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The breakup process of a charged, leaky-dielectric jet subjected to an axial perturbation
is computationally analysed from the perspectives of linear and nonlinear dynamics using
the arbitrary Lagrangian–Eulerian technique. The linear dynamics of the leaky-dielectric
jet is quantitatively predicted by the dispersion relation from the linear stability analysis.
Regarding the nonlinear dynamics, it is found that the charge relaxation is responsible for
the radial compression of satellite droplets, which is validated by experiments. Two types
of charge relaxations, namely, ohmic conduction and surface charge convection, define
the pinching process into three breakup modes, i.e. ligament pinching, end pinching and
transition pinching. In the ligament-pinching mode, the ohmic conduction dominates the
jet breakup since the charge relaxes to the jet ligament instantaneously. In contrast, the
surface charge convection takes effect in the end-pinching mode since the surface charge
is convected to the jet end via fluid flow. When the ohmic conduction is comparable to the
surface charge convection, the breakup occurs simultaneously at the end and the ligament.
Finally, the influences of the perturbed wavenumber, the electric field intensity and the
viscosity on the breakup mode and the local dynamics at pinch-off are comprehensively
discussed.
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1. Introduction

The breakup of electrohydrodynamically driven capillary jets has attracted significant
attention since it is crucial to a range of micro-nano manufacturing technologies, such as
electrohydrodynamic (EHD) jet printing (Onses et al. 2015; Yin et al. 2010), nano-powder
production (Jaworek, Sobczyk & Krupa 2018) and drug delivery (Bhardwaj & Kundu
2010). In these applications, a fine EHD jet is issued from a so-called Taylor cone when a
strong electric field is applied to a dripping liquid. Several regimes regarding the flow
rate and electric field intensity in EHD flows have been demarcated, and the steady
cone-jet mode is the most useful one (Onses et al. 2015). In the cone-jet mode, the cone
remains unchanged, whereas the downstream jet breaks into small drops. Although many
experimental, theoretical and numerical studies have investigated the steady cone jet and
EHD jet breakup under specific conditions (Fernández de la Mora 2007; Gañán-Calvo
et al. 2018; Rosell-Llompart, Grifoll & Loscertales 2018), it is still challenging to
understand the pinching mechanism of such an electrified jet, especially in conditions
beyond the perfectly conducting limit.

Pinching of an electrified jet involves capillary instability induced by surface tension
and coulombic instability induced by the surface charge. For capillary instability, the
pioneers Plateau (1857) and Rayleigh (1878) demonstrated that, when ignoring the effect
of the surrounding air, an uncharged inviscid filament with a radius of r̄0 is unstable
to suffer a long-wavelength disturbance λ̄ > λ̄crit = 2π r̄0 and encounters a maximum
growing mode with a wavelength λ̄max = 9.01r̄0 (or wavenumber k̄max = 0.697/r̄0). In this
paper, all the variables with bars are dimensional. The theoretical framework is extended
to viscous jets and the nonlinear analysis of higher-order perturbations, and is confirmed
by sufficient experimental observations and high-accuracy computations (Eggers 1997;
Eggers & Villermaux 2008).

When a jet is electrified or charged, the breakup dynamics is complex because surface
charges destabilize the jet, even in the absence of axial perturbations. Rayleigh (1882)
examined the instability of a charged, inviscid liquid cylindrical column, and showed
that the cylinder yields the instability condition Q̄ >

√
6πε̄0γ̄ r̄, where Q̄ is the charge

density per unit length, γ̄ the surface tension and ε̄ is the vacuum permittivity. Based on
Rayleigh’s work, Basset (1894) studied the dynamics of a charged cylinder subjected to an
axisymmetric disturbance using linear analysis, and demonstrated that the charge widens
the range of unstable wavenumbers and stabilizes the jet for a long-wave disturbance while
destabilizing it for a short-wave disturbance. Furthermore, Bassett reported that charges
destabilize non-axisymmetric deformations, which was also discussed in the theoretical
analysis by Huebner & Chu (1971). Saville (1971a) considered viscosity and found that the
viscous effect dampened the axisymmetric motions and rendered the non-axisymmetric
motions more unstable. The axisymmetric and non-axisymmetric motions are also called
varicose and kink instabilities in experimental observations (Yang et al. 2014a). The above
studies either considered a charged jet in the absence of a tangential electric field or treated
the jet as a perfect conductor. Under such a perfectly conducting limit, the charge can relax
onto the jet interface instantaneously or the jet surface is equipotential. Besides, the jet
interface is only acted upon by the normal stress. Saville (1971b) investigated a weakly
conducting jet in a tangential electric field and reported that the charge relaxation could
cause oscillatory growth of a perturbation. Mestel (1994, 1996) extended Saville’s analysis
and discussed the effects of both the surface charge and the tangential electric field on the
EHD stability of viscous jets. He noted that shear stresses can suppress capillary instability.
Artana, Romat & Touchard (1998) considered the non-isopotential case and theoretically
analysed the linear stability of an electrified jet in a coaxial electrode. López-Herrera,
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Effects of charge relaxation

Riesco-Chueca & Gañán-Calvo (2005) consulted a general physical model similar to that
of Artana et al. but incorporated the influences of the electrode radius, the surrounding
air and the viscous boundary layer on the jet instability. Moreover, the authors deduced a
complete dispersion relation for a weakly conducting jet.

Linear stability analysis can provide the parameter space for stable or unstable jets but
cannot describe the characteristics during long-term evolution, such as the formation of
satellite drops. Setiawan & Heister (1997) first modelled the nonlinear dynamics of an
inviscid, electrified jet using the boundary element method (BEM). They discussed how
the nonlinear contributions affect the main and satellite drop sizes in the pinch-off region.
López-Herrera, Gañán-Calvo & Perez-Saborid (1999) used one-dimensional simulations
based on slender approximation equations to investigate the effects of electric stress and
viscosity on the drop formation from a pinching jet. Based on the work of Setiawan &
Heister (1997) and López-Herrera, Gañán-Calvo & Perez-Saborid (1999), Collins, Harris
& Basaran (2007) comprehensively studied the breakup times, the ratios of the sizes
of the primary to satellite drops formed at pinch-off and the coulombic stability of the
drops using one- and two-dimensional simulations. The authors demonstrated the electric
stress significantly increases the size of satellite drops. In contrast to the study by Collins
et al., Wang & Papageorgiou (2011) investigated the touchdown in the jet breakup using
BEM. These studies only considered cases in the perfectly conducting limit. Wang (2012)
later analysed a poorly conducting Stokes jet suspended in a viscous, dielectric medium
and found that the satellite formation of this jet is different from that in the perfectly
conducting case. The author argued that electric shear stress promotes the formation of
multiple satellite drops. Li et al. (2019) discussed the effect of finite conductivity on the
nonlinear dynamics of a viscoelastic, weakly conducting liquid jet and concluded that
the tangential stress prevented the formation of satellite drops in the beads-on-a-string
structure.

There have been few experimental studies of the capillary breakup of a charged
jet although the cone-jet mode and its subsequent breakup are found in numerous
EHD applications. López-Herrera & Ganan-Calvo (2004) experimentally studied the
axisymmetric breakup of a weakly electrified jet from an orifice and showed a remarkable
agreement with one-dimensional simulations. Yang et al. (2014a) investigated the varicose
and whipping instabilities of electrified jets to an axial direct current (DC) electric field and
radial alternating current (AC) electric field. However, the strength of the radial electric
field in the experiments of López-Herrera et al. and Yang et al. is smaller than the axial
one and so the effect of electric stress on the varicose instabilities is not significant. Li
et al. (2019, 2020) conducted the radial deformation of an electrified jet by building a
needle–cylinder electrode. The authors found spike structures, disk-like structures and
tip streaming when the radial electric field is huge. Recently, Montanero & Gañán-Calvo
(2020) have comprehensively reviewed the breakup of electrified jets, as well as their linear
stability.

The objective of this study is to expound on the effect of charge relaxation on the
linear and nonlinear dynamics of an axisymmetric weakly conducting jet with arbitrary
viscosities in a radial electric field. The electrical conductivity of this weakly conducting
jet, which is also called a leaky-dielectric jet, is typically less than 10−9 S m−1; thus,
the characteristic time for charge relaxation (t̄e = ε̄/K̄, where ε̄ and K̄ are the electrical
permittivity and conductivity, respectively) is comparable to the hydrodynamic time
(Saville 1997; Sengupta, Walker & Khair 2017). Since the charge relaxation time is not
zero, the electric field acting on the surface charge generates a tangential component of
electric stress that requires tangential viscous stress to balance it. Melcher & Taylor (1969)
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reported that the interfacial shear stress could induce cellular convection when a
leaky-dielectric fluid is subjected to a DC/AC electric field. In this case, the surface charge
can also be transported by convection. Saville (1997) summarized the Taylor–Melcher
leaky-dielectric model and formulated the surface charge conservation equation as follows:

∂ q̄
∂ t̄︸︷︷︸

Charge accumulation

+ ū · ∇̄sq̄︸ ︷︷ ︸
Charge convection

− q̄n · (n · ∇̄)ū︸ ︷︷ ︸
Interface dilation

= K̄Ē · n︸ ︷︷ ︸
Ohmic conduction

, (1.1)

where q̄ is the surface charge density, ū and Ē are the velocity and electric field
inside the liquid, respectively, ∇̄s is the surface gradient operator, and n is the outward
pointing unit vector normal to the liquid surface. In the perfectly conducting limit, the
charge accumulation, also called the charge relaxation (Sengupta et al. 2017), is entirely
contributed by ohmic conduction. If the electrical conductivity drops to 10−9 S m−1, the
sum of charge convection and charge variation due to the interface dilation are comparable
to the ohmic conduction. For convenience, the second and third terms on the left-hand side
of (1.1) are collectively called the surface charge convection (Sengupta et al. 2017). In the
leaky-dielectric case, the pinching process of electrified jets is subjected to both normal
and tangential electric stresses. Recently, several numerical and experimental studies have
quantitatively demonstrated that surface charge convection plays an important role in the
drop deformation (Lanauze, Walker & Khair 2015; Sengupta et al. 2017). It is noted
that (1.1) is the standard surface charge conservation equation that can be derived from
the electrokinetic theory when neglecting the terms of charge diffusion and chemical
reaction (Saville 1997). A few studies make further efforts to discuss the effects of surface
conduction (Burton & Taborek 2011; Giglio et al. 2020) or charged surfactants (Conroy
et al. 2011). This paper limits the focus on the ohmic conduction and surface charge
convection of (1.1) without additional terms and ignoring electrokinetic effects. Wang
(2012) recognized the importance of the surface charge convection but did not explain how
the charge relaxation affects the pinching process. Moreover, it seems that the tangential
stresses in the studies of Wang (2012) and Li et al. (2019) play opposite roles in satellite
formation. Hence, the satellite drops affected by the tangential stresses are also of interest
in this work. Capturing the jet surface at pinch-off requires high-resolution computations
since the radius near the pinching point is several orders of magnitude smaller than the
initial jet radius. Considerable investigations were conducted by Basaran’s group using
finite element methods (FEMs) to resolve the singularity in dripping (Ambravaneswaran,
Phillips & Basaran 2000), jetting and their transition (Ambravaneswaran et al. 2004).
Collins et al. (2007, 2008) have shown that FEM can accurately depict the capillary
pinching of charged jets and tip streaming of electrified films using the elliptic mesh
generation algorithm to track the moving boundary. This work adopts FEM to deal with
the governing equations and uses an arbitrary Lagrangian–Eulerian (ALE) technique to
track the jet surface since this method combines the advantages of the Lagrange and Euler
methods (Yang, Hong & Cheng 2014b).

The rest of the paper is organized as follows. Section 2 presents the physical model,
governing equations, boundary and initial conditions, as well as the numerical method.
In § 3, comparisons of the pinching processes between the perfectly conducting and
leaky-dielectric jets are performed. Section 4 expounds on the difference between the two
kinds of jets using linear stability analysis and nonlinear dynamics. Concluding remarks
are presented in § 5.
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ḡ

Z̄0

Z̄

q̄0

R̄0

ε̄0

r̄0
r̄

γ̄

ρ̄, μ̄, ε̄, K̄

Sf Peak

Trough

λ̄ = 2π/k̄

ΩG

ΩL

Figure 1. Definition sketch of a perturbed, axisymmetric and charged jet. The dashed lines represent the
quiescent jet at t̄ < 0. The red plus signs and double arrows stand for the surface charge and fluid flow,
respectively.

2. Problem description

2.1. Physical model
This study considers a leaky-dielectric liquid jet of length Z̄0 and radius r̄0 flowing through
a concentric cylindrical electrode of radius R̄0, as depicted in figure 1. A similar model was
also described by Setiawan & Heister (1997) and Collins et al. (2007) The liquid jet inside
the domain ΩL is an incompressible Newtonian fluid with uniform density ρ̄, dynamic
viscosity μ̄, electrical permittivity ε̄ and electrical conductivity K̄ and is surrounded by a
passively insulating gas (ΩG) of permittivity ε̄0. The liquid–gas interface is denoted by Sf
with a constant surface tension γ̄ . This work assumes the surrounding gas is motionless
but provides a datum pressure on the liquid jet. Besides, the velocity boundary layer at the
interface is not considered although it affects the jet instability (López-Herrera et al. 2005).
Since the charge transportation is of interest in this work, the surface charge density at the
interface is initialized to q̄0, and the electrode is grounded. The free surface is subjected
to a cosine perturbation of magnitude Ā0 and axial wavelength λ̄ (λ̄ = 2π/k̄, k̄ is the
wavenumber) at t̄ = 0. A periodic condition is used along the z̄-axis, and the electrode
radius is maintained R̄0 = 10r̄0 to exclude the effects of electrode geometry (Collins et al.
2007). The value Z̄0 = λ is chosen in the simulations. For an unperturbed jet, the initial
condition of q̄0 is identical to that of an electrical potential Φ̄0 = q̄0r̄0 ln(R̄/r̄0)/ε̄0 or a
radial electric field Ē0 = q̄0/ε̄0. The jet deposited by surface charges is called a charged
jet, while that imposed by a constant potential is termed an electrified jet. Most studies do
not distinguish between the two jets. Nevertheless, in a perturbed leaky-dielectric jet, only
the initial condition q̄0 can generate a tangential electric field. This initial condition was
addressed by López-Herrera & Ganan-Calvo (2004) and was adopted by Wang (2012) and
Li et al. (2019).

For a leaky-dielectric jet, the surface charge convection primarily depends on the
hydrodynamic flows, which arise from the oscillation of the surface or the EHD flow. The

time scales of the two flows are denoted as t̄γ =
√

ρ̄ r̄3
0/γ̄ and t̄f = μ̄/(ε̄Ē2

0), respectively
(Saville 1997). López-Herrera et al. (2005) used the relaxation parameter α = t̄γ /t̄e =
[K̄2ρ̄ r̄3

0/(ε̄
2γ̄ )]1/2 to measure the importance of charge relaxation. When α → ∞, the
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ohmic conduction dominates the charge relaxation; thus, the charges tend to accumulate
at the peaks and troughs (marked by four plus signs in figure 1) since the curvatures are
the largest at these positions. An intuitive but extreme phenomenon is the point discharge.
When α is finite, the transport of the charges to the peaks or troughs is as slow as the fluid
flow (marked by red double arrows in figure 1), and the charges are redistributed at the
interface.

2.2. Governing equations
The simulation of EHD breakup of leaky-dielectric jets requires the calculation of the
fluid flow and the electric potential. Dimensional analysis is used to define the following
variables as scales of the length, time, velocity, pressure, surface charge density and
electric potential:

r̄0,

√
ρ̄ r̄3

0/γ̄ , r̄0/

√
ρ̄ r̄3

0/γ̄ , γ̄ /r̄0, q̄0, Φ̄0. (2.1)

Consequently, the pinching process of leaky-dielectric jets is governed by the
dimensionless Navier–Stokes (NS) equations

∂u
∂t

+ u · ∇u = −∇p + Oh∇2u in ΩL, (2.2)

∇ · u = 0 in ΩL, (2.3)

and the dimensionless electrostatic equation

∇2Φ = 0 in ΩL ∪ ΩG. (2.4)

The three equations are used to solve the velocity vector u and pressure p inside the liquid
jet and the electric potential Φ in the entire space. Here, Oh = μ̄/

√
ρ̄γ̄ r̄0 is the Ohnesorge

number that relates the viscous forces to the inertial and surface tension forces. The NS
equations are coupled with the electrostatic equation via the stress balance along Sf , which
is defined as

n · [Th − T
e]G

L = κn on Sf . (2.5)

The two terms in the square brackets are the hydrodynamic and Maxwell stresses across the
liquid–gas interface, where T

h = −pI + Oh(∇u + (∇u)T) and T
e = CaE(EE − E2

I/2),
respectively. Here, I is the identity matrix and E = −∇Φ is the electric field measured
by Ē0 = q̄0/ε̄0. The term on the right-hand side of (2.5) is the surface tension that is
derived from the local mean curvature, which is computed by κ = −(∇ · n). Here, CaE =
ε̄0Ē2

0 r̄0/γ̄ is the electric capillary number that measures the electric to capillary stresses.
In our model, the hydrodynamic stress inside the gas is zero, viz., T

h
G = 0. The subscripts

L and G denote the liquid and gas domains, respectively.
On the jet surface, the electric field affects the charge distribution, which, in turn,

modifies the electric field. It is defined by the dimensionless surface charge conservation
equation derived from (1.1)

∂q
∂t

+ u · ∇sq − qn · (n · ∇)u = εαEL · n on Sf , (2.6)

where q is the surface charge density computed by the Gauss law q = n · (EG − εEL),
ε = ε̄/ε̄0 is the relative permittivity of the liquid jet. Reorganizing the term of surface
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charge convection as

u · ∇sq − qn · (n · ∇)u = u · ∇sq + q[∇ · u − n · (n · ∇)u]
= u · ∇sq + q[∇ − (n · ∇)n] · u
= u · ∇sq + q∇s · u = ∇s · (qu),

(2.7)

the dimensionless surface charge conservation equation is rewritten as

∂q
∂t

+ ∇s · (qu) = εαEL · n on Sf , (2.8)

where ∇s = (I − nn) · ∇ is the surface divergence operator. The appearance of u in (2.8)
couples the electric field and the fluid flow, which satisfies the kinematic condition

n · (u − us) = 0 on Sf , (2.9)

where us is the local velocity on Sf . At the interface, the continuity of the tangential
component (τ ) of the electric field is given by

n × (EG − EL) = 0 on Sf , (2.10)

i.e. EL,τ = EG,τ = Eτ . A comparison of (2.2), (2.4), (2.5) and (2.8) with the corresponding
dimensional equations shows that Oh, ε, CaE and εα represent the effects of the liquid
viscosity, the permittivity, the electric intensity at the jet interface and the conductivity,
respectively.

Initially, the jet surface is perturbed by a linear cosine disturbance in the form of Sf =
1 + A0 cos(kz), where the initial perturbation A0 equals to 10−2. It is noticed that A0 and
the perturbation form affect the breakup time but only slightly influence the jet pinching.
The details are described in appendices A and B. At t = 0, the interface is charged with a
constant surface charge density q|t=0 = 1. On the electrode surface, the electric potential
is

Φ = 0 at r = 10. (2.11)

Regarding the finiteness of the physical quantities at the symmetry axis, the radial
components of the electric field and velocity satisfy

Er = 0 and ur = 0 at r = 0. (2.12a,b)

This work considers an electrified jet whose properties are similar to the work fluids
in EHD applications (Bhardwaj & Kundu 2010; Jaworek et al. 2018; Onses et al. 2015).
The jet has a radius of ∼10 μm and is subjected to an electric field of ∼106 V m−1;
the magnitudes of the dimensionless numbers in the above descriptions are respectively
Oh ∼ 1, CaE ∼ 1, ε ∼ 10 and α ∼ 10.

2.3. Numerical scheme
Equations (2.2)–(2.4) and (2.8) are solved by the FEM using mathematical models
with so-called weak formulations. When (2.2) and (2.3) are integrated inside the liquid
domain, and the Gauss divergence theorem is applied, the weak representations are defined
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as follows:

0 =
∫

ΩL

∂u
∂t

u dΩL +
∫

ΩL

(u · ∇u)u dΩL − Oh
∫

ΩL

∇u∇u dΩL

−
∫

ΩL

p∇ · u dΩL −
∫

SL

(
Oh

∂u
∂n

− pn
)

· u dSL, (2.13)

and

0 =
∫

ΩL

(∇ · u)p dΩL, (2.14)

where u and p are the test functions of the velocity vector u and pressure p, respectively.
Here, SL represents the boundary of the liquid domain. In the same manner, the weak form
of (2.4) is expressed as

0 =
∫

Ω

∇φ · ∇Φ dΩ −
∫

S
(φ∇Φ · n) dS, (2.15)

where φ is the test function of the electrical potential Φ and Ω = ΩL ∪ ΩG is the entire
domain whose boundary is denoted by S. On the jet surface, the weak representation of
(2.8) is formulated by a test function q of the surface charge density q, which is expressed
as

0 =
∫

Sf

(∇q) · (qu) dSf +
∫

Sf

q(εαEL · n) dSf

−
∫

Sf

∂q
∂t

q dSf −
∫

Pf

q(qu) · n dPf . (2.16)

Here, Pf is the boundary point of Sf . To obtain the FEM solutions, the liquid and gas
domains are partitioned into 20 × 320 and 120 × 320 quadrilateral meshes, respectively.
All the test functions are discretized in the mesh point using a quadratic-order Lagrange
element (Zienkiewicz, Taylor & Zhu 2013), except for the test function of the pressure,
in which a linear Lagrange element is used. Besides, the integral orders of the weak
formulations (2.13) and (2.14) are set to 2, and those of (2.15) and (2.16) are set to 4.

The ALE technique (Donea, Giuliani & Halleux 1982) is used to track the jet surface.
Conceptually, the computational mesh inside the liquid domain can move arbitrarily to
optimize the shapes of the elements, and the mesh at the interface moves along with the
liquid to track the interface precisely. Since the mesh is free, an additional coordinate
system x(X m, t) is required to describe the mesh frame; it is different from the spatial
coordinate x(X , t) fixed in space. It is noted that (2.2)–(2.4) and (2.8) are based on the
Euler descriptions. Hence, the term of time derivative for a field function f ( f = u or
f = q) needs to be modified as follows (Yang et al. 2014b):

df
dt

= ∂f
∂t

∣∣∣∣
Xm

+ (uc · ∇(s))f , (2.17)

where uc = u(X , t) − u(X m, t) is the convection velocity. Besides, an equation defining
the mesh displacement smoothly deforms the mesh, given the constraints placed on the
interface. The numerical method coupled with the ALE technique was also adopted
by Martínez-Calvo et al. (2020) and Rivero-Rodriguez & Scheid (2018) who studied
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the breakup of surfactant-laden liquid threads and bubble dynamics in microchannels,
respectively. This work adopts the Yeoh smoothing method, which searches for a minimum
of the mesh deformation energy (COMSOL Inc 2019)

W = 1
2

∫
Ω

[C1(I1 − 3) + C2(I1 − 3)2 + C3(I1 − 3)3] dΩ, (2.18)

where the invariants I1 are defined as

I1 = [det(∇X mx)]−2/3tr[(∇X mx)T(∇X mx)]. (2.19)

Here, C1, C2 and C3 are the artificial material properties that equal 1, 0 and 10,
respectively. The time stepping uses the implicit backward differentiation method (Brown,
Hindmarsh & Petzold 1994) with either first or second orders. All variables in the algebraic
equations are solved using the fully coupled Newton method with a damping factor of 0.9.
The Newton iteration is terminated after 20 iterations or when the residuals reach 10−6 in
each time step. Since the ALE technique cannot track the interface after the jet breakup;
only the results until pinch-off are displayed. Limited by the Yeoh smoothing method,
computations are stopped as the minimum radius reaches approximately 10−2 and the
pinch-off dynamics below this radius is beyond the scope of this article. To ensure the
accuracy of computed results, the convergence tests for grid resolution and time step are
discussed in Appendix C.

3. Pinching process of electrified jets

The response of jet deformations depends on the viscosity Oh, electric field intensity
CaE, relaxation parameter α, electrical permittivity ε and the perturbed wavenumber k.
Since the parameter space is large, most of the work selects Oh = 1, CaE = 2, k = 0.6
and different combinations of α and ε to discuss the pinching process of the charged
jet. When εα → ∞, the breakup dynamics of the leaky-dielectric jet reverts to the EHD
breakup of a perfectly conducting jet. The breakup process from perfectly conducting jets
is described in this section to provide a comparison for later computations and understand
the pinching mechanisms of leaky-dielectric jets. Figure 2 shows the nonlinear evolution
of the perfectly conducting and leaky-dielectric jets. For the perfectly conducting jet, as
depicted in figure 2(a), the jet peak expands in the radial direction. In contrast, the jet
trough is first compressed and then stretched. Eventually, the peak and trough are atomized
into the so-called main drop and satellite droplet, which are connected by a thin ligament
before pinch-off. This case is called the ligament-pinching mode. The ligament-pinching
mode usually exists in inviscid or slightly viscous uncharged jets since a satellite droplet
appears (Setiawan & Heister 1997). However, at α = 1, the leaky-dielectric jet finally
breaks at the jet end, which is called the end-pinching mode in this study. In this case,
the peak is also expanding but its extent is smaller than that in the perfectly conducting
case, and no satellite droplet occurs. A highly viscous uncharged jet or an uncharged thread
in the Stokes flow limit tends to break via end pinching (Collins et al. 2007).

Figure 3 depicts the variations of the jet amplitude A(t), which is defined as half of
the difference between the maximum and the minimum radii. Such treatment can cancel
the errors of second-order terms (Ashgriz & Mashayek 1995). The curves of both the
perfectly conducting and leaky-dielectric jets first exhibit a linear region, followed by a
nonlinear region. Besides, the linear region dominates the thinning process most of the
time since the nonlinear effect in this region is fairly weak. Similar regions are also found
by Collins et al. (2007) and Wang & Papageorgiou (2011) for perfectly conducting jets and

925 A4-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

63
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.639


Q. Nie, F. Li, Q. Ma, H. Fang and Z. Yin

2

(a) (b)

0

–2

2
Increasing t Increasing t

r
z

r
z0

–2

–5 0

Main

drop Main drop

Satellite

droplet
End

Ligament

Ligament pinching End pinching

5 –5 0 5

Figure 2. Evolution of the surface profiles of (a) perfectly conducting and (b) leaky-dielectric jets. The bottom
panels depict the jet shapes at the incipience of pinch-off. Here, k = 0.6, Oh = 1, CaE = 2 for both jets and
ε = 10, α = 1 for leaky-dielectric jets.
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Figure 3. Variation in the jet amplitude at z = 0. Here, k = 0.6, Oh = 1, CaE = 2, ε = 10, α = 1. The
solid lines represent the fitting curves.

Ashgriz & Mashayek (1995) for uncharged jets. In the linear region, the growth rate, viz.,
the slope of the curve, remains constant. The growth rate in the leaky-dielectric case
is lower than that in the perfectly conducting case, and the leaky-dielectric jet breaks
earlier than the perfectly conducting case. In the early stage of the linear region, the
leaky-dielectric and perfectly conducting jets evolve similarly, e.g. the jet profiles of the
two jets at t = 20 are nearly the same. As the evolution of the jets approach pinch-off, the
nonlinear dynamics becomes significant, and the two jets exhibit different behaviour, i.e.
ligament pinching in the perfectly conducting case and end pinching in the leaky-dielectric
case.

Collins et al. (2007) demonstrated that electric stress causes the satellite droplets of
perfectly conducting jets to be larger than those of the uncharged cases, even though
a highly viscous jet can cause the formation of large satellite drops. However, the
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Effects of charge relaxation

charge relaxation suppresses the formation of satellite drops in leaky-dielectric jets.
The differences in the charge relaxation effects on the linear and nonlinear dynamics will
be comprehensively addressed in the next section.

4. Results and discussion

4.1. Comparison with the linear theory
The framework of the linear theory assumes that the perturbed interface is defined by
a complex eigenvalue ω = ωr + iωi and a wavenumber k, i.e. h = 1 + ĥeωt+ikz, where
ωr is the growth rate, ωi is the oscillation frequency and ĥ � 1 denotes an infinitesimal
amplitude surface disturbance. In this manner, all other quantities, such as the velocity
vector, pressure and electrical potential, are represented as X = X0 + X̂(r)eωt+ikz, where
X0 is the unperturbed value. Substituting these perturbed quantities into the governing
equations and boundary conditions, the dispersion relation relating the growth rate to the
wavenumber is derived, which reads (López-Herrera et al. 2005)

ω2f (k) + Tμ + (Tγ + TE)(1 − Te1) + Te2 + Te3 = 0, (4.1)

where
Tμ = 2Ohω[2k2f (k) − 1] + 4k2Oh2(k2f (k) − l2f (l)) (4.2)

is the viscous driving term,

Tγ = k2 − 1 (4.3)

denotes the surface tension term and

TE = CaE

(
1 + 1

G(k)

)
(4.4)

stands for the electric stress term. Here, Te1, Te2 and Te3 are the electric relaxation terms,
which are respectively given by

Te1 = CaEG(k)k2f (k)
E(α, ε, ω, k)ω2 (k2f (k) − l2f (l)),

Te2 = CaE

E(α, ε, ω, k)
f (k)

(
2k2f (k) + k2f (k)l2f (l)G(k) + 1

G(k)

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.5)

and

Te3 = 2CaEOhf (k)k2

E(α, ε, ω, k)ω
(2 + G(k))(k2f (k) − l2f (l)). (4.6)

Here, f (k), E(α, ε, ω, k) and G(k) denote the auxiliary functions that are respectively
written as

f (k) = I0(k)
kI1(k)

, E(α, ε, ω, k) = ε
(

1 + α

ω

)
G(k) − f (k), (4.7)

and

G(k) = I0(k)K0(kR0) − K0(k)I0(kR0)

k(I1(k)K0(kR0) + K1(k)I0(kR0))
, (4.8)

where In and Kn are the first- and second-kind modified Bessel functions with the order
n and l2 = k2 + ω/Oh. We also deduce the dispersion relation for non-axisymmetric
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Figure 4. Wavenumber dependence on the growth rates obtained from linear analysis (lines) and FEM
simulations (symbols). Panels (a–d) represent the effects of viscosity, electric field intensity, relaxation
parameter and permittivity on jet stabilities. The solid blue and dashed black lines stand for the leaky-dielectric
and perfectly conducting cases, respectively. For the FEM simulations, only the cases at k = 0.6 and k = 0.8
are displayed. All the results are calculated based on parameters Oh = 1, CaE = 2, α = 10, ε = 10.

perturbations (see Appendix D). The following sections only focus on the effects of
axisymmetric perturbations. When αε → ∞, the dispersion relation for the perfectly
conducting jet is recovered (Collins et al. 2007). Figure 4 shows the dispersion relation for
the perfectly conducting and leaky-dielectric jets. The growth rates of FEM simulations
calculated from the slopes of figure 3 agree well with the linear theory. In the linear
stability analysis, several characteristics, including the range of unstable wavenumbers
and the maximum growth rate, are usually considered. Since the behaviour at small k is
complicated (López-Herrera et al. 2005), we limit the computed space of wavenumber
to [0.2, 2]. A large growth rate indicates the jet is more unstable. In all cases, the
leaky-dielectric jet is more stable than the perfectly conducting one at long wavelength
(k < 1), whereas the instability is nearly the same for the two jets in the short-wave
range (k > 1). Figure 4(a) depicts the effects of the viscosity Oh on the jet instability. In
(4.1), the viscosity mainly affects the viscous driving term Tμ and the electric relaxation
term Te3. Owing to the contribution of Tμ, the jet is more stable at a large viscosity.
Take k = 0.6 for example, the growth rates for leaky-dielectric cases at Oh = 0.01, Oh =
0.1 and Oh = 1 are 0.0911, 0.2602 and 0.3222, respectively. For perfectly conducting
cases, they are 0.0999, 0.2871 and 0.3330, respectively. A similar trend is common in
uncharged (Eggers & Villermaux 2008) and perfectly conducting jets (Collins et al. 2007).
Additionally, the viscosity partly decreases the influence of the charge relaxation due to
Te3. However, the range of unstable wavenumbers is unaffected by the viscosity, as well
as the relaxation parameter α (figure 4c) and permittivity ε (figure 4d). In contrast, the
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Figure 5. Breakup time as a function of the growth rate obtained from the linear theory (line) and FEM
simulations (symbols). For the FEM simulations, only the cases at k = 0.6 and k = 0.8 are shown.

electric field intensity CaE dramatically increases the range of unstable wavenumbers,
which is 0 < k < 1 for the uncharged jet (CaE = 0). In the leaky-dielectric cases, the
upper limit of the unstable wavenumber rises to 1.13 for CaE = 0.5, 1.33 for CaE = 1 and
1.95 for CaE = 2, as shown in figure 4(b). This result is mainly caused by an increase
in the effects of the electric stress terms TE. However, the electric relaxation terms Te1,
Te2 and Te3 do not influence the upper limit since they approach zero at ωr = 0. Besides,
as CaE increases, the electric stress firstly decreases the maximum growth rate and then
increases it. For the cases at CaE = 0.5, CaE = 1 and CaE = 2, the maximum growth
rates for leaky-dielectric jets are 0.0973, 0.09422 and 0.1356, respectively. The change
of the unstable wavenumber and maximum growth rate still holds for inviscid (Setiawan
& Heister 1997) or viscous (Collins et al. 2007) perfectly conducting jets. Furthermore,
as CaE rises, the charged jet becomes more stable above a critical wavenumber but
more unstable below this critical value (kE for the perfectly conducting jet and k′

E for
the leaky-dielectric jet). The theoretical critical value for the perfectly conducting jet is
kE = Γ −1(−1) = 0.595 when the electrode radius R0 tends to infinity (López-Herrera
et al. 2005; Setiawan & Heister 1997). In the leaky-dielectric case, the critical value k′

E
shifts towards the short wave but is still located on the curve of the dispersion relation of
the uncharged jet. Figures 4(c) and 4(d) highlight the influence of charge relaxation on
jet stability. Due to the electric relaxation terms Te1, Te2 and Te3, the charge relaxation is
sensitive to α and ε in the long-wavelength range (k < 1) but does not affect the stability
in the short-wavelength range (k > 1).

If the leaky-dielectric jet evolves according to linear theory, it eventually breaks at
the time tb = − ln(A0)/ωr. This expression is often used to estimate the breakup time
of uncharged (Eggers 1997; Eggers & Villermaux 2008) and perfectly conducting jets
(Collins et al. 2007). Figure 5 depicts the relationship between the breakup time and the
growth rate obtained from linear theory and the FEM simulations. The breakup times at a
high relaxation parameter or permittivity obtained from the FEM simulations agree with
those derived from linear theory; however, there are deviations from the theoretical values
at low α and ε (20 % error). This result is caused by the strong nonlinear dynamics in the
later evolution of the jet pinching (the nonlinear region in figure 3).

4.2. Nonlinear breakup of leaky-dielectric jets
To identify the differences of nonlinear dynamics between the perfectly conducting and
leaky-dielectric jets, a relative deformation parameter S measuring the deviation of the jet
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Figure 6. (a) Surface profiles of the leaky-dielectric jets before breakup and (b) relative deformation S
(marker) and relative satellite volume V (line) for different relaxation parameters α. Here, k = 0.6, Oh = 1,

CaE = 2, ε = 10. In (a) at α = 10, the dashed black profile represents the interface shape of a perfectly
conducting jet at pinch-off.

profiles between the two jets is defined as

S =
√∫ λ

0
(rLD − rPC)2 dz, (4.9a)

where rLD and rPC denote the surface profiles of the leaky-dielectric and perfectly
conducting jets at pinch-off, respectively. Besides, the relative volumes of satellite droplets
from leaky-dielectric jets given as

V =
∫π/k

z+min
r2

LD dz

∫π/k
0 r2

LD dz
, (4.9b)

are calculated, where z+
min is the axial coordinate of the pinch-off point in the domain

of z > 0. Figures 6(a) and 6(b) show the final surface shapes, the relative deformation
parameters and the relative satellite volumes at different α. For the leaky-dielectric jet,
the surface profile at α = 10 nearly overlaps with that of the perfectly conducting case.
This result indicates that even at α = 10, the leaky-dielectric jet can be treated as a
pure conductor. Such consideration is also verified by the linear theory, as depicted in
figure 4(c). As α decreases, a significant effect of the charge relaxation results in the
formation of round proto-main drops. Besides, the proto-satellite drops are compressed
until no more satellite droplets appear. In the regimes where α > 1.9 and α < 1.89,
the leaky-dielectric jet is broken via ligament- and end-pinching modes, respectively.
Furthermore, a transition regime covering a narrow range of α (grey shading in figure 6b)
shows that the jet ligament and end are simultaneously compressed. As a result, the
proto-satellite droplet slowly merges with the proto-main drop. The satellite volume gets
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Figure 7. (a) Surface profiles of the leaky-dielectric jets before breakup and (b) relative deformation S (marker)
and relative satellite volume V (line) at different electrical permittivity ε. Here, k = 0.6, Oh = 1, CaE = 2,

α = 1. In (a), the dashed black profile represents the interface shape of a perfectly conducting jet at pinch-off.

smaller as α decreases. If α is 1.893, the leaky-dielectric jet may break at the ligament and
end simultaneously.

A similar trend is also found at different values of ε, as depicted in figure 7. As the
permittivity increases, the leaky-dielectric jet eventually goes through the end-, transition-
and ligament-pinching modes. The three modes are divided by two critical permittivities,
viz., ε = 17.45 and ε = 17.5. A jet with a high permittivity (ε = 100 in figure 7a) shares
similar characteristics as a jet at a high relaxation parameter (α = 10 in figure 6a). Wang
(2012) and Li et al. (2019) also showed that α and ε had the same effect on the nonlinear
dynamics of a leaky-dielectric jet. In practical experiments, α and ε are interrelated since
a highly conducting liquid also exhibits high polarizability. Some weak polar liquids such
as canola oil (Collins et al. 2008) and polymers (Ha & Yang 2000) are often employed
in investigating the dynamics of leaky-dielectric liquids. Clearly, a decrease in αε can
compress the satellite droplets until no more satellite droplets are formed. Li et al. (2019)
investigated a moderately viscous, charged, viscoelastic jet, and concluded that the finite
conductivity removes satellite droplets from the beads-on-string structure. Nevertheless,
in most cases analysed by Li et al. (2019), the main drop is slightly affected by the charge
relaxation, and the reduction in the satellite droplet size is under the common influences
of charge relaxation and viscoelasticity. In this work, we infer that the charge relaxation
can suppress the radial enlargement of the satellite droplets from a leaky-dielectric jet.

4.3. Experimental verification
A system of electrified jets is developed for observing the pinching process, as shown in
figure 8(a). The system primarily contains a jet generating module and a visual observation
module. In the jet generating module, as depicted in figure 8(b), a jet is generated from
a metal needle which is driven by an injection pump, and then goes through a coaxial
electrode. The geometry parameters of the needle–cylinder electrode are listed in table 1.
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Figure 8. (a) Schematic diagram of the experimental apparatus, and (b) the needle–cylinder electrode
configuration used in the experiments.

r̄0(μm) R̄0 (mm) ρ̄ (kg m−3) μ̄ (mPa · s) γ̄ (mN m−1) K̄ (S m−1) ε

100 4.7 785 1.1 22 1.35 × 10−7 24.3

Table 1. Physical properties of ethanol and geometry parameters used in experiments.

The needle is imposed by a DC high voltage and the electrode is grounded. The drops
from broken jets are received by a reservoir. A high-speed camera (Photron SA5) is used
to capture the pinching process by using a 2 × 104 f.p.s. frame rate. Pure ethanol is tested
in experiments, of which physical properties are listed in table 1. Three groups of operating
parameters in experiments are mainly conducted as listed in table 2. In FEM simulations,
the Ohnesorge number and charge relaxation parameter are Oh = 0.026 and α = 0.13,
respectively. To repeat the experimental configuration in FEM simulations, gravity is also
included by adding a volume force term Fgez to the right-hand side of (2.2), where ez
is the axial unit vector. Based on the dimensionless processing, Fg is scaled into the
Bond number Bo = ρ̄ r̄2

0ḡ/γ̄ ≈ 0.0035 comparing the importance of gravity with surface
tension, where ḡ is the gravitational acceleration. A velocity inlet and an outlet of fully
developed flow are imposed on the left and right boundaries of figure 1. Similar boundary
conditions were first adopted by Eggers & Dupont (1994) in one-dimensional simulations
of uncharged jets. In the dimensionless representation, the inlet velocity is reduced to the
Weber number We = ρ̄Ū2

0 r̄0/γ̄ , which is the ratio of the inertia force to the surface tension.
Besides, the length of the computational domain along the z-axis is set to Z̄0 = 8λ̄. In FEM
simulations the electrode radius is set to R0 = 10, which is different from the experimental
setting R0 = 47; however, the electric capillary numbers in simulations and experiments
are kept the same.

Figure 9 depicts the snapshot of electrified jets at pinch-off in experiments and FEM
simulations; breakage occurs via the ligament-pinching mode. In FEM simulations, We,
CaE and k are adjusted to model the experiment as accurately as possible. The profiles
of leaky-dielectric jets are close to these in experiments. Figure 9(a) shows the surface
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Effects of charge relaxation

Case Q̄0 (μL min−1) Φ̄0 (kV) Ū0 (m s−1) Ē0 (V m−1) k

Case 1 3000 3.7 1.83 7.88 × 106 0.95
Case 2 2500 3.7 1.53 7.88 × 106 0.92
Case 3 3000 3.6 1.83 7.67 × 106 0.9

Table 2. Operating parameters in experiments.

Case 1

LD

C’ C’‘C

B’ B’‘B

A’ A’‘A

PC LD LD

100 μm

(a) (b) (c)

Case 2 Case 3

100 μm 100 μm

Figure 9. Comparisons between experiments and FEM simulations. (a) We = 12, CaE = 2.5, k = 0.95, (b)
We = 8.5, CaE = 2.5, k = 0.92 and (c) We = 12, CaE = 2.3, k = 0.9. Here, LD and PC represent the
leaky-dielectric and perfectly conducting jets, respectively.

profiles of the leaky-dielectric and perfectly conducting jets before the breakup. In the
presence of the electric field, the main drops in the experiment (A and C) and in the FEM
simulation (A, C, A’‘ and C’‘) are stretched in the radial direction. Moreover, the main
drop is more oblate in the downstream area (A, A’ and A’‘) than in the upstream area (C,
C’ and C’‘). This result is caused by strong normal electric stresses. However, the main
and satellite drops are more compressed in the leaky-dielectric jet than in the perfectly
conducting jet. As a result, the sizes of satellite droplets from leaky-dielectric jets are
smaller than their counterparts formed from perfectly conducting jets at the same Oh and
CaE. Collins et al. (2007) showed a ring-like structure (A’‘) appeared to be forming at the
periphery of the main drop at very high CaE (> 6.5 × 2/(ln 10)2 = 2.45). In contrast, the
leaky-dielectric jet tends to form oblate drops before breakup at the same conditions.

4.4. Charge relaxation and stress jump at the interface
From (2.8), it is known that a large conductivity αε indicates a strong ohmic conduction
in the charge transportation. Conversely, a low conductivity αε causes a strong surface
convection. Figure 10 depicts the fluid flow inside the liquid domain and the distributions
of the surface velocities. For a leaky-dielectric jet with a large conductivity (αε = 100),
the fluid flows from the jet ligament to the proto-main drop and proto-satellite droplet,
which is similar to the results of Collins et al. (2007) in the perfectly conducting case.
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Figure 10. (a) Streamlines and (b) surface velocities of leaky-dielectric jets at Oh = 1, CaE = 2 and k = 0.6.
The red and black lines in (a) indicate the locations of the minimum radius and the interior stagnation plane,
respectively.

However, for a leaky-dielectric jet with moderate conductivity (αε = 18.9), the fluid flows
not only from the jet ligament to the main and satellite drops but also from the jet end to the
proto-satellite droplet. The flow direction can be distinguished by a flow stagnation plane
(marked by the black line in figure 10a). On the flow stagnation plane, the axial velocity
is zero, as shown in figure 10(b). When the right half-side of the streamlines is αε = 100,
the surface convection comes into effect because the surface charge is convected along the
streamlines. This causes the surface charge to accumulate at the surface of the proto-main
and proto-satellite drops. However, on the other hand, the ohmic conduction drives the
charge moving into the ligament. As αε decreases, the surface charge convection becomes
increasingly important so that the main and satellite drops carry more charges. The
accumulated charges affect the electric field and, in turn, modify the distribution of surface
charges. Meanwhile, the transported charges also influence fluid flow. In figure 10(b), the
position at the maximum radial velocity indicates the plane of the minimum radius or the
pinch-off position. Hence, for the jet at αε = 100 and αε = 10, only the ligament and
end are pinched, respectively, while for the jet at αε = 18.93, the ligament and end are
simultaneously pinched.

Considering the distribution of surface charges at the jet end z = π/0.6, in the early
stage of charging, the surface charge density can be evaluated by the linear theory. Hence,
the charge densities for the three cases increase exponentially. As time progresses, the
surface charge density still rises exponentially but with a smaller exponent. When the jet
approaches pinch-off, the surface charge density at εα = 100 increases gently, whereas
those at εα = 10 and εα = 18.93 rise exponentially again. In the initial stage of jet
pinching, the contribution of the surface charge convection is much less than that of the
ohmic conduction; thus, the leaky-dielectric jets behave as perfect conductors in all cases.
With the increase in the jet deformation, the increasing fluid flow drives the surface charge
convection, which becomes comparable to the ohmic conduction. For a leaky-dielectric jet
at a low value of εα = 18.93, the surface charge density first rapidly accumulates and then
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Figure 11. (a) Evolution of the surface charge density at z = π/0.6, (b) the distribution of the surface charge
density before breakup and (c) the importance of ohmic conduction and surface charge convection terms before
breakup. Here, Oh = 1, CaE = 2, k = 0.6. For (c), the conduction and convection terms are plotted in the
regions of z < 0 and z > 0, respectively.

increases with a moderate growth rate, and ultimately rises dramatically again, as shown in
the regions A, B and C in figure 11(a). The monotonic growth of the surface charge density
also occurs in the end-pinching or conical end breakup of electrified drops (Sengupta et al.
2017). The result of the surface charge density before breakup due to the ohmic conduction
and surface charge convection is depicted in figure 11(b). For the jet at εα = 100, most
of the surface charge is accumulated at position z ≈ ±2, i.e. the ligament. In contrast,
the charge is concentrated around the jet end for εα = 10. The jet at εα = 18.93 is the
combination of the former two cases, in which most charges are accumulated at the jet
end and ligament. Figure 11(c) shows the strength of the ohmic conduction term εαEL · n
and the surface charge convection term −∇s · (qu) when the jet approaches pinch-off. At
εα = 100, the strength of ohmic conduction at the pinch-off point is larger than the surface
convection one. As εα is reduced to 10, the significance of the surface charge convection
at the breakup point exceeds the conduction. However, for the jet at εα = 18.93, the roles
of the convection and conduction at the jet end or ligament are of equal importance.

Stress analyses are used to expound on the pinching mode. Equation (2.5) is rewritten
in the form of normal and tangential components

p − n · T
μ
L · n = pC + pE,n,

n · T
μ
L · τ = pE,τ ,

}
(4.10)

where T
μ
L = Oh(∇u + (∇u)T) is the viscous stress inside the liquid domain, pC = κ

denotes the capillary pressure, pE,n = −CaE[(E2
G,n − εE2

L,n) − (1 − ε)E2
τ ]/2 and
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Figure 12. Normal stress jump and tangential stress for leaky-dielectric jets at (a,b) εα = 100, (c,d) εα =
18.93 and (e, f ) εα = 10. In the left panels, the solid black and dashed blue lines represent the normal electric
stress jump pE,n and capillary pressure pC, respectively. Here, Oh = 1, CaE = 2, k = 0.6.

pE,τ = −CaEqEτ are the electric stress jumps of the normal and tangential components,
respectively. The normal electric stress jump provides the jet interface with an inward
driving force while the surface tension causes rounding of the surface. For a perfectly
conducting liquid, the normal and the tangential electric stresses across the interface can
be simplified to pE,n = −CaEq2/2 and pE,τ = 0, respectively. The more surface charges
accumulate, the larger the normal electrical stress is. Figure 12 shows the normal stress
jump and tangential stress across the interface. For the pressures of stress in the cases of
εα = 100 and εα = 18.93, the capillary pressure (absolute value) at z ≈ ±2 is larger than
the normal electric stress, as marked by the red arrows in figures 12(a) and 12(c). Hence,
the two cases eventually break at the ligament. In contrast, at εα = 18.93 and εα = 10, a
large normal electric stress due to the accumulated charges causes the jets to break at the
jet end, as marked by the green arrows in figures 12(c) and 12(e). In figures 12(b), 12(d)
and 12( f ), the effect of the tangential electric stress is more significant as α decreases.
For the three cases, the maximum normal electric stresses are approximately α to α2 times
the maximum tangential ones. The tangential electric stress increases the interface flow,
resulting in streamlines as depicted in figure 10(a).
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Figure 13. Influence of the wavenumber k, viscosity Oh and electric field intensity CaE on the pinch-off.
For (a), Oh = 1, CaE = 2, εα = 20. For (b) Oh = 1, k = 0.6, εα = 1000. For (c), CaE = 2, k = 0.6,

εα = 100. The dashed black and solid blue profiles represent the interface shapes of the perfectly conducting
and leaky-dielectric jets at pinch-off, respectively.

4.5. Effects of the wavenumber, electric field intensity and viscosity on the pinch-off
Figure 13 highlights the effects of the wavenumber k, electric field intensity CaE and
viscosity Oh on the pinch-off. Ashgriz & Mashayek (1995) demonstrated that the size
of the satellite drops in uncharged cases decreases with an increase in the wavenumber.
Besides, the satellite drop size declines as the viscosity increases. Collins et al. (2007)
showed that large electric stresses significantly increase the radii of the satellite drops in
viscous, pure conducting jets. These trends also hold for leaky-dielectric jets. As shown
in figure 13(a), as the wavenumber increases, the leaky-dielectric jet first goes through the
ligament-pinching mode and then the end-pinching mode. A comparison with the perfectly
conducting cases indicates that a high wavenumber hinders the formation of satellite
droplets in the leaky-dielectric cases. At k = 0.6 and k = 0.7, the leaky-dielectric jets
break via the ligament-pinching mode, whereas they break via the end-pinching mode at
k = 0.8. In figure 13(b), the leaky-dielectric jet breaks via the end-pinching mode at a low
electric field intensity and the ligament-pinching mode at a high electric field intensity. If
a jet is a perfect conductor, a low electric field intensity of CaE = 0.5 can slightly increase
the size of the satellite droplet when comparing with an uncharged jet at Oh = 1. However,
for a leaky-dielectric jet, the charge relaxation prevents the formation of satellite droplets,
even though the jet exhibits high but not infinite conductivity. As a result, the jet breaks via
the end-pinching mode at CaE = 0.5. In contrast, the leaky-dielectric jets at CaE = 1 and
CaE = 1.5 break via the ligament-pinching mode. Figure 13(c) shows that a weak viscosity
can enhance the effect of the charge relaxation; thus, the jet end is substantially compressed
at Oh = 0.01. It is noticed that the transition-pinching mode does not show in figure 13
because it occurs within a narrow range of εα. Under the conditions of figure 13(a–c),
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Figure 14. Breakup modes of viscous (Oh = 1), charged jets in the k − CaE plane. The symbols indicate the
calculated data points. The closed line represents the boundary of the ligament-pinching mode.

the transition-pinching mode should occur at a wavenumber of 0.7 < k < 0.9, an electric
field intensity of 0.5 < CaE < 1 and a viscosity of Oh < 0.01, respectively.

Figure 14 depicts the breakup mode in the k − CaE space. The computed space
is [0.4, 1.2] × [0.5, 2]. At a small εα = 20, the leaky-dielectric jet breaks via
the ligament-pinching mode only at a large electric field intensity (CaE = 2) and
a long-wavelength range (0.4 < k < 0.7). As εα increases, the boundary of the
ligament-pinching mode expands so that the leaky-dielectric jet can break at small
electric field intensities and a short-wavelength range. If εα tends to infinity, the perfectly
conducting limit is recovered, and the jet only breaks via the ligament-pinching mode.

4.6. Local dynamics at pinch-off
When a jet approaches pinch-off, a singularity forms since one piece of fluid is separated
into two discontinuous ones. Following Eggers’ dimensional analysis (Eggers & Fontelos
2015), the profile of a charged jet close to pinch-off is represented by

h̄ = f̄ (Δz̄, Δt̄, ρ̄, μ̄, γ̄ , ḡ, ε̄, Ē0, K̄, r̄0), (4.11)

where Δz̄ = z̄ − z̄0 → 0 and �t̄ = t̄b − t̄ → 0 are the scaled space and time coordinates
of the breakup point. By using the characteristic length l̄t =

√
μ̄Δt̄/ρ̄ as the breakup scale,

(4.11) can be simplified to

h̄ = l̄t f

(
Δz̄
l̄t

,
l̄μ
l̄t

,
l̄γ
l̄t

,
l̄E
l̄t

,
l̄e
l̄t

,
r̄0

l̄t

)
, (4.12)

where l̄μ = μ2/ργ and l̄γ = √
γ̄ /(ρ̄ḡ) are the intrinsic viscous scale and the capillary

length, respectively. Here, we introduce two characteristic lengths l̄E = γ̄ /(ε̄0Ē2
0) and l̄e =

α2γ̄ /(ε̄0Ē2
0) to characterize the effects of the normal and tangential electric stresses. The

normal electric stress is assumed to be α2-fold the tangential electric stress. These scales
can be rewritten as l̄μ = √

Ohr̄0, l̄γ = r̄0Bo, l̄E = r̄0/CaE and l̄e = α2r̄0/CaE. In the limit
l̄t → 0, the macroscopic scales, including l̄γ and r̄0 should be ignored due to l̄γ /l̄t → ∞
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and r̄0/l̄t → ∞. Hence, (4.12) is reduced to

h̄ = l̄t f
(

�z̄
l̄t

,
l̄μ
l̄t

,
l̄E
l̄t

,
l̄e
l̄t

)
. (4.13)

If l̄e � l̄μ, viz., CaE � α2/
√

Oh, l̄e can be dropped out and then (4.13) is left with

h̄ = l̄t f
(

�z̄
l̄t

,
l̄μ
l̄t

,
l̄E
l̄t

)
. (4.14)

In the same manner, as CaE � 1/
√

Oh, l̄E should be neglected so that the above equation
is recovered to

h̄ = l̄t f
(

�z̄
l̄t

,
l̄μ
l̄t

)
, (4.15)

which indicates that the electrified jet obeys the scaling laws of uncharged jets. For
uncharged jets, the local dynamics can be described by three self-similar regimes, i.e. the
inertial (I), viscous (V) (Papageorgiou 1995) and viscous–inertial (VI) regimes (Eggers
1997; Eggers & Villermaux 2008). The dimensionless minimum radius hmin of the jet
obeys power laws as follows:

hmin ≈ 0.7[Oh(tb − t)]2/3 in I regime
hmin ≈ 0.0709(tb − t) in V regime
hmin ≈ 0.0304(tb − t) in VI regime

⎫⎪⎬
⎪⎭ . (4.16)

Collins et al. (2007) showed that the electric field does not affect the pinching dynamics
by investigating a perfectly conducting jet at Oh = 0.01 and CaE = 5 × 2/(ln 10)2 =
1.886. Our simulations show that the scaling law hmin ∝ (tb − t)2/3 holds true for the
leaky-dielectric jets at low Oh (figure 15a) since CaE � α2/

√
Oh and CaE � 1/

√
Oh are

satisfied. The phase diagram of breakup regimes (Li & Sprittles 2016) shows that the 2/3
scaling law for a jet with Oh = 0.01 is applicable when hmin is smaller than 2 ∼ 4 × 10−3.
This rule is valid for the leaky-dielectric jet at εα = 100, i.e. a highly conducting jet.
In contrast, the scaling law for a leaky-dielectric jet at εα = 10 no longer holds when
hmin decreases below 2 × 10−2. At high values of Oh, as shown in figure 15(b), the
minimum radius near pinch-off point is linear with (tb − t). The slopes of both the highly
(εα = 100) and weakly conducting jets (εα = 10) are close to 0.0709; therefore, the V
regime adequately describes the pinch-off of viscous, leaky-dielectric jets.

5. Conclusions

In this work, a two-dimensional axisymmetric model is established to investigate the
influence of charge relaxation on the breakup of a leaky-dielectric, Newtonian liquid jet
computationally. The charge relaxation was characterized by the relaxation parameter α

and the permittivity of the liquid ε. The two dimensionless parameters determine the
strength of the charge relaxation, including the ohmic conduction and the surface charge
convection. In the early evolution of the leaky-dielectric jet, the linear characteristics, such
as the unstable wavenumber and the growth rate, primarily depend on the Ohnesorge
number Oh and the electric capillary number CaE. Moreover, they are slightly affected
by α and ε in the short-wavelength range. In the later development of jet pinching, the
breakup modes involving nonlinear dynamics are highly sensitive to α and ε. At large
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Figure 15. Minimum radii versus time during the breakup of (a) weakly viscous (Oh = 0.01) and (b) viscous
(Oh = 1) leaky-dielectric jets. The symbols and solid lines represent the FEM simulations and theoretical
curves of uncharged jets, respectively. For (a,b), the electric capillary number is CaE = 2, and the wavenumber
is k = 0.6.

values of εα, ligament pinching occurs since the strong ohmic conduction supports the
charge relaxation from the bulk fluid to the jet surface. In contrast, at small values
of εα, strong surface charge convection causes end pinching. Furthermore, a balance
between the ohmic conduction and the surface charge convection results in jet breaking
via the transition-pinching mode. It has been demonstrated that the capillary pressure is
responsible for ligament pinching, whereas the normal electric stress accounts for end
pinching. An analysis of the self-similar characteristic at pinch-off indicates that the power
law of a leaky-dielectric jet is unaffected by the charge relaxation when CaE � α2/

√
Oh

and CaE � 1/
√

Oh.
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Figure 16. Variation of the jet amplitude at z = 0. The linear perturbation is in the form of Sf = 1 +
A0 cos(kz), and the nonlinear 1 and 2 are in the forms of Sf = 1 + A0 cos(kz) − A2

0/4 and Sf = 1 +
A0 cos(kz) − A2

0/4 − A4
0/32, respectively. Here Oh = 1, CaE = 2, ε = 10, α = 2, k = 0.6, A0 = 0.01.

Appendix A. Initial perturbations: linear vs. weakly nonlinear

Based on Yuen’s (1968) nonlinear analysis of uncharged jets, the influence of the weakly
nonlinear perturbation in the form of Sf = 1 + A0 cos(kz) − A2

0/4 − A4
0/32 + · · · on the

pinching of charged jets is examined. As depicted in figure 16, curve fitting shows that
the three perturbations share the same slope of 0.0921, which is close to the growth rate
of 0.0933 derived from the linear theory. Furthermore, the jet profiles at the incipience
of pinch-off exhibit identical shapes. An initial linear perturbation in the form of Sf =
1 + A0 cos(kz) is appropriate to reproduce the nonlinear dynamics of leaky-dielectric jets.

Appendix B. Influence of initial amplitude on pinching

It is known that a linear or nonlinear stability analysis is only valid for small-amplitude
perturbations, i.e. A0 � 1. For the nonlinear simulation of electrified jets, Setiawan &
Heister (1997) used A0 = 0.001, whereas Collins et al. (2007) and Wang & Papageorgiou
(2011) adopted A0 = 0.01. Here, the effect of A0 on the jet pinching is evaluated. Although
the electrified jet is affected by perturbations with different initial amplitudes, the growth
rates in the linear region and the maximum amplitude at pinch-off (marked by red line) are
the same, as shown in figure 17(a). The breakup time rises linearly with a decrease in the
logarithmic initial amplitude, which deviates from the linear relation tb = − ln(A0)/ωr
at small values of A0 (figure 17b). However, the initial amplitude does not affect the jet
profile at pinch-off. Consequently, it is feasible to set the initial amplitude to A0 = 0.01 to
reproduce the nonlinear dynamics of leaky-dielectric jets.

Appendix C. Convergence tests

Figure 18 shows the analyses of spatial and temporal resolutions. The grid partition
is depicted in figure 18(a). We test three kinds of grid numbers (N = 10, N = 20
and N = 30) and three types of time steps (Δt = 0.01, Δt = 0.001 and Δt = free).
Here, Δt = free indicates the time step is computed from the Courant–Friedrichs–Lewy
condition. The results show the jet shapes are unaffected by the spatial and temporal
resolutions. Moreover, the volume of the jet at different cases is conserved (volume loss:
N = 10, 1 %; N = 20, 0.5 %; N = 30, 0.4 %; Δt = free, 0.5 %; Δt = 0.01, 0.6 %;
Δt = 0.001, 0.5 %). In this paper N = 20 and Δt = free are selected to complete the
FEM simulations.
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Figure 17. (a) Variation of the jet amplitude at z = 0 and (b) breakup time at different initial amplitudes.
Here, Oh = 1, CaE = 2, ε = 10, α = 2, k = 0.6.
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Figure 18. (a) Example of coarse mesh and convergence tests for the amplitude at different (b) grid resolutions
and (c) time steps and for the jet volume at different (d) grid resolutions and (e) time steps. Here, Oh = 1,

CaE = 2, ε = 10, α = 2, k = 0.6.

Appendix D. Non-axisymmetric perturbations

When all the variables are decomposed as temporal normal modes

X = X0 + X̂(r)eωt+i(kz+nθ), (A1)
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Figure 19. Effect of the (a) viscosity and (b) electric field intensity on the growth rate ωr at the axisymmetric
(n = 0) and non-axisymmetric (n = 1) cases. Here, for (a) CaE = 2, ε = 10, α = 2, for (b) Oh = 1, ε = 10,

α = 2 and for experiment CaE = 2.5, Oh = 0.026, ε = 24.3, α = 0.13.

where n is the azimuthal wavenumber, the dispersion relation for non-axisymmetric
perturbations is given as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

kI′
n(k) iIn+1(l) −iIn−1(l) 0 −ω

2ikI′
n(k) −In+1(l) − l2

k2 I′
n(l) In−1(l) + l2

k2 I′
n(l) C1 C1C2

2in(kI′
n(k) − In(k)) lIn+2(l) lIn−2(l) nC1 nC1C2

−ωIn(k) − 2Ohk2I′′
n (k) −2iOhlI′

n+1(l) 2iOhlI′
n−1(l) CaE

(
1 − ε

C3

)
T

−k2I′′
n (k) −ilI′

n+1(l) ilI′
n−1(l) ω + εα

C3

εα

C3
C2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

(A2)

with

C1 = iaEIn(k)
kOhC3I′

n(k)
, C2 = 1 + kJ, C3 = ε − In(k)

I′
n(k)

J, l2 = k2 + ω

Oh
,

J = I′
n(k)Kn(kR0) − K′

n(k)In(kR0)

In(k)Kn(kR0) − Kn(k)In(kR0)
, and T = 1 − k2 − n2 − CaEεC2

C3
.

⎫⎪⎪⎬
⎪⎪⎭ (A3)

The above equation is complicated; here, we only discuss the jet instability under the
cases of n = 1 and n = 0. In figure 19(a), the maximum growth rates of non-axisymmetric
cases are 0.6884 for Oh = 0.01, 0.6134 for Oh = 0.1 and 0.5089 for Oh = 1. At
axisymmetric cases, the growth rates are 0.7335, 0.5567 and 0.1358, respectively. This
indicates that the non-axisymmetric motions are more unstable than the axisymmetric
ones at high viscosity. In the presence of surface charges (figure 19b), the influences of
non-axisymmetric perturbations become significant at large electric capillary numbers.
The results agree with Saville’s analysis (Saville 1971b). In our experiments, a
low-viscosity liquid and a large electric field intensity are used. For the experiments at
k = 0.9, the linear theory predicts that the growth rates of non-axisymmetric perturbations
are larger than the axisymmetric ones, while the maximum growth rates of the two
cases are almost the same. However, our experiments only remain the axisymmetric
deformation since the amplitude of non-axisymmetric perturbations is much less than
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the axisymmetric one. In many experiments (Gañán-Calvo et al. 2018; Sahay, Teo &
Chew 2013), only the highly viscous liquids, such as polymer solutions, support the
non-axisymmetric deformations. For such liquids, the growth rates of non-axisymmetric
perturbations are an order of magnitude higher than the axisymmetric ones. Under
such cases, the non-axisymmetric motions dominate the jet deformation although their
perturbed amplitude is small.
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