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Abstract
Using remotely sensed land-cover data in 1994 and 2014, and cross-sectional survey data in
2014, this study examines the association between land use and cover change and agricul-
tural productivity in northern Ghana. We document a significant expansion of crop land
and settlements (productive use) at the expense of natural vegetation cover. Land areas con-
verted from natural cover to productive use have higher maize yield (0.17 tons per hectare)
and harvest value (1,021 Ghanaian Cedi) compared with those converted from bare soil to
productive cover. Moreover, areas that were covered by shrubs or savannah in 1994 were
more productive in 2014 relative to bare soils in 1994. Although our data do not allow us
to establish causality, the evidence suggests the importance of past land-cover conditions
in affecting current agricultural performance, especially in resource-stricken settings where
conservation and restoration practices are not as common.
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1. Introduction
The world population is projected to reach 9.8 billion by 2050, requiring steady growth
in the production of food, feed, and bioenergy sources (United Nations, 2009; FAO,
2011). The latter is likely to put significant pressure on the natural land cover and it risks
causing resource degradation and desertification, potentially leaving little room for soil
nutrient regeneration (Vosti and Reardon, 1997; Bai et al., 2008; Nkonya et al., 2011).
Fuglie and Rada (2013) document the fact that the share of fallow land in Africa south
of the Sahara has declined steadily over the past 50 years, and a recent report finds that
a third of the global land is severely degraded, losing fertile soil at the rate of 24 billon
tons per year (UNCCD, 2017).

Previous research has highlighted the potentially severe consequences that resource
degradation could exert on vulnerability and poverty of millions of rural households
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whose livelihoods depend primarily on agriculture.1 The interdependence of poverty,
the environment, and agriculture also has been considered as a ‘critical triangle’ for
achieving economic development (Vosti and Reardon, 1997). In an encompassing lit-
erature review, Scherr (2000) underlines how the existence of a poverty–environment
downward spiral remains controversial, given the substantial heterogeneity in individu-
als’ ability to manage resources and adapt to changes. Although some coping strategies,
such as the depletion of household assets, can exacerbate poverty (Kazianga and Udry,
2006), others may involve diversification into non-farm activities (thereby easing the
pressure on land) or may foster investments on improved innovations to simultane-
ously enhance productivity and protect the natural resource base (Forsyth et al., 1998;
Templeton and Scherr, 1999; Davies, 2016).

The fact that, after almost 20 years of debate in the literature, we still lack clear evi-
dence of the environment–poverty vicious circle is largely attributable to the scarcity of
long panel microdata to credibly test alternative hypotheses. Macro-level analysis shows
that poverty and land quality are closely related (Ravallion, 1994), but to understand the
causal mechanisms, georeferenced microdata – rarely available in existing literature –
are needed (Malik, 1998; Scherr, 2000). For example, Braun (1997: 70) notes that ‘until
poverty becomes adequately georeferenced, linkages among agriculture, environmental
degradation, and health and nutrition will not be comprehensively identified, and the
ability to guide policy relevant to them will be limited’. Spatial analysis has been pro-
posed for studying these linkages (Berry et al., 2003; Gyawali et al., 2004; Bremner et al.,
2010; Dang et al., 2014), but empirical evidence on this relationship also remains limited,
seldom observed through the lens of socio-economic analysis (Turner, 2002; Barrett and
Carter, 2013).

This study addresses this gap by proposing an innovative approach to examine the
link between land use and cover changes (LUCC) and agricultural performance over 20
years (1994–2014) using data from northern Ghana. During this period, not only has
the region had disappointing economic performance relative to the rest of the country,
but it also has witnessed a high level of resource degradation caused by unsustainable
farming practices, deforestation, and urbanization. These economic and physical con-
ditions make it an ideal setting to examine the linkage between LUCC and agricultural
performance. The novelty of our approach lies in our ability to combine georeferenced
household- and plot-level primary data collected in 2014with publicly available remotely
sensed land-cover data in both 1994 and 2014. Although the cross-sectional nature of the
household data makes it arduous to establish causality, our analysis provides insightful
evidence of the strong interdependences at play through partial identification.

The rest of the paper is organized as follows. Section 2 outlines the conceptual frame-
work, section 3 describes the study setting, section 4 summarizes the data used in the
empirical analysis, and section 5 sketches the identification strategy. Section 6 discusses
the results and section 7 concludes the paper.

2. Conceptual framework
A vast literature describes the spatial distribution of poverty in clusters of indigence; in
Africa south of the Sahara, as elsewhere, these spaces are often located in rural areas dom-
inated by subsistence farming (Amarasinghe et al., 2005; Benson et al., 2005; Minot and

1See, for example, Berry et al. (2003), Biggelaar et al. (2004), Yan et al. (2009), and Barbier and Hochard
(2016).
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Baulch, 2005; Ayadi and Amara, 2009; Lanjouw et al., 2013). Transient poverty is mainly
caused by temporary shocks, whereas chronic poverty results mostly from scarcity of
productive assets (Barrett, 2005), which in the case of subsistence, farmers are mostly
constituted by the natural capital of the land cultivated (Dasgupta et al., 2003; Okwi et al.,
2007). The current state and change of land cover could exert a significant impact on
agricultural production and welfare of rural households that heavily depend on farming
and livestock for their livelihood (Ikefuji and Horii, 2007; Kangalawe, 2009).

To study these linkages, our framework considers three main land-cover classes
defined based on their contribution to livelihoods. This classification allows us to exam-
ine our hypotheses on the specific LUCC likely to be positively or negatively correlated
with rural livelihoods. The first class, which we label natural cover, includes forest,
watersheds, shrubs, and savannah, representing areas not transformed by human action.
Natural cover is a source of fodder, fuel, food, and timber for adjacent communities;
it also plays an important role in land regenerative processes and is a stock of genetic
resources for future agricultural needs (Alavalapati, 2003; Sunderlin et al., 2008). The
second class is defined as productive cover, comprising croplands and urban areas. This
class is shaped by human action, being characterized by areas where most of the eco-
nomic activities take place. Cropland is allocated to agricultural production and livestock
breeding, while urban areas host industry and service activities. The third class is bare
soil cover. Bare land could encompass either soils depleted by land degradation, or fer-
tile soils in areas cleared at the time of data acquisition (e.g., owing to deforestation). As
such, the link between bare soils and level of soil fertility is an empirical question.

The three land-cover classes create nine possible land-cover trajectories between the 2
years, with some of themmore frequent than others in line with the literature (Vitousek
et al., 1997; Lambin et al., 2003; Mustard et al., 2012). Two of these trajectories are dom-
inant in northern Ghana. The first is a change from natural cover to productive cover,
mostly due to human activity (Wood et al., 2004; Braimoh and Vlek, 2005; Braimoh,
2009). The second is a change from natural cover to bare soils, due to both natural and
human factors.

Shifting from natural cover to productive cover is expected to improve production
and productivity up to a certain point, beyond which the increased scarcity of natural
resources will start to negatively impact livelihoods (Coomes et al., 2011). A change from
natural to productive cover first and then to degraded landwill negatively impact agricul-
tural productivity (Berry et al., 2003; Bhattacharya and Innes, 2006; Diao and Sarpong,
2011), which in turn may result in a drop in total expenditure unless the household is
able to react by investing in conservation practices or diversifying into off-farm activities.
Moreover, these relationships might be non-linear and affected by economic, environ-
mental, and institutional factors (Wiebe, 2003). The empirical analysis examines how
different LUCC between 1994 and 2014 are correlated with agricultural performance in
2014.

3. Study setting
About 40 per cent of the global land surface is already allocated to cropland and pastures.
Africa south of the Sahara experienced relatively high rates of agricultural expansion over
the period 1961–2005 (Foley et al., 2005; Nkonya et al., 2008). Despite this expansion,
about 65 per cent of the region’s arable land is deemed to be too degraded for sustain-
able food production, posing serious challenges for supporting the growing population
(Montpellier Panel, 2014). This threat could be especially severe in arid and semi-arid
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environments, such as the savannah region ofWestAfrica (Pinstrup-Andersen andWat-
son, 2010), where desertification is more prominent. When soils become so degraded
that they severely hamper farming, people tend to migrate into areas with no previous
agricultural production, typically characterized by low potential. In addition, farmers
tend to apply traditional agricultural practices, which might prove detrimental in a
different environment (Cleaver and Schreiber, 1994).

The north of Ghana accounts for 40 per cent of the country’s land area, where 80
per cent of the population relies primarily on agriculture. In contrast with the rest of
the country, poverty rates in this area have remained high and stable over the past
decade. For example, whereas the national average poverty rate fell from 56 to 24 per
cent between 1992 and 2013, the poverty ratio in the northern region declined by only
six percentage points (56 to 50 per cent) and is ranked the highest in the country (Cooke
et al., 2016). The area is also affected by severe land degradation caused by unsustain-
able farming practices such as the dominant bush-fallow rotation system, clearing of
natural vegetation cover, and growing urbanization (Braimoh and Vlek, 2005; Diao and
Sarpong, 2011; World Bank, 2011). Additionally, chemical fertilizer use is limited, with
a relatively high dependence on natural soil fertility management (Braimoh and Vlek,
2005). Moreover, the northern two-thirds of the country is covered by savannah (a trop-
ical grassland with a scattering of shrubs and trees), featuring shea trees, acacias, and
baobabs. These characteristics create an ideal setting to empirically examine the effects
of LUCC on household welfare and identify potential entry points for intervention.

4. Data
4.1 Land-cover classification
Land-cover classification in 1994 and 2014 is produced using Landsat (Landsat 5 and
Landsat 8) satellite images from theUnited States Geological Survey that cover the entire
area of northernGhana.2 The year 1994 is selected as the baseline year since the quality of
satellite imagery was significantly lower before the 1990s, rendering it difficult to identify
different land-cover types at an adequate resolution. Furthermore, whereas 1991/92 and
1995 were characterized by abnormally intense floods (Codjoe and Owusu, 2011), 1994
can be considered a normal year in terms of climatic conditions such as rainfall and
temperature.

The classification is obtained by assigning one of the seven land-cover classes defined
by the Food and Agriculture Organization (FAO) to each 30-by-30m pixel within each
image (Campbell and Wynne, 2011). The seven classes considered are: bare soil, crop-
land, forest, savannah, shrubs, urban settlements, and water bodies. For each year,
satellite data from different growing periods are used to take into account seasonal vari-
ation in the classification. For example, cropland changes drastically between growing
and harvest seasons, and the size of water bodies varies significantly between rainy and
dry seasons. For this reason, each classification is based on four images that capture sea-
sonal variation3 and, within each image, on several spectral bands that are sensitive to
different spectral properties.

A maximum likelihood (ML) classification algorithm is applied to the 2014 clas-
sification (Johnson and Wichern, 1988). The algorithm considers both variance and

2The codes of the selected tiles are Path194, Row53, Path195, and Row 53.
3Since cloud-free, good-quality images are unavailable for the four seasons in both years, a 1-year time

lag (before and after the selected year) was also considered.
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covariance of the classes across the ground-truthing points and extrapolates the clas-
sification to the remaining pixels. Under the normality assumption, a class can be
characterized by mean and covariance matrix. Given these two characteristics, the
probability of each cell belonging to any of the seven classes is computed, and
each cell is assigned to the class showing the highest probability of occurrence. The
heterogeneity in the 2014 land-cover types is analyzed through the iterative self-
organizing data (ISODATA) classification algorithm, where pixel-level observations
are clustered into smaller groups based on the reflectance values of the spectral bands
(Tou and Gonzalez, 1974).

Ground-truthing points are collected from different sources. For cropland, they are
taken from georeferenced boundaries of 278 plots as part of the household surveywe col-
lected (discussed in section 4.2), while the ground-truthing points for the remaining six
classes are identified through Google Earth. In total, about 200 ground-truthing points
for each land-cover type are collected across three study regions, of which two-thirds are
used to train the classification algorithm and the rest are used for validation.

To evaluate the quality of the land-cover classification in 2014, an accuracy assess-
ment of the prediction is needed. Thus, one-third of ground-truthing points not used
to train the algorithm are used to assess the statistical accuracy of the entire classifica-
tion as well as the assignment of individual classes. Results from the accuracy assessment
show an overall accuracy of over 70 per cent with urban, forest, and water bodies classes
associated with a relatively high accuracy rate (above 90 per cent).

The methodology used for the 2014 classification cannot be directly applied to 1994
owing to the lack of historical ground-truthing points (Mostseller and Tukey, 1977;
Richards, 2013). As a result, the 1994 images are analyzed through unsupervised clas-
sification methods using the ISODATA classification algorithm, which clusters pixels
into groups based on their reflectance values of the spectral bands (Tou and Gonzalez,
1974). Because different land-cover types exhibit unique spectral properties, the ISO-
DATA unsupervised classification algorithm takes advantage of the spectral properties
of pixels and groups them based on their similarities. In a second step, the ML classifi-
cation matches the spectral profiles identified in 2014 with the spectral properties of the
1994 land classes to identify the same classes. Finally, initial land-cover classifications
have been updated based on feedback from local experts.

Figures 1 and 2 illustrate the results of this land classification exercise. An expansion
in crop and bare land across the three regions at the expense of shrubs and grassland
is visible, implying agricultural extensification. Indeed, as discussed below, land conver-
sion fromvegetation to crop or settlement (henceforth, productive cover), as well as from
bare land to productive cover, are the two most common changes we observe between
1994 and 2014.

4.2 Socio-economic and biophysical data
The Ghana Africa RISING Baseline Evaluation Survey (IFPRI, 2015) is the primary
microdata used in the empirical analysis. Conducted in 2014, this survey includes
detailed socio-economic data collected from 1,285 agricultural households drawn from
50 communities from the upper east, upper west, and northern regions. Agricultural
data refer to the cropping season from April 2013 to December 2013. The Global Posi-
tioning System (GPS) coordinates of the survey households as well as the boundaries of
287 agricultural plots were collected from a subsample of survey households that were
subsequently used to validate crop land classification.
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Figure 1. Map of 1994 land cover classification.

Two outcome variables – maize yield (tons/hectare (tons/ha)) and value of har-
vest (Ghanaian Cedi (GHC)) – as well as several socio-economic variables that may
affect these outcomes are constructed. The conditioning variables include household
demography, wealth (land holding, livestock wealth in Tropical Livestock Unit, and
household and agricultural durable assets), plot characteristics, agricultural input use
and practices, and access to basic services. Indices of durable assets and access to
services are constructed using factor analysis (principal-component factor method) fol-
lowing Filmer and Pritchett (2001). Access to basic services is based on self-reported
travel time to selected infrastructure (such as asphalt and all-weather roads) and ser-
vices (such as weekly and daily market places and bus stops) using the usual mode of
transportation.

As discussed in the conceptual framework, both poverty and population pressure can
lead to unsustainable land practices that could negatively impact welfare. To account for
these factors, we control for regional poverty rate and district population, both growth
rate and baseline value. Regional poverty statistics are computed from two rounds
(repeated cross-sectional) data of the nationally representative Ghana Living Standards
Survey (1998/99 and 2012/13) collected by the Ghana Statistical Services (GSS), roughly
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Figure 2. Map of 2014 land cover classification.

around the time of the land-cover data (1994 and 2014). District-level population data
are calculated from two census data sets (2000 and 2008) collected by GSS (available
fromMinnesota Population Center, 2017). We control for gridded data on the length of
growing period (measured in days, at five arc-minutes resolution) (Guo, 2013) and travel
time to the nearest town of at least 20,000 people (measured in hours, at 1 km resolution)
(Guo and Cox, 2014) as a proxy for agricultural potential.

4.3 Household–land-cover mapping
Land cover can be mapped to georeferenced households in many ways. One option is to
map each household to the land-cover type assigned to the 30-by-30m pixel (p) in which
it is located, based on itsGPS location.Alternatively, different buffer zones can be defined
around the pixel of the household location. In the latter case, a question arises regarding
the size of the buffer zone as well as the assignment rule when there are multiple land
classes per buffer zone. The wider the buffer zone, the better the information on the
affecting environment, especially given the reported travel time between the homestead
and the closest plot owned by the household (30min on average). Nonetheless, a wider
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Figure 3. Share of land cover types by year and buffer zone.
Note: Share is calculated as the ratio between the number of pixels represented by the cover type and the total
number of pixels in the buffer zone.

buffer zone is likely to result in overlapping pixels for neighboring households, thereby
reducing the variation across pixels.

For comparability, we initially consider four buffer zones based on 9p (3 pixels wide
and 3 pixels tall around the homestead), 25p (52p), 49p (72p), and 81p (92p). Next, a
land class is assigned to a given buffer zone if the class accounts for the highest share
of the pixelated zone. Figure 3 summarizes the shares of each land class. Due to chal-
lenges in distinguishing shrubs from savannah covers based on Google Earth, we have
merged these two types. Crop land, savannah/shrubs, and bare soils were the three most
dominant types in 1994; cropland, savannah/shrubs, and urban were most common in
2014. These trends are consistent with recently released land-cover maps (Hackman
et al., 2017). As these patterns are largely consistent across the four buffer zones, the
subsequent analysis focuses on the 25p buffer zone.
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Figure 4. Reclassified land cover types (level and change) (25-pixel buffer zone)
Note: Natural includes forests, shrubs, savannah, or watershed. Productive includes crop land or settlement.

Figure 4 summarizes the three (regrouped) land classes consistently with the concep-
tual framework: natural cover (forest, shrubs, savannah, and watersheds), productive
cover (crop land and settlement), and bare soils. Productive cover accounted for about
50 and 70 per cent of land area in 1994 and 2014, respectively, with both natural cover
and bare soils declining during the reference period (figure 4A). Given the three land-
cover types, therewill be nine (32) possible change combinations between 1994 and 2014.
In our case, <5 per cent of the sample is mapped to three changes: productive cover
(in 1994) to bare soils (in 2014), bare soils to productive cover, and bare soils in both
years. Owing to their small sample, these three groups are excluded from the subsequent
analysis.

Figure 4B shows the incidence of LUCC over time. Areas with productive cover (crop
land or settlement) in both years (productive-productive) are the most common, fol-
lowed by changes from natural to productive cover (natural-productive) and from bare
soils to productive cover (bare soils-productive). Irrespective of the state of land use
in 2014, areas with natural cover in 1994 are associated with both higher harvest value
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Figure 5. Land cover change, harvest value and yield (25-pixel buffer zone)
Note: Natural includes forests, shrubs, savannah, or watershed. Productive includes crop land or settlement.

(figure 5A) and yield (figure 5B), relative to areas with either productive cover or bare
soils at baseline.

5. Identification strategy
Given the dominance of agriculture in the study area, householdwelfare is expected to be
highly correlated with agricultural production, measured here using total value of har-
vest (in GHC) and, to a lesser extent, productivity proxied by maize yield (in tons/ha).
These outcomes could be affected not only by household-level characteristics but also
by landscape-level environmental factors that could in turn induce spatial autocorrela-
tion (see Paraguas and Kamil, 2005, for a general discussion). If unaccounted, spatial
autocorrelation in outcome variables (spatial lag) introduces measurement errors with
ordinary least-squares estimates, thereby producing biased and inconsistent parameter
estimates (LeSage, 1999). In addition, the spherical disturbances assumption would be
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violated if the model disturbances are spatially correlated (spatial error), thereby pro-
ducing inefficient estimates. In our case, pixel-based indicators of LUCC could also
introduce a bias since, by construction, the buffer zones of neighboring households could
overlap.

To explore spatial autocorrelation, we first perform Moran’s I test of spatial corre-
lation (Moran, 1950; Jeanty, 2012) that shows a positive correlation between the two
outcomes and LUCC variables and their spatial lags. For a given (n × 1) vector X, its
spatial lag is computed by averaging the values of the variable for ‘neighboring’ units

and Moran’s I statistic given by n∑
i
∑

j wij
×

∑
i
∑

j wij(Xi−X̄)(Xj−X̄)∑
i(Xi−X̄)

2 , where n is the num-

ber of observations, wij parameterizes the distance between i and j, ∀ i, j and wij = 0 for
i = j, and X̄ is the average computed over n. In this study, the weight wij is defined by
1/dij, where d is the geographic distance (in kilometers) between the residence of house-
holds i and j, defined based on the GPS coordinates of i and j. Under the null hypothesis
of no spatial autocorrelation, Moran’s I has an asymptotically normal distribution with
expectation (−1/n − 1) and values ranging between −1 and +1, so that values near −1
(+1) suggest high negative (positive) spatial autocorrelation, while those near zero imply
weaker autocorrelation. Moran’s I test results show the presence of positive spatial lag,
with autocorrelation coefficients ranging from 0.04 to 0.26.

For the multivariate analysis, we follow a nested approach and specify a spatial first-
order autoregressive (SAC) model (Kelejian and Prucha, 1998; LeSage, 1999; Drukker
et al., 2013b, 2013c) that also includes spatially lagged LUCC variables, as shown in
equation (1).

y = ρWy +
5∑

k=1

βkLCCk +
5∑

k=1

φkWLCCk + �′Z + ε, (1)

ε = λMε + u, (2)

where y is an nx1 vector of either outcome variable – harvest value and maize
yield – with n indexing sample size; W is an nxn spatial weighting matrix with ele-
ments wij = 1/dij, with dij as defined above; LCCk (∀k = 1, . . . , 5) is a column vector
of indicators for the five LUCC variables summarized in section 4.3, with the bare
soils-productive combination used as the reference category; Z is an nxp matrix of
household- and landscape-level conditioning variables discussed in section 4.2, where
we progressively increase its elements to check for sensitivity; ε is an nx1 vector of
error terms allowed to be spatially correlated as modeled in equation (2); and Wy(=∑n

j=1 wijyj) and WLCCk(= ∑n
j=1 wijLCCk

ij) are the first-order spatial lags of y and
LCCk, respectively.

Equation (2) models the disturbance terms as a spatially weighted average of the
disturbances of the other households; M is an nxn spatial-weighting matrix with ele-
mentsmij = 1/qij such thatmij = 0 if i = j andmij = 1/qij, where qij parameterizes the
distance between i and j ∀i, j once gain measured in kilometers; Mε is a spatial lag of
ε; and u is an nx1 vector of errors assumed to be independently and identically dis-
tributed. As is commonly done in empirical applications (see Kelejian and Prucha, 2010;
Drukker et al., 2013b, for general discussion), we assume thatW = M. Although the val-
ues of the spatial-weighting matrix are sometimes truncated, Drukker et al. (2013a) note
that truncation should be applied only if supported by theory. The weighting matrix is
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row-standardized (W∗) so that W∗ × T = T, where T is an nx1 vector with elements
tij = 1∀ i, j.

The parameters ρ and λ are the spatial autoregressive parameters to be estimated,4

along with βk and φk (∀ k), �, and the standard deviation of the model disturbance – σ .
If ρ̂ is statistically significant but λ̂ is insignificant, the SAC model reduces to a spatially
autoregressive-dependent variable (spatial lag) SAR model with ρ̂ measuring the ‘mul-
tiplier effect’. If the opposite holds, the SAC model reduces to a spatially autoregressive
lagged disturbance (spatial error) SEM model.

Equations (1) and (2) are estimated using ML (Jeanty, 2012; Drukker et al., 2013c).
Lagrange multiplier tests we conducted (Paraguas and Kamil, 2005) fail to reject the null
that the SARmodel is nested in the SACmodel; that is, we could not reject that λ̂ is zero.
The χ2 tests also do not reject that the coefficients of the spatially lagged land-cover
trajectory variables (WLCC) are jointly zero. In the next section, therefore, we present
ML estimates of equation (1) without controlling for WLCC and report White–Huber
standard.

Finally, observed relationships between LUCC and agricultural productivity in 2014
may merely be an artifact of how long the land has been cultivated. As a sensitivity anal-
ysis, we therefore re-estimate a version of equation (1) that controls for 1994 land-cover
type, as opposed to LUCC between 1994 and 2014. Given that the multivariate analysis
is based on cross-sectional micro data, we acknowledge that these analyses do not estab-
lish causal attribution, but instead provide suggestive evidence on the linkage between
LUCC and agricultural performance.

6. Results and discussion
Tables 1 and 2 reportML estimates of themodel for total value of harvest andmaize yield,
respectively, based on the 25p buffer zone. Different specifications are estimated, where
the set of conditioning variables increases progressively. The parameter estimate ρ̂ (rho)
is positive and consistently significant across the different specifications, suggesting the
existence of a multiplier effect among neighboring households. Such spatial dependence
could be driven by homogeneity in crucial determinants of agricultural performance,
such as soil quality, weather condition, and (physical) access to production technologies
and factors.

Table 1 shows that most socio-economic variables have the expected correlation with
harvest value, including positive relationship with household wealth; agricultural inputs,
including chemical fertilizers; agricultural labor; irrigation; and better-quality soil, prox-
ied by the share of black and brown soil that is high in organic matter. Female household
headship, travel time to basic services, and exposure to soil erosion are all negatively cor-
related with harvest value. Results from the most parsimonious specification show that,
relative to households living in bare soils-turned-productive areas (reference group),
those in natural-turned-productive areas have higher harvest value by about 1,021 GHC
(table 1, column 5).

This is equivalent to 969 in constant 2011 international $ (purchasing power parity
(PPP)). Similarly, natural-turned-productive cover is associated with higher maize yield
(0.17 tons/ha) than bare soils-turned-productive cover, significant at the 10 per cent level

4See Kelejian and Prucha (1998) for assumptions and conditions of the spatial-weighting matrix and
parameter estimates; and Jeanty (2010), Drukker et al. (2013a), and Drukker et al. (2013b) for implementa-
tion in Stata.
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Table 1. Land-cover change and harvest value (’000 GHC)

1 2 3 4 5
Coef SE Coef SE Coef SE Coef SE Coef SE

Natural cover in both 1994 and 2014 1.635∗∗∗ 0.454 0.532 0.397 0.633 0.387 0.831∗ 0.432 0.606 0.468
Natural cover in 1994 and productive cover in 2014 1.940∗∗∗ 0.388 1.119∗∗∗ 0.366 1.146∗∗∗ 0.373 1.285∗∗∗ 0.409 1.021∗∗ 0.439
Natural cover in 1994 and bare soils in 2014 1.651∗∗∗ 0.448 0.457 0.416 0.437 0.397 0.656 0.446 0.390 0.524
Productive cover in both 1994 and 2014 0.453∗ 0.235 0.297 0.210 0.189 0.210 0.307 0.224 0.536∗∗ 0.234
Productive cover in 1994 and natural cover in 2014 0.819∗∗ 0.402 0.480 0.367 0.367 0.348 0.430 0.347 0.696∗ 0.365
Household size −0.019 0.029 −0.022 0.028 −0.025 0.028 −0.039 0.028
Female household head −0.414∗∗ 0.211 −0.566∗∗∗ 0.210 −0.542∗∗∗ 0.210 −0.483∗∗ 0.211
Average education in the household (years) −0.069∗ 0.036 −0.079∗∗ 0.032 −0.070∗∗ 0.033 −0.056∗ 0.033
Total dependency ratio −0.056 0.099 −0.055 0.097 −0.058 0.098 −0.074 0.095
Total operated land in hectares (ha) 0.416∗∗∗ 0.064 0.669∗∗∗ 0.071 0.669∗∗∗ 0.073 0.696∗∗∗ 0.074
Tropical Livestock Units 0.132∗∗∗ 0.049 0.080∗ 0.043 0.085∗ 0.044 0.090∗∗ 0.043
Durable assets (index) 0.854∗∗∗ 0.128 0.440∗∗∗ 0.128 0.437∗∗∗ 0.128 0.403∗∗∗ 0.129
Distance to basic services (index) −0.340∗∗∗ 0.069 −0.353∗∗∗ 0.068 −0.327∗∗∗ 0.069 −0.277∗∗∗ 0.069
Uses irrigation 1.912∗∗∗ 0.625 2.063∗∗∗ 0.625 2.082∗∗∗ 0.631
Uses hired labor 0.518∗∗∗ 0.166 0.509∗∗∗ 0.171 0.625∗∗∗ 0.173
Chemical fertilizers used (kg/ha) 0.006∗∗∗ 0.001 0.006∗∗∗ 0.001 0.006∗∗∗ 0.001
Agricultural labor used (person-days/ha) 0.010∗∗∗ 0.002 0.010∗∗∗ 0.002 0.012∗∗∗ 0.002
Share of parcels with black or brown soil 0.601∗∗∗ 0.182 0.530∗∗∗ 0.186 0.624∗∗∗ 0.203
Share of plots affected by soil erosion −0.011∗∗∗ 0.003 −0.010∗∗∗ 0.003 −0.011∗∗∗ 0.003
Practiced fallowing in the last 5 years −0.323 0.225 −0.346 0.226 −0.221 0.221
Growth rate of district population (2000–2010) −0.003 0.005 0.013∗∗ 0.006
Growth rate of poverty (1998–2012) 0.010 0.006 −0.015 0.012
District population in 2000 (’0000) 0.093∗∗∗ 0.024
Regional poverty rate in 1998 −1.437 1.778
Travel time to nearest town of 20,000 people (hours) 0.052 0.072
Length of growing period (days) 0.071∗∗∗ 0.026
Constant 1.373∗∗∗ 0.264 0.993∗∗ 0.403 −1.442∗∗∗ 0.485 −1.383∗∗∗ 0.488 −17.235∗∗∗ 5.970
/ρ 0.304∗∗∗ 0.062 0.248∗∗∗ 0.062 0.212∗∗∗ 0.057 0.208∗∗∗ 0.058 0.160∗∗∗ 0.061
/σ 3.338∗∗∗ 0.151 3.025∗∗∗ 0.149 2.828∗∗∗ 0.134 2.825∗∗∗ 0.133 2.776∗∗∗ 0.129
Number of observations 1,194
Log-likelihood −3, 137.27 −3, 018.24 −2, 937.26 −2, 935.87 −2, 914.39
χ2 37.726 241.778 342.435 349.285 383.405
p 0.000 0.000 0.000 0.000 0.000
Wald 24.140 16.231 13.618 12.664 6.980

Coef, coefficient estimates; SE, standard errors; GHC, Ghanaian Cedi.
Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Reported are heteroscedasticity-robust standard errors. The omitted category is bare soils–productive trajectory.
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Table 2. Land-cover change andmaize yield value (tons/ha)

1 2 3 4 5
Coef SE Coef SE Coef SE Coef SE Coef SE

Natural cover in both 1994 and 2014 0.205∗∗ 0.098 0.146 0.095 0.113 0.089 0.133 0.096 0.118 0.107
Natural cover in 1994 and productive cover in 2014 0.257∗∗∗ 0.083 0.213∗∗∗ 0.077 0.175∗∗ 0.071 0.189∗∗∗ 0.072 0.173∗ 0.088
Natural cover in 1994 and bare soils in 2014 0.235∗∗ 0.120 0.143 0.110 0.077 0.117 0.099 0.125 0.084 0.139
Productive cover in both 1994 and 2014 0.113∗∗ 0.046 0.087∗ 0.046 0.058 0.043 0.065 0.044 0.046 0.047
Productive cover in 1994 and natural cover in 2014 0.102 0.077 0.076 0.075 0.026 0.075 0.029 0.075 −0.003 0.078
Household size 0.012 0.008 0.013∗ 0.008 0.013 0.008 0.012 0.008
Female household head −0.091∗∗ 0.046 −0.094∗∗ 0.047 −0.093∗∗ 0.047 −0.088∗ 0.046
Average education in the household (years) −0.000 0.009 0.001 0.008 0.002 0.008 0.002 0.009
Total dependency ratio 0.049∗ 0.029 0.053∗ 0.029 0.054∗ 0.029 0.052∗ 0.030
Total operated land in hectares (ha) −0.026 0.016 0.016 0.016 0.016 0.016 0.014 0.016
Tropical Livestock Units 0.007 0.009 −0.001 0.009 −0.001 0.009 0.001 0.009
Durable assets (index) 0.117∗∗∗ 0.035 0.036 0.035 0.036 0.035 0.037 0.035
Distance to basic services (index) −0.046∗∗∗ 0.017 −0.039∗∗ 0.017 −0.037∗∗ 0.017 −0.041∗∗ 0.020
Uses irrigation 0.196 0.166 0.206 0.164 0.216 0.163
Uses hired labor −0.017 0.044 −0.017 0.045 −0.009 0.047
Chemical fertilizers used (kg/ha) 0.002∗∗∗ 0.000 0.002∗∗∗ 0.000 0.002∗∗∗ 0.000
Agricultural labor used (person-days/ha) 0.001 0.001 0.001 0.001 0.001∗ 0.001
Share of parcels with black or brown soil 0.016 0.046 0.011 0.047 0.028 0.052
Share of plots affected by soil erosion −0.003∗∗∗ 0.001 −0.003∗∗∗ 0.001 −0.003∗∗∗ 0.001
Practiced fallowing in the last 5 years −0.034 0.047 −0.035 0.047 −0.034 0.047
Growth rate of district population (2000–2010) −0.000 0.001 −0.001 0.002
Growth rate of poverty (1998–2012) 0.001 0.001 0.001 0.003
District population in 2000 (’0000) −0.002 0.005
Regional poverty rate in 1998 −0.396 0.480
Travel time to nearest town of 20,000 people (hours) −0.006 0.021
Length of growing period (days) −0.003 0.009
Constant 0.392∗∗∗ 0.057 0.356∗∗∗ 0.094 0.111 0.128 0.117 0.130 1.049 2.001
/ρ 0.333∗∗∗ 0.067 0.317∗∗∗ 0.067 0.232∗∗∗ 0.069 0.232∗∗∗ 0.070 0.226∗∗∗ 0.070
/σ 0.691∗∗∗ 0.056 0.673∗∗∗ 0.053 0.647∗∗∗ 0.050 0.647∗∗∗ 0.050 0.646∗∗∗ 0.050
Number of observations 1,055
Log-likelihood −1,110.9 −1,082.8 −1,039.5 −1,039.3 −1,038.6
χ2 14.067 44.248 67.302 70.574 92.362
p 0.015 0.000 0.000 0.000 0.000
Wald 24.591 22.248 11.185 11.100 10.431

Coef, coefficient; SE, standard errors.
Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1. Reported are heteroscedasticity-robust standard errors. The omitted category is bare soils–productive trajectory.
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(table 2, column 5). These results are notably robust to different specifications (columns
2–4 of table 1 for harvest value and of table 2 for maize yield).

These findings may imply the influence of past land-cover type on current agricul-
tural performance through its effect on soil quality. Northern Ghana has been affected
by a relatively high level of land degradation owing to unsustainable farming practices,
such as the dominant bush-fallow rotation system, the removal of natural vegetation
cover, the low adoption of soil andwatermanagement practices, and urbanization (FAO,
2000;World Bank, 2007; Nkegbe et al., 2011). All the same, even though natural-turned-
productive covers are associated with better agricultural outcomes, the overexploitation
of productive land, especially in the absence of conservation practices, could reverse the
association in the long term.

Results from our sensitivity analysis once again show that areas under savannah or
shrubs in 1994 have a higher maize yield and harvest value in 2014, relative to areas
identified as bare soils at baseline, all other things being equal. Depending on the model
specification, harvest value was 521–1,003 GHC higher (equivalent of $495–$952 PPP),
whereas maize yield was higher by 0.14–0.17 tons/ha.5 These results are consistent with
the estimates from themainmodel that controls for LUCC between 1994 and 2014, from
which conversion from a vegetation cover in 1994 (mostly savannah and shrub land) to
productive land in 2014 (mostly crop land) is associated with higher maize yield and
harvest value than conversion from bare soils to productive land.

Before concluding the paper, and as a way of identifying areas for future research, we
note the following limitations of this study. Owing to the lack of ground-truthing points,
we could not use theML algorithm to classify baseline land-cover types. Instead, we first
used unsupervised learning to identify pixels in 1994 that have similar spectra patterns as
those in 2014. Subsequently, pixels from the same location with similar spectra patterns
are assumed to represent similar land-cover types. To the extent that this assumption
does not hold, baseline land-cover classification and the results thereof would be prone
to measurement error.

Another potential source of measurement error is the difficulty in discerning urban
settlement and bare soils in small villages with relatively low urbanization, as is mostly
the case in the study area. The identification of the buffer zone around the homestead is
also an empirical challenge. If plots are scattered and relatively far away from the home-
stead, the 25p buffer zone may be too narrow to adequately capture the land-cover type
relevant for livelihood. Without georeferenced historical socio-economic data, we are
also unable to simultaneously examine trends in LUCC and agricultural productivity to
control for potential confounding factors and establish a causal mechanism. Finally, and
given our sampling frame, we caution that our findings may not hold in other parts of
Ghana or beyond.

7. Conclusion
Existing environmental science literature highlights the causal nexus from poverty to
resource degradation, where degradation can worsen and perpetuate poverty through
its effects on yields, water quality, reduced physical capacity, market participation, and
climate. However, LUCC can have a multifaceted effect on poverty and vulnerability
through its environmental impact, the quantity and quality of natural resources, and

5Details about our sensitivity analyses are available upon request.
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ecosystem service in general. In this paper, we addressed that gap in the economics lit-
erature: to assess the effect of LUCC on agricultural productivity in northern Ghana, a
region that has simultaneously experienced both a relatively high poverty rate and severe
natural resource degradation.

By combining remotely sensed data with cross-sectional georeferenced primary
household survey data, we examined how LUCC between 1994 and 2014 affected agri-
cultural performance in 2014. Methodologically, we demonstrated how availability of
georeferenced plots associated with their characteristics based on traditional in-person
interview could help refine land-cover classification based on remotely sensed data.
In addition, we showed how the unsupervised land-cover classification method can
be applied to historical land-cover data when past ground-truthing points are not
available.

Our land-cover maps for 1994 and 2014 showed a significant expansion of agri-
cultural land and, to some extent, bare soils at the expense of natural vegetation and
watersheds. ML estimation of a spatial first-order autoregressive model allowing for
spatial lag shows that households in areas with former natural cover (forest, shrubs,
savannah, or watersheds) that later became productive cover (crop land or settlement)
report higher maize yield (0.17 tons/ha) and harvest value (1021GHC, equivalent to
$969 in 2011 PPP) relative to their counterparts in areas converted from bare soils to
productive cover.

Although these results do not establish a causal mechanism, they suggest the impor-
tance of historical land-cover conditions in affecting current agricultural performance.
Extensification into areas with natural cover may be associated with higher agricultural
performance in the short term, but overexploitation of productive cover that prevents
the regeneration of soil nutrients can reverse the positive outcome, especially when
supportive sustainable natural resource management practices are inadequate. There-
fore, further research is needed to assess the evolution of LUCC, soil quality, and
agricultural productivity using additional data points to establish attribution and help
identify promising entry points to sustainably promote agricultural productivity and
rural livelihoods.
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