. A similar analysis was made in the context
of the MSTW instability by Fukumoto (2003) (see also Eloy & Le Dizès 2001).

D.1. Large k0 with m fixed

Anticipating that ω0 → m +1/2 as k0 → ∞, we pose ω0 = m + 1/2 +
∑

i = 1 cik
−i
0 , an

expansion in powers of 1/k0, and determine the constants c1 and c2.
For the m wave, (B 4) is expanded as

η1 =
√

15k0 − 32c1√
15

− 32√
15k0

(
c2 − 29c2

1

15

)
+ O

(
k−3

0

)
. (D 1)

Using the large-wavenumber asymptotic expansions

Km+1(k0)

Km(k0)
= 1 +

2m + 1

2k0

+
4m2 − 1

8k2
0

+ O
(
k−3

0

)
,

Jm(η1) =

{
1 − (4m2 − 1)(4m2 − 9)

128η2
1

}
cos

(
η1 − 2m + 1

4
π

)

−4m2 − 1

8η2
1

sin

(
η1 − 2m + 1

4
π

)
+ O

(
η−3

1

)
,




(D 2)

and the similar one for Jm +1(η1) (Abramowitz & Stegun 1965), (B 6) is expanded, for
a cograde radial mode (ω0 > m), as

k0 − 32c1

15
− 32

15k0

(
c2 − 29c2

1

15

)
=

π√
15

{
l1 +

2m − 1

4
+

1

π
arctan

(
1√
15

)}

− 2

15k0

(
c1 − 4m2 + 2m + 3

16

)
+ O

(
k−2

0

)
, (D 3)

where l1 is a large integer that labels branches of the m wave, with l1 = 1 corresponding
to the first cograde radial mode. Proceeding similarly to the m +1 wave, the asymptotic
expansion of (B 7) is deduced, for ω0 < m +1, as

k0 +
32c1

15
+

32

15k0

(
c2 +

29c2
1

15

)
=

π√
15

{
l2 +

2m − 3

4
+

1

π
arctan

(
1√
15

)}

− 2

15k0

(
c1 +

4m2 + 6m + 5

16

)
+ O

(
k−2

0

)
, (D 4)

where l2 is a large labelling integer with l2 = 1 corresponding to the isolated mode.
The first retrograde radial mode is labelled l2 = 2.
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The constants c1 and c2 that fulfil (D 3) and (D4) simultaneously furnish the desired
asymptotic expression for ω0 for an intersection point as

ω0 = m +
1

2
+

√
15π�′l

128k0

− 1

128k2
0

{
m +

1

2
+

√
15π�′l

16

}
+ O

(
k−3

0

)
. (D 5)

Here we have introduced

�l = l2 − l1, �′l = 2�l − 1. (D 6)

The intersection wavenumber is obtained by solving (D 3)

k0 =
1√
15

{
π(l1 + l2 + m − 1)

2
+ arctan

(
1√
15

)}

− 1

30k0

{
m2 + m + 1 +

29π2(�′l)2

256

}
+ O

(
k−2

0

)
, (D 7)

iteratively for large integers l1 and l2.

D.2. Large k0 and m with η1 ∼ η2 ∼ m

The increasing power of m with order of expansion in the coefficients of (D 5) and
(D 7) leads to breakdown of the above expansions. A separate treatment is required
for large values of m.

The short-wave asymptotics for the m wave was derived by Fukumoto (2003), and
we repeat it for convenience. We eliminate ω0, in terms of the radial wavenumber η1,
from the dispersion relation (B 6) for the m wave, leaving

{
η1

k0

K ′
m(k0)

Km(k0)
− m

η1

√
1 +

(
η1

k0

)2}
Jm(η1) + J ′

m(η1) = 0, (D 8)

where a prime stands for differentiation with respect to the argument. The dominant
mode is expected to emerge in the regime of η1 ∼ m. The asymptotics of the Bessel
functions, valid for this regime, are

Jm

(
m + ξm1/3

)
= 21/3

(
1

m1/3
− ξ

5m

)
Ai
(
−21/3ξ

)
+

3 × 22/3ξ 2

10m
Ai′
(
−21/3ξ

)
+O

(
m−5/3

)
,

(D 9)

K ′
m(k0)

Km(k0)
= − (1 + κ2)1/2

κ

{
1 +

κ2

2m(1 + κ2)3/2

}
+ O(m−2), (D 10)

where Ai is the Airy function, ξ is some constant of order unity and

κ = k0/m (D 11)

is assumed to be finite. Then η1 is obtained from (D 8) in the form of a power series
in m−1/3 as

η1 = m − a1

21/3
m1/3 +

κ2

(κ + 1)(κ2 + 1)1/2
+

3a2
1

10 × 22/3m1/3

− a1κ
2(κ4 − 3κ2 − 3κ − 3)

3 × 21/3m2/3(κ + 1)3(κ2 + 1)3/2
+ O(m−1), (D 12)

where a1(< 0) is a zero of the Airy function Ai.
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Repetition of this procedure for the dispersion relation of the m + 2 wave{
η2

k0

K ′
m+1(k0)

Km+1(k0)
+

m + 1

η2

√
1 +

(
η2

k0

)2}
Jm+1(η2) + J ′

m+1(η2) = 0, (D 13)

yields

η2 = m − a2

21/3
m1/3 + 1 − κ2

(κ − 1)(κ2 + 1)1/2
+

3a2
2

10 × 22/3m1/3

+
a2

3 × 21/3m2/3

{
κ2(κ4 − 3κ2 + 3κ − 3)

(κ − 1)3(κ2 + 1)3/2
− 1

}
+ O(m−1), (D 14)

where a2(<0) is a zero of Ai.
Being coupled with the definition (B 4) and (B 8) for η1 and η2 respectively, the

crossing point (ω0, k0) of dispersion curves of the m, m + 1 waves is obtained as the
simultaneous solution of (D 12) and (D 14) in the form of power series in m−1/3 as

k0 =
m√
15

− a1 + a2

24/3
√

15
m1/3 +

1

56
+

1

2
√

15
−

49
(
a2

1 + a2
2

)
− 290a1a2

640 × 21/3
√

15m1/3
+

1

87808 × 21/3

×
[

2

3
√

15
(−64429a1 + 42477a2) − 725(a1 + a2)

]
1

m2/3
+ O(m−1), (D 15)

ω0 = m +
1

2
+

15(a1 − a2)

64 × 21/3m2/3
+

435

1792m
+

3
(
a2

1 − a2
2

)
64 × 22/3m4/3

+
5

1404928 × 21/3

× [2535
√

15(−a1 + a2) + 169a1 + 44073a2]
1

m5/3
+ O(m−2). (D 16)
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