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Markov processes play an important role in reliability analysis and particularly in modeling
the stochastic evolution of survival/failure behavior of systems. The probability law of
Markov processes is described by its generator or the transition rate matrix. In this paper,
we suppose that the process is doubly stochastic in the sense that the generator is also
stochastic. In our model, we suppose that the entries in the generator change with respect
to the changing states of yet another Markov process. This process represents the random
environment that the stochastic model operates in. In fact, we have a Markov modulated
Markov process which can be modeled as a bivariate Markov process that can be analyzed
probabilistically using Markovian analysis. In this setting, however, we are interested in
Bayesian inference on model parameters. We present a computationally tractable approach
using Gibbs sampling and demonstrate it by numerical illustrations. We also discuss cases
that involve complete and partial data sets on both processes.

Keywords: Bayesian inference, Bayesian reliability analysis, hidden Markov model, Markov
modulated Markov process

1. INTRODUCTION

Markov processes are perhaps the most widely used processes in many fields of science,
engineering and management to represent random phenomena. There is an abundant lit-
erature on Markovian analysis of queueing, inventory and reliability models among many
others. These models provide a more realistic framework by allowing additional uncertainty
where the system under consideration operates in a stochastic environment. This stochastic
environmental process, therefore, modulates our model where its parameters change with
respect to the changing states of the environmental process. In this approach, there are two
processes: an environmental or modulating process that represents all factors that affect our
model, and another process that represents the state of the system that we are interested
in analyzing. The main assumption behind our model is that the environmental process
is a Markov process, and the modulated process also exhibits Markovian behavior in any
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given state of the environment. Therefore, we refer to this as a Markov modulated Markov
process. The Markov process is doubly stochastic in the sense that the generator at any
time is random and it changes with respect to the states of the modulating environmental
process.

There are many examples of modulation in the reliability literature. For example, ran-
dom environments are used to provide a tractable model of the stochastic dependence among
the components of a device where the environment is an external process that depicts all
physical, structural, operational and other conditions which affect the deterioration, aging
and failure of the system. Since all components are subject to the same environmental con-
ditions, their lifetimes are dependent via their common environmental process. Thus, the
environmental process is actually a factor of variation in the failure structure of the sys-
tem. These ideas were introduced by Çınlar and Özekici [11] who propose to construct an
intrinsic clock which ticks differently in different environments to measure the intrinsic age
of the device. This intrinsic aging model is studied further by Çınlar et al. [12] to determine
the conditions that lead to associated component lifetimes. The association of the lifetimes
of components subjected to a randomly varying environment is discussed by Lefèvre and
Milhaud [17]. Singpurwalla [28] provides a review by discussing hazard potentials in reli-
ability modeling. Applications also include hardware reliability where a device performs a
stochastic mission and its failure rate depends on the stage of the mission. Çekyay and
Özekici [5] discuss issues related to mean time to failure and availability when the mis-
sion or environmental process is semi-Markovian. The reader is referred to Çekyay and
Özekici [8,9] for issues related to performance analysis and maintenance of such modulated
reliability models. First consideration of modulation in software reliability applications is
due to Özekici and Soyer [21] who assume that the failures of the software depend on its
operational profile, which is now the environmental process that represents the sequence
of operations that the software performs. In a recent article, Landon et al. [16] present a
tractable Bayesian approach Markov modulated Poisson model for software reliability. A
discrete-time hidden Markov process is considered, to describe software failures, in Pievatolo
et al. [23]

The use of Markovian modulation is not limited to applications in reliability. In queue-
ing, Prabhu and Zhu [24] discusses modulated queues and provides a survey of earlier
papers, including Eisen and Tainiter [13], Neuts [19] and Purdue [25]. Zhu [30] discusses
Markov modulated queueing networks and shows that the steady-state distribution of the
queue length has a product form solution. There are other stochastic models where modu-
lation is used. Arifoğlu and Özekici [2] analyze an inventory model operating in a partially
observable random environment where the demand process is modulated by a process that
represents the stochastic variations in an economy. Finally, modulation also occurs in port-
folio optimization problems when the random asset returns are modulated in a so-called
regime-switching market, as in Çanakoğlu and Özekici [4].

Although Bayesian analysis of Markov modulated Poisson processes has been considered
by Fearnhead and Sherlock [14], Bayesian methods have not been developed for the general
class of modulated Markov processes. Our main contribution in this paper is to generalize
the methods of Fearnhead and Sherlock [14] for Bayesian analysis of other Markov models,
such as modulated birth-death and compound Poisson processes, which arise in reliability
applications. In particular, we focus on Bayesian analysis when the states of the environ-
mental or modulating process are unobserved based on observed data on the modulated
Markov process. The environmental process is, therefore, a hidden Markov process. Recall
that the probabilistic structure of a Markov process includes exponential holding rates in
a state couples with transition probabilities between states. The inference will include not
only the holding rates and transition probabilities of the observed process but the holding
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rates and the transition probabilities of the hidden Markov process as well. Our analysis
will also focus on the unknown number of states of the environmental process. The details
of our model will be presented in Section 2 where the stochastic structures of the mod-
ulating and modulated processes are described. This section also includes the modulated
compound Poisson process model, which is motivated by the power outage example con-
sidered in Section 6. In Section 3, we will assume that the number of states of the hidden
process is known and show how we can estimate the holding rates as well as the transition
rates of the Markov process. Then, in Section 4, we will assume that we do not know the
number of states of the hidden Markov process and will present an approach to obtain the
marginal likelihood based on Chib [10] that will enable us to infer the unknown number of
states. Our results will be demonstrated using simulated and real data in Section 6.

2. DOUBLY STOCHASTIC MARKOV MODEL

Let Z = {Zt; t ≥ 0} be a stochastic process such that Zt depicts the state of the system
that we are interested in at time t. In a queueing model, it is the number of customers in the
system, while it may be the level of inventory in an inventory model. In a financial model, it
may represent the price of a risky asset as it evolves randomly over time. We suppose that
Z has a finite state space F = {1, 2, . . . , N}, and it has a Markov structure. There is an
environmental process Y = {Yt; t ≥ 0}, where Yt represents the state of the environmental
at time t, and it has an effect on the process Z. We assume that Y is a continuous-time
Markov process with a finite state space E = {1, 2, . . . ,K}, where K is the number of states.
The generator of the Markov process Y is

Gij =
{−ρi, if j = i

ρiPij , if j �= i
(1)

or Gij = ρi(Pij − Iij), where I is the identity matrix. In other words, the process Y spends
an exponential amount of time with holding rate ρi in state i and, when it jumps, it
randomly goes to state j with transition probability Pij , where Pii = 0.

The probabilistic structure of Z is such that while the state of the environment Yt is
i ∈ E, the process Z evolves as a Markov process with generator

Ai(x, y) =
{−λi(x), if y = x

λi(x)Mi(x, y), if y �= x
. (2)

This implies that while the process Y is in state i, the process Z spends an exponential
amount of time with holding rate λi(x) in state x and, when it jumps, it randomly goes
to state y with transition probability Mi(x, y), where Mi(x, x) = 0. We call Z a doubly
stochastic Markov process (DSMP) that is modulated by the Markov process Y. The DSMP
Z evolves like a Markov process with generator AYt

at any time t. The parameters of our
model involve the exponential holding rates and Markovian transition probabilities given in
(1) and (2).

It is clear that the bivariate process (Y,Z) = {(Yt, Zt); t ≥ 0} is a Markov process with
state space E × F where the generator Q of (Y,Z) is

Q(i,x),(j,y) =

⎧⎨
⎩

ρiPij , j �= i, y = x
λi(x)Mi(x, y), j = i, y �= x
−(ρi + λi(x)), j = i, y = x

(3)

for all i, j ∈ E and x, y ∈ F .
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The stochastic structure of the Markovian model described by (1)–(3) can be used
in connection with a variety of applications. Among them, reliability and maintenance
applications are perhaps the most widely known. In phased-mission or mission-based models,
for example, Y represents the mission process that consists of a random sequence of stages
with random durations that a device has to go through. The deterioration or aging of the
device is depicted by the process Z such that it depends probabilistically on the stage of
the mission performed at any given time. Çekyay and Özekici [6,7] discuss reliability and
maintenance issues associated with such a model.

Note that the well-known doubly stochastic Poisson process is a special case when
λi(x) = λi and Mi(x, x + 1) = 1. In this setting, Zt represents the total number of customer
arrivals until time t with initial state Z0 = 0. While the environment is in state Yt = i,
customers arrive according to a Poisson process with rate λi. The reader is referred to
Özekici and Soyer [22] for a discussion on modulated Poisson processes.

The Markov modulated birth-death process is another special case of DSMP when
λi(x) = γi + μi and

Mi(x, y) =

⎧⎪⎨
⎪⎩

γi

γi + μi
, y = x + 1

μi

γi + μi
, y = x − 1

where γi and μi are the birth and death rates of the process and Mi(0, 1) = 1.
The DSMP model becomes a Markov modulated compound Poisson process when

Zt =
Nt∑

k=1

Wk (4)

where N is a Poisson process with jump rate λi in environment i, Wk’s are independent
and identically distributed random variables representing the jump size, and Mi(x, y) is the
probability of having a jump with magnitude (y − x) in environment i. One possibility is to
assume that Wk’s all have the binomial distribution with parameters ni and pi, while the
jump occurs in environment i so that

Mi(x, x + z) =
(

ni

z

)
pz

i (1 − pi)ni−z (5)

for z = 0, 1, 2, . . . , ni. We will indeed use this model in the context of a reliability application
in Section 6.

Since (Y,Z) is a Markov process with generator matrix Q, its transition function

P(i,x),(j,y)(t) = P [Yt = j, Zt = y |Y0 = i, Z0 = x] (6)

is given by the exponential matrix defined via the Taylor expansion

P (t) = exp (Qt) =
+∞∑
n=0

tn

n!
Qn. (7)

There are computationally tractable procedures to use the exponential matrix (7) as dis-
cussed in Moler and van Loan [18]. These matrices are very useful in the analysis of stochastic
models with Markovian modulation. We refer the reader to Neuts [20] for details and var-
ious results on the exponential matrix that we will be using in our analysis. Asmussen [3]
provides a survey on Markovian point processes and discusses how they are used in applied
probability calculations.
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Using the conditional joint distribution (6) of (Yt, Zt) given by the exponential matrix
(6), one can easily compute the conditional marginal distributions of Yt and Zt. If the initial
distribution of (Y0, Z0) is known, these results can be used in a trivial manner to compute
the unconditional distributions. Similarly, if the Markov process (Y,Z) is ergodic, then
its steady-state or limiting distribution π be determined using its generator Q by solving
the system of linear equations πQ = 0 with the normalizing equation. In summary, using
the matrix exponential form (7) and tools to compute it, one can obtain many important
performance measures associated with the transient and ergodic behavior of the DSMP.
Our primary objective is to develop statistical inference for the DSMP using a Bayesian
framework. It is important to note that in our model, the Y process is latent and, therefore,
in addition to the unknown parameters, we also need to make inference about the latent
states.

3. BAYESIAN ANALYSIS OF THE DSMP

In this section, we will illustrate how we can estimate all the parameters as well as the
latent states in the DSMP. The approach is based on an extension of the Markov Chain
Monte Carlo (MCMC) method given in Fearnhead and Sherlock [14] for Poisson processes.
This method is based on a Gibbs sampler and requires a three-stage process. We denote
the holding rates of the Y process as ρ = {ρi; i ∈ E} and transition probabilities as P =
{Pij ; i, j ∈ E}. Similarly, the holding rates of the DSMP are denoted as λ = {λi(x); i ∈
E, x ∈ F} and transition probabilities as M = {Mi(x, y); i ∈ E, x, y ∈ F}.

We assume that the system process Z is observed completely until some time tobs, while
the process Y is latent. We suppose that the process Z changes its state a total of n times
during [0, tobs], and we let t(1) < t(2) < · · · < t(n) denote the jump times of the Z process.
To simplify the notation, we will let z(k) = Zt(k) denote the observed state of Z after the kth
change of state, and Y (k) = Yt(k) denote the unobserved state the hidden Markov process
at the kth time of change of the observed process Z. We also set t(0) = 0, t(n+1) = tobs for
completeness, and let z(0) = Z0 denote the initial observed state, while z(n+1) = z(n) is the
last state observed. It is clear that {t(k)} and {z(k)} are all contained in the history or data
set D = {zt; 0 ≤ t ≤ tobs}, where zt is the state of the DSMP observed at time t.

In Stage 1, we will simulate the state of the hidden Markov process at each of the times
t(1), t(2), . . . , t(n) given in our data set D and conditional on the parameters ρ, P, λ and
M. In Stage 2, we will simulate the entire hidden Markov process, and in Stage 3, we will
simulate a new set of parameter values using the simulated history of the hidden Markov
process and observed data.

3.1. Stage 1: Simulation of the hidden Markov process at event times

At any event time t(k), we also observe the state of the process z(k). Moreover, as long as the
state of the Markov process Y is i at an event time t(k), the process Z jumps exponentially
with rate λi(z(k)) and, when it jumps at the next event time t(k+1), it jumps to state z(k+1)

with probability Mj(z(k), z(k+1)) if the state of the latent process Y is j at time t(k+1). We let
tk = t(k) − t(k−1) denote the length of the kth interval for k = 1, 2, . . . , n + 1 where no jump
of Z occurs at t(n+1) = tobs. Finally, we represent our data set as D = (d0, d1, . . . , dn+1),
where dk = (tk, z(k)) contains information over the kth interval.

For each interval k = 1, 2, . . . n + 1, we define the diagonal matrix

Λ(k)
ij =

{
λi(z(k−1)), if j = i
0, if j �= i

(8)

https://doi.org/10.1017/S0269964820000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000157


BAYESIAN ANALYSIS OF DOUBLY STOCHASTIC MARKOV PROCESSES 713

and
G

(k)
ij = Gij − Λ(k)

ij , (9)

as well as a likelihood matrix

A
(k)
ij = P [dk, dk+1, . . . , dn+1, Y

(n+1) = j |Y (k−1) = i, z(k−1)] (10)

for k = 1, 2, . . . , n + 1. Then, it is clear from (A.6) in the Appendix that

A
(n+1)
ij = P [dn+1 = (tn+1, z

(n+1) = z(n)),

Y (n+1) = j |Y (n) = i, z(n)] =
[
exp

(
G(n+1)tn+1

)]
ij

.
(11)

Starting with A
(n+1)
ij in (11) and proceeding backwards, we can determine A(k) for all

k = 1, 2, . . . , n as

A
(k)
ij =

∑
l∈E

P [Y (k) = l, tk, z(k), dk+1, . . . , dn+1, Y
(n+1) = j |Y (k−1) = i, z(k−1)],

which yields

A
(k)
ij =

∑
l∈E

P [Y (k) = l, tk, z(k) |Y (k−1) = i, z(k−1)]

× P
[
dk+1, . . . , dn+1, Y

(n+1) = j |Y (k) = l, tk, z(k), Y (k−1) = i, z(k−1)
]
. (12)

Now using the Markov property, the second term inside the summation is

P
[
dk+1, . . . , dn+1, Y

(n+1) = j |Y (k) = l, tk, z(k), Y (k−1) = i, z(k−1)
]

= A
(k+1)
lj . (13)

Using the main result (A.15) in the Appendix, the first term can be written as follows:

P [Y (k) = l, TΔ = tk, ZTΔ = z(k) |Y0 = i, Z0 = z(k−1)]

=
[
exp

(
G(k)tk

)]
il

λ
(k)
l Ml(z(k−1), z(k)) =

[
T (k)L(k)

]
il

with a slight abuse of notation where

T
(k)
ij =

[
exp

(
G(k)tk

)]
ij

(14)

and
L

(k)
ij = Λ(k)

ij Mj(z(k−1), z(k)). (15)

Finally, putting (12)–(15) together, we obtain the matrix recursion

A(k) = T (k)L(k)A(k+1) (16)

for k = 1, 2, . . . , n, where the boundary matrix is A(n+1) = exp(G(n+1)tn+1) = T (n+1) from
(11). It follows from this recursion that

A(k) =

[
n∏

m=k

T (m)L(m)

]
T (n+1) (17)
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and the final recursion gives us the likelihood

A
(1)
ij = P [d1, d2, . . . , dn+1, Yt(n+1) = j |Y0 = i, z(0)] = P [D, Y (n+1) = j |Y0 = i, z(0)]. (18)

Suppose that the initial and final states of Y are known as Y0 = i and Y (n+1) = j. Then,
the state of the hidden Markov chain Y at time t(k) can be simulated using the conditional
distribution

P [Y (k) = l | D, Y (k−1) = i, Y (n+1) = j] =
T

(k)
il L

(k)
ll A

(k+1)
l,j

A
(k)
i,j

(19)

recursively by proceeding forwards through the event times t(1), t(2), . . . , t(n) by taking k =
1, 2, . . . , n.

If the initial state Y0 and the final state Y (n+1) are unknown, as it might be expected
in applications, the algorithm can be adjusted trivially as discussed in Landon et al. [16].

3.2. Stage 2: Complete simulation of the hidden Markov process

After completing Stage 1, we will have our simulated states of the hidden Markov process
Y at each of our observation times {t(k)}. We will now use these to simulate the entire
hidden Markov process Y. To do this, we first of all simulate it over the interval (t(0), t(1)),
then (t(1), t(2)), and so on until (t(n), t(n+1)). The simulation over each interval is done using
the uniformization of the Markov process Y, supposing that ρ = maxi∈E ρi is finite. It is
well-known (see, e.g., Ross [26]) that the Markov process Y can be represented as a Markov
chain X̂ subordinated to a Poisson process N̂ with arrival rate ρ so that Yt = X̂N̂t

and

P [Yt = j |Y0 = i] = P [X̂N̂t
= j | X̂N̂0

= i]

=
+∞∑
n=0

P [N̂t = n]P [X̂n = j | X̂0 = i]

=
+∞∑
n=0

e−ρt (ρt)n

n!
Rn

i,j ,

where

R =
1
ρ
G + I (20)

is the transition matrix corresponding to the Markov chain X̂. Over any interval
(t(k−1), t(k)), we already obtained the simulated states Yt(k−1) = ik−1 and Yt(k) = ik in Stage
1. Therefore, the conditional distribution of the number arrivals of N̂ during (t(k−1), t(k)) is

P [N̂t(k) − N̂t(k−1) = n |Yt(k−1) = ik−1, Yt(k) = ik]

=
(

e−ρtk (ρtk)n

n!

)(
Rn

ik−1,ik

exp [Gtk]ik−1,ik

)
(21)

since

P [Yt(k) = ik |Yt(k−1) = ik−1] = exp [Gtk]ik−1,ik
.
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Therefore, the number of arrivals N̂t(k) − N̂t(k−1) can be simulated using the distribution
(21). If simulation yields N̂t(k) − N̂t(k−1) = r, then the r arrival times t̂1, t̂2, . . . , t̂r of N̂ over
the interval (t(k−1), t(k)) are simulated by generating r uniform variates over (t(k−1), t(k))
and ordering them. Now, we know that Yt(k−1) = ik−1 and Yt(k) = ik and the states of hidden
Markov process at t̂1 ≤ t̂2 ≤ · · · ≤ t̂r are simulated recursively by using the conditional
distributions

P [Yt̂j
= s |Yt̂j−1

= ŝj−1, Yt(k) = ik] =
Rŝj−1,sR

r−j
s,ik

Rr−j+1
ŝj−1,ik

(22)

for j = 1, 2, . . . , r. For j = 1, one should set t̂j−1 = t̂0 = t(k−1) and ŝj−1 = ŝ0 = ik−1. It also
follows from the conditional distribution (22) that Yt̂r

= Yt(k) = ik at the last time point
when j = r since R0 is the identity matrix.

3.3. Stage 3: Generation of new parameters using data and the hidden process

Having completed Stages 1 and 2, we should now have the entire simulated hidden Markov
process, as well as our data D on the observed DSMP. Let F = {yt; 0 ≤ t ≤ t(n+1)} denotes
the environmental process generated using the procedure in Stage 2. Thus, we can write out
our conditional likelihood function of the parameters and then obtain the full conditionals
to generate a new set of values for our parameters at each step of the Gibbs sampler. Let
τi be the total time that the hidden Markov process Y spends in state i ; τ̂i(x) be the total
amount of time that the modulated process Z spends in state x, while the state of Y is i ;
rij be the number of times the hidden process Y makes a transition from state i to state
j and r̂i(x, y) be the number of times that the process Z jumps from state x to y, while
the hidden process Y is in state i. It is clear that τi, rij , τ̂i(x) and r̂i(x, y) are in F ∪ D for
all i, j ∈ E and x, y ∈ F. Given data D and the entire history F of the Markov process, the
conditional likelihood function of the parameters ρ, P, λ and M is given by

L(ρ,P, λ,M;F ,D) ∝
∏
i∈E

[
ρ
∑

j∈E rij

i exp(−ρiτi)
∏
j∈E

P
rij

ij

[ ∏
x∈F

[
λi(x)

∑
y∈F r̂i(x,y)

× exp(−λi(x)τ̂i(x))
∏
y∈F

Mi(x, y)r̂i(x,y)

]]]
. (23)

Assuming conjugate independent priors for the unknown parameters, the full conditional
distributions can be easily obtained. More specifically, for a given states i = 1, . . . , K and
x = 1, 2, . . . , N , we assume independent gamma priors for ρi’s denoted as ρi ∼ G(aρ

i , b
ρ
i ), and

for λi(x)’s denoted as λi(x) ∼ G(aλ
i (x), bλ

i (x)). For the ith row of the transition matrix P , we
assume a Dirichlet prior, independent of the other rows, as Pi ∼ Dir(αi1, . . . , αiK), where
Pi = (Pi1, . . . , PiK). Note that in Pi, we have Pii = 0 and the corresponding parameter
αii = 0. Similarly, for the x th row of the transition matrix Mi, we assume a Dirich-
let prior, independent of the other rows, as Mi(x) ∼ Dir(βi(x, 1), . . . , βi(x,N)), where
Mi(x) = (Mi(x, 1), . . . ,Mi(x,N)). Note that Mi(x, x) = 0 and the corresponding parameter
is βi(x, x) = 0.

Using standard Bayesian results, we can show that given the full history of the hidden
Markov process, the full conditional distributions of the parameters can be obtained as
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follows:

ρi | ρ−i
i ∼ G

⎛
⎝aρ

i +
∑
j∈E

rij , b
ρ
i + τi

⎞
⎠ ,

λi(x) |λ−i
i (x) ∼ G

⎛
⎝aλ

i +
∑
y∈F

r̂i(x, y), bλ
i + τ̂i(x)

⎞
⎠

(24)

and

Pi |P−i
i ∼ Dir(αi1 + ri1, . . . , αiK + riK) (25)

Mi(x) |Mi(x)−1 ∼ Dir(βi(x, 1) + r̂i(x, 1), . . . , βi(x,N) + r̂i(x,N)) (26)

where αii = rii = βi(x, x) = r̂i(x, x) = 0.
We then generate new values for these parameters from their posterior distribution and

then repeat the whole process again, starting with Stage 1.

4. ASSESSMENT OF THE NUMBER OF ENVIRONMENTAL STATES

Our analysis in Section 3 assumed that the number of states K in the hidden Markov
process was known. However, in general, the actual number of states may be unknown to
us, so it is important to be able to determine how many states there are. The problem of
determining K can be considered as a model selection problem in the Bayesian approach
where the model choice is made using Bayes factors; see Kass and Raftery [15] for a review.
The computation of the Bayes factors requires the evaluation of marginal likelihood for a
given model, that is, for given value of K in our case. More specifically, if we let D denote
our observed data, we want to obtain the marginal likelihood p(D|K). The model with the
highest value of p(D |K) is the one most supported by the data, and this can be used as
the criterion for determining the value of K. Alternatively, assuming a support for K and
specifying prior probabilities P [K = k] for different models such that

∑
k P [K = k] = 1, we

can obtain posterior model probabilities P [K = k | D] using the marginal likelihood.
Evaluation of the marginal likelihood p(D |K) analytically is not possible in many

problems since it requires integrating out the unknown parameters. Since draws from prior
distributions of the parameters result in unstable estimation, the use of Monte Carlo meth-
ods emphasize the use of posterior Monte Carlo samples to evaluate p(D |K). Although
this is not straightforward in many cases, when the full posterior conditional distributions
are known forms, the marginal likelihood terms can be approximated using the approach
proposed by Chib [10]. Since the Bayesian analysis of the DSMP in Section 3 is based on
known full conditionals, we can adopt Chib’s procedure to our problem as will be discussed
in the sequel.

In our case, the marginal likelihood for a specific model with dimension K is given by
the following equation:

p(D) =
p(D | ρ,P, λ,M,F) p(ρ,P, λ,M,F)

p(ρ,P, λ,M,F |D)
(27)

where ρ is a K -dimensional vectors of ρi’s and P is the transition probability matrix of
dimension K with zeros on the diagonal. Likewise, λ is a K × N dimensional vector of
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λi(x)’s and M consists of K matrices each with dimension N and zero entries on the
diagonals. We can rewrite (27) as

p(D) =
p(D | ρ,P, λ,M,F) p(F | ρ,P)p(ρ, λ,M)p(P)

p(ρ,P, λ,M | F ,D)p(F |D)
. (28)

Equation (28) holds for any values of (ρ,P, λ,M,F) such as (ρ∗,P∗, λ∗,M∗,F∗) which is
typically chosen as the mean or mode values of the posterior distributions. We note that all
the terms in the numerator are available to us analytically and, therefore, can be evaluated
at (ρ∗,P∗, λ∗,M∗,F∗). The tricky part to evaluate is the denominator term

p(F∗ | D) =
∫

p(F∗ | D, ρ,P, λ,M)p(ρ,P, λ,M | D)d(ρ,P, λ,M)

which can be evaluated using G samples from the posterior distribution via

p(F∗ | D) =
1
G

G∑
g=1

p(F∗ | ρ(g),P(g), λ(g),M(g),D). (29)

The first term p(ρ∗,P∗, λ∗,M∗ | F∗,D) can easily be written down as the product of gamma
and Dirichlet densities. Thus, for each value of K, we can approximate (28) and determine
the model with the highest support of the data. As previously mentioned, using the marginal
likelihood, we can also compute posterior model probabilities P [K = k | D] to infer the value
of K.

5. TREATMENT OF DIFFERENT TYPES OF DATA SETS

The Bayesian analysis discussed until now is based on the data set D = {zt; 0 ≤ t ≤ tobs}
that includes information observed only on the modulated process Z. Since the Markov
process Y is unobserved, the procedure described in Stages 1 and 2 of Section 3 is used to
simulate it. Then, in Stage 3, the simulated process F = {yt; 0 ≤ t ≤ tobs} is put together
with D = {zt; 0 ≤ t ≤ tobs} in order to compute τi, rij , τ̂i(x) and r̂i(x, y) in F ∪ D. This
leads to the posteriors (24)–(26) through the likelihood (23). The case that we considered
involves complete data on the modulated process Z only because this is indeed the most
interesting situation. In this section, we briefly comment on how this procedure can be used
with different data sets.

5.1. Complete data on Y and Z

The application of the procedure when data on both Z (D = {zt; 0 ≤ t ≤ tobs}) and Y
(F = {yt; 0 ≤ t ≤ tobs}) are available is fairly trivial. In this case, we do not need to perform
Stages 1 and 2 of the simulation step. Using the given data set F ∪ D, we can directly use
Stage 3 to determine the posteriors.

5.2. Complete data on Y

Suppose that the data set F = {yt; 0 ≤ t ≤ tobs} is on the hidden Markov process Y, and
the modulated Markov process Z is unobserved. Then, one can easily simulate the process
Z on 0 ≤ t ≤ tobs to obtain D = {zt; 0 ≤ t ≤ tobs}. This can be done fairly easily by noting
that, while the hidden process Y is observed to be in some state i ∈ E during any interval,
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the modulated Markov process evolves according to a Markov process with generator Ai.
Therefore, if the initial state of Z is x ∈ F at the beginning of the interval, then it remains
there for an exponential amount of time with rate λi(x). If this exponential sojourn ends
before the end of the interval, then the next state of Z becomes y ∈ F with probability
Mi(x, y). On the other hand, if the exponential sojourn exceeds the end of the interval,
then the new state of Y over the next interval is used in a similar manner. Given F =
{yt; 0 ≤ t ≤ tobs}, the states of Z can be simulated using time variates generated from the
exponential distributions with rates {λi(x)} and state variates generated from the discrete
distributions {Mi(x, ·)}. Once D = {zt; 0 ≤ t ≤ tobs} is obtained through this simulation,
one can use F ∪ D as before in Stage 3. Note that the simulation stage in this case is much
simpler than Stages 1 and 2 in Section 3 for the case with data on Z.

5.3. Partial data (event times) on Y

So far, we had complete data available either on Z, or Y, or both. It is possible that
data is available only partially on the processes involved. In this case, the data set F1 =
{s(1), s(2), . . . , s(m)} is on event times of the Markov process Y, where s(k) denotes the
time of kth jump of Y observed during [0, tobs]. The states are unobserved and we need to
simulate these states {Y (1), Y (2), . . . , Y (m)} at the observed event times where Y k) = Ys(k)

to obtain complete data F = {yt; 0 ≤ t ≤ tobs}. Once this is accomplished, we can use the
procedure outlines above with complete data on Y to do the Bayesian analysis. We now
let sk = s(k) − s(k−1) denote the length of the kth interval for k = 1, 2, . . . ,m + 1 where no
jump of Y occurs at the end of the (m + 1)st interval at time s(m+1) = tobs. Our data set
can equivalently be represented as F1 = (s1, s2, . . . , sm+1).

Let
B

(k)
ij = P [sk, sk+1, . . . , sm+1, Y

(m+1) = j |Y (k−1) = i] (30)

for k = 1, 2, . . . ,m + 1. Since the process Y makes no jump during [s(m), s(m+1) = tobs], we
have

B
(m+1)
ij = P [sm+1, Y

(m+1) = j |Y (m) = i] = exp (−ρism+1) Iij . (31)

We now proceed backward to determine B(k) for all k = 1, 2, . . . ,m. Note that

B
(k)
ij = P [sk, sk+1, . . . , sm+1, Y

(m+1) = j |Y (k−1) = i]

=
∑
l∈E

P [Y (k) = l, sk, sk+1, . . . , sm+1, Y
(m+1) = j |Y (k−1) = i],

which can be written as follows:

B
(k)
ij =

∑
l∈E

P [Y (k) = l, sk |Y (k−1) = i]

× P
[
sk+1, . . . , sm+1, Y

(m+1) = j |Y (k) = l, sk, Y (k−1) = i
]
. (32)

Now using the Markov property, the second term inside the summation is

P
[
sk+1, . . . , sm+1, Y

(m+1) = j |Y (k) = l, sk, Y (k−1) = i
]

= B
(k+1)
lj .

Using the fact that Y is a Markov process, the first term can be written as follows:

P [Y (k) = l, sk |Y (k−1) = i] = ρi exp (−ρisk) Pil = T
(k)
il
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and (32) leads to the recursion

B(k) = T (k)A(k+1)

for k = 1, 2, . . . ,m where the boundary matrix B(m+1) is given by (31). It follows from this
recursion that

B(k) =

[
m∏

n=k

T (n)

]
B(m+1)

and the final recursion gives us the likelihood

B
(1)
ij = P [s1, s2, . . . , sm+1, Y

(m+1) = j |Y0 = i] = P [F1, Y
(m+1) = j |Y0 = i].

If the initial and final states of Y are known as Y0 = i and Y (m+1) = j, then the state of
the hidden Markov chain Y at time s(k) can be simulated using the conditional distribution

P [Y (k) = l | F1, Y
(k−1) = i, Y (m+1) = j] =

T
(k)
il B

(k+1)
l,j

B
(k)
i,j

(33)

recursively by proceeding forwards through the event times s(1), s(2), . . . , s(m) by taking
k = 1, 2, . . . ,m.

Once the states F2 = {y(1), y(2), . . . , y(m)} at event times F1 = {s(1), s(2), . . . , s(m)}
are generated using (33), we obtain F1∪ F2 = F = {yt; 0 ≤ t ≤ tobs}, and the procedure
described above for the case with complete data on Y can be applied to conduct Bayesian
analysis.

The case of partial data on the Z process where only jump times are observed can also
be handled in a similar manner.

6. NUMERICAL ILLUSTRATIONS

In this section, we discuss two illustrations of the Markov modulated compound Poisson
process by applying it to both real and simulated data. This is motivated by the need to
predict the time before the next power outage and the number of people affected by the
power outages.

The Markov modulated compound Poisson model is given in (4) and (5) where Zt

represents the total number of people affected by any of the power outages. Here, Nt is
a Poisson process that gives the number of outages until t, Wk is the number of people
affected by outage k, ni = n represents the total number of households in an area that
potentially could be affected by the outages and pi is the probability for each household
to be affected by an outage that occurs in environment i. We assume pi as well as the
holding rate, λi, are affected by the state of the environmental process. Given n and pi,
we assume that Wk follows a binomial distribution. In our development, we assume beta
priors for pi denoted as pi ∼ Beta(ap

i , b
p
i ), for all i. In Section 6.1, we use simulated data

to demonstrate the performance of the compound Poisson process modulated by a three-
state Markov process. In Section 6.2, we apply a compound Poisson process modulated by
a two-state environmental process to actual power outage data in Northern Virginia.
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Figure 1. Posterior density of p’s.

6.1. Compound Poisson process when K= 3

When the number of hidden states is 3, the likelihood function for the compound Poisson
process is given by the following equation:

L(ρ,P, λ,M;F ,D) ∝ ρr12+r13
1 e−ρ1τ1ρr21+r23

2 e−ρ2τ2ρr31+r32
3 e−ρ3τ3λn1

1 e−λ1τ1λn2
2 e−λ2τ2λn3

3

× e−λ3τ3P r12
12 P r13

13 P r21
21 P r23

23 P r31
31 P r32

32

∏
y−x∈F

[(py−x
1 (1 − p1)n−y+x)r̂1(y−x)

× (py−x
2 (1 − p2)n−y+x)r̂2(y−x)(py−x

3 (1 − p3)n−y+x)r̂3(y−x)]

where r̂i(y − x) represents the number of outages that affect (y − x) people when the sys-
tem is in environment i and ni represents the number of outages when the system is in
environment i.

We generated our simulated data using the following parameters:

ρ1 = 0.001, ρ2 = 0.1, ρ3 = 0.01, λ1 = 0.025, λ2 = 2.5, λ3 = 0.15,

n = 10, p1 = 0.33, p2 = 0.5, p3 = 0.67

In our Bayesian analysis, we use proper but diffused priors for the parameters by setting aλ
i =

bλ
i = aρ

i = bρ
i = ap

i = bp
i = αi,j = 0.01 for i,j = 1,2,3. Running Gibbs sampler, after a small

burn-in sample, we obtained the posterior distribution of the parameters. The simulation of
11,000 iterations with a two-state modulating process took 112 min using a computer with 16
GB RAM, i7-8565U CPU, and 64-bit operating system. Whereas, the same simulation took
168 min using the same device when a three-state modulating process is used instead. As
the number of hidden states increases, the number of parameters in the likelihood function
increase significantly, along with the computation time.

The posterior distributions of the parameters are presented in Figures 1–3. As can be
seen from Figure 1, the posterior distributions of p for state 1, 2 and 3 are concentrated
around 0.33, 0.47 and 0.59, respectively. We can see from Figure 2 that the posterior densities
of λ are concentrated around 0.03, 1.31 and 0.12, respectively. Figure 3 shows the posterior
distributions of ρ to be around 0.0005, 0.12 and 0.003 respectively. When the holding rates
of different environments are significantly different from each other, as in our simulated
data, we do not witness any convergence problems. However, when the holding rates are
close to each other, identifying the states correctly can become problematic. This issue is
referred to in the literature as the “label switching” problem. An alternative model could
be used to overcome this problem by imposing ordering restrictions on the parameters as
discussed in [23].
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Figure 2. Posterior density of λ’s.

Figure 3. Posterior density of ρ’s.

For this example, the full conditionals take the following form

Pi |P−1
i ∼ Dir(αi1 + ri1, αi2 + ri2, αi3 + ri3)

pi | p−1
i ∼ Beta

⎛
⎝ap

i +
∑

y−x∈F

(y − x) · r̂i(y − x), bp
i +

∑
y−x∈F

(n − y + x) · r̂i(y − x)

⎞
⎠

λi |λ−1
i ∼ G(aλ

i + ni, b
λ
i + τi)

ρi | ρ−1
i ∼ G

⎛
⎝aρ

i +
∑
j∈E

rij , b
ρ
i + τi

⎞
⎠

where i = 1, 2, 3 and αii = 0.
Figure 4 shows the actual and the expected time between outages using the holding rate

of the environment with the highest posterior probability. The red lines are the expected
time between outages when the posterior probability is the highest for state 1, the green
lines are the expected time when the posterior probability is the highest for state 2 and the
purple line is for state 3. It is visible from the plot that based on the environment, the time
between outages vary. State 2 is the most prone to outages with the average time between
outages near 0, indicating that outages are nearly constant.

Because we use simulated data, we can identify the state of the environmental process
at any time, even though it is typically latent. The confusion matrix for the hidden process
shows that out of 253 outages, 132 of them occurred when the environmental process was in
state 1, 65 outages occurred when the process was in state 2 and the remaining 56 outages
occurred when it was in state 3 (Table 1). The overall hidden state prediction accuracy,
based on the highest posterior probability for the latent states, is 0.9723. When the process
is in state 2, the model identifies the environmental state correctly for all 65 occurrences.
When the process is in state 1, the model correctly predicts the state for 129 out of 132
outages, whereas when the environment is in state 3, the model predicts it correctly for 51
out of 56 occurrences.

https://doi.org/10.1017/S0269964820000157 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000157


722 Atilla Ay et al.

Figure 4. Actual and expected time between failures based on the environmental state
with the highest posterior probability.

Table 1. Confusion matrix for hidden states

Predicted

State 1 State 2 State 3 Total

Actual State 1 129 0 3 132
State 2 0 65 0 65
State 3 5 0 51 56
Total 134 65 54 253

6.2. Compound Poisson process on power outages data

The power outage data we have include the time of the power outages in Stafford County,
Virginia, from September 10, 2012 to December 11, 2013, as well as the number of customers
affected by each outage. The data consist of 316 power outages. The number of customers
affected by each outage ranges from 0 to 918. The number of customers in Stafford County
that potentially could be affected by the outages is 5037.

Our results show that the power system we observe operates in two different environ-
ments with different outage rates and probability characteristics. We can see from Figure 5
that the posterior distribution of p1 is more diffuse than p2, and it is concentrated around
0.011, whereas the posterior distribution of p2 is concentrated around 0.015. Figure 6 sug-
gests that state 2 is more prone to outages because the posterior distributions of λ are
concentrated around 0.012 and 0.1, for state 1 and state 2, respectively. We observe from
Figure 7 that the posterior distribution of ρ2 is concentrated around 0.0125 which means
that the expected time for the environment to stay in state 2 is around 80 h. In Figure 8,
the black line is the actual time between outages (in hours), red lines are the expected
time between outages when the posterior probability favors state 1 and the green lines are
the expected time between outages when the posterior probability favors state 2. It is also
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Figure 5. Posterior density of p’s.

Figure 6. Posterior density of λ’s.

Figure 7. Posterior density of ρ’s.

Figure 8. Actual and expected time between outages based on the environmental state
with the highest posterior probability.
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Table 2. Outage index and date intervals where the model
predicts the environment is in state 2

Outage index Date of occurrence

25–56 October 29–31, 2012
96–155 March 6–8, 2013
241–316 December 8–11, 2013

Figure 9. Posterior predictive reliability.

important to mention that although the environmental process switches nine times during
the observation period, the posterior probabilities for environmental states show that for
some of those state changes, the model only slightly favors one state over the other, with
the state probabilities close to 0.5. Table 2 gives the outage intervals and dates where we
see the model is certain the environment is in state 2.

After using a modulated model, obtaining posterior probabilities for the environmental
states, and comparing the environment change times with the National Centers for Environ-
mental Information (NCEI) storm events database, we see that the environmental process
captures the effects of extreme weather conditions. During the time we observe the power
system, NCEI database reports three major weather events in Stafford County that could
have had an impact on the power system. Those reported events are “high wind” on Octo-
ber 29, 2012 and “winter storms” on March 5, 2013 and on December 8, 2013. Our model
shows that during, or immediately after the time of those weather events, the environment
was in state 2.

It is possible to obtain the posterior probability of time to the next power outage, that
is, the posterior system reliability using (A.6) in the appendix and the Monte Carlo aver-
age approximation using the posterior sample of parameters ρ and λ. Posterior predictive
reliability gives us the probability that there will not be an outage in the next t period of
time, conditioned on the current state of the environment, Y0, written as follows:

P (T1 > t |Y0=i,D) ≈ 1
S

S∑
s=1

∑
j∈E

exp((GS − ΛS)t)ij .

Figure 9 presents the posterior reliability function of the power system for Y0 = 1 on the
left and Y0 = 2 on the right. Because the failure rate is higher for the second environment,
the posterior predictive reliability goes to 0 much faster for Y0 = 2 compared to Y0 = 1.

Using the posterior probabilities for the environmental states and the posterior sample
of the parameter p, one can obtain the posterior probability distribution of the number of
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Figure 10. Posterior probabilities for the number of people affected by the outages 17
and 294.

people affected by a specific outage using a mixture of binomial distributions. We selected
two outages, index 17 and index 294, to present how the posterior probability distribution
for the number of people affected by the outages varies based on if the model predicts the
environment to be in state 1 versus state 2. Potentially, this can also be used to make
predictions for a future outage. The actual number of people affected by the outages 17
and 294 are 58 and 85, respectively. The model is confident that outage 17 occurred in the
first environment and the outage 294 occurred in the second environment. As a result, the
expected number of people that will be affected by outage 294 is higher than the number
for outage 17 (Figure 10).

7. CONCLUDING REMARKS

In this paper, we have considered Markov modulated Markov processes and developed
their Bayesian analysis. We illustrated the implementation of our approach using a Markov
modulated compound Poisson process model and applying it to simulated, as well as actual,
power outage data to describe the reliability of the power system and the number of people
that were affected by the outages.

As the number of parameters in the model increases, the computation time increases
dramatically. Therefore, it is important to select the number of hidden states carefully in
order not to make the model computationally inefficient. We presented an approach to
obtain the marginal likelihood of the data for different dimensions of the hidden process
that enables us to infer the unknown number of states. This approach allows us to restrict
the number of hidden states and maintain computational efficiency.

This work can be extended in many different ways. In this paper, we only consid-
ered the power outages in Stafford County, Virginia. A possible extension would be to
widen the geographical range, which would allow us to consider different characteristics
of the random environment. An alternative extension can be introducing a spatial compo-
nent to the model to capture the interaction of different neighborhoods under a changing
environment. The proposed approach for analysis of the compound Poisson process has
potential use in the software reliability as discussed in Şahinoğlu [27]. Furthermore, our
Bayesian approach for modulated Markov processes can be used to develop Bayesian main-
tenance policies in problems considered in Ahmadi and Fouladirad [1] and van der Weide and
Pandley [29].
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APPENDIX A

This Appendix presents derivations and explanations of some of the results used throughout this
paper.

APPENDIX A.1. THE MODEL

Suppose that Y is a continuous-time Markov process with a finite state space E = {1, 2, . . . , K},
where K is the number of states and generator

Gij =

{−ρi, if j = i
ρiPij , if j �= i

or Gij = ρi(Pij − Iij), where I is the identity matrix. In other words, the process Y spends an
exponential amount of time with holding rate ρi in state i and, when it jumps, it randomly goes
to state j with transition probability Pij , where Pii = 0.

Suppose that while Y is in state i, an event occurs exponentially with some rate λi. Letting
T denotes the time at which this event occurs, the probabilistic structure of T, conditional on Y,
satisfies

P [T > t |Yu; u ≤ t]= exp

(
−
∫ t

0
λYs

ds

)
.

We are interested in determining probability distributions involving T and YT . The interpretation
of the event time depends on the specific application. It may be the time of arrival of a customer,
time of failure of a machine or time of jump of another process that is modulated by the Markov
process Y .

We define the diagonal matrix

Λij =

{
λi, if j = i
0, if j �= i.

(A.1)

Note that the diagonal entries of the matrix Λ can also be written as the vector λ = (λ1, λ2, . . . , λK)
using a compact notation.

We now define a new process

Ŷt =

{
Yt, if t < T
Δ, if t ≥ T.

(A.2)

so that the process Y is dumped to state Δ as soon as the event happens at time T. It is clear
that the process Ŷ is also a Markov process with extended state space E ∪ {Δ} and generator

Ĝ =

[
G − Λ λ

0 0

]
(A.3)

where the last row and column correspond to state Δ. It also follows that the first passage time

T = inf{t ≥ 0; Ŷt = Δ} (A.4)

has a phase-type distribution. Moreover, the transition function of Ŷ is given by the matrix
exponential

exp
(
Ĝt
)

=

[
exp ((G − Λ)) t) [G − Λ]−1 [exp ((G − Λ)) t) − I] λ

0 1

]
(A.5)

We refer our interested readers to Neuts [20] and Asmussen [3] for details and various results on
the exponential matrix and phase-type distributions.

Our construction of the Ŷ process also implies that

P [Yt = j, T > t |Y0=i]=P [Ŷt=j | Ŷ0=i]= [exp ((G − Λ)) t)]ij (A.6)

from (A.5).
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APPENDIX A.2. THE STATE AT ABSORPTION

We are firstly interested in the state YT at which the event happens or when Ŷ is absorbed. Letting

S = inf{t ≥ 0; Yt �= Y0}

denotes the first time that the Markov process jumps, we can write

Fij = Pi[YT = j] = Pi[YT = j, S > T ] + Pi[YT =j, S ≤ T ]

=

(
λi

λi + ρi

)
Iij +

∫ +∞

0
ρie

−ρise−λisds
∑
k∈E

PikFkj

=

(
λi

λi + ρi

)
Iij +

(
ρi

λi + ρi

) ∑
k∈E

PikFkj (A.7)

using the Markov property and the fact that S has an exponential distribution with rate ρi if the
initial state is i. But (A.7) can be rewritten as follows:

∑
k∈E

ρiPikFkj − (λi + ρi) Fij = −λiIij

or, equivalently,

(G − Λ) F = −Λ (A.8)

using the compact matrix notation and the solution is

F = − (G − Λ)−1 Λ. (A.9)

APPENDIX A.3. THE TIME AT ABSORPTION

The distribution of T can be found easily from

Pi[T ≤ t] = 1 − Pi[T > t]=1 − Pi[Ŷt ∈ E]

= 1 −
∑
k∈E

[exp ((G − Λ)t))]ik

= 1 − [exp ((G − Λ)t)) 1]i (A.10)

where 1 denotes a column vector of 1’s. One can easily show that d exp(At)/dt = exp(At)A =
A exp(At) for any generator A and this gives the density function

dPi[T ≤ t]

dt
= − [exp ((G − Λ)t) (G − Λ)1]i

= [exp ((G − Λ)t) λ]i (A.11)

since (G − Λ)1 = −λ.
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APPENDIX A.4. THE STATE AND TIME AT ABSORPTION

Our interest lies more in the joint distribution of YT and T. Note that, using the Markov property
at S, we have

Fij(t) = Pi[YT = j, T > t] = Pi[YT =j, T > t, S > t] + Pi[YT =j, T > t, S ≤ t]

= IijPi[T > t, S > t] +

∫ t

0
ρie

−ρise−λisds
∑
k∈E

PikFkj(t − s)

= e−(λi+ρi)tIij +

∫ t

0
ρie

−ρise−λisds
∑
k∈E

PikFkj(t − s)

= e−(λi+ρi)t

⎡
⎣Iij +

∫ t

0
e(λi+ρi)udu

∑
k∈E

ρiPikFkj(u)

⎤
⎦

after the change of variables u = t−s. This implies that the derivative satisfies

dFij(t)

dt
= − (λi + ρi) Fij(t) +

∑
k∈E

ρiPikFkj(t)

=
∑
k∈E

(G − Λ)ik Fkj(t)

and the solution is the matrix exponential

F (t) = exp ((G − Λ)t) F (0)

where F (0) gives the boundary condition. But note from (A.9) that F (0) = −(G − Λ)−1Λ and

F (t) = − exp ((G − Λ)t) (G − Λ)−1 Λ. (A.12)

Moreover, since

F̄ij(t) = Pi[YT = j, T ≤ t] = Pi[YT = j] − Pi[YT = j, T > t]

it follows from (A.9) and (A.12) that

F̄ (t) = − (G − Λ)−1 Λ + exp ((G − Λ)t) (G − Λ)−1 Λ

= [exp ((G − Λ)t) − I] (G − Λ)−1 Λ. (A.13)

This leads to the density

dF̄ (t)

dt
= (G − Λ) exp ((G − Λ)t) (G − Λ)−1 Λ

= exp ((G − Λ)t) Λ (A.14)

since A exp(At) = exp(At)A. In open form, we can, therefore, write

dPi[YT = j, T ≤ t]

dt
= [exp ((G − Λ)t) Λ]ij = [exp ((G − Λ)t)]ij λj . (A.15)
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