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Abstract. Let G be a second countable, Hausdorff topological group. If G is locally
compact, totally disconnected and T is an expansive automorphism then it is shown that the
dynamical system (G, T ) is topologically conjugate to the product of a symbolic full-shift
on a finite number of symbols, a totally wandering, countable-state Markov shift and a
permutation of a countable coset space of G that fixes the defining subgroup. In particular
if the automorphism is transitive then G is compact and (G, T ) is topologically conjugate
to a full-shift on a finite number of symbols.
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1. Background and motivation
In [K1] it was shown that an expansive automorphism of a compact, totally disconnected
group is topologically conjugate to a full-shift on a finite number of symbols cross an
automorphism of a finite group. The method of proof is to use the fact that a compact,
totally disconnected group has arbitrarily small compact-open normal subgroups to code
the system, (G, T ), to a finite-state Markov shift. The Markov shift is topologically
conjugate to (G, T ), the alphabet is a finite group and the Markov shift has a group structure
where the operation is defined using a symbol by symbol group operation. Then using the
group structure of the Markov shift and symbolic dynamics techniques the Markov shift is,
through a sequence of reductions, reduced to a topologically conjugate symbolic system
which is a full-shift cross an automorphism of a finite group.

Since the time of the above-mentioned result, countable-state Markov shifts have been
increasingly used in dynamics. This is the particularly true in the study of maps that exhibit
some (but not uniform) hyperbolicity, maps of the interval and in symbolic dynamics
itself. Likewise, the structure of locally compact, totally disconnected groups and their
automorphisms has received increased attention. See, for example, [CM, CH].

In the present paper it is shown that an expansive automorphism of a locally compact,
second countable, Hausdorff group is topologically conjugate to the product of a symbolic
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full-shift on a finite number of symbols, a totally wandering, countable-state Markov
shift (in some cases) and a permutation of a countable coset space that fixes the defining
subgroup. The strategy used in the case where the group is compact is followed but with
several modifications. The first problem is that a locally compact, totally disconnected
group has arbitrarily small compact-open subgroups but they need not be normal.
This means that if G is locally compact, totally disconnected and T is an expansive
automorphism then it is possible to code (G, T ) to a countable-state Markov shift. The
Markov shift is topologically conjugate to (G, T ), the alphabet is a coset space of G
but there is no easily described group structure on the countable-state Markov shift.
Consequently, the constructions leading to the reductions used must be done in the group
G itself rather than on the symbols of the Markov shift. Another problem is that there is
wandering behavior that can occur in non-compact groups that cannot occur in compact
groups. This leads to the introduction of totally wandering countable-state Markov
shifts.

Following the main result there are remarks on the possible entropies of the transforma-
tions and several examples are provided.

The paper is organized as follows. Section 2 contains some notation from symbolic
dynamics. Section 3 contains all the results and examples. First it is shown how to code
an expansive automorphism of a locally compact, second countable, Hausdorff group
to a countable-state Markov shift where each state has a finite number of predecessors
and successors. Using the countable-state Markov shift presentation several important
subsystems can be identified. Next the two fundamental constructions are explained. Then
the constructions are applied to the countable-state Markov shift and the subsystems
are used to obtain the desired result. The proof consists of a series of step-by-step
reductions applied to countable-state Markov shifts. The reductions can best be understood
by applying the same type of reductions to the examples supplied at the end of the
paper.

2. Symbolic dynamics
Let A denote a finite or countably infinite set with the discrete topology and AZ denote
the set of all two-sided infinite sequences on A with the product topology. Let σ be the
shift homeomorphism of AZ to itself defined by σ(x)i = xi+1. A closed, shift-invariant
subset, X, of AZ is a subshift. If each of the elements of A occurs in some point of X,
we say that A is the alphabet of X. For a subshift X let W(X, n) denote the words of
length n that can occur in X, that is, w ∈ W(X, n) if and only if w = [x0, . . . , xn−1]
for some x ∈ X. Then let W(X) denote the union over all n of the W(X, n). For a word
w ∈ W(X) define the follower set of w, f(w), to be the symbols a ∈ A such that wa ∈
W(X). Define the predecessor set of w, p(w), in a similar manner. The proofs that follow
depend on understanding the sets f (w) and p(w). If X ⊆ AZ is a subshift the standard
n-block presentation of X has alphabet W(X, n) and transitions by overlapping. That is,
[x1, . . . , xn] ∈ f ([x0, . . . , xn−1] if and only if [x0, . . . , xn] ∈ W(X, n + 1). The shift
transformation is defined as before. We will be dealing with finite or countably infinite
state Markov shifts in the discussions that follow and the reader is referred to [K2] for
further background.
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3. The groups
The groups will be Hausdorff, second countable, locally compact and totally disconnected
(equivalently zero-dimensional in this setting). Let G be such a group and T be an
automorphism of G. T is expansive if there exists an open set U containing the identity
element e and for each pair g, h ∈ G, g �= h, there is an n ∈ Z so that T n(g) /∈ T n(h)U .
We say that such a set U separates points. We use van Dantzig’s theorem, which states
that in this setting any open set containing the identity element contains a compact-open
subgroup H. If the group is compact or meets various other conditions the subgroup can
be taken to be normal. If the subgroup is normal the proofs of the following results are
simplified and are somewhat more intuitive.

We will sometimes be working in the group G where we will use script letters and
sometimes in a symbolic space where we will use Roman letters to denote the spaces,
subsets, subgroups, etc. We need to be able to move back and forth between the two. This
is illustrated in the first two observations.

OBSERVATION 3.1. Let G be a second countable, Hausdorff topological group. If G is
locally compact, totally disconnected and T is an expansive automorphism then (G, T ) is
topologically conjugate to a countable-state Markov shift (�G/H , σ). The symbols of the
Markov shift correspond to cosets of a compact-open subgroup H of G.

Proof. T is expansive if we can find an open U that separates points as stated in the
definition of expansive. Then by van Dantzig’s theorem we can find a compact-open
subgroup, H, contained in U that also separates points. The partition of G into cosets
of H is countable because G is second countable. In the standard way we code (G, T )

into ((G/H)Z, σ). We will use gH as a symbol in the alphabet of (G/H)Z corresponding
to the coset gH in G. This means that g ∈ G is coded to x ∈ (G/H)Z by saying that
xi = giH when T i(g) ∈ giH. The coding is one-to-one because H separates points. Let
XG/H denote the image of G in (G/H)Z and π : G → XG/H denote the coding map. So
in this notation π(gH) = gH . The set XG/H is a subshift of (G/H)Z by construction.

Next we show that we can recode XG/H to obtain a countable-state Markov shift.
Using the notation introduced previously we consider the sets of words W(XG/H , n) and
W(XG/H ) and focus on the follower sets, f (w), and predecessor sets, p(w). Observe that
f (H) = {gH : T (H) ∩ gH �= φ} while p(H) = {gH : gH ∩ T −1(H) �= φ}. This allows
us to think of f (H) defining a partition of H into cosets of H ∩ T −1(H) and p(H)

defining a partition of H into cosets of T (H) ∩ H. Next observe that this picture carries
over to all cosets of H. We can think of f (gH) partitioning gH into cosets of H ∩ T −1(H)

and p(gH) partitioning gH into cosets of T (H) ∩ H. This means that the cardinalities of
all f (gH) are the same and the cardinalities of all the p(gH) are the same.

Let Hn denote the word of all H ’s in W(XG/H , n) corresponding to the subgroup
H ∩ T −1(H) ∩ · · · ∩ T −n+1(H) in G. Then we can think of f (Hn) partitioning
H ∩ T −1(H) ∩ · · · ∩ T −n+1(H) into cosets of H ∩ T −1(H) ∩ · · · ∩ T −n(H) and p(Hn)

partitioning H ∩ T −1(H) ∩ · · · ∩ T −n+1(H) into cosets of T (H) ∩ H ∩ T −1(H) ∩
· · · ∩ T −n(H). As for H and gH this partitioning translates to a partitioning of each
g0H ∩ T −1(g1H) ∩ · · · ∩ T −n+1(gn−1H) by cosets of H ∩ T −1(H) ∩ · · · ∩ T −n(H)
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indexed by f (w), where w is the word corresponding to g0H ∩ T −1(g1H) ∩ · · · ∩
T −n+1(gn−1H). The same picture carries over to p(Hn). So the cardinalities of the f (w)

is the same for all w ∈ W(XG/H , n) and the same holds for the cardinalities of the p(w).
Since G is locally compact there is an N so that this cardinality is finite for all n ≥ N .

Since f (Hn) and p(Hn) are finite for all n ≥ N and the cardinalities can only decrease
as n increases, there is an M so that f (HM+k) = f (HM) and p(HM+k) = p(HM) for
all k ≥ 0. We have observed that the cardinalities of the f (w)’s and p(w)’s are the same
for all w ∈ W(Xg/H , n), which means that XG/H is a Markov shift of memory at most M .
Construct the standard M-block presentation of XG/H , as previously described, to produce
a countable-state Markov shift (�G/H , σ) topologically conjugate to (G, T ). Passing to
the standard M-block presentation of XG/H is just choosing the compact-open subgroup
for the coding to be H ∩ T −1(H) ∩ · · · ∩ T −M+1(H) instead of H. So without loss of
generality we may assume that XG/H = �G/H , where �G/H is a one-step countable-state
Markov shift.

The image of the coding map using the coset partition of G is the one-step Markov shift
�G/H . This means that the coset partition of G is a Markov partition of G.

If H is a normal subgroup of G then �G/H is a group with the group operation defined
with a symbol by symbol operation and the arguments can be made by looking only at
�G/H and ignoring G. Moreover, if G is compact H can be chosen to be a normal subgroup,
the coset partition will be finite and �G/H will be a subshift of finite type with the group
operation defined symbol by symbol. This is the case examined in [K2].

If H is not a normal subgroup of G then �G/H is still a group but the group operation
is complicated and is defined by pulling back to G. The arguments that follow will depend
on looking at G and H.

In �G/H each symbol has the same number of followers, which is the cardinality
of f (H). Likewise, each symbol has the same number of predecessors, which is the
cardinality of p(H). This says that the cardinality of f (H) is an eigenvalue for the
transition matrix of �G/H with the column vector of all 1’s an eigenvector. Likewise,
the cardinality of p(H) is an eigenvalue for the transition matrix with the row vector of all
1’s an eigenvector. When G is compact the cardinalities of f (H) and p(H) must agree. If
the transition matrix is countably infinite the cardinalities may be different as illustrated
by Example 3.20.

OBSERVATION 3.2. When �G/H is constructed as above there is a G-action on �G/H ,
where every G-orbit is all of �G/H .

Proof. For each g ∈ G define the itinerary i(g) ∈ GZ by i(g)j = T j (g) for each j ∈ Z.
Then i(g) acts on a point in �G/H coordinate by coordinate using left multiplication on
corresponding cosets in G. It is clear that the G-orbit of the point of all H ′s is all of �G/H .
It follows that the G-orbit of any point is all of �G/H .

Let �G/H be a countable-state Markov shift as constructed in Observation 3.1 with the
G-action as described in Observation 3.2. Using the transition graph of �G/H we describe
two countable-state Markov shifts contained in �G/H .
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Definition 3.3. We define the irreducible component of the identity. Define

JP = {g ∈ G : g is periodic and T n(g) ∈ H for some n ∈ Z}.
JP is a T -invariant subset of G. Let JIR be the smallest closed subgroup of G containing
JP . Then define the irreducible component of the identity, �IR ⊆ �G/H , to be π(JIR).

LEMMA 3.4. The irreducible component of the identity, �IR , is a countable-state Markov
shift whose transition graph is the largest strongly connected subgraph (any vertex can be
reached by a directed path beginning at any other vertex) of the transition graph for �G/H

containing H .

Proof. This is clear.

In Corollary 3.16 there is an exact description of the dynamics of the possible �IR .

Definition 3.5. We define the accessible component of the identity. Define

JH = {g ∈ G : T n(g) ∈ H, some n ∈ Z}.
JH is an open, T -invariant subset of G. It is open because JH = ⋃

n∈Z T −n(H). It
is clearly T -invariant. Define �H = π(JH ). We know that �H is a countable-state
Markov shift because the transition graph can easily be written down. This is illustrated
in Example 3.21. Let JAC be the smallest closed subgroup of G containing JH . Then
define the accessible component of the identity �AC to be π(JAC). This is again
a countable-state Markov shift because the transition graph can be written down. In
Example 3.21 �AC = Q3 ⊕ Q3.

LEMMA 3.6. JAC is an open–closed, T -invariant subgroup of G.

Proof. By definition JAC is a closed, T -invariant subgroup of G. We need only prove that
it is open.

Note that H ⊆ JAC and that both T and T −1 restricted to JAC map JAC onto H. It
follows that if g ∈ JAC then gH ⊆ JAC , and both T and T −1 restricted to JAC map JAC

onto gH. So JAC is a union of of open–closed cylinder sets and is open.

The irreducible component of the identity can be defined by taking its transition graph
to be the largest strongly connected subgraph of the transition graph of �G/H containing
H . The next lemma shows that the accessible component of the identity could have been
defined in a similar manner.

LEMMA 3.7. The transition graph for the accessible component of the identity is the
largest (undirected) connected subgraph of the transition graph of �G/H containing H .

Proof. The largest connected subgraph of the transition graph of �G/H containing H

consists of all vertices and edges of the transition graph for �G/H that can be connected
by a path to H , ignoring the way the edges are directed. Observe that �AC being open in
�G/H is equivalent to having no edge in the transition graph for �G/H connecting a vertex
in the transition graph for �AC to an outside vertex of the transition graph for �G/H .
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The transition graphs for the irreducible component of the identity and the accessible
component of the identity can be quite different. In each of Examples 3.20 and 3.21 the
transition graph for the irreducible component of the identity consists of H and the single
edge from H to itself while the transition graph for the accessible component of the identity
consists of the entire graph.

Definition 3.8. A countable-state Markov shift is said to be totally wandering if its cardi-
nality is uncountably infinite, it has finitely many periodic points and every non-periodic
point is wandering.

Remark 3.9.. The definition implies that if a countable-state Markov shift is totally
wandering then its alphabet is infinite and the Markov shift is non-compact. Examples 3.20
and 3.21 are totally wandering Markov shifts.

LEMMA 3.10. The structures of the inverse images of the follower and predecessor sets of
H are

π−1(f (H)) = T (H)H = H(T (H)),
π−1(p(H)) = T −1(H)H = H(T −1(H)).

Proof. Since the coset partition of G is a Markov partition we see that the inverse images
of the follower and predecessor can be written as

π−1(f (H)) = ⋃
{gH:T (H)∩gH �=φ} gH = ⋃

{g(T (H)):g(T (H))∩gH �=φ} g(T (H)),
π−1(p(H)) = ⋃

{gH:gH∩T −1(H) �=φ} gH = ⋃
{g(T −1(H)):gH∩g(T −1(H)) �=φ} g(T −1(H)).

Rewriting these equations in terms of subgroups H, T (H) and T −1(H) produces the
desired result.

LEMMA 3.11. The inverse image of the follower set of H , π−1(f (H)), and the inverse
image of the predecessor set of H , π−1(p(H)), are compact-open subgroups of G.

Proof. Let g1, g2 ∈ π−1(f (H)). There exist h1, h2 ∈ H such that g1h1, g2h2 ∈ T (H)

as seen in the proof of Lemma 3.10. Then (g1h1)
−1g2h2 = h−1

1 g−1
1 g2h2 ∈ T (H). By

Lemma 3.10 multiplying this on the left and right by elements of H produces an element of
π−1(f (H)). We conclude that g−1

1 g2 ∈ π−1(f (H)) and that π−1(f (H)) is a subgroup.
It is compact-open because it is a finite union of compact-open cosets.

A similar argument shows that π−1(p(H)) is also a compact-open subgroup.

Definition 3.12. Denote by K the non-empty compact-open subgroup of G defined by
K = π−1(p(H)) ∩ π−1(f (H)).

Note that H is a subgroup of K, the cosets of H partition K and all symbols in
K = π(K) have the same follower and the same predecessor sets. This is also true for
each coset of K.

Next we describe two constructions that will be used in the proof of Theorem 3.15.

Construction 3.13. The case when the cardinality of K is greater than one.

For notational purposes, let H0 = H, H0 = H , H1 = K and H1 = K .
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Consider two new systems which are �G/H1 and (H1/H0)
Z. The space �G/H1 (when

not countable) has all the properties of �G/H0 including a G-action defined on it and
once again the orbit of any point under the action is the entire Markov shift. The space
(H1/H0)

Z has a HZ

1 -action on it when we use coordinate by coordinate left multiplication
of the corresponding cosets of H0 in H1. The point is that the systems �G/H0 and
�G/H1 × (H1/H0)

Z are topologically conjugate. The conjugacy is defined on the symbol
level. It is clear because there is the algebraic map G/H0 → G/H1 with ‘kernel’ H1/H0.
If H0 and H1 are normal subgroups of G this is just saying that G/H0 is an extension of
H1/H0 by G/H1, so every element G/H0 can be written as a pair of elements with the
first from H1/H0 and the second from G/H1. We have reduced the Markov shift �G/H0

to a product of a new Markov shift cross a full-shift on a finite number of symbols. In
the new Markov shift the cardinalities of the predecessor and follower sets are strictly
smaller than in the old one. The new cardinalities of the predecessor and follower sets are
the old cardinalities (which were finite) divided by the cardinality of H1. Likewise, the
cardinality of the alphabet of �G/H1 is the cardinality of the alphabet of �G/H0 divided by
the cardinality of H1. If the alphabet of �G/H0 was infinite the new alphabet is infinite.

Construction 3.14. The case when the cardinality of K is one.

By Lemma 3.11 π−1(p(H)) and π−1(f (H)) are subgroups of G containing H. The
important point is that when the cardinality of K is one every element of f (H) has a
distinct follower set and every element of p(H) has a distinct predecessor set. To see
this assume that two elements of f (H) have the same follower set. Using the fact that
π−1(f (H)) is a subgroup we can assume that one of them is H and the other is gH . But
then we have both H and gH in K . The same reasoning applies to the predecessor sets. In
turn each element of any follower set, f (gH), has a unique follower set and each element
of any predecessor set, p(gH), has a unique predecessor set.

Consider the new Markov shifts �G/f (H) and �G/p(H). The alphabets are the cosets
of π−1(f (H)) and π−1(p(H)), respectively. Each is a factor of �G/H by a map defined
on symbols. Moreover, each factor map is invertible. The map onto �G/f (H) is invertible
by a two-block map that looks at the present symbol and one symbol into the future. This
is well defined because each element of a fixed follower set has a distinct follower set.
Likewise, the map onto �G/p(H) is invertible by a two-block map that looks at the present
symbol and one symbol into the past. Each of the new Markov shifts (if not countable)
has all of the properties of �G/H including a G-action defined on it and once again the
orbit of any point under the action is the entire Markov shift. The number of distinct
follower sets in �G/f (H) is the number of distinct follower sets in �G/H divided by the
cardinality of f (H) and the number of distinct predecessor sets in �G/p(H) is the number
of distinct predecessor sets in �G/H divided by the cardinality of p(H). The cardinality
of the alphabet of �G/f (H) is the cardinality of the alphabet of �G/H divided by the
cardinality of f (H) and the cardinality of the alphabet of �G/p(H) is the cardinality of the
alphabet of �G/H divided by the cardinality of p(H). If the alphabet of �G/H was infinite
the new alphabets are infinite. Also observe that whether we use follower or predecessor
sets to make the reduction the cardinalities of the new predecessor and follower sets, in
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both cases, are unchanged. They neither increase nor decrease. For notational purposes
we again set H1 = π−1(f (H)) and H1 = f (H) or H1 = π−1(p(H)) and H1 = p(H)

depending on which was used for the reduction.
The two constructions can be best understood by applying them to Example 3.19. First

apply Construction 3.13 and then Construction 3.14 to obtain (�2, σ) × (�2, σ), which is
topologically conjugate to (�4, σ).

THEOREM 3.15. Let G be a second countable, Hausdorff topological group. If G is
locally compact, totally disconnected and T is an expansive automorphism then (G, T )

is topologically conjugate to either:
(1) (�N , σ) × (C, τ); or
(2) (�N , σ) × (�W , σ) × (C, τ),
where:
• (�N , σ) is a full-shift on a finite alphabet;
• (�W , σ) is a totally wandering countable-state Markov shift;
• (C, τ) with C a countable coset space of G and τ a permutation that fixes the ‘identity’

element.

Proof. We begin with the dynamical system (G, T ). We use Observations 3.1 and 3.2 to
produce a countable-state Markov shift (�G/H , σ) with a G-action topologically conjugate
to (G, T ). Using the notation from the construction we consider the subgroup K defined
by Definition 3.12. If the cardinality of K is greater than one call it H1 and apply
Construction 3.13. This produces �G/H1 × (H1/H0)

Z topologically conjugate to �G/H0 .
The Markov shift �G/H1 has a G-action and (H1/H0)

Z has a H1-action. We think of
factoring out a full-shift on a finite number of symbols. We can ignore the full-shift and
concentrate on �G/H1 . The set K in �G/H1 has cardinality one. Consider the cardinalities
of p(H1) and f (H1) in �G/H1 . If one of the cardinalities is larger than one we can apply
Construction 3.14 using either p(H1) or f (H1) if both are larger than one. Then continue
to apply Constructions 3.13 or 3.14 as appropriate. Notice that since the cardinalities of
p(H) and f (H) were finite, Construction 3.13 can be used only a finite number of times.

There are two possible outcomes.
(a) Construction 3.13 has been applied and in the resulting Markov shift the cardinalities

of p(H�) and f (H�) are one. When the original alphabet is finite this is the only
possible outcome.

(b) Construction 3.13 has been applied and in the resulting Markov shift the cardinalities
of p(H�) and f (H�) are not both one but the cardinality of K is one and no further
applications of Construction 3.14 will produce a Markov shift where the cardinality
of K is greater than one. This is the case for Examples 3.20 and 3.21.

If outcome (a) occurs the original countable-state Markov shift satisfies result (1) of the
theorem.

If outcome (b) occurs consider the accessible component of the identity, �AC , in �G/H�
.

We will show that �AC is totally wandering.
First observe that either the cardinality of p(H�) or of f (H�) is greater than one and so

the cardinality of �AC is uncountably infinite.
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Next we see that the fixed point of all H�’s is the only periodic point in �AC . Let
f 1(H�) = f (H�), f 2(H�) = f (f (H�)) and so forth for all f k(H�). Then f k(H�) ⊆
f k+1(H�) for all k. Use the same notation for pk(H�). Thinking of f k(H�) as a
collection of time-0 cylinder sets in �G/H�

we see that π−1(f k(H�)) and π−1(pk(H�))

are open–closed subgroups of G and each is the union of cosets of H�. Then we observe
that GAC is equal to the union of

⋃

k≥1

π−1(f k(H�)) and
⋃

k≥1

π−1(pk(H�)).

When Construction 3.14 is applied using followers �G/H�
changes to �G/f (H�) and

the alphabet changes from ‘cosets’ of H� to ‘cosets’ of f (H�). The new coding map
remains a topological conjugacy. The same follows if Construction 3.14 is applied using
predecessors. If there were a periodic point other than the fixed point in �AC repeated
iterations of Construction 3.14 would eventually make the periodic orbit coded the same
way as the fixed point. That is a contradiction.

Finally, we see that every point except the fixed point is wandering. Observe that if
x ∈ �AC with x0 = H� and x1 �= H� then xi �= H� for all i ≥ 1. This follows because there
are no periodic points except the fixed point. The same is true for i ≤ −1 if x0 = H� and
x−1 �= H�. Suppose that x ∈ �AC with x0 = H� and x1 �= H� the cylinder set of length
two with H� at time 0 and x1 at time 1 is an open set containing x that is wandering and so
x is a wandering point. The same would show that x is a wandering point if x0 = H� and
x−1 �= H�. Expanding the reasoning shows that any point with H� at time 0 (except the
fixed point) is wandering. Examining any other time-0 cylinder set, gH �= H , and using
the fact that there are no periodic points in gH lets us use the same reasoning to see that
every point in gH is wandering.

When outcome (b) occurs we use the fact that JAC is an open–closed subgroup of G/H�

to divide out by it and see that the original countable-state Markov shift satisfies result (2)
of the theorem.

COROLLARY 3.16. Let G be a second countable, Hausdorff topological group. If G
is locally compact, totally disconnected and T is an expansive automorphism then the
irreducible component of the identity in (G, T ) is topologically conjugate to a full-shift on
a finite alphabet.

COROLLARY 3.17. Let G be a second countable, Hausdorff topological group. If G is
locally compact, totally disconnected and T is an expansive and transitive automorphism
then (G, T ) is topologically conjugate to a full-shift on a finite alphabet.

Remark 3.18.. It is natural to try to formulate the notion of topological entropy for an
expansive automorphism, T , of a second countable, locally compact, totally disconnected,
Hausdorff topological group G. In view of Theorem 3.15 we can consider the three building
blocks of such an automorphism. The topological entropy of a full-shift on N symbols is
log N . The topological entropy of a permutation on a countable set can safely be said to be
zero. The problem is with the totally wandering countable-state Markov shift. In general,
there are many reasonable definitions for the topological entropy of a homeomorphism
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of a non-compact space. They all have difficulties and almost all can be shown to differ
in specific cases. A discussion of some of the definitions and examples can be found in
[HKR]. When the transition matrix for a countable-state Markov shift is irreducible things
are somewhat better but there are still several problems. This is discussed in [K2]. If we
consider the Markov shift defined in Example 3.21 there are several problems. On the one
hand, there is only one invariant probability measure, which is the Dirac delta measure
supported at the identity. It has zero entropy, so thinking in terms of the variational
principle it is reasonable to declare the topological entropy of the Markov shift zero. On
the other hand, the growth rate of the number of blocks occurring in the Markov shift that
begin (or end) with any fixed symbol is 3n, so thinking in terms of the (n, ε)-separated
set definition of topological entropy it is reasonable to declare the topological
entropy log 3.

Example 3.19. Define �A ⊆ (Z/4Z ⊕ Z/2Z)Z by the transition graph below.
This means that

f ((0, 0)) = f ((2, 0)) = f ((1, 1)) = f ((3, 1)) = {(0, 0), (2, 0)(1, 0), (3, 0)},
f ((1, 0)) = f ((3, 0)) = f ((0, 1)) = f ((2, 1)) = {(0, 1), (2, 1)(1, 1), (3, 1)}.

In this case the finite-state Markov shift is a compact group where the group operation is
coordinate by coordinate addition (with no carry). The subgroup K is {(0, 0), (2, 0)}. The
Markov shift �A is topologically conjugate to the full-shift on four symbols.

(0, 0)

(2, 0)

(1, 0)

(3, 0)

(1, 1)

(3, 1)

(0, 1)

(2, 1)
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Example 3.20. Consider the 3-adic numbers, Q3, expressed as the subgroup of (Z/3Z)Z

consisting of the sequences that are eventually all zeros to the left. The group operation is
coordinate by coordinate addition in Z/3Z with a carry to the right. The automorphism,
σ−1, is multiplication by 3, which is the inverse of the usual shift on the sequences. If
we choose for H the subgroup of sequences that are zero for all coordinates to the left
of the time-0 entry, we produce the countable-state Markov shift defined by the transition
graph

0.

01.

02.

010.

011.

012.

020.

021.

022.

Here 0̄ means zeros from that coordinate to the left. Note that the transition graph for
the irreducible component of the identity consists of the single vertex 0̄. and the edge going
from it to itself while the transition graph for the accessible component of the identity is
the entire graph.

Example 3.21. Consider Q3 ⊕ Q3, the direct sum of two copies of the 3-adic numbers.
Express the entries in each copy of Q3 as in Example 3.20. The automorphism is
multiplication by 1/3 in the first copy of Q3 and multiplication by 3 in the second copy.
Take H to be the subgroup {(0̄., 0̄.)} in the previous notation. This gives the countable-state
Markov shift defined by the transition graph
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( 011., 0.)

( 012., 0.)

( 01., 0.)

( 02., 0.)

( 020., 0.)

( 021., 0.)

( 022., 0.)

( 010., 0.)

( 0., 0.)

( 0., 01.)

( 0., 010.)

( 0., 012.)

( 0., 020.)

( 0., 022.)

( 0., 011.)

( 0., 021.)

( 01., 01.)

( 02., 01.)

( 01., 02.)

( 02., 02.)

( 0., 02.)

Once again the transition graph for the irreducible component of the identity consists of
the single vertex (0̄., 0̄.) and the edge going from it to itself while the transition graph for
the accessible component of the identity is the entire graph. This example illustrates the
JH used in the construction of JAC for the accessible component of the identity.
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