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Abstract Following a recent paper by Faltings, we study the integral points on P2 \ D, where D is the
branch locus of a projection from a surface X ; a crucial point in the analysis is that the pull-back of D
in the Galois closure of the projection often splits into several components. As in the paper by Faltings,
under certain assumptions we obtain finiteness of the integral points (Theorem 3.1); for instance, we
shall find that it suffices if the projection is sufficiently general and if X has Kodaira number � 0
(Corollary 4.1). We have borrowed freely from Faltings’s paper, for the whole geometrical setting. As to
the arithmetic, our method is in part different, relying on the recent paper by Corvaja and Zannier and
leading to apparently new conditions. We shall also use a more elementary approach to study a similar
situation in arbitrary dimension, where the projection is taken from a hypersurface (Theorem 2.1).

In concrete terms, these results deal with certain diophantine equations F (x0, . . . , xn) = c.
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1. Introduction

Let V ⊂ Pn be an affine variety and let D be its divisor at infinity, i.e. the sum of the
components of Ṽ \ V , where Ṽ is the closure of V in Pn. Many theorems on integral points
apply to V only if D splits into several components; we may recall for instance Thue’s
theorem on curves defined by equations like Xd + aY d = c, d � 3, ac �= 0 (now there are
d � 3 points at infinity), theorems by Schmidt on norm-form equations Nk

Q(L(X)) = c

(now the conjugates of the linear form L ∈ k[X] define D), theorems of Laurent on the
integral points on subvarieties of Gn

m (observe that Gn
m has 2n components at infinity

in its embedding into P n
1 ) and certain theorems of Vojta which require that |D| has

� r + dim(V ) + 1 components, where r is the rank of the Néron–Severi group of Ṽ (see,
for example, [16], [17] and [19, Chapter III] for precise statements and for references);
still other examples occur in the recent papers [5,6].

To our knowledge, only few results on integral points are known without such type of
hypotheses. An example is provided by the deep theorem of Faltings on abelian varieties
[9, Corollary 6.2 to Theorem 2]:
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318 U. Zannier

If D is an ample divisor in an abelian variety A, then A\D has only finitely many integral
points.

(Vojta [18] has then extended this to semiabelian varieties.) Other instances may occur
when there is a finite cover W̃ of the variety Ṽ , unramified except possibly above points
in D, such that the pull-back D∗ of D has more components than D itself. In fact, by
a known principle going back to Hermite and Chevalley–Weil (see, for example, [16])
the hypothesis about ramification ensures that the integral points on V lift to (quasi-)
integral points on W := W̃ \ D∗ (all defined over a fixed, though possibly larger, number
field) so one may work replacing V with W , a variety which is more likely to satisfy
some of the assumptions alluded to above. To show a known instance of this, let V be
an affine curve; Siegel’s celebrated theorem now asserts the finiteness of integral points
if either genus(Ṽ ) > 0 or deg D � 3. Now, it suffices to prove the theorem with this
last assumption, because if the genus is positive one may take an unramified cover of
degree � 3 and apply to it the special case (see, for example, [7]).

When dimV > 1 the required splitting of the pull-back of D does not generally occur.
Exceptions may be constructed starting from a finite unramified cover W̃ → Ṽ of com-
plete varieties and defining D as the image of a divisor on W̃ (see [5, Example 1.4] for an
example on abelian varieties); this is however artificial in a way (and of course does not
work if Ṽ is simply connected). Recently, Faltings [10] has shown new instances, when
V = P2 \ D is the complement in P2 of an irreducible divisor D which is the branch
locus of a suitable projection from a smooth surface X . Under certain assumptions he
proves the finiteness of S-integral points on V by working on the Galois closure of the
cover X → P2; if the cover has degree n, then D splits into n(n − 1)/2 components in
the Galois closure.

The present paper just offers alternative approaches to these principles. First (see § 2)
we shall study a simple situation where the projection is taken from a hypersurface X
(in any dimension). Now the branch divisor D will be defined by a discriminant form; the
familiar factorization of the discriminant over the Galois closure (as a product of root
differences) makes then evident the alluded splitting and also allows a method which is
different and more elementary than Faltings’s one. In fact, we shall apply known results
on GN

m to confine the integral points of V on subvarieties of small dimension. Moreover,
this method leads to effective conclusions via Baker’s theory.

However, this is certainly not sufficient to recover the full Faltings’s results. In fact, as
we shall point out in Remark 3.1, even if X admits some embeddings as a hypersurface the
assumption that the mentioned projection factors through some such embedding is quite
strong. Faltings himself points out that his results cannot always be directly obtained
by embedding the relevant varieties into GN

m or even semiabelian varieties; examples in
this sense arise, for example, when X = P1 × P1 and the projection is obtained from
three dimensional spaces of sections of a sheaf O(a, b) with a, b coprime integers � 3
(see [10, p. 246]).

We shall work then in the general cases studied by Faltings by applying the Main The-
orem of the paper [5] (see § 3 below). We shall obtain sufficient conditions for finiteness
of the integral points on P2 \ D a priori different from Faltings’s ones; we do not know
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the precise implications about the two types of assumptions. Certainly our application
enables us to prove finiteness when X has non-negative Kodaira number and to recover
the results of [10] in the case X = P1 × P1 (see § 4 for these examples). This last exam-
ple, because of the just mentioned observation of Faltings, also shows implicitly that the
Main Theorem of [5] is not a direct consequence of the known ones about semiabelian
varieties.

To conclude, we note that (by Proposition 2.3 below) these results in concrete terms
assert the finiteness of the integer solutions to equations F (x0, x1, x2) = c, for certain
homogeneous irreducible forms F (i.e. those which represent the divisors D which may
occur).

In the sequel, k will denote a number field and S a finite set of places of k, including
the infinite ones. We adopt the usual notations OS (respectively, O∗

S) for the S-integers
(respectively, S-units) of k. For the notion of a set of (quasi-) S-integral points, we refer
to the definitions in [16], [17] or [19].

2. The case of projection from hypersurfaces

As announced above, in this section we shall study a simple case of Faltings’s principle,
on considering projections from hypersurfaces. This special setting will require just the
theory of S-unit equations in three (homogeneous) variables; also, it will allow us to work
in any dimension and moreover with effectiveness. A somewhat similar method has been
sometimes used in special cases since long ago, for instance to deal with diophantine
equations 4X3 +27Y 2 = c, in which the left side is a discriminant (see, for example, [4]).

Let X be a hypersurface of degree d > 1 in Pn+1, defined over k; also, let Q ∈ Pn+1(k),
Q not in X , and let H be a hyperplane defined over k, not containing Q; we consider the
projection of X from Q to H ∼= Pn.

We define D ⊂ Pn to be the branch locus of this projection and T ⊂ D as the set of
points of D which are totally ramified in X ; that is, P ∈ D (respectively, P ∈ T ) if and
only if there are � d − 1 (respectively, � 1) distinct points of X on the line joining P

and Q.
We have the following theorem.

Theorem 2.1. Notation being as above, the Zariski closure of any set of quasi-S-integral
points for Pn \ D has dimension � dim T + 1.

Remark 2.2. We shall point out during the proof that, once Q, H are given, for a
‘general’ X , we have dim T � max(−1, n + 1 − d) (where dim(∅) = −1); by ‘general’ we
mean that X is defined by an equation of degree d whose coefficient-vector lies outside a
certain algebraic set. We note that the present notion of ‘general’ depends only on Q, H;
on the contrary the exceptional variety containing Σ may depend on k, S and on an
affine model for Pn \ D (see for this Proposition 2.3).

Hence for general X the result confines the integral points on Pn \ D on a subvariety
of dimension � max(0, n + 2 − d). For d = 2 the result gives nothing, but on the other
hand it is easily seen that now the problem amounts to quadratic diophantine equations
∆(x0, . . . , xn) = c, which may well have a Zariski dense set of integer solutions.
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We also remark that it may be proved (e.g. by taking special equations for X ) that
for a ‘general’ X the divisor D, which has degree d(d − 1), will be irreducible. In view of
the above introductory comments, this shows that the alluded ‘method of covers’ is now
efficient.

We start with a simple fact, which describes the S-integral points on Pn \D by explicit
diophantine equations. In practice this amounts to producing some affine embedding for
P2 \ D.

Proposition 2.3. Let D be an effective divisor on Pn, defined by a form ∆ ∈
k[X0, . . . , Xn]. Let Σ be a set of quasi-S-integral points for the affine variety Pn\D. Then
there exists a finite set of places S′ ⊃ S of k such that each point of Σ has projective
coordinates (x0 : · · · : xn) with xi ∈ OS′ and ∆(x0, . . . , xn) ∈ O∗

S′ .

Remark 2.4. Naturally the conditions xi ∈ OS , ∆(x0, . . . , xn) ∈ O∗
S , may be in turn

translated into a finite number of equations ∆(y0, . . . , yn) = c, c ∈ O∗
S , with unknowns

yi ∈ OS . (One may let c run through representatives for O∗
S modulo deg ∆-powers, which

works because ∆ is homogeneous and O∗
S is finitely generated.)

We do not know any explicit reference to such a (undoubtedly folklore) proposition
(see however [3, Conjecture 4.2]) so we give a short proof of it. Let δ := deg ∆; we
may plainly assume that ∆ has coefficients in OS . Observe that the rational functions
Qi := Xδ

i /∆(X0, . . . , Xn), i = 0, . . . , n, are regular on Pn \D. Therefore, (by definition of
quasi-S-integral set) there exists a non-zero c ∈ OS such that the values cQi(P ) are in OS

for all P ∈ Σ. By finiteness of class-number we may enlarge S to a finite set S′ such that
OS′ is a unique factorization domain. Then we may write P = (x0 : · · · : xn), where the
(projective) coordinates xi = xi(P ) are coprime S′-integers. Since ∆(x0, . . . , xn) divides
cxδ

i in OS′ for i = 0, . . . , n we then conclude that ∆(x0, . . . , xn) divides in fact c in OS′ .
Enlarging further S′ to assume that c ∈ O∗

S′ we get the conclusion.

Proof of Theorem 2.1. We may assume that Q = (0 : · · · : 0 : 1) and that H is defined
by Xn+1 = 0. Then, if f(X0, . . . , Xn, Xn+1) = 0 is an equation of degree d defining X ,
we may assume that f is monic with respect to Xn+1 and that the projection consists of
taking the first n + 1 coordinates. We may write

f(X0, . . . , Xn, Xn+1) = Xd
n+1 + f1(X0, . . . , Xn)Xd−1

n+1 + · · · + fd(X0, . . . , Xn),

where fb is a homogeneous polynomial of degree b. We may normalize this equation by
writing Xn+1 − (1/d)f1 in place of Xn+1, which amounts to the assumption f1 = 0; this
leaves D and T unchanged, so does not affect the result. Enlarging S we may also assume
that f has coefficients in OS .

Note that T is defined in Pn by f2 = · · · = fd = 0. By well-known results this variety
has dimension � max(−1, n + 1 − d) unless the coefficients of the fi, i = 2, . . . , d, satisfy
certain non-trivial algebraic relations, which depend only on n and the degree d. (Of
course, the number of independent such relations can be bounded below more explicitly.)

Let ∆ = ∆(X0, . . . , Xn) be the discriminant of f with respect to Xn+1, a homogeneous
polynomial of degree d(d − 1). Then the branch locus D in Pn is defined by ∆ = 0.
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Let Σ be a set of quasi-S-integral points for Pn \ D and let us enlarge S as in
Proposition 2.3. For each point P ∈ Σ let us choose accordingly projective coordin-
ates P = (x0 : · · · : xn) for P so that we may assume that the xi lie in OS and that
∆(x0, . . . , xn) ∈ O∗

S . Let α1, . . . , αd be the (distinct) roots of f(x0, . . . , xn, X) = 0 in Q̄.
They generate over k a number field, depending on P , which is unramified except at
places above S. Since the degree is bounded, a well-known result by Hermite implies that
there are only finitely many number fields with this property (see [16, p. 49]), so all the
roots αi lie in a certain number field k′ which is independent of P ∈ Σ; enlarging k we
may assume that k′ = k. Note that since we are assuming that f has coefficients in OS ,
the αi are integral over OS and since they lie in k, they lie in fact in OS . Now, we have
the familiar identity

∆(x0, . . . , xn) =
∏

1�i<j�d

(αi − αj)2.

Since the left side lies in O∗
S , we see that each difference βij := αi − αj , i �= j, lies in O∗

S

as well. Note the identities
βij + βjl + βli = 0. (2.1)

Now, by a well-known result going back to Siegel and Mahler (see [16, 8.3] and [19]) the
equation x+y+z = 0 has only finitely many non-proportional solutions (x, y, z) ∈ (O∗

S)3.
Applying this to (2.1) with {i, j, l} = {1, 2, l} and then with {i, j, l} = {1, j, l} we see that
β1l/β12 and βjl/β1l take values in a certain finite set independent of P . Putting γ := β12

we easily deduce equations

αj − αl = cjlγ, cjl = cjl(P ), γ = γ(P ), 1 � j �= l � d,

where the cjl lie in a finite set independent of P and where γ (which may depend on P )
lies in O∗

S . (See Remark 2.5 (A) for effectiveness of this point.)
We may now split Σ into finitely many subsets so that the cjl are fixed for P in a

fixed subset; arguing separately with each subset we may then assume that the cjl are
independent of P .

From the last displayed equations we obtain, on setting α = α1, cj := c1j for j � 2
and c1 = 0,

αj = α + cjγ, j = 1, . . . , d.

Since we are assuming f1 = 0 we get

dα +
( d∑

j=1

cj

)
γ = 0,

hence α = cγ for a certain fixed c (that is, c depends only on the subset we are working
with, not on the individual points P ). Recalling that fb(x0, . . . , xn) is the bth symmetric
function of the αj , we have

fb(x0, . . . , xn) = lbγ
b, b = 2, . . . , d,

where l2, . . . , ld do not depend on P .∗
∗ Similar conclusions naturally hold for ‘discriminantal’ equations ∆ = c, even if the fi are not

homogeneous.
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Now, consider the variety W defined in Pn+1 by the equations fb(X0, . . . , Xn) = lbY
b,

b = 2, . . . , d. Note that dimW � dim T + 1, for otherwise intersecting W with the
hyperplane Y = 0 would produce a component of T of dimension > dim T .

Note finally that by the last displayed equations Σ lies in the projection of W to Pn,
whose dimension is also � dim W � dim T + 1. This completes the proof. �

Remark 2.5.

(A) As mentioned earlier, Baker’s theory gives an effective procedure for actually finding
a variety as in the statement, containing Σ, once X is given. In fact, a finite full set
of non-proportional representatives for solutions of the S-unit equation (2.1) may
be effectively found, as outlined, for example, in [1, Chapter 4]. Naturally this set
depends on k and S, as well as on an explicit notion of ‘quasi-S-integral’; note in
fact that S has to be enlarged in the application of Proposition 2.3. Equivalently,
one can work with ‘fully’ integral points, after specifying an affine model for P2 \D.

(B) When n = d + 1 and X is ‘general’, the result confines Σ in a curve; then Siegel’s
theorem may be possibly applied to show that Σ is actually finite.

(C) A similar method works even if the hypersurface X has a non-monic homogeneous
equation

f := f0Y
d + f1Y

d−1 + · · · + fd = 0, fi ∈ k[X0, . . . , Xn],

and we again project on the first n + 1 coordinates. We briefly describe the main
differences with the above proof.

Again we may look at the integral points for Pn \D where D is now defined by the
discriminant

∆ := f2d−2
0

∏
1�i<j�d

(αi − αj)2,

the αi being the roots, as above. As in the above proof, we may assume αi ∈ k for
the integral points in question, and write αi = µi/δi, with µi, δi coprime elements
in O∗

S . Then f(x, Y ) is divisible in OS [Y ] by
∏

(δiY − µi), whence δ1 · · · δd divides
f0(x) in OS . We readily deduce that ∆(x) is divisible in OS by

∏
i �=j(δjµi − δiµj),

whence all the factors are in O∗
S (for the integral points x in question).

Put now xij := δjµi−δiµj ; these numbers all lie in O∗
S and they satisfy the identities

x1ix2j − x1jx2i + x12xij = 0,

to which we may apply the S-unit theorem. As a corollary the ratios x1ix2j/x1jx2i

have finitely many possibilities. On the other hand these ratios equal certain cross-
ratios among the roots:

x1ix2j

x1jx2i
=

(α1 − αi)(α2 − αj)
(α2 − αi)(α1 − αj)

.

Thus, again we find non-trivial fixed algebraic relations among the roots; as before,
they confine the integral points in question in a suitable subvariety.
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3. Projection from more general surfaces

In this section we shall closely follow Faltings’s paper [10] for the geometric part. For
the arithmetic, we shall use the Main Theorem of [5] in place of Faltings’s method,
which follows the approach of Faltings and Wüstholz [11]. Certainly there are analogies
underlying the methods; for instance, [5] applies the Schmidt subspace theorem in a way
which reminds us of the paper by Evertse and Ferretti [8], which in turn quantifies [11].
However, we do not know the precise extent of this link; for instance, the results below
require assumptions which are a priori in part different from Faltings’s.

For the reader’s convenience we start by briefly recalling the context and the points of
the paper [10] which we shall mainly need.

As in [10], we let X be a projective smooth geometrically irreducible algebraic surface,
defined over Q̄, denoting by K its canonical class and by c2 its Euler characteristic.
We also let L be a very ample line bundle on X , satisfying the ampleness conditions
of [10, p. 234]. (In practice, it is required that the global sections separate points up to
order 3 included, pairs of points up to order 2 and triples of points up to order 1.) We
also assume that K ⊗ L⊗3 is ample.

We then consider three-dimensional subspaces E ⊂ Γ (X ,L) of global sections, giving
a map f = fE : X → P (E) = P2, which will be regular for E in an open subset of
the corresponding Grassmannian; since L is very ample, fE will correspond to a regular
projection and will then be finite. We assume at once that

n := L · L = degree of fE > 8. (3.1)

Further, we define Z ⊂ X as the discriminant locus of fE and D := fE(Z) ⊂ P (E) as
the branch locus in P2. It is observed [10, pp. 236, 240] that Z corresponds to a section
of K + 3L (which is a kind of Hurwitz formula; see, for example, [15, Proposition 6.19]).
Hence Z is ample. Similarly to § 2, we are interested in the integral points for V := P2 \ D.

Remark 3.1. It is natural to ask whether such integral points may be investigated with
the simple method of § 2. For this, we should realize D as the branch locus of a projection
from a hypersurface in P3; thus one could try to send X birationally and regularly to P3

and to factor fE through such map. Now, first of all X cannot be generally embedded in
P3 as a smooth surface. In these cases sending X to P3 by a regular birational map would
produce a singular locus (often a curve) on the image surface; this locus would appear
in the ramification of any projection from P3 to P2, so in practice the resulting branch
locus in P2 would bring an additional component besides D. Of course the approach could
still lead to non-trivial arithmetical conclusions, but weaker. Secondly, even if X may be
embedded as a smooth hypersurface in P3, the degrees of such embeddings are bounded.
(One can prove this, for example, by recalling that the self-intersection K2 in a smooth
hypersurface of degree d in P3 equals d(d − 4)2; see, for example, [14, Example A.2.7].)
Thus for large n the present projections cannot be in any case recovered that way.

We continue to follow [10], defining Y → X → P2 as the associated Galois cover. The
surface Y may be embedded in the nth power of X over P2; the fibre of Y over a point
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in P2 \ D classifies orderings of the n points in f−1
E [10, p. 236]. We consider only those

subspaces E as above, generating L and such that

(i) Z is smooth and irreducible,

(ii) fE is birational onto D,

(iii) D has only cusps and simple double points as singularities, and

(iv) Y is smooth with Galois group Sn.

In [10, Proposition 1(i),(ii)] it is proved that these conditions are verified for all E in
a certain open dense subset of the Grassmannian, a condition which we assume, saying
that E is ‘general’.

We now state the main result of this section.

Theorem 3.2. For a general E as above, suppose that D has at least one double point
and that

(n − 9)K2 + 6(n − 7)K.L + 3n(3n − 19) + 4c2 > 0. (3.2)

Then every set of S-integral points for P2 \ D is finite.

In Faltings’s paper, the same conclusion is obtained assuming, in place of (3.2), that
dL−αZ is ample on X for some α > 12 (see [10, Theorem 1]; here d := Z.L = K.L+3n).
As remarked earlier, we do not know the exact implications between the two types of
assumptions.

That D has at least one double point amounts to an inequality somewhat similar to
(3.2). This is stated in § 4, together with some instance of the validity of it and of (3.2);
see, for example, Corollary 4.1.

Proof. In Faltings’s paper it is observed that the inverse image of Z in Y splits in the
union of curves Zij (the set of fixed points of the transposition (i, j)), for subsets {i, j}
of {1, . . . , n}, i �= j.∗ For a general E, the Zij are irreducible as soon as D contains
some double point [10, Lemma 1]. Moreover, for distinct indices i < j < l, Zij , Zil, Zjl

intersect with different tangents at points which give rise to cusps of D; for disjoint pairs
i < j and l < m, Zij and Zlm intersect transversally, giving rise to double points of D;
otherwise there are no intersections among the Zij (see [10, p. 239] for these conclusions).

As in [10] (but for a different purpose!), we consider the divisor A :=
∑n

j=2 Z1j on Y.
It is the pull-back of Z under the first projection Y → X . Since Z is ample on X by
assumption and since fE is finite (quasi-finite would suffice), A is ample on Y (e.g. by [13,
Example 5.7(d), p. 232]).

Observe now (as in [10]) that by the usual principle based on the Chevalley–Weil
theorem and the theorem of Hermite mentioned in § 2, any set Σ of integral points on
P2 \ D lifts to a set Σ′ of integral points on Y \

⋃
i<j Zij [16, p. 50]. Therefore, it will

suffice to prove that Σ′ is finite.
∗ In the case when X is a hypersurface, these n(n − 1)/2 curves correspond to the factorization of the

discriminant, which has been used in § 2.
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In turn, Σ′ is a fortiori a set of S-integral points for Y \ A, and it is with this last
variety that we shall mainly work. We start by proving the following.

Theorem 3.3. Under the assumptions for Theorem 3.2, any set Σ∗ of (quasi-) S-integral
points for Y \ A is contained in a curve.

Proof. This result seems not to appear in [10]. The proof will follow from the Main
Theorem of [5], which we adapt for the reader’s convenience to the present context.

Theorem CZ. Let Y, A =
∑n

i=2 Z1i, Σ∗ be as above. Assume that the Z1i are distinct
irreducible divisors with the following properties:

(i) no three of the Z1i share a common point;

(ii) defining ξi as the minimal positive solution of the equation Z2
1iT

2−2(A.Z1i)T+A2 =
0 (which exists), for i = 2, . . . , n, we have the inequality

2A2ξi > (A.Z1i)ξ2
i + 3A2.

Then Σ∗ is contained in a curve.

In order to apply this statement, we need just to check (ii); in fact recall that by the
above observations extracted from [10] the Z1i are distinct, irreducible and no three of
them intersect. For the rest of (ii) we are going to use again [10], where some intersection
indices are computed.

On p. 243 of [10] we find the formula

Z1j .Z1l = (n − 3)!γ, j �= l, j, l �= 1, (3.3)

where γ is the number of cusps on D, which is computed (p. 244) as

γ = 2K2 − c2 + 9K.L + 12n. (3.4)

There is also a formula for Zij .Zlm where i, j, l, m are all distinct, in terms of the number
of double points on D, but we shall not need it. We shall need the self-intersections

Z2
1j = (n − 2)!(ρ − γ), ρ := Z2 = (K + 3L)2 = K2 + 6K.L + 9n. (3.5)

We shall use these formulae to check (ii) of Theorem CZ. First we have

A.Z1i = Z2
1i +

∑
j>1, j �=i

Z1j .Z1i = (n − 2)!(ρ − γ) + (n − 2)!γ = (n − 2)!ρ. (3.6)

This yields

A2 =
n∑

i=2

A.Z1i = (n − 1)!ρ. (3.7)

Let us then evaluate the numbers ξi defined in the statement of Theorem CZ. Using
(3.5), (3.6) and (3.7) we see that ξi is the minimal positive solution of the equation

(ρ − γ)T 2 − 2ρT + (n − 1)ρ = 0. (3.8)
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The discriminant of this equation is 4∆ := 4(ρ2 − (n − 1)ρ(ρ − γ)); as remarked in [5]
it is never negative (see [13, Example 1.9(a), p. 368]). From this it follows that (recall
ρ = Z2 > 0 as Z is ample)

(n − 1)γ � (n − 2)ρ. (3.9)

The roots in question are, for ρ �= γ,

ξ± =
ρ ±

√
∆

(ρ − γ)
. (3.10)

We now split the proof according to the sign of ρ − γ.

Case A (ρ < γ). Now ∆ = ρ2 + (n − 1)ρ(γ − ρ) > ρ2; the unique positive one of the
roots (3.10) is

ξ := ξ− =
√

∆ − ρ

γ − ρ
.

In view of formulae (3.5)–(3.7), (ii) of Theorem CZ amounts to 2(n−1)ξ > ξ2 +3(n−1).
Now, the roots of the polynomial in U given by P (U) := U2 − 2(n − 1)U + 3(n −

1) are (n − 1) ±
√

(n − 1)2 − 3(n − 1) and we have to check whether ξ is contained in
the interval I between them. Observing the inequality

√
(n − 1)2 − 3(n − 1) � n − 3 for

n � 5, we see that I contains the interval [2, 2n − 4], whence it suffices to verify that
2 < ξ < 2n − 4, i.e. that

ρ + 2(γ − ρ) <
√

∆ < ρ + (2n − 4)(γ − ρ).

The three involved terms are all positive, so we may square to find the equivalent inequal-
ities

4ρ(γ − ρ) + 4(γ − ρ)2 < (n − 1)ρ(γ − ρ) < 2(2n − 4)ρ(γ − ρ) + (2n − 4)2(γ − ρ)2.

Now, we are assuming n > 5 and γ −ρ > 0, while ρ = Z2 > 0 follows from the ampleness
of Z. Hence the right inequality is certainly true. The left one amounts to 4γ < (n− 1)ρ.
In view of the formula (3.4) and of ρ := Z2 = (K + 3L)2 = K2 + 6K.L + 9n this is
equivalent to

(n − 9)K2 + 6(n − 7)K.L + 3n(3n − 19) + 4c2 > 0,

which is just (3.2). This completes the verification in the Case A.

Case B (ρ = γ). Now, in view of (3.8), we have ξi = (n−1)/2 and we have to check
that P ((n−1)/2) < 0; now, P ((n−1)/2) = (n−1)(15−3n)/4, so what is needed follows
from n > 5.

Case C (ρ > γ). Now ∆ < ρ2 and again the least positive one between the roots
(3.10) is

ξ := ξ− =
ρ −

√
∆

ρ − γ
.
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As before it suffices to check whether ξ ∈ (2, 2n − 4), namely whether

2(ρ − γ) < ρ −
√

∆ < (2n − 4)(ρ − γ). (3.11)

Now, the left inequality amounts to
√

∆ < ρ − 2(ρ − γ). The right side of this (= 2γ −ρ)
is positive, by (3.9) and since n > 5. Therefore, we reduce to verify ∆ < (ρ − 2(ρ − γ))2,
i.e. −(n − 1)ρ(ρ − γ) < −4ρ(ρ − γ) + 4(ρ − γ)2, which is true because n > 5.

We remain with the right side of (3.11), which amounts to
√

∆ > ρ − (2n − 4)(ρ − γ).

Now, this follows immediately from n > 5 and
√

∆ =
√

ρ(ρ − (n − 1)(ρ − γ)) �
√

(ρ − (n − 1)(ρ − γ))2 = ρ − (n − 1)(ρ − γ).

All of this completes the verification of the assumptions of Theorem CZ, so we may
conclude that Σ∗ lies on a certain curve, proving Theorem 3.3. �

A fortiori, the original set Σ′ also lies on a curve and to prove the full Theorem 3.2,
we now show that Σ′ is in fact finite; for this we apply Siegel’s theorem and use that Σ′

is a set of S-integral points not merely for Y \ A, but for Y \
⋃

i<j Zij .
Now,

⋃
i<j Zij is equal to the union of the supports of the divisors Ai :=

∑
j �=i Zij . We

have A1 = A and all the Ai are ample (Ai is the pull-back of Z under the ith projection
from Y to X and on the other hand Sn = Aut(Y/X ) acts transitively on {A1, . . . , An}).

Now, let C be an irreducible (affine) curve on Y \
⋃

i<j Zij , having infinite intersection
with Σ′. We forget about the genus of C an apply Siegel’s theorem merely to conclude
that the closure C̃ of C in Y cannot have more than two points at infinity. This means
that C̃ cannot intersect

⋃n
i=1 |Ai| in more than two points.

On the other hand, C̃ must intersect non-trivially each divisor Ai (which is ample). We
conclude that there exists a point P ∈ C̃ belonging to at least n/2 of the supports |Ai|.
Further, if P ∈ |Ai|, then P lies in Zij , for some j = j(i) �= i. A first case now occurs
when among these Zij there appear Zab and Zcd for some disjoint sets {a, b} and {c, d}.
Now the point P cannot lie on any other Zij , whence P ∈ |Ai| only if i ∈ {a, b, c, d},
which leads to n � 8, a contradiction.

The second case is when a pair Zab, Zac occurs; now P cannot lie in any other Zij

except Zbc. We then conclude that P ∈ |Ai| only if i ∈ {a, b, c}, leading to n � 6 and a
contradiction.

This completes the proof of Theorem 3.2. �

Note that the final argument shows the finiteness of integral points on Y \
⋃

i∈I |Ai|
for any subset I of {1, . . . , n} with more than eight elements.

4. Further remarks and examples

We start by translating the condition that D has at least a double point; for this we
use a formula on p. 244 of [10], stating that the number δ of double points on D is
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d2/2 − 15d + 24n − 3K2 + c2. Using d = Z.L = K.L + 3n, we see that our condition
amounts to

2δ = (K.L)2 − 6K2 + 6(n − 5)K.L + 3n(3n − 14) + 2c2 > 0. (4.1)

Since L is ample, by [13, Example 1.9(a), p. 368] we have (K.L)2 � K2L2 = nK2,
whence (4.1) follows from

(n − 6)K2 + 6(n − 5)K.L + 3n(3n − 14) + 2c2 > 0. (4.2)

If we merely want to prove the finiteness of integral points on Y \
⋃

Zij and forget
about Theorem 3.3, then (3.2) may be replaced by similar but slightly weaker inequalities.
The proof is the same as above, but working with

⋃
{i,j}∈J Zij in place of A, where J is

another suitable set of pairs, such that no three of the relevant divisors intersect (as is
required in Theorem CZ). We leave the details to the interested reader.

Next, let us briefly discuss inequality (3.2) and Faltings’s condition, which we label
(F), that, for some rational α > 12, dL − αZ is ample. This amounts to the ampleness
of (d − 3α)L − αK = (K.L + 3n − 3α)L − αK.

We note that (3.2) is satisfied for large enough n, once X is given.
Condition (F) certainly implies that (dL − αZ).L > 0, whence, recalling d = Z.L, we

deduce n > α > 12. We shall see below some instances when both (4.1) and (3.2) hold
for n � 9. (However, the ampleness conditions on L may imply that n is larger.)

The main example detailed in [10] is when X = P1 × P1 and L = O(a, b) for integers
a, b � 3. Now the finiteness of integral points follows from [10] and also from Theorem 3.2
above. In fact, we have in this case n = 2ab, K2 = 8, c2 = 4, K.L = −2(a + b), whence
(3.2) amounts to

8(2ab − 9) − 12(a + b)(2ab − 7) + 6ab(6ab − 19) + 16 > 0,

which is easily found to be true for a, b � 2. Similarly for (4.1) (required also in [10]).
As another application, we have the following corollary.

Corollary 4.1. If X has Kodaira number � 0, if n � 9 and if E is ‘general’ in the above
sense, then every set of S-integral points for P2 \ D is finite.

We do not know whether (F) is always true under such assumptions.

Proof. First we observe that K.(K + L) � 0 on our assumptions. To show this recall
that by [13], proof of Theorem 5.8, there is a sequence of smooth surfaces and maps

X = X0 → X1 → · · · → Xr =: Y

such that Y is minimal and each Xi is obtained blowing up a point in Xi+1. If ε is the
composite map then we have that KX = ε∗KY +E1 + · · ·+Er, where the Ei are effective,
mutually orthogonal and satisfy E2

i = −1; also, K2
X = K2

Y − r. All of this follows at once
from the computation of the intersection product form on a blow-up (see [2, II]). Then

KX .(KX + L) = K2
Y − r + ε∗KY .L + (E1 + · · · + Er).L.
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Now, Y is minimal and with Kodaira number (a birational invariant of non-singular
surfaces) equal to the one of X , hence � 0. It follows (see [13, V.6]) that K2

Y � 0.
Next, mKY contains effective divisors for some m > 0 (by definition of Kodaira number

[12, p. 572]) whence the same is true of ε∗(mKY). It follows that ε∗KY .L � 0. Finally,
(E1 + · · · + Er).L � r because L is ample and the Ei are effective; these inequalities
prove the claim.

To complete the proof it suffices now to show that both (4.2) (and hence (4.1)) and
(3.2) are satisfied for n � 9. To this end we first recall that c2 � 0, for otherwise X
would be birational to a ruled surface (see [12, pp. 554, 558] or [2, Theorem X.4]); but
then the Kodaira number would be −1 (see [12, p. 575], [13, p. 422]). Now, K.L � 0
(because some mK, m > 0, contains effective divisors), so the claim is immediate if
K2 � 0. If not, observe that, since 6(n − 5) � n − 6 > 0, the left side of (4.2) is
� 6(n − 5)(K2 + K.L) + 3n(3n − 14) + 2c2 and is positive by the above. This same
argument shows as well the positivity of the left side of (3.2) since 6(n − 7) � n − 9 � 0,
concluding the proof. (In place of the opening argument one could also use the assumption
that K+3L is ample; this yields K.(K+3L) � 0, which suffices. Sometimes the argument
however can be used to prove the assumption.) �

To go further, we recall that if X has negative Kodaira number (necessarily −1) and if
X is minimal, then X is either rational or ruled [12, p. 575]; hence the only cases when
Corollary 4.1 does not apply occur when X is birationally equivalent to a product P1 ×C

for some curve C. In case X is ruled, it is again easy to test inequalities (3.2) and (4.1)
using, for example, the formulae for K and for intersection products given in [13, V.2].
Possibly the same could be done in the most general case.
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