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1. Introduction

In this paper, we study the nonnegative solutions of the following equation:

⎧⎨
⎩

∂tu− (|ux|p−2ux)x + u−βχ{u>0} + f(u) = 0 in I × (0,∞),
u(−l, t) = u(l, t) = 0 t ∈ (0,∞),
u(x, 0) = u0(x) in I,

(1.1)
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where β ∈ (0, 1), p > 2; and χ{u>0} denotes the characteristic function of the set of
points (x, t) where u(x, t) > 0, that is,

χ{u>0} =
{

1, if u > 0,
0, if u � 0.

Note that the absorption term χ{u>0}u−β becomes singular when u is near to 0,
and we impose χ{u>0}u−β = 0 whenever u = 0. Through this paper, we assume
that f : [0,∞) → [0,∞), is a nonnegative locally Lipschitz function, that is, for any
r > 0, there is a real number C(r) > 0 such that

(H) |f(s1) − f(s2)| � C(r)|s1 − s2|, ∀s1, s2 ∈ [0, r]; and f(0) = 0.

If f is nondecreasing on [0,∞), we can then relax the locally Lipschitz property in
(H), see lemma 2.3 below.

As already known, problem (1.1) in the semi-linear case (p = 2, and f = 0) can
be considered as a limit of mathematical models arising in Chemical Engineering
corresponding to catalyst kinetics of Langmuir-Hinshelwood type (see, e.g. [1,30]
p. 68, [27] and reference therein). The semi-linear case was studied in many
papers such as [2,9–12,19,20,23,26,27,31], and references therein. These papers
focussed on studying the existence of solution, and the behaviour of solutions. The
existence result of the semi-linear case was first proved by D. Phillips for the Cauchy
problem (see theorem 1, [27]). The same result holds for the semi-linear equation
with positive Dirichlet boundary condition (see theorem 1.2, [27]). Moreover, he
proved a property of the finite speed of propagation of nonnegative solutions, that
is, any solution with compact support initially has compact support at all later
times t > 0. The finite speed of propagation was later studied for a more general
formulation of the singular equation by means of some energy methods by J. I.
Dı́az, see [15].

The semi-linear problem of this type was also extended in many aspects. In [12],
J. Dávila, and M. Montenegro proved the existence of solution with zero Dirich-
let boundary condition with a source term f(u) being sub-linear. Furthermore,
they showed that the uniqueness result holds for a particular class of positive solu-
tions, see theorem 1.10 in [12]. Recently, N. A. Dao, J. I. Dı́az and P. Sauvy, [11]
proved a uniqueness result for a class of solutions, which is different from the one
of [12]. However, M. Winkler showed that the uniqueness result fails in general, see
theorem 1.1, [31].

After that, the equations of this type was considered under more general forms.
For example, Dao and Dı́az [9] proved the existence of solution of equation (1.1)
for the case f = 0. Furthermore, they also showed the behaviours of solutions such
as the extinction phenomenon and the free boundary. We also mention here the
porous medium of this type, which was studied by B. Kawohl and R. Kersner, [24].

Inspired by the above studies, we would like to investigate the existence of non-
negative solutions and the behaviours of solutions of equation (1.1). Before stating
our main results, let us define the notion of a weak solution of equation (1.1).

Definition 1.1. Given 0 � u0 ∈ L1(I). A function u � 0 is called a weak solution
of equation (1.1) if f(u), u−βχ{u>0} ∈ L1(I × (0,∞)), and u ∈ Lp

loc(0,∞;W 1,p
0 (I))
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∩ L∞
loc(I × (0,∞)) ∩ C([0,∞);L1(I)) satisfies equation (1.1) in the sense of distri-

butions D′(I × (0,∞)), that is:∫ ∞

0

∫
I

(−uφt + |ux|p−2uxφx + u−βχ{u>0}φ+ f(u)φ
)
dxdt = 0,

∀φ ∈ C∞
c (I × (0,∞)). (1.2)

Then, we have the theorem on the existence of weak solutions.

Theorem 1.2. Let 0 � u0 ∈ L∞(I), and f satisfy (H). Then, there exists a max-
imal weak bounded solution u of equation (1.1). Moreover, there exists a positive
constants C = C(β, p) such that

|∂xu(x, τ)|p � Cu1−β(x, τ)
(
τ−1‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Lip(f, u0)‖u0‖1+β
∞ + 1

)
, (1.3)

for a.e (x, τ) ∈ I × (0,∞), where Lip(f, u0) is the local Lipschitz constant of f on
the closed interval [0, 2‖u0‖∞], and Θ(g, r) = max

0�s�r
{|g(s)|}.

In addition, if (u1/γ
0 )x ∈ L∞(I), with γ = ((p/(p+ β − 1)) then we have

|∂xu(x, τ)|p � Cu1−β(x, τ)
(‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Lip(f, u0)‖u0‖1+β
∞ + 1

)
, (1.4)

for a.e (x, τ) ∈ I × (0,∞), with C = C(β, p, ‖(u1/γ
0 )x‖∞) > 0.

As a consequence of (1.3) (resp. (1.4)), we have

Corollary 1.3. For any τ > 0, there is a positive constant C = C(β, p, τ, |I|,
‖u0‖∞) such that

|u(x, t) − u(y, s)| � C
(
|x− y| + |t− s|1/3

)
, ∀x, y ∈ I, ∀t, s � τ. (1.5)

Furthermore, if (u1/γ
0 )x ∈ L∞(I), then there is a constant C = C(β, p, |I|, ‖u0‖∞,

‖(u1/γ
0 )x‖∞) such that

|u(x, t) − u(y, s)| � C
(
|x− y| + |t− s|1/3

)
, ∀x, y ∈ I, ∀t, s � 0. (1.6)

Remark 1.4. The above corollary implies that u is continuous up to the boundary.
This result answers an open question stated in the Introduction of [31] for the
semi-linear case.

Remark 1.5. Estimate (1.6) says that u continues up to t = 0.

The second goal of this paper is to study the most striking phenomenon of equa-
tions of this type, the so-called quenching phenomenon that solution vanishes after a
finite time. This property arises due to the presence of the singular term u−βχ{u>0}.
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It occurs even starting with a positive unbounded initial data and there is a lack of
uniqueness of solutions (see theorem 1.1, [31] again and see theorem 3 of Y. Belaud
and J.I. Dı́az, [3]). Then we have the following results:

Theorem 1.6. Assume as in theorem 1.2. Then, there is a finite time T0 =
T0(β, p, ‖u0‖∞) such that any solution of equation (1.1) vanishes after T0.

As a consequence of theorem 1.6, we show that the assumption f(0) = 0 is
not only a necessary condition, but also a sufficient condition for the existence
of solution.

Corollary 1.7. The condition f(0) = 0 is a necessary and sufficient condition for
the existence of a solution of equation (1.1).

Beside of the consideration of the Dirichlet problem, we shall investigate also here
the existence of solution of the Cauchy problem associated with equation (1.1).

{
∂tu− (|ux|p−2ux)x + u−βχ{u>0} + f(u) = 0, in R × (0,∞),
u(x, 0) = u0(x), on R.

(1.7)

In [9], Dao and Dı́az studied equation (1.7) for the case f = 0. They proved the
existence of solution. Moreover, they also studied the behaviours of solutions of
equation (1.7) such as the quenching phenomenon, and the finite speed of prop-
agation (see theorems 3.2 and 3.3, [9]). Of course, these properties still hold for
any solution of problem (1.7) because the appearance of nonlinear absorption term
f(u) does not influence to these properties. In this paper, we will study the instan-
taneous shrinking of compact support (in short ISS), namely, if u0 only goes to 0
uniformly as |x| → ∞, then the support of solution is bounded for any t > 0. This
property was first proved in the literature in the study of variational inequalities by
H. Brezis and A. Friedman, see [8]. After that this phenomenon has been considered
for quasilinear parabolic equations, see [7,18,21], and references therein for more
details. Our main results for the Cauchy problem are as follows:

Theorem 1.8. Let 0 � u0 ∈ L1(R) ∩ L∞(R), and let f satisfy (H). Then, there
exists a weak bounded solution u ∈ C([0,∞);L1(R)) ∩ Lp(0, T ;W 1,p(R)), satisfying
equation (1.7) in D′(R × (0,∞)). Furthermore, u satisfies estimate (1.3) in R ×
(0,∞).

Besides, if (u1/γ
0 )x ∈ L∞(R), then u satisfies estimate (1.4) in R × (0,∞).

Theorem 1.9. Let 0 � u0 ∈ L1(R) ∩ L∞(R). Suppose that u0(x) tends to 0 uni-
formly as |x| → ∞. Then, any nonnegative solution of equation (1.7) has the ISS
property.

The paper is organized as follows: § 2 is devoted to prove gradient estimates,
which are the main key of proving the existence of solution. In § 3, we shall give
the proof of theorems 1.2, 1.6, and corollary 1.7. Finally, we give the proof of the
existence of solution of problem (1.7) and theorem 1.9 in § 4.
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Several notations which will be used through this paper are the following: we
denote by C a general positive constant, possibly varying from line to line. Fur-
thermore, the constants which depend on parameters will be emphasized by using
parentheses. For example, C = C(p, β, τ) means that C only depends on p, β, τ . We
also denote by Ir(x) = (x− r, x+ r) to the open ball with centre at x and radius
r > 0 in R. If x = 0, we denote Ir(0) = Ir. Next ∂xu (resp. ∂tu) means the partial
derivative with respect to x (resp. t). We also write ∂xu = ux. Finally, the L∞-norm
of u is denoted by ‖u‖∞.

2. Gradient estimate for the approximate solution

In this part, we shall modify Bernstein’s technique to obtain a variety of esti-
mates on |ux| depending on f(u). Roughly speaking, the gradient estimates that
we shall prove are of the type

|ux(x, t)|p � Cu1−β(x, t), for a.e (x, t) ∈ I × (0,∞). (2.8)

It is known that such a gradient estimate of (2.8) plays a crucial role in proving the
existence of solution (see e.g. [12,27,31] for the semi-linear case; and [9,24], for
the case of quasilinear problems of this type). By the appearance of the nonlinear
diffusion, p-Laplacian, we shall establish the gradient estimates for the solutions of
the regularizing problem.

For any ε > 0, let us set

gε(s) = s−βψε(s), with ψε(s) = ψ
(s
ε

)
,

and ψ ∈ C∞(R), 0 � ψ � 1 is a non-decreasing function such that

ψ(s) =
{

0, if s � 1,
1, if s � 2.

Now fix ε > 0, we consider the following problem:⎧⎨
⎩

∂tu− (a(ux)ux)x + gε(u) + f(u)ψε(u) = 0, in I × (0,∞),
u(−l, t) = u(l, t) = η, t ∈ (0,∞),
u(x, 0) = u0(x) + η, x ∈ I,

(2.9)

with a(s) = b(s)((p−2)/2), b(s) = |s|2 + η2; and η → 0+. Note that a(ux) is a regu-
larization of |ux|p−2. Then, problem (Pε,η) can be understood as a regularization of
equation (1.1). The gradient estimates, presented in this framework are as follows:

Lemma 2.1. Let 0 � u0 ∈ C∞
c (I), u0 �= 0. Suppose that f ∈ C1([0,∞)). Then, for

any 0 < η < ε < ‖u0‖∞, there exists a unique classical solution uε,η of equation
(2.9).

(i) Moreover, there is a positive constant C = C(β, p) such that

|∂xuε,η(x, τ)|p � Cu1−β
ε,η (x, τ)

(
τ−1‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Θ(f ′, ‖u0‖∞)‖u0‖1+β
∞ + 1

)
, (2.10)

for (x, τ) ∈ I × (0,∞). Recall that Θ(h, r) = max
0�s�r

{|h(s)|}.
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(ii) If we assume more that (u1/γ
0 )x ∈ L∞(I), then there exists a positive constant

C = C(β, p, ‖(u1/γ
0 )x‖∞) such that

|∂xuε,η(x, τ)|p � Cu1−β
ε,η (x, τ)

(‖u0‖1+β
∞ + Θ(f, ‖u0‖∞)‖u0‖β

∞

+ Θ(f ′, ‖u0‖∞)‖u0‖1+β
∞ + 1

)
, (2.11)

for any (x, τ) ∈ I × (0,∞).

Proof. (i) Obviously, equation (2.9) is not degenerated. Thus, the existence
and uniqueness of solution uε,η ∈ C∞(I × [0,∞)) is well-known (see, e.g.
[21,25,32,33]). In short, we denote u = uε,η. Then, we observe that η (resp.
‖u0‖∞) is a sub-solution (resp. super-solution) of equation (2.9). Thus, the strong
comparison principle yields

η � u � ‖u0‖∞, in I × (0,∞). (2.12)

For any 0 < τ < T <∞, let us consider a test function ξ(t) ∈ C∞
c (0,∞),

0 � ξ(t) � 1 such that

ξ(t) =

⎧⎨
⎩

1, on [τ, T ],

0, outside
(

τ
2 , T + τ

2

)
.
, and |ξt| � c0

τ
,

and put

u = ϕ(v) = vγ , w(x, t) = ξ(t)v2
x(x, t).

We write briefly a(ux) = a, (a(ux))x = ax, and (a(ux))xx = axx.
Then, we have

wt − awxx = ξtv
2
x + 2ξvx(vt − avxx)x − 2ξav2

xx + 2ξaxvxvxx. (2.13)

From the equation satisfied by u, we get

vt − avxx = axvx + av2
x

ϕ′′

ϕ′ − gε(ϕ)
ϕ′ − f(ϕ)ψε(ϕ)

ϕ′ . (2.14)

Combining (2.13) and (2.14) provides us

wt − awxx = ξtv
2
x + 2ξvx

(
axvx + av2

x

ϕ′′

ϕ′ − gε(ϕ)
ϕ′ − f(ϕ)ψε(ϕ)

ϕ′

)
x

− 2ξav2
xx + 2ξaxvxvxx. (2.15)

Now, we define

L = max
I×[0,∞)

{w(x, t)}.

If L = 0, then the conclusion (2.10) is trivial, and |zx(x, τ)| = 0, in I × (0,∞).
If not we have L > 0. This implies that vx(x0, t0) �= 0, and the function w must
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attain its maximum at a point (x0, t0) ∈ I × ((τ/2), T + (τ/2)) since w(x, t) = 0 on
∂I × (0,∞), and w(., t) = 0 outside ((τ/2), T + (τ/2)). Therefore, we get

{
wt(x0, t0) = wx(x0, t0) = 0, and
0 � wxx(x0, t0) = 2ξ(t0)v2

xx(x0, t0) + 2ξ(t0)vx(x0, t0)vxxx(x0, t0),

which implies

vxx(x0, t0) = 0, (2.16)

and

vx(x0, t0)vxxx(x0, t0) � 0, (2.17)

At the moment, our argument focuses on the functions v, and w at the point (x0, t0).
Note that by (2.16), inequality (2.15) reduces to

0 � wt − awxx = ξtv
2
x + 2ξvx

(
axxvx + axv

2
x

ϕ′′

ϕ′ + av2
x

(
ϕ′′

ϕ′

)
x

−
(
gε(ϕ)
ϕ′

)
x

−
(
f(ϕ)ψε(ϕ)

ϕ′

)
x

)
.

0 � ξtξ
−1v2

x + 2vx

(
axxvx + axv

2
x

ϕ′′

ϕ′ + av2
x

(
ϕ′′

ϕ′

)
x

−
(
gε(ϕ)
ϕ′

)
x

−
(
f(ϕ)ψε(ϕ)

ϕ′

)
x

)
.

Or

−av3
x

(
ϕ′′

ϕ′

)
x

� 1
2
ξtξ

−1v2
x + axxv

2
x + axv

3
x

ϕ′′

ϕ′

− vx

(
gε(ϕ)
ϕ′

)
x

− vx

(
f(ϕ)ψε(ϕ)

ϕ′

)
x

. (2.18)

By using the fact vxx(x0, t0) = 0 again, we get
⎧⎪⎪⎨
⎪⎪⎩

(a(ux))x = (p− 2)b((p−4)/2)(ux)ϕ′ϕ′′v3
x,

(
ϕ′′

ϕ′

)
x

=
(
ϕ′′′ϕ′ − ϕ′′2

ϕ′2

)
vx = −(γ − 1)v−2vx.

(2.19)

Next, we compute

(a(ux))xx = (p− 2)(p− 4)b((p−6)/2)(ux)(ϕ′ϕ′′)2v6
x

+ (p− 2)b((p−4)/2)(ux)(ϕ′′2 + ϕ′ϕ′′′)v4
x

+ (p− 2)b((p−4)/2)(ux)ϕ′2vxvxxx.
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Thanks to (2.17), we obtain

(a(ux))xx � (p− 2)(p− 4)b((p−6)/2)(ux)(ϕ′ϕ′′)2v6
x+

(p− 2)b((p−4)/2)(ux)(ϕ′′2 + ϕ′ϕ′′′)v4
x. (2.20)

After that, we have
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

vx

(
gε(ϕ)
ϕ′

)
x

=
(
g′ε − gε

ϕ′′

ϕ′2

)
v2

x

=
(
ψ′

ε(ϕ)v−β −
(
β + γ−1

γ

)
ψε(ϕ)v−(1+β)γ

)
v2

x,

vx

(
f(ϕ)ψε(ϕ)

ϕ′

)
x

=
(

(fψε)′ − (fψε)
ϕ′′

ϕ′2

)
v2

x

= (fψε)′v2
x − f(ϕ(v))ψε(ϕ(v))

(
γ−1

γ

)
v−γv2

x.

Since f, ψε, ψ
′
ε � 0, and 0 � ψε � 1, we get⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vx

(
gε(ϕ)
ϕ′

)
x

� −
(
β +

γ − 1
γ

)
v−(1+β)γv2

x,

vx

(
f(ϕ)ψε(ϕ)

ϕ′

)
x

� f ′(ϕ(v))ψε(ϕ(v))v2
x −

(
γ − 1
γ

)
f(ϕ(v))v−γv2

x.

(2.21)

Inserting (2.19)– (2.21) into (2.18) yields

1
2
ξtξ

−1v2
x +

(p− 2)(p− 4)b((p−6)/2)(ux)(ϕ′ϕ′′)2v8
x

+(p− 2)b((p−4)/2)(ux)(2ϕ′′2 + ϕ′ϕ′′′)v6
x︸ ︷︷ ︸

B

+
(
β +

γ − 1
γ

)
v−(1+β)γv2

x +
(
γ − 1
γ

)
f(ϕ(v))v−γv2

x

− f ′(ϕ(v))ψε(ϕ(v))v2
x � (γ − 1)v−2a(zx)v4

x. (2.22)

Now, we handle the term B
B = (p− 2)b((p−6)/2)(ux)v6

x

(
(p− 4)(ϕ′ϕ′′)2v2

x + (2ϕ′′2 + ϕ′ϕ′′′)b(ux)
)

= (p− 2)ϕ′2b((p−6)/2)(ux)v8
x

(
(p− 2)ϕ′′2 + ϕ′ϕ′′′) + η2(p− 2)

(2ϕ′′2 + ϕ′ϕ′′′)b((p−6)/2)(ux)v6
x

= (p− 2)(p(γ − 1) − γ)γ2(γ − 1)v2(γ−2)ϕ′2b((p−6)/2)(ux)v8
x︸ ︷︷ ︸

B1

+ η2(p− 2)γ2(γ − 1)(3γ − 4)v2(γ−2)b((p−6)/2)(ux)v6
x︸ ︷︷ ︸

B2

.

It is clear that B1 � 0, since p(γ − 1) − γ < 0, thereby proves

B � B2. (2.23)
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From (2.22) and (2.23), we get

1
2
ξtξ

−1v2
x +

(
β +

γ − 1
γ

)
v−(1+β)γv2

x

+
(
γ − 1
γ

)
f(ϕ(v))v−γv2

x − f ′(ϕ(v))ψε(ϕ(v))v2
x + B2

� (γ − 1)v−2a(ux)v4
x.

Since p > 2, b((p−2)/2)(.) is an increasing function, thereby proves

a(ux) = b((p−2)/2)(ux) � |ux|p−2 = γp−2v(γ−1)(p−2)|vx|p−2.

It follows then from the last two inequalities

1
2
ξtξ

−1v2
x +

(
β +

γ − 1
γ

)
v−(1+β)γv2

x

+
(
γ − 1
γ

)
f(ϕ(v))v−γv2

x − f ′(ϕ(v))ψε(ϕ(v))v2
x + B2

� (γ − 1)γp−2v(γ−1)(p−2)−2|vx|p+2.

By noting that 2 − (γ − 1)(p− 2) = (1 + β)γ, we get

1
2
ξtξ

−1v2
x +

(
β +

γ − 1
γ

)
v−(1+β)γv2

x

+
(
γ − 1
γ

)
f(ϕ(v))v−γv2

x − f ′(ϕ(v))ψε(ϕ(v))v2
x + B2

� (γ − 1)γp−2v−(1+β)γ |vx|p+2.

Multiplying both sides of the above inequality by v(1+β)γ yields

1
2
ξtξ

−1v(1+β)γv2
x +

(
β +

γ − 1
γ

)
v2

x +
(
γ − 1
γ

)
f(ϕ(v))vβγv2

x

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γv2
x

+ v(1+β)γB2 � (γ − 1)γp−2|vx|p+2. (2.24)

Now, we divide the study of inequality (2.24) in two cases:

(
) Case: 3γ − 4 � 0.
We have B2 � 0. It follows then from (2.24) that

(γ − 1)γp−2|vx|p+2 �
(

1
2
ξtξ

−1v(1+β)γ +
(
β +

γ − 1
γ

)
+

(
γ − 1
γ

)
f(ϕ(v))vβγ

−f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ
)
v2

x.
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Since vx(x0, t0) �= 0, we can simplify the term |vx|2 of both sides of the above
inequality to obtain

(γ − 1)γp−2|vx|p �
(

1
2
ξtξ

−1v(1+β)γ +
(
β +

γ − 1
γ

)
+

(
γ − 1
γ

)
f(ϕ(v))vβγ

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ
)
. (2.25)

Since ψε(.) � 1, there is a positive constant C depending on β, p such that

|vx|p � C
(
|ξt|ξ−1v(1+β)γ + 1 + f(ϕ(v))vβγ + |f ′(ϕ(v))|v(1+β)γ

)
. (2.26)

Remind that u = ϕ(v) = vγ . Thus, we infer from (2.12) and (2.26)

|vx|p � C
(|ξt|ξ−1(t0)‖u0‖1+β

∞ + ‖u0‖β
∞Θ(f, ‖u0‖∞) + ‖u0‖1+β

∞ Θ(f ′, ‖u0‖∞) + 1
)
.

(2.27)
By multiplying both sides of (2.27) with ξ(t0)p/2, we get

(
ξ(t0)|vx(x0, t0)|2

)p/2 � C
(
|ξt|ξ(t0)(p/2)−1‖u0‖1+β

∞ + ξ(t0)p/2‖u0‖β
∞Θ(f, ‖u0‖∞)

+ξ(t0)p/2‖u0‖1+β
∞ Θ(f ′, ‖u0‖∞) + ξ(t0)p/2

)
.

Since ξ(t) � 1, and |ξt(t)| � c0τ
−1, there is a positive constant (still denoted by C)

such that

w(x0, t0)p/2 � C
(
τ−1‖u0‖1+β

∞ + ‖u0‖β
∞Θ(f, ‖u0‖∞) + ‖u0‖1+β

∞ Θ(f ′, ‖u0‖∞) + 1
)
.

Remind that w(x0, t0) = max
(x,t)∈I×[0,∞)

{w(x, t)}. The last estimate induces

w(x, t)p/2 � C
(
τ−1‖u0‖1+β

∞ + ‖u0‖β
∞Θ(f, ‖u0‖∞) + ‖u0‖1+β

∞ Θ(f ′, ‖u0‖∞) + 1
)
,

for any (x, t) ∈ I × (0,∞). By noting that ξ(τ) = 1, we obtain

|vx(x, τ)|p = w(x, τ)p � C
(
τ−1‖u0‖1+β

∞ + ‖u0‖β
∞Θ(f, ‖u0‖∞)

+ ‖u0‖1+β
∞ Θ(f ′, ‖u0‖∞) + 1

)
,

which implies

|ux(x, τ)|p � Cu1−β(x, τ)
(
τ−1‖u0‖1+β

∞ + ‖u0‖β
∞Θ(f, ‖u0‖∞)

+ ‖u0‖1+β
∞ Θ(f ′, ‖u0‖∞) + 1

)
.

This inequality holds for any τ > 0, so we get (2.10).

(

) Case: 3γ − 4 > 0 ⇐⇒ p < 4(1 − β).
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Now b((p−6)/2)(.) is a decreasing function, so we have

b((p−6)/2)(zx) � |zx|((p−6)/2) = (v2
xϕ

′2)((p−6)/2),

which implies

v(1+β)γB2 � η2(p− 2)γ2(γ − 1)(3γ − 4)γp−6v2(γ−2)+(1+β)γ+(γ−1)(p−6)|vx|p.
Note that 2(γ − 2) + (1 + β)γ + (γ − 1)(p− 6) = −2(γ − 1). Then, we obtain

v(1+β)γB2 � η2(p− 2)γ2(γ − 1)(3γ − 4)γp−6v−2(γ−1)|vx|p. (2.28)

A combination of (2.28) and (2.24) gives us

1
2
ξtξ

−1v(1+β)γv2
x +

(
β +

γ − 1
γ

)
v2

x +
(
γ − 1
γ

)
f(ϕ(v))vβγv2

x

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γv2
x

+ η2(p− 2)γ2(γ − 1)(3γ − 4)γp−6v−2(γ−1)|vx|p

� (γ − 1)γp−2|vx|p+2.

The fact v = u1/γ � η1/γ implies v−2(γ−1) � η−((2(γ−1))/γ). Therefore, there is
constant C = C(β, p) > 0 such that

|vx(x0, t0)|p+2 � C
(
|ξt|ξ−1v(1+β)γ + 1 + f(ϕ(v))vβγ

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ
)
v2

x(x0, t0)

+ Cη2−((2(γ−1))/γ)|vx(x0, t0)|p.
Now, if |vx(x0, t0)| < 1, then we have w(x0, t0) = ξ(t0)|vx(x0, t0)|2 < 1, thereby
proves w(x, t) � 1, in I × (0,∞). Thus, estimate (2.10) follows immediately. If
not, we have |vx(x0, t0)|p � |vx(x0, t0)|p+2, then it follows from the last inequality

|vx(x0, t0)|p+2 � C
(
|ξt|ξ−1v(1+β)γ + f(ϕ(v))vβγ

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ + 1
)
v2

x(x0, t0)

+ Cη
2
γ |vx(x0, t0)|p+2,

or (
1 − Cη2/γ

)
|vx(x0, t0)|p � C

(
|ξt|ξ−1v(1+β)γ + f(ϕ(v))vβγ

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ + 1
)
.

Because η is small enough, there exists a positive constant C1 = C1(β, p) such that

|vx(x0, t0)|p � C1

(
|ξt|ξ−1v(1+β)γ + f(ϕ(v))vβγ − f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ + 1

)
.

This inequality is just a version of (2.25). By the same analysis as in (
), we also
obtain estimate (2.10).
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(ii) Now, we prove estimate (2.11). For any T � 1 large enough, let us consider
the cut-off function ξ(t) ∈ C∞(R) instead of ξ(t) above, 0 � ξ(t) � 1 such that

ξ(t) =

⎧⎨
⎩

1, if t < T,

0, if t > 2T,
and |ξt| � c0

T
.

The proof of estimate (2.11) is most likely to the one of estimate (2.10). In fact, we
observe that

i) either w(x, t) attains its maximum at the initial data, that is:

max
(x,t)∈I×[0,∞)

{w(x, t)} = w(x0, 0) = v2
x(x0, 0) = |(u1/γ

0 )x|2

� ‖(u1/γ
0 )x‖2

∞, for some x0 ∈ I,

thereby proves

|ux(x, t)|p � γp‖(u1/γ
0 )x‖p

∞u
1−β(x, t), for any (x, t) ∈ I × (0, T ), (2.29)

or, ii) there is a point (x0, t0) ∈ I × (0, 2T ) such that max
(x,t)∈I×[0,∞)

{w(x, t)} =

w(x0, t0).
Then, we repeat the proof in i) to get for (x, t) ∈ I × (0,∞)

|ux(x, t)|p � C(β, p)u1−β(x, t)
(
T−1‖u0‖1+β

∞

+ Θ(f, ‖u0‖∞)‖u0‖β
∞ + Θ(f ′, ‖u0‖∞)‖u0‖1+β

∞ + 1
)
.

Since T � 1, we obtain from the above inequality

|ux(x, t)|p � Cu1−β(x, t)
(‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Θ(f ′, ‖u0‖∞)‖u0‖1+β
∞ + 1

)
. (2.30)

A combination of (2.29) and (2.30) implies that there is a positive constant (still
denoted by C) depending only on β, p, ‖(u1/γ

0 )x‖∞ such that

|ux(x, t)|p � Cu1−β(x, t)
(‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Θ(f ′, ‖u0‖∞)‖u0‖1+β
∞ + 1

)
, (2.31)

for (x, t) ∈ I × (0,∞).
This puts an end to the proof of lemma 2.1. �

If f is only a local Lipschitz function on [0,∞), we have then

Lemma 2.2. Assume as in lemma 2.1. Suppose that f is only a locally Lipschitz
function on [0,∞). Then estimate (2.10) becomes

|∂xuε,η(x, τ)|p � Cu1−β
ε,η (x, τ)

(
τ−1‖u0‖1+β

∞

+ Θ(f, ‖u0‖∞)‖u0‖β
∞ + Lip(f, u0)‖u0‖1+β

∞ + 1
)
, (2.32)

for (x, τ) ∈ I × (0,∞), where Lip(f, u0) is the local Lipschitz constant of f on the
closed interval [0, 2‖u0‖∞].
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Moreover, if (u1/γ
0 )x ∈ L∞(I), then estimate (2.11) becomes

|∂xuε,η(x, τ)|p � Cu1−β
ε,η (x, τ)

(‖u0‖1+β
∞ + Θ(f, ‖u0‖∞)‖u0‖β

∞

+ Lip(f, u0)‖u0‖1+β
∞ + 1

)
, (2.33)

with C = C(β, p, ‖(u1/γ
0 )x‖∞) > 0.

Proof. At the beginning, we regularize f on [0,∞). To do it, we extend f by 0 in
(−∞, 0) (still denoted by f). Let fn be the standard regularization of f on R. Then,
we consider the following problem:⎧⎨

⎩
∂tu− (a(ux)ux)x + gε(u) + fn(u)ψε(u) = 0, in I × (0,∞),
u(−l, t) = u(l, t) = η, t ∈ (0,∞),
u(x, 0) = u0(x) + η, x ∈ I.

(2.34)

Let ε, η be in lemma 2.1. Then, equation (2.34) possesses a unique classical solution
un. Thanks to lemma 2.1, we have

|∂xun(x, t)|p � Cu1−β
n (x, τ)

(
τ−1‖u0‖1+β

∞ + Θ(fn, ‖u0‖∞)‖u0‖β
∞

+ Θ(f ′n, ‖u0‖∞)‖u0‖1+β
∞ + 1

)
, (2.35)

for any (x, t) ∈ I × (0,∞). One hand, we observe that for any n � 1

Θ(fn, ‖u0‖∞) � Θ
(
f, ‖u0‖∞ +

1
n

)
� Θ(f, 2‖u0‖∞). (2.36)

Other hand, Rademacher’s theorem (see, e.g., [17]) ensures that

Θ(f ′n, ‖u0‖∞) � Lip

(
f, ‖u0‖∞ +

1
n

)
� Lip(f, 2‖u0‖∞). (2.37)

From (2.35), (2.36), and (2.37), we observe that |∂xun(x, t)| is bounded by a con-
stant not depending on n. Then, the classical argument allows us to pass to the
limit as n→ ∞ in (2.35) in order to get the gradient estimate (2.32).

Similarly, we also obtain estimate (2.33). �

If f in lemma 2.2 is nondecreasing on [0,∞) then we can relax the term Lip(f, u0)
in (2.32) and (2.33).

Lemma 2.3. Let f be a continuous and a nondecreasing function on [0,∞). Then,
there exists a positive constant C = C(β, p) such that

|∂xuε,η(x, τ)|p � Cu1−β
ε,η (x, τ)

(
τ−1‖u0‖1+β

∞ + f(‖u0‖∞)‖u0‖β
∞ + 1

)
, (2.38)

for (x, τ) ∈ I × (0,∞). Note that Θ(f, ‖u0‖∞) = f(‖u0‖∞) in this case.
Furthermore, if (u1/γ

0 )x ∈ L∞(I), then there is a positive constant C = C(β, p,
‖(u1/γ

0 )x‖∞) such that

|∂xuε,η(x, τ)|p � Cu1−β
ε,η (x, τ)

(‖u0‖1+β
∞ + f(‖u0‖∞)‖u0‖β

∞ + 1
)
. (2.39)
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Proof. We can assume without loss of generality that f ∈ C1([0,∞)). If not, we
work on the standard regularization of f , that is, fn above. Note that fn is also a
nondecreasing function.

The proof of this lemma is most likely to the one of lemma 2.1. In fact, we just
make a slight change in (2.25) in order to remove the term containing f ′. Let us
recall inequality (2.25) here for a convenience.

(γ − 1)γp−2|vx|p �
(

1
2
ξtξ

−1v(1+β)γ +
(
β +

γ − 1
γ

)
+

(
γ − 1
γ

)
f(ϕ(v))vβγ

− f ′(ϕ(v))ψε(ϕ(v))v(1+β)γ
)
.

Since f ′ � 0, we have

(γ − 1)γp−2|vx|p �
(

1
2
ξtξ

−1v(1+β)γ +
(
β +

γ − 1
γ

)
+

(
γ − 1
γ

)
f(ϕ(v))vβγ

)
.

Obviously, the term containing f ′ does not appear in the last inequality. Then, we
just repeat the proof of lemma 2.1 to get estimate (2.38).

Finally, by the same argument as in the proof of ii) lemma 2.1, we get (2.39). �

Remark 2.4. Note that the solution in lemma 2.3 is unique because of the
monotonicity of f .

Remark 2.5. Note that the estimates in the proof of lemma 2.1 (resp. lemmas 2.2,
2.3) are independent of η, ε. This observation allows us to pass to the limit as
η, ε→ 0 in order to get gradient estimates for solution u of equation (1.1).

Next, we pass to the limit as η → 0 to obtain a solution of the following problem.

(Pε)

⎧⎨
⎩

∂tu− ∂x

(|∂xu|p−2∂xu
)

+ gε(u) + f(u)ψε(u) = 0 in I × (0,∞),
u(−l, t) = u(l, t) = 0 t ∈ (0,∞),
u(x, 0) = u0(x) on I.

Theorem 2.6. Let 0 � u0 ∈ L∞(I), and let f satisfy (H). Then, there exists a
unique weak solution uε of equation (Pε). Furthermore, uε is bounded by ‖u0‖∞,
and it fulfills gradient estimate (2.32) for a.e (x, t) ∈ I × (0,∞).

Besides, if (u1/γ
0 )x ∈ L∞(I), then uε satisfies estimate (2.33) for a.e (x, t) ∈ I ×

(0,∞).

Proof. Note that we can regularize initial data u0 if necessary. Then, the proof of
this theorem is obtained by passing η → 0 in equation (2.9). It is today a classical
argument, see, for example, [16,32,33]. Thus, we leave the details to the reader. �

Remark 2.7. Up to now, we have not used the assumption f(0) = 0 yet. However,
this assumption will be used in the step of passing ε→ 0.
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3. Existence of a maximal solution

Proof of theorem 1.2: Thanks to theorem 2.6, problem (Pε) has a unique
(bounded) weak solution uε. Furthermore, uε satisfies gradient estimate (2.32).

Now, we claim that {uε}ε>0 is a nondecreasing sequence. Indeed, we observe that
ψε1(s) � ψε2(s) for any ε1 < ε2, thereby proves

gε1(uε1) � gε2(uε1), and f(uε1)ψε1(uε1) � f(uε1)ψε2(uε1).

These facts imply that uε1 is a sub-solution of equation satisfied by uε2 . By the
comparison principle, we obtain

0 � uε1 � uε2 , in I × (0,∞).

Thus, there is a nonnegative function u such that as ε→ 0

uε(x, t) ↓ u(x, t), for (x, t) ∈ I × (0,∞).

Now, we claim that

u−βχ{u>0} ∈ L1(I × (0,∞)). (3.40)

By one hand, it follows from the energy estimate of the regularized equation that

‖uε(t)‖L1(I), ‖gε(uε)‖L1(I×(0,∞)), and ‖f(uε)‖L1(I×(0,∞)) � ‖u0‖L1(I), (3.41)

for any ε > 0. On the other hand, the monotonicity of {uε}ε yields

gε(uε) � gε(uε)χ{u>0}.

Thanks to (3.41) and Fatou’s Lemma, there exists a nonnegative function
Φ ∈ L1(I × (0,∞)) such that

lim inf
ε→0

gε(uε) = Φ � u−βχ{u>0}, (3.42)

and ‖Φ‖L1(I×(0,∞)), ‖u−βχ{u>0}‖L1(I×(0,∞)) are also bounded by ‖u0‖L1(I). Then
we get claim (3.40). We will prove now that

lim inf
ε→0

gε(uε) = u−βχ{u>0}, in L1(I × (0,∞)). (3.43)

Next, (3.41) allows us to apply a result of L. Boccardo et al., the so-called almost
everywhere convergence of the gradients (see [5,6]) in order to obtain

∂xuε(x, t) → ∂xu(x, t), for a.e (x, t) ∈ I × (0,∞),

up to a subsequence. Therefore, u also satisfies estimate (2.32) for a.e (x, t) ∈ I ×
(0,∞). In addition, we have

∂xuε → ∂xu, in Lr(I × (τ, T )), for any 0 < τ < T <∞, and for r � 1. (3.44)

Let us show that u must satisfy equation (1.1) in the sense of distribution.
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For any η > 0 fixed, we use the test function ψη(uε)φ, φ ∈ C∞
c (I × (0,∞)), in the

equation satisfied by uε. Then, using integration by parts yields∫
Supp(φ)

(
−Ψη(uε)φt +

1
η
|∂xuε|pψ′

(
uε

η

)
φ+ |∂xuε|p−2∂xuεφxψη(uε)

+gε(uε)ψη(uε)φ+ f(uε)ψε(uε)ψη(uε)φ ) dxds = 0,

with Ψη(u) =
∫ u

0

ψη(s)ds. Note that the test function ψη(.) plays a role in iso-

lating the singularity when uε is near to 0. Thus, there is no problem of going to
the limit as ε→ 0 in the above identity to get∫

Supp(φ)

(
−Ψη(u)φt +

1
η
|ux|pψ′

(
u

η

)
φ+ |ux|p−2uxφxψη(u)

+ u−βψη(u)φ+ f(u)ψη(u)φ
)
dxds = 0. (3.45)

Next, we will go to the limit as η → 0 in equation (3.45).
We first note that u−βψη(u)(x, t) ↑ u−βχ{u>0}(x, t), for any (x, t) ∈ I × (0,∞).

By (3.40), the Monotone Convergence Theorem implies that u−βψη(u) ↑ u−βχ{u>0}
in L1(I × (0,∞)), thereby proves

u−βψη(u)φ→ u−βχ{u>0}φ, in L1(I × (0,∞)). (3.46)

Since f(0) = 0, it follows from the Dominated Convergence Theorem that

lim
η→0

∫
f(u)ψη(u)φ dxds =

∫
f(u)φ dxds. (3.47)

On the other hand, we have

lim
η→0

∫
Supp(φ)

1
η
|∂xu|pψ′

(
u

η

)
φ dxds = 0. (3.48)

In fact, we have

1
η

∫
Supp(φ)

|∂xu|pψ′
(
u

η

)
φ dxds =

1
η

∫
Supp(φ)∩{η<u<2η}

|∂xu|pψ′
(
u

η

)
φ dxds.

Since u satisfies estimate (2.32), we have

1
η

∫
Supp(φ)∩{η<u<2η}

|∂xu|p|ψ′
(
u

η

)
||φ| dxds � C

1
η

∫
Supp(φ)∩{η<u<2η}

u1−βdxds

� 2C
∫

Supp(φ)∩{η<u<2η}
u−βdxds,

where the constant C > 0 is independent of η. Moreover, u−βχ{u>0} is integrable
on I × (0,∞) by (3.40). Thus, we get

lim
η→0

∫
Supp(φ)∩{η<u<2η}

u−βdxds = 0,

thereby proves the conclusion (3.48).
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A combination of (3.46)–(3.48) deduces∫
Supp(φ)

(−uφt + |ux|p−2uxφx + u−βχ{u>0}φ+ f(u)φ
)
dxds = 0. (3.49)

In other words, u satisfies equation (1.1) in D′(I × (0,∞)).
As mentioned above, we prove (3.43) now. The fact that uε is a weak solution of

(Pε) leads to∫
Supp(φ)

(−uεφt + |∂xuε|p−2∂xuε∂xφ+ gε(uε)φ+ f(uε)ψε(uε)φ
)
dxds = 0,

for φ ∈ C∞
c (I × (0,∞)), φ � 0. Letting ε→ 0 in the last equation deduces∫

Supp(φ)

(−uφt + |ux|p−2uxφx

)
dxds+ lim

ε→0

∫
Supp(φ)

gε(uε)φ dxds

+
∫

Supp(φ)

f(u)φ dxds = 0. (3.50)

By (3.49) and (3.50), we get

lim
ε→0

∫ ∞

0

∫
I

gε(uε)φ dxds =
∫ ∞

0

∫
I

u−βχ{u>0}φ dxds. (3.51)

According to (3.51) and Fatou’s Lemma, we obtain∫ ∞

0

∫
I

Φφ dxds =
∫ ∞

0

∫
I

lim inf
ε→0

gε(uε)φ dxds �
∫ ∞

0

∫
I

u−βχ{u>0}φ dxds,

∀φ ∈ C∞
c (I × (0,∞)), φ � 0. The last inequality and (3.42) yield

u−βχ{u>0} = Φ, a.e in I × (0,∞).

Then, we get (3.43).
It remains to show that u is the maximal solution of problem (1.1).

Proposition 3.1. Let v be a weak solution of problem (1.1). Then, we have

v(x, t) � u(x, t), for a.e (x, t) ∈ I × (0,∞).

Proof. For any ε > 0, we observe that gε(v) � v−βχ{v>0}, and f(v)ψε(v) � f(v).
Thus, we get

∂tv −
(|vx|p−2vx

)
x

+ gε(v) + f(v)ψε(v) � 0.

This means that v is a sub-solution of equation (Pε), so the comparison theorem
yields

v(x, t) � uε(x, t), for a.e (x, t) ∈ I × (0,∞).

The conclusion follows by letting ε→ 0 in the last inequality.
This puts an end to the proof of theorem 1.2. �
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If f is a global Lipschitz function, or f is a nondecreasing function on [0,∞),
then the existence result holds for L1-initial data.

Theorem 3.2. Let 0 � u0 ∈ L1(I). Suppose that f is a global Lipschitz function
on [0,∞), and f(0) = 0. Then there exists a maximal weak solution u of equation
(1.1). Furthermore, we have

‖u(t)‖∞ � C(p, |I|)t−(1/λ)‖u0‖p/λ
L1(I), ∀t > 0, with λ = 2(p− 1). (3.52)

Besides, for any τ > 0, u satisfies the following gradient estimate

|ux(x, t)|p � C(β, p)u1−β(x, t)
(
τ−1‖u(τ)‖1+β

∞ + Θ(f, ‖u(τ)‖∞)‖u(τ)‖β
∞

+ Lip(f)‖u(τ)‖1+β
∞ + 1

)
, (3.53)

for a.e (x, t) ∈ I × (τ,∞), where Lip(f) is the global Lipschitz constant of f .

Theorem 3.3. Let 0 � u0 ∈ L1(I). Suppose that f is continuous and nondecreasing
on [0,∞), and f(0) = 0. Then, equation (1.1) possesses a maximal weak solution u
satisfying the universal bound (3.52). Moreover, for any τ > 0, we have

|ux(x, t)|p � C(β, p)u1−β(x, t)
(
τ−1‖u(τ)‖1+β

∞ + f(2‖u(τ)‖∞)‖u(τ)‖β
∞ + 1

)
,

(3.54)
for a.e (x, t) ∈ I × (τ,∞).

Proof. The proof of theorems 3.2 and 3.3 is just a combination of the one of theorem
1.2 and the L1-framework argument in [9] (see also [11] for the semi-linear case).
Then, we leave the details to the reader. �

Remark 3.4. We emphasize that our existence results also hold for a class of
C1-functions f(u, x, t) such that f(0, x, t) = 0, ∀(x, t) ∈ I × (0,∞), see [10].

Next, we give the proof of theorem 1.6 and corollary 1.7.

Proof of theorem 1.6. It is sufficient to show that the quenching result holds for the
maximal solution u.

Indeed, let v be the maximal solution of the equation:⎧⎨
⎩

∂tv − (|vx|p−2vx)x + v−βχ{v>0} = 0 in I × (0,∞),
v(−l, t) = v(l, t) = 0 t ∈ (0,∞),
v(x, 0) = u0(x) in I.

(3.55)

Thanks to the result of theorem 13, [9], there is a finite time T0 = T0(β, p, ‖u0‖)
such that

v(x, t) = 0, ∀(x, t) ∈ I × (T0,∞).

It follows from the construction of u and v that

u � v, ∀(x, t) ∈ I × (0,∞).

Thus, we get the conclusion. �
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Proof of corollary 1.7. If f(0) = 0, then the existence result follows from
theorem 1.2 above.

Next, assume that problem (1.1) possesses a weak solution w. Thanks to
theorem 1.6, there is a finite time T0 such that

w(x, t) = 0, for x ∈ I, t > T0.

Thus, it follows from problem (1.1) that f(0) = 0. �

4. The Cauchy problem

4.1. Existence of a weak solution

We first give the proof of theorem 1.8.

Proof. Let ur be the maximal solution of the following equation⎧⎨
⎩

∂tu− (|ux|p−2ux)x + u−βχ{u>0} + f(u) = 0 in Ir × (0,∞),
u(−r, t) = u(r, t) = 0, ∀t ∈ (0,∞),
u(x, 0) = u0(x), in Ir,

(4.56)

see theorem 1.2. It is clear that {ur}r>0 is a nondecreasing sequence. Moreover, the
strong comparison principle deduces

ur(x, t) � ‖u0‖L∞(R), for (x, t) ∈ Ir × (0,∞). (4.57)

Thus, there exists a function u such that ur ↑ u as r → ∞. We will show that u is
a solution of problem (1.7).

First, the energy estimate provides us⎧⎨
⎩

‖ur(., t)‖L1(Ir) � ‖u0‖L1(R), for any t ∈ (0,∞),

‖f(ur)‖L1(Ir×(0,∞)), ‖u−β
r χ{ur>0}‖L1(Ir×(0,∞)) � ‖u0‖L1(R).

(4.58)

It follows immediately from the Monotone Convergence Theorem that ur(t) con-
verges to u(t) in L1(R), and f(ur) converges to f(u) in L1(R × (0,∞)) as r → ∞,
likewise ⎧⎨

⎩
‖u(., t)‖L1(R) � ‖u0‖L1(R), for any t ∈ (0,∞),

‖f(u)‖L1(R×(0,∞)) � ‖u0‖L1(R).
(4.59)

Furthermore, ur satisfies the gradient estimate

|∂xur(x, t)|p � Cu1−β
r (x, t)

(
t−1‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Lip(f, u0)‖u0‖1+β
∞ + 1

)
, (4.60)

for a.e (x, t) ∈ Ir × (0,∞). By the same argument as in the proof of theorem 1.2,
there is a subsequence of {ur}r>0 (still denoted as {ur}r>0) such that ∂xur

r→∞−→
∂xu, for a.e (x, t) ∈ R × (0,∞).
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By (4.60), we obtain

|ux(x, t)|p � Cu1−β(x, t)
(
t−1‖u0‖1+β

∞ + Θ(f, ‖u0‖∞)‖u0‖β
∞

+ Lip(f, u0)‖u0‖1+β
∞ + 1

)
, (4.61)

for a.e (x, t) ∈ R × (0,∞), and

∂xur
r→∞−→ ux, in Lq

loc(R × (0,∞)), ∀q � 1. (4.62)

Now, we show that u satisfies equation (1.7) in the sense of distribution. Indeed,
using the test function ψη(ur)φ for the equation satisfied by ur gives us

∫
Supp(φ)

(
−Ψη(ur)φt + |∂xur|p−2∂xurφxψη(ur) +

1
η
|∂xur|p−2∂xurψ

′
(
ur

η

)
φ

+u−β
r χ{ur>0}ψη(ur)φ+ f(ur)ψη(ur)φ

)
dsdx = 0, ∀φ ∈ C∞

c (R × (0,∞)).

We first take care of the term u−β
r χ{ur>0}ψη(ur)φ in passing r → ∞ and η → 0.

It is not difficult to see that u−β
r χ{ur>0}ψη(ur) = u−β

r ψη(ur) is bounded by η−β .
Then for any η > 0, the Dominated Convergence Theorem yields u−β

r ψη(ur)
r→∞−→

u−βψη(u) in L1
loc(R × (0,∞)).

By (4.58), we obtain

‖u−βψη(u)‖L1(R×(0,∞)) � ‖u0‖L1(R).

Next, using the Monotone Convergence Theorem deduces u−βψη(u) ↑ u−βχ{u>0}
in L1(R × (0,∞)), as η → 0, thereby proves

‖u−βχ{u>0}‖L1(R×(0,∞)) � ‖u0‖L1(R). (4.63)

Thanks to (4.62), (4.58) and (4.57), there is no problem of passing to the limit as
r → ∞ in the indicated variational equation in order to get

∫
Supp(φ)

(
−Ψη(u)φt + |ux|p−2uxφxψη(u) +

1
η
|ux|p−2uxψ

′
(
u

η

)
φ

+u−βψη(u)φ+ f(u)ψη(u)φ
)

dsdx = 0, ∀φ ∈ C∞
c (R × (0,∞)).

By (4.59), (4.61), and (4.63), we can proceed similarly as the proof of (3.45)–(3.48)
to obtain after letting η → 0

∫
Supp(φ)

(−uφt + |ux|p−2uxφx + u−βχ{u>0}φ+ f(u)φ
)

dxds = 0,

∀φ ∈ C∞
c (R × (0,∞)). (4.64)

Or u satisfies equation (1.1) in the sense of distributions.
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Then, it remains to prove that u ∈ C([0,∞);L1(R)). Let us first claim that

u ∈ C([0,∞);L1
loc(R)). (4.65)

In order to prove (4.65), we use a compactness result by Porretta, [28]. We present
it here for the reader convenience.

Lemma 4.1 (Theorem 1.1, [28]). Let p > 1 and p′ its conjugate exponent
(1/p+ 1/p′ = 1), a, b ∈ R, and define the space

V p
1 (a, b) = {u : Ω × (a, b) → R; u ∈ Lp(a, b;W 1,p

0 (Ω)),

ut ∈ Lp′
(a, b;W−1,p′

(Ω)) + L1(Ω × (a, b))},

where Ω is a bounded set in R
N . Then, we have

V p
1 (a, b) ⊂ C([a, b];L1(Ω)).

For any r > 0, we extend ur by 0 outside Ir, still denoted as ur. Use ur as a test
function to the equation satisfied by ur to get

∫ T

0

∫
R

|∂xur|pdxds � 1
2

∫
Ir

u2
0(x)dx � 1

2
‖u0‖L1(R)‖u0‖L∞(R), for T > 0,

which implies ‖ux‖p
Lp(R×(0,T )) is also bounded by 1/2‖u0‖L1(R)‖u0‖L∞(R), or ux ∈

Lp(R × (0, T )). By (4.59) and the boundedness of u, it follows from the Interpolation
Theorem that
u ∈ Lp(R × (0, T )), for any T > 0. Thus, we have

u ∈ Lp(0, T ;W 1,p(R)). (4.66)

According to (4.66), (4.59) and (4.63), we get from the equation satisfied by u

ut ∈ Lp′
(a, b;W−1,p′

(R)) + L1(R × (0, T )). (4.67)

Then, a local application of lemma 4.1 yields the claim (4.65).
Note that the last conclusion does not imply u ∈ C([0,∞);L1(R)) since the proof

of theorem 1.1, [28] depends on the boundedness of Ω.
To prove u ∈ C([0,∞);L1(R)), it suffices to show that u(t) is continuous at t = 0

in L1(R), that is: lim
t→0

‖u(t) − u0‖L1(R) → 0.
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In fact, we have that, for any m � 1∫
R

|u(x, t) − u0(x)|dx �
∫

Im

|u(x, t) − u0(x)|dx+
∫

R\Im

|u(x, t) − u0(x)|dx

�
∫

Im

|u(x, t) − u0(x)|dx+
∫

R\Im

u(x, t)dx+
∫

R\Im

u0(x)dx

=
∫

Im

|u(x, t) − u0(x)|dx−
(∫

Im

(u(x, t) − u0(x))dx
)

+
∫

R

u(x, t)dx−
∫

Im

u0(x)dx+
∫

R\Im

u0(x)dx

� 2
∫

Im

|u(x, t) − u0(x)|dx+
∫

R

u0(x)dx

−
∫

Im

u0(x)dx+
∫

R\Im

u0(x)dx

= 2
∫

Im

|u(x, t) − u0(x)|dx+ 2
∫

R\Im

u0(x)dx.

Taking lim sup
t→0

in both sides of the above inequality we get

lim sup
t→0

∫
R

|u(x, t) − u0(x)|dx � 2 lim sup
t→0

∫
Im

|u(x, t) − u0(x)|dx+ 2
∫

R\Im

u0(x)dx.

By u ∈ C([0,∞);L1
loc(R)), we obtain from the last inequality

lim sup
t→0

∫
R

|u(x, t) − u0(x)|dx � 2
∫

R\Im

u0(x)dx.

Then the result follows as m→ ∞. Then, we get the proof of theorem 1.8. �

Remark 4.2. The existence result also holds for f a nondecreasing function on
[0,∞).

4.2. Instantaneous shrinking of support of solutions

Now, we prove theorem 1.9.

Proof. Let u be a solution of problem (1.7). Since f(u) � 0, we have for any q ∈
(0, 1)

f(u) + u−βχ{u>0} � c0u
q,

with c0 = ((1)/(‖u0‖β+q
L∞(R))). This implies that u is a sub-solution of the following

problem: {
∂tw − (|wx|p−2wx)x + c0w

q = 0 in R × (0,∞),
w(x, 0) = u0(x), in R,

(4.68)
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Note that problem (4.68) has a unique solution w (see, e.g, [21,33]). Thus, the
comparison principle implies

u(x, t) � w(x, t), in R × (0,∞).

Thanks to the result of Herrero [21], w has an instantaneous shrinking of compact
support, so does u.

Thus, we obtain the conclusion. �
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