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SUMMARY
The N-3 Revolute-Prismatic-Spherical (N-3RPS) manipulator is a kind of serial–parallel manipulator
and has higher stiffness and accuracy compared with serial mechanisms, and a larger workspace
compared with parallel mechanisms. The locking mechanism in each joint allows the manipulator to
be controlled by only three wires. Modeling the dynamics of this manipulator presents an inherent
complexity due to its closed-loop structure and kinematic constraints. In the first part of this paper,
the inverse kinematics of the manipulator, which consists of position, velocity, and acceleration,
is studied. In the second part, the inverse and forward dynamics of the manipulator is formulated
based on the principle of virtual work and link Jacobian matrices. Finally, the numerical example is
presented for some trajectories.
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Abbreviations and Nomenclature

ai = Position vector of the revolute joint (Ai)
bi = Position vector of the ball joint (Bi)
CAD = Computer-Aided Design
di = Length of limbs
AiF1i ,

AiF2i = Resultant load on cylinder and piston
fe, ne = External force and moment on upper platform
Fp = Resultant load on upper platform
HRM = Hybrid Redundant Manipulator
AiI1i ,

AiI2i = Moment of inertia of cylinder and piston of the ith limb in its frame
0Ip = Moment of inertia of upper platform
AiJ1i ,

AiJ2i = Link Jacobian matrices
Jp = Manipulator Jacobian matrix
mp = Mass of upper platform
p = Position vector of point P
q = Vector of limb length
RAi

0 =
[

xRAi
0

yRAi
0

zRAi
0

]T
rotation matrix from the base frame to the limb frame

R0
1 = rotation matrix from frame 1 to the base frame

RPS = Revolute-Prismatic-Spherical
rup = Vector points from the center of the upper platform of the nth link to the end-effector
rdown = Position vector of the lower platform of the nth link
rCG = Position vector of the center of mass of moving parts
si =

[
six siy siz

]T
unit vector along the limbs
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SPM = Serial–Parallel Manipulator
SPR = Spherical-Prismatic-Revolute
SPS = Spherical-Prismatic-Spherical
τ = Input force of actuator
u, v, w, = First, second, and third column of R0

1 rotation matrix
vp = Linear velocity of the center of mass of upper platform
vbi =

[
vx

bi v
y

bi vz
bi

]T
velocity of the ball joint (Bi)

Aiωi = Angular velocity of the ith limb in its frame
ωp = Angular velocity of upper platform
ẋp =

[
vp ωp

]T
velocity of the end-effector

1. Introduction
Kinematically redundant manipulators have more degrees of freedom (DOF) than required for
determining the position and orientation of an end-effector.1 Due to their high flexibility, they have
a great potential to work in fully constrained, complex, and hazardous environments such as nuclear
reactors and space stations.2 They can also be used for surgery, exploration, and rescue operations.

This section is divided into two parts. The first part focuses on the researches that attempt to
mechanically resolve the redundancy of hyper-redundant manipulators. The second part reviews the
studies that address the kinematic and dynamic analysis of SPMs.

In the past two decades, many redundant manipulators with various structures and different
actuation types have been proposed. Ning and Worgotte3 have built a new 3D modular HRM. All
the joints of this manipulator are passive, state-controllable, and share common input introduced by
wire-driven control. Meghdari et al.4,5 proposed a re-configurable manipulator with two arms. The
arms normally operate redundantly, but when needed, they can lock into each other at certain joints
to achieve a higher stiffness while losing some degrees of freedom.

Recently, new type of redundant manipulator in the sense of structure has been introduced, which
is called SPM. SPMs have several modules with parallel structure that are connected serially. SPMs
have the advantages of both serial manipulators (SMs) and parallel manipulators (PMs). This kind of
manipulator has higher stiffness and accuracy compared with SM, and a larger workspace compared
with PM.6 Hu et al.6 presented a novel 3RPS–3SPR SPM and solved inverse kinematics and active
forces. The workspace of this SPM is constructed using the CAD variation geometry approach.
Gallardo et al.7–9 addressed the kinematic analysis, including position, velocity, and acceleration, of
a modular spatial hyper-redundant manipulator built with a variable number of serially connected
mechanical modules. They used the Screw theory and the principle of virtual work. Tanev10 solved
the forward and inverse position problem of a hybrid 2(SPS) manipulator. This paper addresses the
kinematic and dynamic analysis of an SPM presented in Honarvar.11

In 2009, a novel tendon-actuated hyper-redundant manipulator was introduced by Honarvar.11.
Figure 1(a) shows the four-link manipulator fabricated at Sharif University of Technology. The
novelty of this tendon-actuated manipulator is the use of a locking mechanism at its joints, which
makes it possible to be controlled with only three cables. Therefore, by releasing and locking the
links in an arbitrary sequence and by stretching the cables, the configuration of the manipulator
will change. This manipulator has serial–parallel structure and each link consists of a 3RPS parallel
mechanism. The links are arranged serially to construct the manipulator. It should be noted that the
term “serial–parallel manipulator” usually refers to a robot obtained by serially connecting two parallel
manipulators. Detailed description of the manipulator is presented in Section 2. This paper addresses
the systematic analysis of kinematics and dynamics of the manipulator introduced by Honarvar.11

Dynamics modeling is essential for design specifications and advanced control of robots.12 The
dynamics of this manipulator presents an inherent complexity due to its closed-loop structure and
kinematic constraints.

Several approaches have been proposed for the analysis of dynamics of the 3-RPS mechanism,
including the Newton–Euler formulation,12 the Lagrangian formulation,13 and the principle of virtual
work.13–17 Other approaches have also been suggested.18 A comparison study of inverse dynamics
of manipulators with closed-loop geometry can be found in the work of Lin and Song.19 Khalil
solved kinematics and dynamics of 3-RPS mechanism by customized Newton–Euler algorithm.15 In
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Fig. 1. (a) A 4-link manipulator with lockable joints designed and fabricated in Sharif University of Technology.
(b) A link of a fabricated manipulator.

addition, Song studied a force-compensating device based on this mechanism.19 Khalil and Ibrahim12

presented a general method to calculate the inverse and direct model of dynamics of parallel robots.
The models were expressed in a closed form by a single equation. Staicu20 presented compact
matrix dynamics equations, and the power requirement of each actuator in two different actuation
schemes. Li et al.21 formulated a semi-analytic stiffness model of 3RPS modules by taking into
account the component compliances associated with actuations and constraints. Staicu22,23 developed
a recursive matrix approach in kinematics and dynamics modeling of parallel mechanisms. Here a
full dynamic analysis of the 3RPS mechanism by the principle of virtual work and link Jacobian
matrices is introduced. The analysis includes mass and inertia of piston and cylinder of each limb.
Some illustrative examples are also included.

In the next section a detailed description of the manipulator is presented. In Section 3, the inverse
and forward dynamic analysis of the 3RPS manipulator is presented. In Section 4, the kinematic and
dynamic analyses of N-3RPS with lockable joints are described. The numerical example is presented
in Section 5. Finally, the paper is concluded in Section 6.

2. Manipulator Description
In order to have a deep understanding of manipulator, it is essential to have its extended description.
Each link of the manipulator consists of three hydraulic jacks (these are also called limbs), which are
arranged in a parallel configuration (3RPS). The lengths of these jacks are rather fixed (locked) or
varying (unlocked) due to solenoids states. The solenoid valves are the main components of locking
mechanism and are put in a hydraulic circuit as shown in Fig. 2. Once they are chosen to be unlocked,
the length of jacks is controlled by wires.

The upper ports of jacks are connected to each other via tiny pipes. It means that the sum of
oil flow above pistons and inside cylinders is constant. Similarly, lower ports are connected to each
other, while three solenoid valves are put in the way to block oil flow at any desired time. In our
application, all solenoid valves are opened or closed simultaneously. Although it is possible to open
two solenoids, this is not considered in this paper.

Imagine the jacks to be in their equilibrium position and all solenoids are closed as shown in Fig. 2
(left). In this state, all jacks are locked. Now the solenoid valves are opened as shown in Fig. 2 (right)
and the first and second jacks are moved d meters downwards. Consequently, the oil under the piston
of the first and second jacks will flow to the third cylinder and result in the upward displacement of
2d meters in the third jack. In order to perform this scenario practically, the first and second wires
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Fig. 2. The hydraulic circuit of locking system in each link.

Fig. 3. Schematic of a manipulator with 3RPS mechanism. Cables are passed through Ci points.

are drawn and pushed to the corresponding jacks downwards and the third jack is force-controlled to
keep the wire stretched.

Therefore, there is a constraint between jacks’ length since the amount of oil on the top and the
bottom of pistons is constant. The constraint equation is

d1 + d2 + d3 = const, (1)

where d1, d2, d3 are the lengths of jacks. The 3RPS mechanism has 3 DOF (Fig. 3). The constraint of
the locking mechanism reduces 1 DOF when all solenoid valves are open. Therefore, each link has 2
DOF.

The hydraulic circuit shown in Fig. 2 also imposes a constraint equation on external forces. The
equation of motion of each leg can be written as

Fext − Fpressure = md̈i, i = 1, 2, 3, (2)

where Fpressure is the force generated by the oil pressure and is equal to P1A1 − P2A2, where P1, P2

are the oil pressure on the bottom and the top of piston respectively and A1, A2 are the cross section
areas of piston respectively. Now three equations expressed in (2) are summed as

Fext1 + Fext2 + Fext3 − 3Fpressure = m (d̈1 + d̈2 + d̈3)︸ ︷︷ ︸
0

. (3)
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Note that d̈1 + d̈2 + d̈3 = 0 according to Eq. (1). Finally, we have

Fpressure = Fext1 + Fext1 + Fext1

3
. (4)

Therefore, there is a constraint equation between the external forces applied on the jacks. This
equation will be used in the inverse dynamic analysis.

Actuators are three cables that pass through joints all along the arm as shown in Fig. 1(b). The
solenoid valves, jacks, and wires are shown clearly in this figure. The wire ends are knotted on most
of the top points of manipulator. When a link is locked, the position and orientation of that link remain
unchanged. In this paper, a parallel mechanism, and its corresponding locking system, is called a
link. At any time, all links of a manipulator are locked except one. Whenever the cables are moved
by winch and motors, the manipulator will tilt to its new position, while all locked joints move as a
rigid body. It is worth mentioning that the hydraulic jacks are not actuated by hydraulic pump and
servo valves but are actuated by wires indirectly. Using the lockable joints will decrease the number
of motors and reduce the total weight and cost. An 8-DOF prototype has been designed and made in
Sharif University of Technology for practical experiments (Fig. 1). The manipulator has inner-loop
force control that keeps wires tension always positive.

Generally, parallel manipulators inherently have high stiffness and limited workspace. These have
their industrial applications in spite of their limitations. In this paper, the effective mobility of a
3-RPS manipulator is increased by connecting 3-RPS mechanism serially. Shafahi has optimized and
utilized the manipulator in 2011.24 Although the structure of the manipulator is simplified by this
novel idea, the path planning and control problem are complicated enormously. Taherifar et al.25

studied the path planning of this manipulator using particle swarm optimization.

3. Kinematics of 3RPS Manipulator
The first step in the analysis of N-3RPS manipulator is the kinematic analysis of a single 3RPS
mechanism. Figure 3 illustrates the 3RPS mechanism. A fixed coordinate frame (XYZ) is attached
to the lower platform and a moving coordinate frame (uvw) is attached to the upper platform. The
origin of (uvw) frame is located at the point P, the center of volume of the upper platform. Here we
focus on the inverse kinematics of the mechanism since it is essential in dynamic analysis of the
manipulator. In the 3RPS mechanism the orientation of the upper platform is related to the position
of the platform by some constraint equations, which cause some difficulties in the dynamic analysis
of the manipulator. In other words, the moving platform has simultaneously six mixed motions (three
translations coupled with three relative concurrent rotations about its center), but the motion in general
translation and orientation degrees of freedom is interconnected, as three of the six position variables
represent three parasitic parameters given by some geometric constraint relations. The kinematics of
the mechanism is analyzed using the link Jacobian concept similar to the one given inTsai.14

3.1. Inverse kinematics
By definition, the inverse kinematic analysis is the calculation of lengths of limbs when the position
of the upper platform is known priorly. Here the x- and y-component of the position of upper platform
are known and the z-component is constrained since Eq. (1) reduces the mechanism to 2 DOF. The
first step in the inverse kinematic analysis of the 3RPS mechanism is the calculation of the orientation
of the upper platform. The orientation is defined by the rotation matrix between upper and lower
platforms. The positions of the end points of limbs (Bi) in a fixed coordinate frame are

B1 = p + b1,

B2 = p + b2,

B3 = p + b3,

(5)

b1 = R0
1

[
B
2

−B

2
√

3
0
]T

,
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b2 = R0
1

[
0 B√

3
0
]T

,

b3 = R0
1

[ −B
2

−B

2
√

3
0
]T

,

R0
1 =

⎡
⎣ux vx wx

uy vy wy

uz vz wz

⎤
⎦ , (6)

where p is the position vector of point P and R0
1 is the rotation matrix from the moving coordinate

frame to the fixed one. B is the side of the upper triangle as shown in Fig. 3. The positions of points
Bi , B2, B3 can be written as

B1 =

⎡
⎢⎣

px + 1
2Bux − 1

2
√

3
Bvx

py + 1
2Buy − 1

2
√

3
Bvy

pz + 1
2Buz − 1

2
√

3
Bvz

⎤
⎥⎦ , B2 =

⎡
⎢⎣

px + Bvx√
3

py + Bvy√
3

pz + Bvz√
3

⎤
⎥⎦ , B3 =

⎡
⎢⎣

px − 1
2Bux − 1

2
√

3
Bvx

py − 1
2Buy − 1

2
√

3
Bvy

pz − 1
2Buz − 1

2
√

3
Bvz

⎤
⎥⎦ . (7)

Since the revolute joints do not let any motion out of the revolute axis, the following constraints
must be included in analysis:

B1x = −
√

3B1y,

B2x = 0,

B3x =
√

3B3y. (8)

Substituting Eq. (7) into (8) yields

Px + Bvx√
3

= 0,

vx = uy,

Py = B

2
√

3
(vy − ux), (9)

which represent just three constraint relations giving three parasitic parameters. The definition of the
rotation matrix will impose the following equations:

u2
x + u2

y + u2
z = 1,

v2
x + v2

y + v2
z = 1,

w2
x + w2

y + w2
z = 1,

uxvx + uyvy + uzvz = 0,

uxwx + uywy + uzwz = 0,

vxwx + vywy + vzwz = 0. (10)

The orientation of the moving platform is completely described by the general rotation matrix R0
1.

The Euler representation can be adopted to describe the absolute moving platform posture, which
comprises three successive relative rotations, namely: the first rotation of angle αz around the w’-axis,
followed by the second rotation of angle αy around the rotated v”-axis, and finally followed by the third
rotation of angle αx around the u-axis of the moving frame (uvw) attached to the moving platform. With
respect to the fixed global coordinate system (XYZ), the general rotation matrix can be expressed by a
multiplication of three known basic rotation matrices as R0

1 = R(ω′, αz)R(v′′, αy)R(u, αx). Referring
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Fig. 4. Euler angles of a limb.

to Fig. 3, the kinematic loop can be written as

ai + disi = p + bi,

si = (p + bi − ai)/di,

di = ‖p + bi − ai‖ , (11)

where si is the unit vector along the ith limb, and di is the length of the limb. Since each link has 2
DOF due to the constraint Eq. (1), the inputs of inverse kinematics are Px, Py . It must be noted that
Pz is calculated by inverse kinematic equations. So the nonlinear Eqs. (1), (9), and (10) are solved
together. The solution of these 12 equations will give the limbs’ length (d1, d2), Pz, and nine elements
of the rotation matrix (R0

1).
Another coordinate frame Ai(xi, yi, zi) is attached to each limb as shown in Fig. 3. The zi-axis

points from Ai to Bi , and the yi-axis coincides with the axis of revolute joint at Ai . If the base
coordinate frame is rotated by φi about the z-axis, frame Ai(x ′

i , y
′
i , z

′
i) is created as shown in Fig. 4.

Then this frame is rotated by θi about y ′
i to result in Ai(xi, yi, zi) coordinate frame, which is called

the ith limb frame. The rotation matrix from the Ai(xi, yi, zi) frame to the base frame (XYZ) is

R0
Ai =

⎡
⎢⎣

cφicθi −sφi cφisθi

sφicθi cφi sφisθi

−sθi 0 cθi

⎤
⎥⎦ . (12)

The unit vector along the limbs (si) in the base frame is

si =

⎡
⎢⎣

cφisθi

sφisθi

cθi

⎤
⎥⎦ , (13)

where φi is a constant and θi can be obtained by the following equation in radians,

θi = tan−1(
√

s2
ix + s2

iy/siz) , (0 ≤ θ ≤ π),

φ = [−π/6 π/2 7π/6
]
. (14)
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Fig. 5. Geometrical parameter of a limb.

Figure 5 shows limb’s geometrical parameter. The following relations formulate the position of
mass center of piston and cylinder,

r1i = ai + e1si,

r2i = ai + (di − e2)si . (15)

The derivative of the right-hand side of Eq. (11) is taken to obtain the velocity of Bi ,

vbi = vp + ωp × bi = vp + s(bi)ωp, (16)

where s(.) is the skew-symmetric matrix defined by

s(m) =
⎡
⎣ 0 mz −my

−mz 0 mx

my −mx 0

⎤
⎦ . (17)

The velocity of point Bi is transformed to the ith limb frame by multiplying the rotation matrix

Aivbi = RAi
0 vbi . (18)

The rotation matrix RAi
0 is the transpose of R0

Ai as defined in Eq. (12). For further formulation,
it is better to parameterize the rotation matrix as RAi

0 = [ xRAi
0

yRAi
0

zRAi
0 ]T , where xRAi

0 is the
first row of RAi

0 and so on. Once again the constraint equation imposed by revolute joints must be
considered. Since the point Bi does not have velocity in the revolute axis direction, we have:

Aiv
y

bi = 0. (19)

Substituting Eqs. (16) to (18), the constraint Eq. (19) can be written as

yRAi
0︸︷︷︸

c2

vp + yRAi
0 s(bi)︸ ︷︷ ︸
−c1

ωp = 0,

ωp = c−1
1 c2vp = cvp. (20)

Equation (20) formulates a constraint relation between the linear and angular velocities of upper
platform, where c, c1, and c2 are 3 × 3 matrices. The linear velocity of ith piston is ḋi = Aivz

bi . The
derivative of Eq. (1) constrains the linear speed of limbs (ḋ1 + ḋ2 + ḋ3 = 0). So one can use the
following equation for the rate of every limb’s longitudinal motion:

ḋi = Aivz
bi = zRAi

0 vp + zRAi
0 s(bi)cvp. (21)
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Equations (1) and (21) are solved together to obtain ḋ1, ḋ2, and vpz.
On the other hand, the derivative of the left-hand side of Eq. (11) is taken and expressed in the ith

limb coordinate frame,

Aivbi = di
Aiωi × Aisi + ḋi

Aisi, (22)

where Aisi = RAi
0 si . Considering the fact that the jack does not rotate about its longitudinal axis

(ωT
i si = 0) and cross-multiplying both side of Eq. (22) by Aisi yields the angular velocity of the limb

Aiωi = 1

di

(Aisi × Aivbi), (23)

where Aisi = [ 0 0 1 ]T . Taking the derivative of Eq. (15) and performing some simplification,

v1i = e1
Aiωi × Aisi,

v2i = (di − e2)Aiωi × Aisi + ḋi
Aisi . (24)

In order to perform acceleration analysis, the derivative of Eq. (20) is taken to derive the relation
between the linear and angular accelerations of upper platform,

c1ω̇p + ċ1ωp = c2v̇p,

ω̇p = cv̇p − c−1
1 ċ1cvp,

ċ1 = yRAi
0 × (s(bi)ωp).

(25)

The acceleration of point Bi is obtained by taking the derivative of Eqs. (16) and (18),

v̇bi = v̇p + ω̇p × bi + ωp × (ωp × bi),

Ai v̇bi = RAi
0 v̇bi , (26)

where Aiv̇bi is the acceleration of Bi in the ith limb coordinate frame. On the other hand, the linear
acceleration of the piston and the angular acceleration of the jack can be determined from the
derivative of Eq. (22) and considering that ω̇z

i = 0,

d̈i = Aiv̇T
bi

Aisi + di
Aiω2

i ,

Aiω̇i = 1

di

Aisi × Aiv̇bi − 2ḋi

di

Aiωi. (27)

The derivative of Eq. (1) constrains the linear acceleration of limbs (d̈1 + d̈2 + d̈3 = 0). So Eqs.
(1), (26), and (27) are solved together to find d̈1, d̈2, and v̇pz.

Similarly, the accelerations of the center of mass of piston and cylinder are calculated by the
following formulation:

Aiv̇1i = e1
Aiω̇i × Aisi + e1

Aiωi × (Aiωi × Aisi),
Ai v̇2i = d̈i

Aisi + (di − e2)Aiω̇i × Aisi + (di − e2)Aiωi × (Aiωi × Aisi) + 2ḋi
Aiωi × Aisi . (28)

3.2. Jacobian matrices
The link Jacobian is introduced to simplify the derivation of equation of motion of manipulator.
Equation (16) can be written in the matrix form as

vbi = Jbi ẋp,

https://doi.org/10.1017/S0263574714002355 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002355


1392 Inverse and forward dynamics of N-3RPS manipulator with lockable joints

Jbi =
⎡
⎣1 0 0 0 bz

i −b
y

i

0 1 0 −bz
i 0 −bx

i

0 0 1 −b
y

i −bx
i 0

⎤
⎦ , (29)

where ẋp = [vp ωp ]T = [vp cvp ]T . Substituting Eq. (29) in Eq. (18) yields

Aivbi = AiJbi ẋp, (30)

where AiJbi = RAi
0 Jbi . Since the linear (longitudinal) velocity of the piston is ḋi = Aivz

bi (the third
row of Aivbi), we have ḋi = AiJ z

bi ẋp, so

q̇ = Jpẋp,

Jp =
⎡
⎣A1J z

b1
A2J z

b2
A3J z

b3

⎤
⎦ , (31)

where q̇ = [ ḋ1 ḋ2 ḋ3 ]T , and Jp is known as the manipulator Jacobian matrix. Similarly, the
velocity of point Ci , as shown on Fig. 3 (the cable passes through this point), can be written as

vci = Jci ẋp,

Jci =
⎡
⎣1 0 0 cz

i −c
y

i

0 1 0 −cz
i 0 −cx

i

0 0 1 −c
y

i −cx
i 0

⎤
⎦ . (32)

Similarly, transforming the velocity of point Ci to a new frame and sorting the third row of velocity
in the matrix form will result in

q̇t = Jpt ẋp,

Jpt =
⎡
⎣A1J z

c1
A2J z

c2
A3J z

c3

⎤
⎦ , (33)

where Jpt is known as the cable Jacobian matrix. Similarly, combining Eqs. (23) and (24), writing
the linear and angular velocity of piston and cylinder, we have

Aiẋ1i = AiJ1i ẋp,

Ai ẋ2i = AiJ2i ẋp,

AiJ1i = 1

di

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1
AiJ x

bi

e1
AiJ

y

bi

01×6

−AiJ
y

bi

AiJ x
bi

01×6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, AiJ2i = 1

di

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(di − e2)AiJ x
bi

(di − e2)AiJ
y

bi

di
AiJ z

bi

−AiJ
y

bi

AiJ x
bi

01×6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (34)

where AiJ1i and AiJ2i are called the link Jacobian matrices.
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4. Dynamics of 3RPS Manipulator
The inverse dynamics modeling is important for the high performance control algorithms of robots,
and the direct dynamics model is required for the simulation.14. In the next part, the inverse dynamics
is formulated.

4.1. Inverse dynamics
In the inverse dynamics problem, the desired trajectory of upper platform is given and the required
forces of linear actuators are to be determined. The principle of virtual work is used to drive the
equation of motion and the required forces. The angular velocity of upper platform is related to linear
velocity by Eq. (24).

When the external force and torque on the center of volume of upper platform are denoted by fe

and ne respectively, the resultant load, including the inertial forces on the upper platform will be

Fp =
[

fp

np

]
=
[

fe + mpg − mpv̇p

ne − 0Ipω̇p − ωp × (0Ipωp)

]
, (35)

where 0Ip is the moment of inertia of upper platform in the fixed coordinate frame and mp is the
mass of the aforementioned platform. Similarly, the resultant load on the cylinder and piston of the
ith limb in its frame can be written as

AiF1i =
[

f1i

n1i

]
=
[

m1iR
Ai
0 g − m1i

Ai v̇1i

−AiI1i ω̇i − Aiωi × (AiI1i
Aiωi)

]
,

AiF1i =
[

f2i

n2i

]
=
[

m2iR
Ai
0 g − m2i

Ai v̇2i

−AiI2i ω̇i − Aiωi × (AiI2i
Aiωi)

]
, (36)

where AiI1i and AiI2i are the moment of inertia of cylinder and piston of the ith limb in the attached
coordinate frame respectively. Here m1i and m2i are respectively the mass of cylinder and piston of
the ith limb.

By the principle of virtual work, the equation of motion can be stated as

δqT
t Ft + δqT τ + δxT

p Fp +
6∑

i=1

(Aiδẋ1i
AiF1i + Aiδẋ2i

AiF2i) = 0⊕, (37)

where Ft is the cable tension and τ is the limb force. Considering the Jacobian relations formulated
in Eqs. (31), (33), and (34), one have δq = Jpδxp, δqt = Jptδxp, Aiδx1i = AiJ1iδxp, and Aiδx2i =
AiJ2iδxp. On the other hand, the variation of position and orientation can be expressed as δxp =
[ δp cδp ]T . Consequently, Eq. (37) might be rewritten as

δpT

[
J T

ptFt + J T
p τ + Fp +

6∑
i=1

(AiJ1i
AiF1i + AiJ2i

AiF2i)

]
row=1,2,3

+ cδpT

[
J T

ptFt + J T
p τ + Fp +

6∑
i=1

(AiJ1i
AiF1i + AiJ2i

AiF2i)

]
row=4,5,6

= 0. (38)
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Since δpT is an independent variable, Eq. (38) takes its final form as

E1︷ ︸︸ ︷([
J T

pt

]
row=1,2,3

+ c
[
J T

pt

]
row=4,5,6

)
Ft +

E2︷ ︸︸ ︷([
J T

p

]
row=1,2,3

+ c
[
J T

p

]
row=4,5,6

)
τ

+
⎛
⎝[Fp +

6∑
i=1

(AiJ1i
AiF1i + AiJ2i

AiF2i )

]
row=1,2,3

+ c

[
Fp +

6∑
i=1

(AiJ1i
AiF1i + AiJ2i

AiF2i )

]
row=4,5,6

⎞
⎠

︸ ︷︷ ︸
E3

= 0. (39)

Equation (39) states the equation of motion of a cable-driven 3RPS manipulator in the presence of
a constraint equation. In the inverse dynamics problem, the desired trajectory is given and the cables
tension must be determined. The limbs force (τ ) is determined according to Eq. (4). Equation (4)
states that the limbs force is equal to the average of the external forces exerted on all limbs. Besides,
the external forces on the limbs are due to the tension forces and other dynamic terms. Using Eq.
(39), the limbs force is determined as follows:

E1Ft + E2τ + E3 = 0,

τ = −ME−1
2 (E1Ft + E3),

Mi,j = 1

3
∀i, j, (40)

where M is a 3 × 3 square matrix with all elements equal to 1/3, multiplying this matrix to a vector
will give the average of the elements of that vector. So the cables tension can be determined by

(E1 − E2ME−1
2 E1)Ft + (E3 − E2ME−1

2 E3) = 0,

Ft = (E1 − E2ME−1
2 E1)−1(E3 − E2ME−1

2 E3). (41)

Since the coefficient of Ft in Eq. (41) will be singular in numerical computation, there are infinite
number of solutions for cables tension. The null space of the coefficient is [1 1 1], which means that
the tension of all cables can be equally increased or decreased without deviating Eq. (39). So all
cables can be initially stretched to a certain amount so that they do not have a negative tension during
motion. In other words, since each link has 2 DOF and there are three wires to be controlled, there
are infinite number of positive solutions for wires tension. For example, one can simply increase the
average of tension and produce the same desired motion.

4.2. Forward dynamics
In the forward dynamics the input forces of actuators are given and the desired trajectory of the
upper platform is to be determined. As described earlier, the 3RPS mechanism has 3 DOF, and the
orientation of the manipulator is not an independent variable. So six state variables describing the
position and linear velocity of the upper platform are defined as

Z =
[

p

vp

]
. (42)

The goal of the forward dynamic analysis is to derive six ordinary differential equations. Equation
(39) can be parameterized as

H1v̇p + H2 = 0. (43)

The state equations are as follows:

Ż1 = Z4,
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Ż2 = Z5,

Ż3 = Z6,⎡
⎣ Ż4

Ż5

Ż6

⎤
⎦ = −H−1

1 H2, (44)

where H1 and H2 are 3 × 3 matrices. Now the problem is to find H1 and H2 using Eqs. (35) and
(36). The resultant loads on cylinder and piston are rewritten as

AiF1i =
[

f1i−coef v̇p + f1i−cons

n1i−coef v̇p + n1i−cons

]
= AiF1i−coef v̇p + AiF1i−cons,

AiF1i =
[

f2i−coef v̇p + f2i−cons

n2i−coef v̇p + n2i−cons

]
= AiF2i−coef v̇p + AiF2i−cons. (45)

The coefficient of v̇p in Eq. (35) might be extracted in the same way. It should be noted that ω̇p

is a function of v̇p and vp according to Eq. (25). H1 is the collection of v̇p coefficients, while H2

includes the terms that do not have v̇p terms,

H1 = −mpI3×3 − c0Ipc +
[

6∑
i=1

(AiJ1i
AiF1i−coef + AiJ2i

AiF2i−coef)

]
row=1,2,3

+ c

[
6∑

i=1

(AiJ1i
AiF1i−coef + AiJ2i

AiF2i−coef)

]
row=4,5,6

,

H2 = fe + mpg + c(ne − 0Ipc−1
1 ċ1cvp) +

[
J T

p τ +
6∑

i=1

(AiJ1i
AiF1i−cons + AiJ2i

AiF2i−cons)

]
row=1,2,3

+ c

[
J T

p τ +
6∑

i=1

(AiJ1i
AiF1i−cons + AiJ2i

AiF2i−cons)

]
row=4,5,6

− ωp × (0Ipωp). (46)

Finally, the trajectory of upper platform can be determined by solving the six ordinary differential
equations in (44).

5. The N-3RPS Kinematics and Dynamics
The N-3RPS with lockable joint is an SPM described in Section 2. Figure 6 shows the schematic of
the manipulator. Suppose that the nth link is unlocked and other links are locked as shown in Fig. 6.
The coordinate frames are also shown in this figure. The first n–1 links are rigid and the vector 0rdown

is the position vector of lower platform of the nth link and is stated in the base coordinate frame. 0rup

points from the center of the upper platform of the nth link to the end-effector and is also presented
in the base coordinate frame. The kinematic and dynamic equations derived in Sections 3 and 4 can
be used for the unlocked link with some modification.

Determination of the rotation matrix between the upper and lower platforms of unlocked link is
the first step in the kinematic analysis. Second, the position vector of the upper platform must be
calculated according to Eq. (11). Here the first and second steps are combined. The vector loop can
be written as

0p = 0rd − 0rdown − 0rup, (47)
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Fig. 6. Schematic of the cable-actuated hyper-redundant manipulator. The nth link is unlocked and others are
locked. The coordinate frames are also shown.

where 0rd is the desired trajectory of end-effector. Equation (47) can be written in the form of

R0
n−1

n−1p = 0rd − 0rdown − R0
n−1R

n−1
n

nrup. (48)

Note that n−1p can be extracted from Eq. (48) as

n−1p = Rn−1
0 (0rd − 0rdown) − Rn−1

n︸︷︷︸
unknown

nrup. (49)

Since 0rd is given before and 0rdown is known from the previous configuration of manipulator, the
only unknown terms in the last equation are n−1p and Rn−1

n . In order to find Rn−1
n and n−1p, Eqs. (1),

(9), (10), and (49) should be solved together. The remaining formulations are the same except some
mass and inertia properties.

As mentioned earlier, all links except the nth link are locked, and are consequently rigid. So the
(n+1)th to Nth links move together with the upper platform of the nth link. The mass and the moment
of inertia of moving parts must include the mass and inertia of all elements above the platform,

mp−new = (N − n + 1)mp + 3(N − n)(m1 + m2),

nIp−new =
N∑

k=n

Rn
k

kIpRk
n + 3 ×

N∑
k=n+1

Rn
k (kI1i + kI2i)R

k
n, (50)

where kI1i and kI1i are the moment of inertia of cylinder and piston of the (k+1)th link in the kth
coordinate frame respectively. In order to transform the moment of inertia to the nth frame, the rotation
matrix must be multiplied from both sides. Finally, the resultant moment of inertia is transformed
to the base frame by R0

n
nIp−newRn

0 . Another point that should be noted is the moment produced by
gravitational force. Since the center of mass of the moving part does not coincide with the center of
volume, a moment is generated around the center of volume. The center of mass of the moving part
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Table I. The manipulator parameters.

Manipulator parameter Value

A 0.1 m
B 0.08 m
mp 126 gr
m1 37 gr
m2 4 gr
e1 0.05 m
e2 0.05 m

Ip

⎡
⎣ 0.788 0 0

0 0.788 0
0 0 1.573

⎤
⎦× 10−4 kg.m2

I1

⎡
⎣ 2.284 0 0

0 2.284 0
0 0 0.112

⎤
⎦× 10−5 kg.m2

I2

⎡
⎣ 3.366 0 0

0 3.366 0
0 0 0.018

⎤
⎦× 10−6 kg.m2

is

rCG =
(

N∑
k=n

R0
k

(
(kr11 + kr12 + kr13)m1 + (kr21 + kr22 + kr23)m2 + kpk+1−linkmp

))
/mp−new, (51)

where kr1i ,
kr2i are the position vector of the mass center of cylinder and piston of the ith limb of

the (k+1)th link in the kth reference frame respectively, and kpk+1−link is the position vector of upper
platform of the (k+1)th link presented in the kth frame. In this formula, the mass of each element
is multiplied by the position vector of that element in the kth frame. To revise the equation, a single
term is added to the second row of Eq. (35) and the new mass and moment of inertia are replaced
with the old ones,

Fp =
[

fp

np

]
=
[

fe + mp−newg − mp−newv̇p

ne − 0Ip−newω̇p − ωp × (0Ip−newωp) + rCG × mp−newg

]
. (52)

6. Simulation

6.1. Kinematic simulation
In this section, three types of desired trajectories for the center of upper platform are examined and
the inverse kinematic results are presented. The desired trajectories are selected such that the system
expresses its nonlinearity. The circular trajectory is defined as follows:

xd = R sin(ωt),

yd = R cos(ωt), (53)

where R = 1 cm and ω = π radians per second (Fig. 7(a)). The z-coordinate of upper platform
is calculated automatically according to the constraint. The small radius of circular path is due
to the limited workspace of mechanism. In kinematics simulation section, it is assumed that the
manipulator has one link. The manipulator parameters used in simulation almost coincide with the
fabricated manipulator shown in Fig. 1. The geometrical and inertial parameters are listed in Table I.

Assumption 1: There is no external load on the end-effector and the friction is negligible.

https://doi.org/10.1017/S0263574714002355 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714002355


1398 Inverse and forward dynamics of N-3RPS manipulator with lockable joints

−0.01
−0.005

0
0.005

0.01

−0.01

0

0.01
−1

0

1

2

Z
 (

m
)

Center of Platform Position vs Time

X (m)Y (m)

 a 

−0.01
−0.005

0
0.005

0.01

−0.01
−0.005

0
0.005

0.01
−1

−0.5

0

0.5

1

1.5

2

Z
 (

m
)

Center of Platform Position vs Time

X (m)Y (m)

b 
−0.01

−0.005
0

0.005
0.01

−0.01

0

0.01
−1

0

1

2

Z
 (

m
)

Center of Platform Position vs Time

X (m)Y (m)

c 

Fig. 7. The desired position of the center of upper platform in (a) circular trajectory for R = 1 cm, (b) star
trajectory for k = 5, and (c) sinusoidal trajectory.
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Fig. 8. (a) The length of limbs, (b) the angular velocity of upper platform, (c) the angle of each limb, and (d)
the Euler angle in the circular trajectory of upper platform.

Figure 8 presents the inverse kinematic results in circular trajectory. The length of limbs, the
angular velocity of upper platform, the angle of each limb (θi), and the Euler angle of upper platform
are shown in this figure. First, it can be observed that the length of limbs vary around 12 cm, which
is the length of each limb in the initial configuration of mechanism. Second, the sum of limb lengths
is constant as stated in Eq. (1). It is worth mentioning that at the beginning of the motion, where
xd = 0 and yd = 1 cm, d1 is nearly equal to its natural length, d2 and d3 have taken the opposite
direction to satisfy the constraint and make the upper platform move in the y-direction. It causes
quite a large Euler angle in y as shown in Fig. 8(d). Since the initial position coincides with the
direction of the second link, θ2 is much smaller than θ1 or θ3 (Fig. 8(c)). The angular velocity of upper
platform in x, y, and z-directions are obtained from the constraint Eq. (20). It can be observed that the
z-component (yaw) of angular velocity is less than the other components since the circular trajectory
did not require the yaw angular velocity.

Several ways have been adopted to check the correctness of results. For example, the numerical
derivative of limb lengths must be equal to the ḋi obtained in Eq. (21), and the y-coordinate of velocity
and acceleration of bi must be zero as stated in Eqs. (18) and (26). Equation (1), its derivative, and
also its second derivative must be satisfied.

In order to validate the inverse kinematic results, a special trajectory named as star is defined in
six stages as follows to simplify the interpretation of results:

[xd yd ]T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k[a1xt1 a1yt1]T 0 ≤ t1 ≤ 1

k[−a1xt2 + a1x −a1yt2 + a1y]T 0 ≤ t2 ≤ 1

k[a2xt3 a2yt3]T 0 ≤ t3 ≤ 1

k[−a2xt4 + a2x −a2yt4 + a2y]T 0 ≤ t4 ≤ 1

k[a3xt5 a3yt5]T 0 ≤ t5 ≤ 1

k[−a4xt6 + a4x −a4yt6 + a4y]T 0 ≤ t6 ≤ 1,

(54)
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Fig. 9. (a) The length of limbs, (b) the angle of each limb, and (c) the Euler angle in the star trajectory of upper
platform.
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Fig. 10. (a) The length of limbs, (b) the angular velocity of upper platform, (c) the angle of each limb, (d) the
Euler angle in the sinusoidal trajectory of upper platform.

where a is the position vector of lower platform whose length is 5.8 cm, and k is a scaling factor.
The desired trajectory in which the size of star’s arm is 1.2 cm is shown in Fig. 7(b). Each stage lasts
for 1 s and the desired velocity is constant in each stage. The center of upper platform moves in the
direction of the symmetric axis of triangle from the center position, and then it moves back to the
center.

Figure 9 presents the inverse kinematic results of the star trajectory. It can be observed in Fig. 9(a)
that when upper platform moves from the center toward a certain limb, the length of that limb does
not vary as much as can be inferred qualitatively. Besides, angle θi of that limb decreases and tends
to become vertical.

The third trajectory is a sinusoidal path in the x–y plane and is more complicated for this manipulator
than previous trajectories, and defined as

xd = 0.01t − 0.01,

yd = −0.01 cos(100πxd ). (55)

The sinusoidal trajectory is shown in Fig. 7(c) and kinematic results are presented in Fig. 10. The
sum of limb length is constant, and is equal to 0.362 m.
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Fig. 11. Force of actuators (cable) in circular trajectory when (a) the lowest link is unlocked, and (b) the link on
the top of the lowest link is unlocked.

6.2. Dynamics simulation
In this section, the manipulator is assumed to have four links. In each simulation, first the lowest link
is unlocked and the remaining links are locked, and second, the link on the top of the lowest link is
unlocked and the remaining links are locked to compare the cable tension.

Assumption 2: It is assumed that the manipulator is in the upright configuration and all upper
platforms are horizontal at the beginning. The height of manipulator in this configuration is 0.48 m.

Since the workspace of the manipulator with four links is large enough, the circular trajectory
defined in Eq. (53) is selected for R = 15 cm and ω = π . Figure 11 shows cable tension for both
stages of simulation. When the lowest link is unlocked, the range of motion of upper platform of that
link is too small (4 mm) and the maximum Euler angle of upper platform is 25◦. When the link on the
top of the lowest link is unlocked, the range of motion becomes bigger (10 mm) and the maximum
Euler angle is of 40◦. Although the range of motion and acceleration is smaller in the first stage, the
moving mass and moment of inertia of moving parts are bigger and cause larger cable tension. As
shown in this figure, the maximum range of cable tension in the first and second stage is 20.84 N and
16.45 N respectively.

The star trajectory with arm’s length of 11.6 cm is selected to increase the range of motion of
upper platform.

Figure 12 shows cable tension for both stages of simulation. As shown in this figure, the maximum
range of cable tension in the first and second stage is 11.27 N and 7.87 N respectively. It is worth
mentioning that the tension of second and third cables in the interval of [0, 2] s is larger than the
tension of the first cable since the upper platform is moving in the direction of the first limb and the
opposite cables must be pulled. This fact is true for remaining part of the trajectory.

7. Conclusions
The kinematic and dynamic analysis of a N-3RPS manipulator with lockable joints is presented in
this paper. In this manipulator all links have 3RPS mechanism, and are connected serially. In each
link, a hydraulic locking mechanism is installed. The locking mechanism reduces the complexity
of actuation system and decreases the weight of manipulator. Since the base mechanism of the
manipulator is 3RPS, the inverse and forward dynamics of this mechanism is introduced at the first
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Fig. 12. Force of actuators in star trajectory when (a) the lowest link is unlocked, and (b) the link on the top of
the lowest link is unlocked.

step. The dynamic analysis of the N-3RPS manipulator is presented in the next step. In the final step,
several trajectories are given and the input forces of a 3-3RPS manipulator (with three links) are
calculated. The simulations show the performance of analysis.
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