
Robotica (2022), 40, pp. 2065–2090
doi:10.1017/S0263574721001521

RESEARCH ARTICLE

Improving RGB-D SLAM in dynamic environments using
semantic aided segmentation
Lhilo Kenye1,2,∗ and Rahul Kala1

1Centre of Intelligent Robotics, Indian Institute of Information Technology, Allahabad, Prayagraj, India and 2NavAjna
Technologies Pvt. Ltd., Hyderabad, India
∗Corresponding author. E-mail: lkenye02@gmail.com

Received: 30 May 2021; Accepted: 16 September 2021; First published online: 16 November 2021

Keywords: simultaneous localization and mapping, object recognition, dynamic SLAM, background detection, dynamic object
filtering, computer vision

Summary
Most conventional simultaneous localization and mapping (SLAM) approaches assume the working environment
to be static. In a highly dynamic environment, this assumption divulges the impediments of a SLAM algorithm
that lack modules that distinctively attend to dynamic objects despite the inclusion of optimization techniques. This
work exploits such environments and reduces the effects of dynamic objects in a SLAM algorithm by separating
features belonging to dynamic objects and static background using a generated binary mask image. While the fea-
tures belonging to the static region are used for performing SLAM, the features belonging to non-static segments
are reused instead of being eliminated. The approach employs deep neural network or DNN-based object detection
module to obtain bounding boxes and then generates a lower resolution binary mask image using depth-first search
algorithm over the detected semantics, characterizing the segmentation of the foreground from the static back-
ground. In addition, the features belonging to dynamic objects are tracked into consecutive frames to obtain better
masking consistency. The proposed approach is tested on both publicly available dataset as well as self-collected
dataset, which includes both indoor and outdoor environments. The experimental results show that the removal
of features belonging to dynamic objects for a SLAM algorithm can significantly improve the overall output in a
dynamic scene.

1. Introduction
In recent years, simultaneous localization and mapping (SLAM) techniques have developed into a state
where their effectiveness, efficiency and reliability are made well known within the autonomous navi-
gation and its research community. One of the categories of SLAM methods that has been worked over
extensively is visual SLAM. Most conventional visual SLAM approaches function by taking a series of
consecutive frames as input from a sensor or multiple of them, and through the correlated data acquired
from the frames, both the pose of the agent and the map are built simultaneously.

One prominent assumption made in conventional approaches is that the scene remains static across
the consecutive frames, and this assumption carries a drawback in real-time applications, especially
in highly dynamic environments where there are number of independently moving objects within the
field-of-view of the sensors used. If the data or features used to describe the pose and the map are
incorporated from a moving object at a particular point of time, the motion of the referred object in the
following frames would introduce errors in both the pose of the agent and the map, and if those data
or features persist, the errors can interpolate and can cause the algorithm to fail as well. Improving the
robustness of SLAM algorithm in dynamic scenes is one of the prevailing research problems and is
recently contemplated within the SLAM research community as well [1]. One of the popularly explored
variants of SLAM for solving this is RGBD-based SLAM approaches where both dense and sparse
approaches are exploited, many of which proposes solutions in indoor environments. This work also

C© The Author(s), 2021. Published by Cambridge University Press.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521
https://orcid.org/0000-0003-1589-074X
https://orcid.org/0000-0003-0421-5028
https://doi.org/10.1017/S0263574721001521

2066 Lhilo Kenye and Rahul Kala

presents an approach that is intended to improve SLAM in dynamic environments using RGB-D images.
The approach is tested both on indoor and outdoor data.

With the advancement of object detection approaches using deep neural networks (DNN), ample
number of methods have been proposed which uses DNN to amplify real-time application of SLAM.
One of the areas of using object detection is in improving SLAM in dynamic environments. The ability of
DNN to classify objects consistently allows the SLAM algorithm to decide which objects likely belongs
to dynamic class. Having this information, the data or features belonging to those object classes can
either be rejected or made use of independently, adding value to the decision-making.

The proposed approach employs DNN-based object detectors to obtain bounding boxes of objects
belonging to likely dynamic class and attempts to generate a binary mask image with the help of the
bounding boxes and the corresponding depth image at each frame using the depth-first search (DFS)
algorithm, resulting in a segmented image – segmenting out dynamic region from the static back-
ground. The features belonging to the mask generated through the detection module are eliminated from
being mapped, but they are not entirely rejected. A tracking module is introduced which tracks the seed
points – point features belonging to the mask – such that the consistency in generating mask is achieved.
The tracked seed-points are used to regenerate mask in case of an inconsistent mask and track the boxes
– through which masks are generated – in case the detection module fails.

The eminence of masking over simply using the bounding box for filtering out features is that, even
though majority of the region within the bounding box could belong to the dynamic object, it is preferable
to maximize the use of static region, and in cases where dynamic object is prominent within the field-
of-view of the sensor, segmenting out dynamic from static background even within the bounding box
could be crucial. The presented work is a sparse feature-based SLAM, but the concepts could also be
interpolated into dense SLAM.

The novelty of this work is characterized by the following:

1. A DFS-based depth masking method, which can generate a low-resolution binary mask image
by traversing through the depth image, which segments out dynamic region from the static
background.

2. A tracking module, which tracks seed points to maintain masking consistency by regenerating
masks and by tracking boxes.

3. Incorporation of the proposed approaches in an RGB-D SLAM algorithm to improve the
performance of SLAM in dynamic scenes.

4. The proposed approach is shown to beat numerous state-of-the-art algorithms over the TUM
dataset [2] and self-created datasets.

The rest of the paper is arranged as follows: literature review based on related works is discussed
in section 2, the proposed modules and their methodologies are described in section 3 to section 6, the
experimental results obtained are presented and discussed in section 7, and the conclusions are discussed
in section 8.

2. Literature Review
Visual SLAM can be categorized into filtering-based and graph-optimization approaches and as pointed
out in ref. [3], and the study presented in ref. [4] shows that visual SLAM approaches which employs
the graph-optimization approach outperforms the filtering-based approaches and graph-optimization
approach is seen to be more popularly used in visual SLAM approaches. SLAM based on graph-
optimization approach is further categorized into direct method [5, 6], which makes use of the entire
image instead of some specific or dominant features for both localization and mapping, and feature-
based method [7–9], which resorts to sparse features of which point-features – like SIFT [10], SURF
[11], BRIEF [12], KAZE [13], FAST [14] and ORB [15] to mention a few – are widely used. In addition,

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2067

Huletski et al. [16] presented a study comparing and analysing various visual SLAM algorithms which
belongs to different categories.

Divers conventional visual SLAM algorithms based on graph optimization approaches mostly
employ the bundle adjustment method for local refinement and maintaining global consistency, while
clinging on to the assumption that the environment remains static. Depending on the degree of inde-
pendently moving objects in the environment (considering both short-term and long-term changes), the
optimization method reduces drifts involved in both localization and mapping, enabling the algorithm
to obtain adequate accuracies even for a long-term navigation through several ways of handling the fea-
tures [17–21]. Despite of the fact that optimization methods can reduce the effects of dynamic objects,
in a highly dynamic environment, the entanglement of features belonging to dynamic objects can intro-
duce errors, which could interpolate overtime and can eventually cause the algorithm to fail. And, in
cases where there is no loop closure, the involvement of features from dynamic objects can inculcate
errors.

To counter the effects of dynamic objects and improve the robustness of SLAM algorithms in dynamic
scenes, ample number of techniques have been introduced in recent years. Risqi et al. [22] presented a
survey, addressing substantial number of the modern visual SLAM and structure from motion (SFM)
techniques for dynamic environments. Parra et al. [23] presented an approach of improving visual odom-
etry in urban scenario where the approach filters the features before using them for pose estimation. The
outliers are removed using epipolar constraints, including random sample consensus (RANSAC). In
addition, a post-processing method is introduced where a frame is skipped if the error associated with
the matched features and the pose estimation in the current frame is high. SIFT is particularly used in
this work, and the authors claim and presented that feature matching is achievable even after skipping
frames. Kitt et al. [24] proposed a modular approach of improving visual odometry. This work falls
under the filtering-based visual SLAM category where Unscented Kalman Filter (UKF) is employed.
The binary feature descriptors are classified into probably dynamic and static features with the help
of decision forest, followed by using an approach called “adaptive bucketing” to further improve the
feature correspondence between four frames. Finally, RANSAC is used to remove outliers by analysing
the reprojection errors. Zou and Tan [25] proposed a multicamera-based SLAM algorithm, where each
camera either functions independently using a monocular SLAM approach or works collaboratively.
The collaborative mode enables the algorithm to robustly perform SLAM even in a dynamic environ-
ment with the help of overlapping scenes, where if the field-of-view of a camera is occluded largely
by a moving object, with assist from another camera – whose field-of-view has considerable static
region – having overlapping scene with the camera under occlusion, a join pose estimation is performed
such that the effects of dynamic object be reduced.

One of the prominently adopted methods in enhancing visual SLAM in dynamic scene is segmen-
tation method where dynamic regions or features are segmented from the static background. Azartash
et al. [26] presented an approach of segmenting out the dynamic region temporally. Here, the RGB
image is segmented using graph-based segmentation [27] and the segments are compared over time,
wherein, if there is a dynamic region, the segments belonging to dynamic region would fall under dif-
ferent segments temporally. An et al. [28] proposed a different visual odometry pipeline where both
feature-based and direct approach are employed to perform a joint pose estimation. In addition to the
proposed pipeline, a semantic segmentation approach is used to add robustness in dynamic scenes.
In this work, a modified SegNet is used to obtain semantic segmentation and each class (segment) is
given a probabilistic assessment which is computed by investigating the reprojection error of all the
pixels. Features or region of the image (segment wise) are rejected or used based on the probabilistic
variables. Lee et al. [29] presented a robust visual odometry approach capable of running in real time
and designed to run in dynamic scenes using RGB-D images. The scene is segmented by analysing
the changes in the RGB and the corresponding depth image. A segment tracking approach is also intro-
duced where the spatially generated segments are tracked across the frames to provide more consistency.
The algorithm then utilizes the segments belonging to the static region to estimate the pose of the
camera.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2068 Lhilo Kenye and Rahul Kala

Sun et al. [30] presented a motion removal approach to improve RGB-D based SLAM algorithm in
dynamic scenes. The authors indicated that inclusion of features from dynamic objects can affect the
pose estimations and introduce false-positive data in loop detections. The proposed approach works
as a pre-processing module at the front-end in the SLAM algorithm wherein the region in the image
occupied by moving objects are segmented out such that only the static region is utilized. In principle,
the approach pre-processes the input image wherein the region in the image which belongs to dynamic
region is removed. A similar approach has been proposed by the same authors [31]. Here, the approach
involves two online parallel processes. The first process called the “learning process” generates a model
which defines the region which is likely to be foreground using through previous frame. This model is
then employed by the second process called “inference process” which compares the current frame with
the model to enhance the foreground separation, pixel wise.

Zhang et al. [32] proposed a feature-based visual odometry approach for dynamic scenes. This work
also utilizes RGB-D images, where both RGB image and its corresponding depth image are used to
refine the features. In this work, the extracted features are refined with an uncertainty model with the
help of its corresponding depth image such that, if the uncertainty of a feature is large, the feature
is discarded. Features are segmented by analysing the correlation between the point features. Here,
at each keyframe, Delaunay Triangulation [33] is used to generate a 3D triangular graph where the
vertices are the 3D points (obtained from depth image) and the connecting edges are weighted by
Mahalanobis distance. The successfully tracked features in following frames are compared by refer-
ring to the corresponding 3D triangulated graph which is generated at the referencing keyframe. For
any edge at a timestamp whose weight changes by a certain degree, the edge is removed. Removing
the edges whose weights are altered eventually results in segmented feature-regions. The largest static
region is then used to estimate the pose. This work was further extended into a full-fledged SLAM
algorithm [3] built on top of ORB-SLAM2 [8]. The proposed approach incorporates additional mod-
ules in both the front end and the back end of the original SLAM algorithm. In the front end, the
features are filtered based on the point-correlation consistencies as in [32]. In the back end, point
correlation consistencies are checked in its co-visibility graph at every new keyframe. In addition, a
map-management module is introduced where the registered keyframes and points undergoes culling
separately.

Scona et al. [34] presented a dense RGB-D SLAM approach for dynamic environments which is
capable of reconstructing the 3D map of the static background or region while temporally removing
the map data belonging to dynamic objects. The algorithm simultaneously estimates the poses of the
camera and segments the static region from the dynamic objects – it attempts to minimize the errors in
both pose estimation and segmentation simultaneously. The image is initially clustered using K-means
clustering over the 3D coordinates. The segmentation is performed cluster wise instead of analysing
each pixel which reduces computational time. A joint estimation is performed to obtain the pose using
the current image pair (RGB-D) and an artificially generated image pair in the previous timestamp –
the artificial image is generated using the static map constructed up to that point of time. The clusters
are weighted by a score depending on the level of dynamism such that the effects of clusters belonging
to dynamic objects be reduced. In the segmentation method, the clusters are assigned with a residual
factor, such that a cluster is classified depending on how high (dynamic) or low (static) its residual value
is. Jiyu et al. [35] presented an approach which takes the advantage of advancing DNN approaches in
detecting and generating masks and shows an approach of generating a semantic mapping system. In this
work, CRF-RNN [21] is employed to detect and segment the semantics in images. The approach is built
on top of ORB-SLAM [7, 8]. During semantic mapping, which is performed at each new keyframe,
if the number of dynamic features exceeds a specified threshold, the semantic is rejected from being
mapped.

Cheng et al. [36] proposed a visual SLAM approach designed for dynamic environment built on top
of ORB-SLAM [7, 8], wherein the dynamic region is detected and eliminated before conducting pose
estimations. The authors proposed an approach called “sparse motion removal” (SMR) which is based
on Bayesian theory for detecting dynamic regions in an image. The approach computes similarities

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2069

Figure 1. Architecture of the proposed approach. The flow of data through the two main modules,
namely masking module and tracking module are indicated by red and blue arrows, respectively. The
feature extractor module is a part of the SLAM algorithm – here, the extracted features are not fed
directly into SLAM algorithm rather filtered using the mask image. Filtered out features are used as
seed points and tracked into the next frame and fed into the masking module to obtain a better masking
consistency.

and difference between frames in separate threads: a tracking thread which computes batch similarities
between the features tracked into current frame and the previous frame; “incremental detection” thread
where the transformation between the current frame and a referencing frame is computed, which is then
used to generate a warped image, after which block-wise features are extracted and the difference is then
computed against the corresponding features in the current frame. The information obtained from the
two threads are fed into a Bayesian module to generate segmented regions (performed grid-wise). This
work was further extended by incorporating semantic detection module [37], where the semantics are
classified between static and dynamic, and using the dynamic classes, the generated segmentation (as
in [36]) is refined.

The proposed approach presented in this paper leverages the escalating reliability of semantic detec-
tion to retrieve semantic information of the working environment and employs DFS algorithm to obtain
masks of semantics belonging to probable dynamic objects using depth images – augmenting the nov-
elty of the work. The resolution of mask image is smaller than the resolutions of the depth and RGB
images, where the mask image is scaled down by a scaling factor and the same factor is used to skip
pixels in the depth image during traversal such that the computation cost be reduced. In addition, the
consistency of object masking is obtained through a tracking module which tracks features belonging
to dynamic objects, hence achieving an approach that do not entirely reject the dynamic region but con-
tinues to exploit them, adding to the robustness of the algorithm. The proposed approach is also tested
over outdoor data, which many of the discussed methods are not tested upon.

3. Framework
This section gives an overview of the proposed approach by discussing in brief the key modules which are
incorporated into a SLAM algorithm. The architecture of the proposed approach is shown in Fig. 1. The
system takes the ith RGB and depth image pair (Ii, Di) as input. The RGB image Ii is fed into the object
detection module to obtain bounding boxes Bdet

i =
{
bdet

i, l

}
of semantics belonging to probably dynamic

class. For example, a person in an indoor environment or pedestrian and vehicle on a roadway in an urban
environment to mention a few can be considered highly likely non-static. The masking module sorts the

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2070 Lhilo Kenye and Rahul Kala

Figure 2. Illustration of classifying semantics based on how likely a semantic is static or dynamic using
probabilistic approach.

bounding boxes Bi using Di and employs both Bi and Di to generate a scaled-down binary mask image
M i representing the pixel-level dynamic entities. Occasionally, a bounding box which has been detected
in the previous frame may not get detected in the current frame and to cope with such undetected objects,
seed points are employed to track the boxes. A seed point is a characteristic point within a bounding box
being tracked that is additionally given for the generation of mask images accounting for the undetected
objects. The mask image M i is then used to eliminate point-features being extracted by the SLAM
algorithm from being registered for pose estimation and mapping since they represent dynamic objects.

The features within the mask are tracked and used in the following frame to handle the case when
an object goes undetected. The tracking module uses the feature points (called seed points) Si, l =

{
sq

i, l

}
belonging to the mask in the current frame say fi and tracks them to the next frame say fi+1 as Strack

i, l ={
sq,track

i, l

}
, where Strack

i, l ⊆ Si, l, such that if either masking module fails to generate adequate mask or the
object detection module fails to detect an object, the tracking module attempts to generate new mask
or obtain boxes from previously generated mask, respectively, using Sq,track

i, l . It is important to note that
in the term Strack

i, l , the subscript i indicates that the seed points are being tracked from the ith frame to
the i+ 1th frame and l indicates the box labels. In the following sections, the modules are discussed in
detail.

4. Object Detection
The object detection module takes the RGB image Ii as input, detects semantics, classify the seman-
tics based on how likely a semantic belongs to a dynamic object class and outputs a set of bounding
boxes, say Bdet

i, l of detected semantics belonging to dynamic classes. Here, the subscript i represents the
frame number and l represents the lth box detected. Fig. 2 shows an illustration of classifying semantics
based on how likely the semantics are dynamic. The threshold for deciding which semantics belong to a
dynamic class can be assigned accordingly. Ample number of DNN based object detection frameworks
are accessible that detect objects and returns corresponding bounding boxes [38].

The bounding boxes are generally stored as a 1× 4 array or vector which consist of only the mini-
mum and maximum height and width values in the image plane instead of storing all the four corners.
For example, a bounding box, say bdet

i, l ∈ Bdet
i , is stored as bdet

i, l =
[
xmin

i, l , ymin
i, l , xmax

i, l , ymax
i, l

]
, where xmin

i, l and xmax
i, l

are the minimum and maximum corner values of the box along the height of the image and the same
for ymin

i, l and ymax
i, l along the width. This format of storing bounding boxes is a conventional approach

of storing bounding boxes by most DNN-based object detectors. The bounding boxes allow the mask-
ing to be confined within a box, hence limiting the masking module from brimming the mask beyond
the box.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2071

Figure 3. An illustration of mask image obtained through detected bounding boxes. (a) Bounding boxes
of two semantics belonging to highly likely dynamic class (human) being detected (b) Binary mask image
experimentally generated using corresponding depth image and bounding boxes.

Figure 4. A schematic representation of the masking module along with the point filtering approach.
The box wise masking approach is represented separately in the red box.

5. Masking and Point Filtering
This module attempts to generate binary mask image M i using the depth image Di if the object detection
module detects any dynamic object bdet

i, l or the tracking module tracks a box btrack
i−1,l belonging to dynamic

object. The objects considered in the mask image (Bmerge
i) are thus a union of the ones contained in the

detected bounding box (Bdet
i) and the tracked bounding box (Btrack

i−1), considering an object only once if
it appears in both in Bdet

i and Btrack
i−1 . All these will be subsequently tracked. The module sorts the boxes

based on their local depth data using Di. Fig. 3 shows a generated binary mask image, and the overview
of this module is depicted in Fig. 4. One of the main reasons behind why masking is achievable using the
depth image for each bounding box is because the foreground in the depth image will typically belong
to the semantic being detected.

The dynamic object is not the complete bounding box, but a masked region of the bounding box
represented in the mask image M i. The generation of the image is done by using a depth-first search
(DFS)-based flood-fill like algorithm using the depth image. Leaving a dynamic object is characterized
by a sudden change of the depth. The module first generates a lower resolution mask image M i which is

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2072 Lhilo Kenye and Rahul Kala

scaled down by a scaling factor, say k as:

M i← zeros

(
h

k
,

w

k

)
(1)

where the function zeros () generates an image filled with intensity value of 0, the terms h and w are
the height and width of the depth image Di (or RGB Ii, given that both RGB and depth images have the
same resolution), respectively. Suppose if k = 2, then the resolution of M i will be half the resolution
of Di. The rescaling factor k is an essential component in reducing the time required for generating the
mask.

Using Di, the module firstly attempts to fill M iwith a specified intensity value or masking value, say
α where 0≤ α ≤ 255 (any valid intensity value greater than zero) as DFS traverses through Di, l within
each box bmerge

i, l ∈ Bmerge
i . The depth-first search requires a characteristic point to start the flood-fill called

as the seed point, say o representing any point on the dynamic object. If adequate mask is generated for
each box bmerge

i, l ∈ Bmerge
i through, o, M i is used to filter or rather separate the dynamic and static features. If

for any box, the size of the local mask is lesser than a threshold, the module loops through the seed points
Strack

i−1,l being tracked from previous frame, say fi−1 to generate the mask by using the tracked seed points
as the source. The pseudocodes of depth masking approach and the DFS method for filling the mask
image M i are presented in Algorithm 1 and Algorithm 2, respectively. The correspondence matching
method and the approaches for generating M i are discussed in detail in the following sub-sections.

5.1 Box merging
This sub-module removes duplicates while taking a union of the detected and tracked boxes and then
sorts them based on the depth data. Any tracked box in Btrack

i−1 that is detected in the current frame
is updated to the new observation, while the ones not detected are retained from the previous. This
approach loops through Btrack

i−1 and compares the distance between each tracked box, say btrack
i−1,l ∈ Btrack

i−1

against all the detected boxes Bdet
i . For any box brack

i−1,l ∈ Btrack
i−1 whose

Algorithm 1 depth masking
Input: depth image Di; scaling factor k; bounding boxes Bmerge

i, l ; tracked seed points Strack
i−1,l; mask

threshold ρ

Output: binary mask image M i

1. M i = zes
(

h
k
, w

k

)
// h & w are height and width of Di

2. for bmerge
i, l ∈ Bmerge

i

3. Di, l = Di(bmerge
i, l)

4. o= getseed(Di, l)
5. M i, size

(
mo

i, l

)←DFSmasking(Di, l ,oi, l ,k,Mi)
6. if size

(
mo

i, l

)
< ρ × size

(
bmerge

i, l

)
and Strack

i−1,l �= empty
7. for s ∈ Strack

i−1,l

8. M i, size
(
ms

i, l

)←DFSmasking(Di, l ,s,k,Mi)
9. if size

(
ms

i, l

)
> ρ × size

(
bmerge

i, l

)
10. break
11. end if
12. end for
13. end if
14. end for
15. return M i

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2073

Algorithm 2 DFS masking
Input: segmented depth image Di, l, vertex a; scaling factor k, binary mask image M i;
Output: updated binary mask image Mi, local mask size ml

1. e= [[−k, 0] , [k, 0] , [0,−k] , [0, k]] //possible high-resolution vertices for a low-resolution vertex
at origin

2. add a to visited
3. a′ = (

a(1)

k
, a(2)

k

)
//re-scaled vertex

4. M i (a′) = α

5. maskSize←maskSize+ 1
6. for c in e
7. ac = c+ a
8. if ac is not in visited
9. if (0≤ ac (1) < hl) and (0≤ ac (2) < wl)

and
∣∣Di, l (ac)−Di, l (a)

∣∣ < ϕ

and Di, l (ac) <
(
median

(
Di, l

)+ τ
)

//hl & wl are height and width of Di, l

10. M i, maskSize←DFSmasking(Di, l ,ac ,k)
11. end if
12. end if
13. end for
14. return M i, maskSize

distance is less than a threshold, say ζ against any box in Bdet
i , the box btrack

i−1,l is eliminated else, stored for
masking. This can be represented as:

remove
(
btrack

i−1,l

)= {
True, if ∃bi, l∈Bdet

i, l

∣∣btrack
i−1,l − bdet

i, l

∣∣ < ζ

False, otherwise
(2)

Note that the term l represents different lth boxes and does not relate the lth box of Bdet
i to the lth

box of Btrack
i−1 . If Eq. (1) holds True for any detected box bdet

i, l ∈ Bdet
i against any btrack

i−1,l ∈ Btrack
i−1 , the box

btrack
i−1,l is eliminated such that the union will accept the updated observation. The non-eliminated boxes

in Btrack
i−1 and all boxes in Bdet

i are used to generate the mask image. The boxes after the union are
given by:

Bmerge
i = Bdet

i ∪
{
btrack

i−1,l ∈ Btrack
i−1 :¬remove

(
btrack

i−1,l

)}
(3)

The boxes from Eq. (3) are then sorted based on the mean of the depth within each box using the
depth image Di. Using each box bmerge

i, l ∈ Bmerge
i , a local or sub-depth image is segmented or sliced, say

Di, l, and the mean depth of each Di, l is computed. The mean depth of all boxes, say
[
D̄i,1, D̄i,2, . . .

]
, is

then sorted in a descending order based on the depth value and the order of the sorted depth means is
reflected on each bmerge

i, l ∈ Bmerge
i .

The correspondence matched box removal is performed to remove redundancies in boxes. If outliers
are not removed, the number of boxes can interpolate and increase over time, generating unnecessary
boxes and if not controlled, boxes can be generated unlimitedly. An illustration of this is shown in
Fig. 5 – experimentally generated. On the other hand, the boxes are sorted to assign each seed point
to the correct box it belongs to. This is further discussed in section 5.5.

5.2 Generating mask from a selected source
This approach is the default method for generating the mask – since seed points are obtained only from a
previously generated mask. For each box bmerge

i, l ∈ Bmerge
i , the source o is selected by first dividing or slicing

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2074 Lhilo Kenye and Rahul Kala

Figure 5. Illustration of box tracking error (experimentally generated) interpolating over time due to
uncontrolled box tracking. This occurs when the tracked box which is too close, which is also corre-
sponding to a newly detected box is not removed. Here, yellow box and red box represent detected and
tracked boxes, respectively.

Figure 6. Illustration of slicing boxes into grids. Here, the term Di,1 corresponds to the depth image
obtained from bounding box b1 belonging to set of detected boxes Bi,j and the term i represents the frame
number.

the depth image Di within bi, l into four grids, say Dg
i, l where g = 1, 2, 3, 4 and the mean or average depth

of each grid is computed – an illustration of slicing boxes into four grids is shown in Fig. 6. The size of
g or rather the number of grids is flexible and can be set to any valid value. After which, the index of
the pixel whose depth is closest to the minimum of the four means is selected as the source for each box
in Bmerge

i :

o= arg mino

∣∣∣∣min
g

(
Dg

i, l

)
−Di, l (o)

∣∣∣∣ (4)

Here, the overall equation returns the image coordinate or the index of the pixel with a depth which is
closest to the minimum mean depth of the grids; the function Di, l (o) gives the depth of a point o using
the depth image the term; g represents the grids; the bar symbol is used to denote the mean depth of the
sliced depth image grid. For four grids, min

(
Dg

i, l

)
bears:

min
(
Dg

i, l

)=min
(
D̄1

i, l, D̄2

i, l, D̄3

i, l, D̄4

i, l

)
(5)

The reason behind slicing the sub-depth images Di, l into grids is to assist the module in obtaining a
more consistent masking. Consider the grids in Box 2 as shown in Fig. 6. In grid 1 of Box 2, the number

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2075

of pixels belonging to the foreground (semantic class: human) is considerably lesser compared to the
background pixels while in grid 4, most of the pixels belongs to the foreground and providing more
consistent depth within the foreground. Regardless, depending on the type of data used, the approach of
slicing Di, l can be dropped if needed, wherein the index of the pixel with the depth closest to the mean
of the depth in Di, l can be used as the source, that is:

o= arg mino

∣∣Di, l −Di, l (o)
∣∣ (6)

Here, the equation returns the index of the any pixel within Di, l whose depth is closest to the mean
depth. Using the obtained source o for the th box, DFS is employed to traverse across Di, l to fill M i with
α. The scaling factor k is used to skip pixels during traversal to reduce the time required to generate
masks. The approach of depth image traversal is described in section 5.4.

For each box, a count for the number of vertices or pixels being visited is maintained. In other
terms, the size of each local mask, say size

(
mo

i, l

)
, is recorded as DFS traverses across each Di, l,

where the function size () returns the count of all visited vertices. The term o in mo
i, l represents the

source being selected from the mentioned approach. Using size
(
mo

i, l

)
, the decision on whether the

mask needs to be re-generated using seed points is made which is assisted by a minimum mask size
threshold ρ.

γ o
i, l =

{
True, if size

(
mo

i, l

)
> ρ × size

(
bmerge

i, l

)
False, otherwise

(7)

Here, γ o
i, l stores the binary value for deciding whether the mask should be regenerated for the lth box; ρ

is the percentile threshold, where 0≤ ρ ≤ 1; size () returns the number of valid pixels – for mo
i, l, it returns

the number of visited pixels, whereas for bmerge
i, l , it returns the number of pixels within the box bmerge

i, l . In
Eq. (6), γ o

i, l holds True for the lthbox if the size of local mask mi, l is greater than a certain percentage
(assigned to ρ) of the total number of pixels within Di, l or here, simply the size of box bmerge

i, l ∈ Bmerge
i, l . If

γi, l is True, the mask generated using bmerge
i, l is accepted else, an attempt to re-generate the mask is made

by using the tracked seed points Sack
i−1,l, which is discussed in the next sub-section.

5.3 Generating mask using seed points
In Eq. (7), if γ o

i, l holds False, this sub-module loops through the tracked seed points Strack
i−1,l, using the

index of each seed point as the source, over which DFS traverses through the corresponding Di, l to fill
M i with α for valid pixels (the approach is described in section 5.4). The approach of selecting the seed
points is discussed in section 5.5. The loop is terminated at any timestamp if the following equation
holds True:

γ s
i, l =

{
True, if size

(
ms

i, l

)
> ρ × size

(
bmerge

i, l

)
False, otherwise

(8)

Here, the term s corresponds to a seed point in Strack
i−1,l, that is s ∈ Strack

i−1,l, wherein the loop iterates
through s points. The same check is performed as described using Eq. (7) and if γ s

i, l in Eq. (8) is True
for any s, the loop is terminated. If for all s ∈ Strack

i−1,l, γ s
i, l holds False, M i is filled with α for the box bl

entirely.

5.4. DFS Based masking
The depth-first search algorithm is employed to fill M i with α where 0 < α < 255 as it traverses over
each Di, l to generate the binary mask image. Here, Di, l is obtained by segmenting the region in Di

belonging to the box bmerge
i, l ∈ Bmerge

i , and it is used as the graph for DFS to traverse. The scaling factor k
is employed to skip pixels in Di, l by a factor of k such that the traversal time be reduced. An illustration
of skipping pixels is shown in Fig. 7.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2076 Lhilo Kenye and Rahul Kala

Figure 7. An illustration of skipping pixels (vertex) by a scaling factor k. Here, o is the source, while
a1, a2, a3 and a4 are the possible vertices that DFS can visit for k = 3 from the vertex o.

Due to a reduction of resolution, a vertex known to be at origin in the lower-resolution map can be at
either of the points in the higher resolution bounded by the points e= [e1, e2, e3, e4] where e1 = [−k, 0]T ,
e2 = [k, 0]T , e3 = [0,−k]T and e4 = [0, k]T and k is the reduction factor of resolution. So, for a current
vertex, say, the neighbouring vertices to be visited, say a1, a2,a3 and a4 are iteratively obtained by adding
e as follows:

a1 = e1 + a= [−k, 0]T + [a (1) , a (2)]T (9)

a2 = e2 + a= [k, 0]T + [a (1) , a (2)]T (10)

a3 = e3 + a= [0,−k]T + [a (1) , a (2)]T (11)

a4 = e4 + a= [0, k]T + [a (1) , a (2)]T (12)

In Eqs. (9)–(12), the terms a (1) and a (2) are the image coordinates of vertex a. In Fig. 7, the current
vertex is the source o, while the neighbouring vertices a1, a2, a3 and a4 to be visited are iteratively
obtained by adding e whose k = 3.

In addition to the validation check performed by DFS – where the algorithm traverses to a neigh-
bouring vertex only if the vertex is not being visited before – three extended validations are performed
before adding any neighbouring vertex for traversal:

1. Validation using box limits: A neighbouring pixel is validated by checking against the box limits,
that is, if for any neighbouring vertex ac = [ac (1) , ac (2)]T , where c = 1, 2, 3, 4, if either ac (1)

or ac (2) exceeds any of limits in referencing box bi, l =
[
xi,l,min, yi,l,min, xi,l,max, yi,l,max

]
, the vertex ac

is set as an invalid vertex.
2. Validation using differential depth difference: Traversal from a foreground dynamic object to

a background in the depth image is characterized by a sudden change in the depth. The depth
distance, say δ (ac, a) between the current vertex, say a and its neighbouring vertex, say ac which
is yet to be visited, is checked. If δ (ac, a) is larger than a threshold, say ϕ, the vertex ac is set as
an invalid vertex. This can be represented as:

valid (ac)=
{

True, if δ (ac, a) < ϕ

False, otherwise
(13)

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2077

where the depth distance δ (ac, a) is defined as:

δ (ac, a)= |Di, l (ac)−Di, l (a) | (14)

Here, in Eq. (14), Di, l (a) is the depth value at vertex or pixel a and similarly for Di, l (ac). This valida-
tion limits DFS from traversing to a neighbouring vertex whose depth difference with the current vertex
is larger than a threshold, avoiding sudden change in depth which limits the traversal in the foreground.

Validation using depth tolerance: Normally, the foreground dynamic objects have a small variation
in their depth values. A depth tolerance, say τ , is defined such that if the depth value of a neighbouring
pixel, say ac which is yet to be visited has a depth value larger than sum of τ and median depth of Di, l,
the vertex ac is considered invalid. This can be represented as:

valid (ac)=
{

True, if Di, l (ac) < median
(
Di, l

)+ τ

False, otherwise
(15)

Here, the function median
(
Di, l

)
returns the median depth value of the segmented depth image Di, l.

This validation limits DFS from traversing too far from the median depth. The threshold τ can be
obtained based on the type of semantic being dealt with. For example, if the semantic is of human
class, τ can range from say 0.5 meters to 1.5 meters.

In all the three-validation courses, if one of them holds False – that is, if the vertex is invalid – the
neighbouring vertex ac is eliminated from the graph. The validations using the depth values enables the
masking module to segment out the foreground from the background and hence generating a mask of
the foreground.

Since the resolution of i is scaled down by the same scaling factor k (as shown in Eq. (1)) – which is
added to skip pixels while traversing (Eqs. (9)–(12)) – every valid vertex or pixel location being visited
can simply be divided by k to obtain the corresponding pixel location of M i, which is to be filled or
rather assigned with the masking value α. For example, if a current vertex being visited, say a is valid,
M i can be replaced by α using:

M i

(
a (1)

k
,

a (2)

k

)
= α (16)

The mask image M i is simultaneously filled by α for every valid vertex as DFS traverses across each
Di, l. This simultaneous approach of filling eliminates the need of refilling after DFS traversal.

5.5 Point filtering or point classification
This module separates extracted features, say Pi into three classes: features to be employed for SLAM
Pstatic

i ; seed points Si =
{
Si, l

}
; and invalid points Pinvlid

i – points with either invalid depth or which are too
close to the mask. Hence, Pi can be represented as Pi = Pstatic

i ∪ Si ∪ Pinvalid
i . The module loops through

all nfeatures and checks to which class a feature belongs and stores or eliminate them accordingly. The
approach of filtering or classifying features is discussed below:

5.5.1 Eliminating invalid features
Firstly, for any point feature pi ∈ Pi, if the depth is invalid, that is Di

(
pi

) = 0, the point pi is eliminated.
Secondly, if a feature has a valid depth but is too close to the mask, the feature is set as an invalid feature.
This is performed to increase the confidence of selecting static features for performing SLAM – features
too close to the edge of the mask are more vulnerable in being non-static. In this elimination method,
an inflate factor σ is defined wherein, for a point pi which is then rescaled as p′i = pi

k
, σ is used to define

a squared-window, say W(p′i) around the candidate point p′i. An illustration of generating W(p′i) around

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2078 Lhilo Kenye and Rahul Kala

Figure 8. Illustration of checking a feature being close to the mask. Here, the white pixels belong to the
mask, while the grey pixels belong to static background; p′i is the feature being validated, while pixels
numbered 1 to 16 are the neighbouring pixels to be checked – the neighbouring pixels obtained by using
a window around p′i whose inflate factor σ is 2 pixels.

a point p′i with σ = 2 is shown in Fig. 8. The window W(p′i)can be defined as:

W(p′i)=
[
xmin (p′i) , ymin (p′i) , xmax (p′i) , ymax (p′i)

]
(17)

Or,

W(p′i)=
[
p′i (1)− σ , p′i (2)− σ , p′i (1)+ σ , p′i (2)+ σ

]
(18)

Algorithm 3 Feature close to mask
Input: candidate point pi, scaling factor k, inflate factor σ

Output: True if intensity of any border pixels w of window W
(

p′i
)

equals masking value α

1. p′i =
pi

k
2. W(p′i)=

[
xmin (p′i) , ymin (p′i) , xmax (p′i) , ymax (p′i)

]
//here, each element of W(p′i) is obtained using

Eq. (18) wherein, σ is used
3. for u= xmin (p′i)to xmax (p′i)
4. if w(u, ymin (p′i))= α or w(u, ymax (p′i))= α

5. return True
6. end if
7. end for
8. for v= (ymin (p′i)+ 1)to (ymin (p′i)− 1)
9. if W(xmin (p′i) , v)= α or W(xmax (p′i) , v)= α

10. return True
11. end if
12. end for
13. return False

where the terms p′i (1) and p′i (2) are the pixel coordinates of the point p′i. Here, it is imperative that
W(p′i) is within the image height and width limits. If the border of W(p′i) exceeds image size limits, the
border pixels of the image itself could be used. This filtering scans the pixels, say w along the boundary

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2079

of W(p′i) for any intensity equal to masking value α. The border pixels are first scanned across either
u-axis or v-axis along both minimum and maximum limits, followed by scanning along the other axis
while making sure that one pixel is validated not more than once. The pseudocode of this filtering
approach is shown in Algorithm 3. The algorithm returns True if the conditions given in lines 4 and 9
of Algorithm 3 are met. At any point during the scan if any border pixel, say w= α, pi is eliminated.
In Fig. 8, p′i is to be eliminated since pixel number 13 and 14 are within the mask. Depending on the
value assigned to σ , the number of pixels to scan increases or decreases. The time required to check
all the pixels along the border of W(p′i) is proportional to the inflate factor σ . The invalid points are
thus Pinvalid

i = {
pi ∈ Pi : Di

(
pi

) = 0∨ pi

k
∈W

(
pi

k

)}
, where for complexity reasons the interior points are

approximated by just the boundary.

5.1.1 Separating seed points from extracted features
The extracted features Pi to be employed for implementing SLAM are filtered using M i as well. Each
feature location being extracted is divided by k and compared against the intensity of M i at the obtained
location. If the intensity for a re-scaled feature location in is equal to α, the feature is stored as a seed
point else, the feature is stored for performing SLAM. In simple terms, features (which are re-scaled)
belonging to the mask are used as seed points, while the other valid features are used for SLAM. For a
feature say pi ∈ Pi, the filtering can be performed as:

seedPoint
(
pi

)=
{

True, if M i

(pi(1)

k
, pi(2)

k

)= α

False, otherwise
(19)

If Eq. (19) holds False, the feature pi is stored and employed in performing SLAM, otherwise it is
stored as a seed point. The seed points represent dynamic objects and are conventionally filtered out.
Here we store them separately for the generation of the dynamic masked image, should it be impos-
sible by the other points. The seed points are stored in a box wise manner, say Si, l where l is the
box, or bmerge

i, l ∈ Bmerge
i so that they could be tracked separately by the tracking module, especially for

tracking boxes – the tracking module is discussed in section 6. The seed points are thus given by
Si =∪lSi, l =∪l

{
pi ∈ P:seedPoint

(
pi

)}
. There can also be cases where the boxes overlap, which can

result in overlapping masks and this could further result in assigning the seed points to a wrong box.
This is attended to by sorting the boxes in descending order – as discussed in section 5.1. As the boxes
are in descending order based on the depth, the seed points belonging to an intersecting mask are even-
tually assigned to the foreground objects or rather boxes. Suppose boxes bi,1 and bi,2 have overlapping
masks, whose mean depths are D̄i,1 and D̄i,2, respectively. Suppose D̄i,1 < D̄i,2 that is, D̄i,1 is in front of
D̄i,2. The order after sorting would be [D̄i,2, D̄i,1]. If there are seed points belonging to the intersecting
mask, the points would be first assigned to bi,2, followed by bi,1 and as a result, the seed points would be
tracked with respect to the intended box.

The features used for SLAM are thus Pstatic
i = Pi\

(
Si ∪ Pinvalid

i

)
. Say, there are size (S) seed points

and size
(
Pinvalid

i

)
invalid points, an amount of

(
size (Pi)−

(
size (Si)+ size

(
Pinvalid

i

)))
points are used for

SLAM. In summary, point filtering module first checks if a point has an invalid depth and then separates
valid points into either seed points, points close to mask (which are also considered invalid) or points to
be used for SLAM.

6. Tracking Module
The tracking module tracks the seed points to assist the masking module for regenerating masks and
in addition track the bounding boxes as well. The approach to tracking the seed points is not confined
to a particular tracking method – Kanade-Lucas-Tomasi (KLT) feature tracker [39, 40], Kalman filter,
particle filter and feature matching method, to mention a few, are some commonly used point-feature
tracking methods.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2080 Lhilo Kenye and Rahul Kala

Algorithm 4 Box wise feature tracking
Input: previous seed points Si−1,l; previous frame fi−1; current frame fi

Output: tracked seed points Strack
i−1 (tracked from fi−1 to fi)

1. for all l
2. for all s ∈ Si−1,l

3. s′ = feature_tracker (s, fi−1, fi)

4. add s′ to Strack
i−1,l

5. add Strac
i−1,l to Strack

i−1

6. end for
7. end for
8. return Strack

i−1

Algorithm 5 Box tracker
Input: box to track bmerge

i−1,l ∈ Bmerge
i−1 ; previous seed points Si−1,l; tracked seed points Strack

i−1,l

Output: bounding box btrack
i, l in current frame fi

1. S′i−1,l = get_correspondence(Si−1, Strack
i−1,l)

2. μi−1,l = ean(S′i−1,l)
3. λmin

i−1,l =μi−1,l − bmerge
i−1,l (xmin, ymin)

4. λmax
i−1,l = bmerge

i−1,l (xmax, ymax)−μi−1,l

5. μi, l = mean(Strack
i−1,l)

6. bmin
i, l (xmin, ymin) = μi, l − λmin

i−1,l

7. bmax
i, l (xmax, ymax) = μi, l + λmax

i−1,l

8. btrack
i, l =

[
bmin

i, l (xmin, ymin) , bmax
i, l (xmax, ymax)

]
9. return btrack

i, l

The seed points Si−1,l are tracked in a box wise manner from previous frame, say fi−1 to the current
frame, say fi to obtain Strack

i−1,l seed points. A brief overview on the box wise seed point tracking is shown in
Algorithm 4. The box wise seed point tracking is essential as both mask regeneration and box tracking
are performed box wise. For regenerating a mask, the algorithm firstly loops over the boxes Bmerge

i, l (line
2 of Algorithm 1) and the tracked seed points Strack

i−1,l belonging to reference box bmerge
i, l are loop over, using

them as the source for DFS traversal (line 7 of Algorithm 1). While for tracking the bounding boxes,
the spatial-correlation information between the seed points Si−1,l and Strack

i−1,l is considered to obtain a box.
Note that Si−1,l are seed points belonging to and Strack

i−1,l are the tracked seed points being tracked from fi−1

to fi.
In case of tracking boxes, though there is the option to track the corners of a box, the reliability –

consistency and accuracy – of tracking them is slim. Features belonging to strong corners are more
reliable for tracking and since seed points are basically strong corners, hence they can deliver a more
consistent correlation. This module keeps a check on the number of boxes in previous frame fi−1, say
size

(
Bmerge

i−1

)
and if the number of detected boxes Bdet

i reduces in the current frame fi, that is size
(
Bdet

i

)
<

size
(
Bmerge

i−1

)
, it finds and then attempts to generate or track those boxes in which are not detected in fi

using the seed points Si−1,l and tracked seed points Strack
i−1,l. The pseudocode for obtaining the tracked box

is given in Algorithm 5.
For a box to be tracked, say bmerge

i−1,l , the module finds the seed points in Si−1,l corresponding to Strack
i−1,l and

computes a spatial correlation between corresponding points, say S′i−1,l to define the box in the current
frame fi. The approach to obtaining corresponding seed points is not confined to a particular method
and depends on the type of tracking method used. It is evident that all tracked seed points Strack

i−1,l will have

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2081

Figure 9. Illustration of lines λmin
i−1,l and λmax

i−1,l connecting the mean point μi−1,l to the two corners bmin
i−1,l

and bmax
i−1,l of a box bl. The points s1

i−1, s2
i−1,. . ., s5

i−1 are the corresponding seed points S′i−1,l within bl.

a corresponding point in Si−1,l since Strack
i−1,l are tracked from Si−1,l. Here, an option is to keep track of the

indices of points in Strack
i−1,l successfully tracked to fi. After obtaining the corresponding seed points S′i−1,l,

the mean of all points in S′i, l, say μi−1,l is computed. Using the mean point μi−1,l, two lines, say λmin
i−1,l and

λmax
i−1,l connecting the two corners, say bmin

i−1,l and bmax
i−1,l of the box bl (referred to the format specified in

section 4) is obtained as:

λmin
i−1,l =μmin

i−1,l − bmin
i−1,l (20)

λmax
i−1,l = bmax

i−1,l −μmax
i−1,l (21)

An illustration of obtaining the lines is shown in Fig. 9. After retrieving λmin
i−1,l and λmax

i−1,l, the mean
point, say μi, l for the tracked seed points Strack

i−1,l in fi is computed as well. The lines λmin
i−1,l and λmax

i−1,l are then
employed to obtain the corner points bmin

i, l and bmax
i, l of the new or rather tracked box in the current frame

i as:

bmin
i, l =μi, l − λmin

i−1,l (22)

bmax
i, l =μi, l + λmin

i−1,l (23)

Finally, the two corners bmin
i, l and bmax

i, l are concatenated to obtain the tracked box, say btrack
i, l =[

bmin
i, l , bmax

i, l

]
.

The approach to finding which box to be tracked is rather straight forward. Suppose, the number of
current detected boxes Bdet

i is less than previous boxes Bmerge
i−1 , the distance between each of the current

box in Bdet
i against all Bmerge

i−1 is compared to get the corresponding indices – here, the two closest (least
in-between distance) boxes in Bmerge

i−1 and Bdet
i are selected as corresponding boxes. For any box in Bmerge

i−1

whose corresponding box is not in Bdet
i , the tracking approach is employed. On the other hand, it can be

made more robust if the object detector can specify unique identifier (ID) for each box being detected
between fi−1 and fi. The IDs can be employed to identify the boxes to be tracked.

The resulting tracked boxes Btrack
i are the fed to the masking module for outlier removal and box

merging. If the tracking error or accuracy for a point can be obtained, this information can be further
used to filter out poorly tracked points.

7. Results and Discussions
The experimental results and the discussions relative to them are presented in this section. Several open
source SLAM libraries are used to compare with the proposed approach. In addition, the box tracking
accuracy test results are also presented.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2082 Lhilo Kenye and Rahul Kala

Table I. Benchmark for dataset collected using ZED stereo camera.

Distance
(meters) Path Environment Source Goal
0m Camera kept static Indoor & outdoor (0,0,0) (0,0,0)
4m Straight path: 2m forward + 2m

backward
Indoor & outdoor (0,0,0) (0,0,0)

6m Straight path: 3m forward+ 3m
backward

Outdoor (0,0,0) (0,0,0)

Figure 10. Boxes tracked by the box tracking method. The red boxes are the bounding boxes; the yellow
dots are the seed points; the green dot is the mean point; and the yellow lines indicates the vectors used
to obtain the two corners of a bounding box.

7.1 Experimental setup
The experiments were conducted using both publicly available and self-collected RGB-D datasets,
wherein the TUM dataset [2], which is publicly made available, is used since the ground truths are
provided for comparison and evaluation. In addition, the dataset involves dynamic objects, making it
an ideal dataset to test the proposed approach. Ample number of algorithms being proposed, which are
discussed in section 2, employs TUM dataset as well. For self-collected dataset, ZED stereo camera is
used. ZED stereo camera is incorporated with a software development kit (SDK) which allows RGB-
D data recording. Both indoor and outdoor datasets were recorded hand-held, where all the recorded
dataset involved dynamic semantics in the scene. The image resolution of TUM dataset is 640× 480,
while the ZED recorder images bear 672× 376 resolution. ZED sequences were recorded at 15 frames
per second (FPS).

The experiments were performed using Intel i5–8250U CPU (1.6GHz) with 16GB memory. The
dynamic objects in datasets are annotated to obtain a pre-trained model for the object detection module
for detecting the semantics. For both training and detection, the TensorFlow object detection module
[41] is employed. For tracking the features, KLT tracker is used. The masking parameters used in these
experiments were kept constant. The masking image recalling factor k is kept at 4 for all the experiments,
hence reducing the resolution of the mask image by 4 times the original image.

7.2. Comparison specifications
The proposed approach is built on top of the RGB-D parallel tracking and mapping (RGBD-PTAM)
implementation which is designed and developed based on S-PTAM [9] algorithm. The comparison is

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2083

Table II. Box tracking accuracy test results for boxes being tracked using seed points.

TUM fr3_ TUM fr3_ ZED indoor1_ ZED indoor1_
Dataset walking_static walking_xyz static xyz
Total frames 67 57 98 53
Frame skip-factor (φ) 0.4 0.4 0.4 0.4
Total frames to track 26 22 39 21
Successfully tracked frames 25 21 39 19
Total box to track 39 29 74 41
Successfully tracked boxes 27 34 75 33
Untracked box 12 2 3 8
Additional tracked box 0 7 4 0
Avg. box corner error (pixels) 5.95968 6.968388 4.632445 5.144539

Figure 11. Error plots of tracking boxes using box-corner tracking method and box tracking using seed
points for segments of four sequences (entitled in each plot). Here, the horizontal axis (labelled frame)
is the number of frames in which the box is supposed to be tracked.

performed using results obtained through ORB-SLAM2 [8], RTAB-Map [42], RGBD-PTAM [9] and
the modified RGB-PTAM as the proposed approach. For TUM dataset, both static and dynamic scenes
are utilized, whereas for self-collected dataset, indoor and outdoor data are collected to further test the
mentioned approaches.

For self-collected dataset, no ground truth was collected, but a benchmark is set to compare the
results wherein, a predefined path is defined. Table I shows the specifications of the benchmark set for
the collected dataset. Both the path defined are straight paths, where the camera moves in a straight line
for a specified distance from source at location, say (0, 0, 0) in a 3D cartesian coordinate system and
returns to (0, 0, 0). Therefore, it is expected for an algorithm to obtain a path that returns the camera’s
location back to the source. In addition, since the camera moves back and forth in a straight line though
hand-held, an algorithm is expected to produce a path close to straight line in a top-view (2D) mode.
These two specifications – camera returning to source and camera following a straight 2D path – are
used to compare the algorithms.

In addition, the box tracking module is tested using segments of both TUM and self-collected datasets,
wherein the performance of box tracking is tested.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2084 Lhilo Kenye and Rahul Kala

Table III. Comparison of tracking boxes using box-corner tracking method and box being tracked
using seed points.

TUM fr3_ TUM fr3_ ZED indoor1_ ZED indoor1_
Dataset walking_static walking_xyz static xyz
Box to track 39 29 75 37
No. of tracked
boxes (Additional
tracked boxes
excluded)

box corner
seed point

31
25

21
28

75
74

32
33

Additional box
tracked

box corner
seed point

1
0

0
6

3
3

3
0

Average error
(pixels) (Additional
tracked boxes
excluded)

box corner
seed point

8.2344
7.2732

20.1603
7.0959

5.3753
4.8847

14.0841
4.8984

Table IV. Comparison of root-mean-squared error (RMSE) of the absolute trajectory error (ATE)
in meters for the trajectories obtained using RGBD-PTAM, RTAB-Map, ORB-SLAM2 and proposed
approach (Modified RGBD-PTAM).

RGB- RTAB- ORB- Modified
Scene Sequence PTAM Map SLAM2 RGBD-PTAM

Static fr1_desk 0.706554 0.055547 0.015678 0.713795
fr1_plant 0.102325 0.036457 0.014726 0.108001

Partially fr3_sitting_static 0.011328 0.006474 0.00903 0.009655
dynamic fr3_sitting_xyz 0.114852 0.014718 0.009438 0.125105

Dynamic fr3_walking_static 0.144579 0.473232 0.393854 0.012409
fr3_walking_xyz failed 1.613246 0.711723 0.149204
fr3_walking_halfsphere 0.358636 0.50561 0.666059 0.17476
fr3_walking_rpy 0.496245 failed 0.549251 0.173709

7.3. Evaluation of box tracking module
In this evaluation, dynamic objects in segments of both TUM and self-collected datasets are annotated
to set a ground truth. In the experiments, the approach takes the RGB images along with annotated
data as input. In the process, the annotations are randomly removed, simulating cases where the object
detection module fails to detect a dynamic object. For any removed annotation or bounding box, it is
expected for the box tracking method to track a box. Fig. 10 shows and illustration of the result obtained
from tracking a box.

In this experiment, a frame skip-factor, say φ, is used to define the percentage of frames in which the
boxes are to be removed. In any given sequence, a random number of frame indices are selected based
on φ where the bounding boxes are to be removed. The number of boxes being removed are recorded
such that the number tracked boxes can be compared with it to obtain an accuracy scale. In addition, the
distance between the corners of the ground truth boxes and tracked boxes are compared to evaluate the
errors of the box being tracked. Table II shows the results obtained from segments of four sequences.
It is observed that the method sometimes tracks additional boxes in cases where there are no expected
boxes be tracked as per the ground truth data. The average box corner error (last row of Table II) is

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2085

Table V. Comparison of translational relative pose errors (RPE) in meters obtained using RGBD-
PTAM, RTAB-Map, ORB-SLAM2 and proposed approach (Modified RGBD-PTAM) over TUM RGB-D
dataset sequences.

RGB- RTAB- ORB- Modified
Scene Sequence PTAM Map SLAM2 RGBD-PTAM
Static fr1_desk 0.541692 0.742859 0.024674 0.541366

fr1_plant 0.093594 0.566153 0.017405 0.093612

Partially fr3_sitting_static 0.015784 0.14035106 0.008992 0.013171
dynamic fr3_sitting_xyz 0.105366 0.227016 0.011582 0.112844

Dynamic fr3_walking_static 0.165368 0.489299 0.20705 0.015221
fr3_walking_xyz failed 0.743348 0.400198 0.161466
fr3_walking_halfsphere 0.278594 0.162979 0.474622 0.177801
fr3_walking_rpy 0.284796 failed 0.335262 0.149807

Table VI. Comparison of rotational relative pose errors (RPE) in degrees obtained using RGBD-
PTAM, RTAB-Map, ORB-SLAM2 and proposed approach (Modified RGBD-PTAM) over TUM RGB-
D dataset sequences.

RGB- RTAB- ORB- Modified
Scene Sequence PTAM Map SLAM2 RGBD-PTAM
Static fr1_desk 0.541692 0.742859 0.024674 0.541366

fr1_plant 0.093594 0.566153 0.017405 0.093612

Partially fr3_sitting_static 0.015784 0.14035106 0.008992 0.013171
dynamic fr3_sitting_xyz 0.105366 0.227016 0.011582 0.112844

Dynamic fr3_walking_static 0.165368 0.489299 0.20705 0.015221
fr3_walking_xyz failed 0.743348 0.400198 0.161466
fr3_walking_halfsphere 0.278594 0.162979 0.474622 0.177801
fr3_walking_rpy 0.284796 failed 0.335262 0.149807

computed by first obtaining the difference between the ground truth and the tracked box, followed by
computing average error as:

ε= 1

4n

n∑
i= 1

(
ex,min,i + ey,min,i + ex,max,i + ey,max,i

)
(24)

where n is the number of tracked boxes apart from the additional tracked boxes and the unit of ε is in
pixels. The term ex,min,i as computed as:

ex,min,i =
∣∣xg

min,i − xt
min,i

∣∣ (25)

where xg
min,i and xt

min,i are the lower-limit or minimum x component (along x-axis) of the ground truth and
the tracked box, respectively. The terms ey,min,i, ex,max,i and ey,max,i in Eq. (24) are computed in a similar
manner.

The approach of tracking the boxes using seed points is further compared with the box tracked using
the box corners. For tracking the corners, the two corners of a box, say (xmin, ymin)bl

and (xmax, ymax)bl,

are tracked and the obtained tracked points are compared with the ground truth box corners to obtain
the error in pixels. In this test, at each random frame where the box is to be tracked, the sum of errors
the two corners are considered. Fig. 11 shows the bar graph of the obtained error results for the same

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2086 Lhilo Kenye and Rahul Kala

Figure 12. Plots comparing the trajectories obtained by the proposed approach (modified
RGBD-PTAM) against the ground truth over the sequences (a) fr3_sitting_static, (b) fr3_sitting_xyz,
(c) fr3_walking_static, (d) fr3_walking_xyz, (e) fr3_walking_halfsphere and (f) fr3_walking_rpy of
TUM’s RGB-D sequences which involves partially dynamic and dynamic objects. The black line indi-
cates ground truth the trajectory, the blue line is the estimated trajectory, and the red lines represent the
difference between the ground truth and the estimated positions.

dataset segments used in Table II. Further results are presented in Table III. Here, the average errors are
computed using the same approach as discussed for Table II. It is imperative to note that these results
are obtained from randomly removing boxes from segments of the sequences, and it is observed that
tracking boxes using seed points gave more consistent box tracking accuracies though the success rate
of tracking box corners is also adequate.

7.4 Evaluation of the proposed approach and comparisons
The overall tests and experiments of the proposed approach are implemented using TUM RGB-D dataset
and a set of self-collected dataset, which was collected using ZED stereo camera in both indoor and out-
door conditions. Tables IV, V and VI show the results and comparison of the proposed approach – which
is built on top of RGBD-PTAM (hence named modified RGBD-PTAM in the tables) – against RGBD-
PTAM, RTAB-Map and ORB-SLAM2 over a selected set of sequences from TUM dataset. This test is
performed over static, partially dynamic and dynamic scenes using TUM benchmark. Table IV shows
the root-mean-squared error (RMSE) of the absolute trajectory error (ATE) of the obtained trajectories
in meters, while Tables V and VI show the translational relative pose error (RPE) in meters and rota-
tional RPE in degrees, respectively. Here, as the proposed approach is built on top of RGBD-PTAM, the
error value or rather, its accuracy depends on how well the base algorithm performs. While the modified
RGBD-PTAM performs as the base algorithm in static and partially dynamic scenes, in dynamic scenes,
the proposed approach mostly outperforms the other algorithms as they do not have modules that sep-
arately or particularly handles the dynamic objects. It is irrefutable from these results that filtering out
the dynamic features can improve the overall SLAM performance. The trajectories obtained using the
proposed approach over the dynamic scene sequences – used in Tables IV–VI – are shown in Fig. 12.

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2087

Table VII. Comparison of root-mean-squared error (RMSE) of the absolute trajectory
error (ATE) in meters for the trajectories obtained using RGBD-PTAM and proposed
approach (Modified RGBD-PTAM) for sequences collected using ZED stereo camera,
where the camera was kept static. Comparison performed over both indoor and outdoor
sequences.

Dataset RGBD-PTAM Modified RGBD-PTAM
ZED_indoor1_walking_static 0.5883847 0.00834273
ZED_indoor2_walking_static 0.0306294 0.010979687
ZED_outdoor_walking_static 0.00425828 0.004064647

Table VIII. Comparison of root-mean-squared error (RMSE) of the goal-reach, Z-reach and deviation
along X-axis in meters obtained using RGBD-PTAM and proposed approach (Modified RGBD-PTAM)
for sequences collected using ZED stereo camera, where the camera moved for specific distance.
Comparison performed over both indoor and outdoor sequences. The Z-axis reach is defined based
on how far the camera is intended to move in Z-axis, while X-axis deviation defines how far the camera
deviates along the X-axis. The intended path follows straight path in the Z-axis.

goal reach (meters) Z-axis reach (meters) deviation along
goal location: (0,0,0) Target: 2m or 3m X-axis (meters) RMSE

Modified Modified Modified
RGBD- RGBD- RGBD- RGBD- RGBD- RGBD-

Dataset PTAM PTAM Target PTAM PTAM PTAM PTAM
ZED_indoor 1_
walking_
xyz_2m

(−2.256,
1.22,

0.675)

(−0.051,
−0.024,
0.0004)

2 2.1845 2.0967 0.9092 0.0679

ZED_indoor 2_
walking_
xyz_2m

(−0.054,
0.014,
−0.014)

(−0.085,
−0.005,
−0.065)

2 2.1402 2.0298 0.3753 0.3817

ZED_outdoor_
walking_
xyz_2m

(1.96,
0.029,
−0.64)

(−0.031,
−0.061,
0.092)

2 2.2095 2.1014 1.4179 0.0397

ZED_outdoor_
walking_
xyz_3m

(3.168,
0.06, 0.57)

(−0.072,
−0.084,
−0.058)

3 3.0492 2.9188 1.9925 0.0645

Due to the absence of ground truth for the dataset collected using ZED camera, the measures men-
tioned in section 7.2 are considered to test the accuracy of the proposed approach. The results are
presented in Tables VII and VIII. The comparison of proposed approach against RGBD-PTAM – the
base algorithm – for sequences where the camera is kept static is presented in Table VII. For static
sequences, the RMSE of ATE is obtainable as it is expected for the algorithm to estimate the pose at the
source, say (0, 0, 0) throughout the sequence. For non-static sequences where the camera is in motion,
a pre-defined path is followed wherein, all sequences follow a straight path as defined in Table I. The
results obtained for the non-static camera sequences is presented in Table VIII.

In Table VIII, the Z-axis reach defines how far the camera is expected to move based on the pre-
defined path along the camera’s Z-axis. For example, as per Table I, the two pre-defined Z-axis targets
are 2meters and 3meters and as the camera moves back and forth, the camera is expected to move back

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

2088 Lhilo Kenye and Rahul Kala

Figure 13. 2D plot of trajectories obtained by RGBD-PTAM (green) and proposed approach (orange)
compared against the intended straight-line path over sequences collected using ZED stereo camera
(ZED_indoor1_xyz_2m, ZED_indoor2_xyz_2m, ZED_outdoor_xyz_2m and ZED_outdoor_xyz_3m).

after reaching the Z-axis target. The deviation along X-axis defines how far the camera moves away
from the camera’s Z-axis at each timestamp. As the intended path is a straight line, the deviation in the
X-axis is expected to be minimal. In other words, the location of camera along X-axis is expected to be
constant, that is xi ≈ 0 throughout the sequence. The more deviation, the more erroneous the trajectory.

The 2D trajectory plots are presented in Fig. 13 over the non-static sequences. From these plots, it
is observable that dynamic objects can cause drifts in the trajectory. It is also observed that the drift
tends to occur in the direction of the moving objects. From these plots, it is observable that the proposed
approach keeps the camera close to the intended path by negating the effects of dynamic objects by
a considerable degree, unlike the trajectories obtained by RGBD-PTAM where there are significantly
larger drifts.

8. Conclusions
This paper presents modules that can be incorporated into a SLAM algorithm to improve its performance
in a dynamic environment. The proposed approach detects semantics and classifies the semantics based
on how likely they belong to a dynamic object class. A depth-first search (DFS)-based depth masking
method is introduced which takes the depth image and the detected bounding boxes to generate a lower
resolution binary mask image, which is then used to segment or separate features into three classes –
valid features, seed points and invalid points. The valid features, which belong to static background are
used for performing SLAM, and the invalid points are eliminated, while the seed points – point features
which belongs to the mask – are tracked to assist in regenerating masks as well as track boxes to obtain
consistent masking.

The proposed approach was built over a state-of-the-art SLAM algorithm RGBD-PTAM, and the
experiments were implemented over the TUM RGB-D dataset and sequences collected using ZED stereo
camera, where both indoor and outdoor data were collected. Other state-of-the-art SLAM algorithms,

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574721001521

Robotica 2089

particularly RTAB-Map, ORB-SLAM including RGBD-PTAM, are compared against the proposed
approach over the TUM RGB-D dataset and further evaluated over the ZED sequences. While TUM
RGB-D sequences are recorded indoors, the self-collected dataset includes outdoor sequences as well.
In order to test the versatility of the proposed algorithm. The results show that incorporating the proposed
approach improves the overall output of the SLAM algorithm in dynamic environments, nullifying the
effects of moving objects substantially.

Based on experiments conducted and also the results presented in Tables IV–VI, ORB-SLAM2
carries favourable accuracies. Incorporating the proposed approach into other adequately performing
algorithms is a future perspective. The proposed approach is designed for RGB-D data and hence lim-
ited to RGB-D images. Integrating some of the concepts into SLAM algorithms which utilizes other
type of input data is also a possible future work.

Acknowledgements. This work is supported by NavAjna Technologies Pvt. Ltd., Mercedes-Benz Research & Development
India and Indian Institute of Information Technology, Allahabad.

Disclosure Statement. This manuscript is original, has not been published previously and not under consideration for publication
elsewhere. Additionally, to the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.

Author Contributions. The study is conceived designed by both the authors – L. Kenye and R. Kala. L. Kenye conducted the
data gathering, development and experiments, while R. Kala involved in the evaluations. The article is written and arranged by
both the authors.

References
[1] C. Cadena, L. Carlone, H. Carrillo, et al. “Past, present, and future of simultaneous localization and mapping: toward the

robust-perception age,” IEEE Trans. Rob. 32(6), 1309–1332 (2016).
[2] J. Sturm, N. Engelhard, F Endres, W. Burgard and D. Cremers, “A benchmark for the evaluation of RGB-D SLAM systems,”

Paper Presented at: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 7–12 Oct. 2012 (2012).
[3] W. Dai, Y. Zhang, P. Li, Z. Fang and S. Scherer, “RGB-D SLAM in dynamic environments using point correlations,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, doi: 10.1109/TPAMI.2020.3010942.
[4] H. Strasdat, J. M. M. Montiel and A. J. Davison, “Visual SLAM: Why filter?,” Image Vis. Comput. 30(2), 65–77 (2012).
[5] J. Engel, T. Schöps and D. Cremers, “LSD-SLAM: Large-Scale Direct Monocular SLAM,” Paper presented at: Computer

Vision – ECCV (2014).
[6] J. Engel, J. Stückler and D. Cremers, “Large-scale direct SLAM with stereo cameras,” Paper presented at: 2015 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS); 28 Sept.–2 October 2015 (2015).
[7] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, “ORB-SLAM: A versatile and accurate monocular SLAM system,” IEEE

Trans. Rob. 31(5), 1147–1163 (2015).
[8] R. Mur-Artal and J. D. Tardós “ORB-SLAM2: An open-source SLAM system for monocular, stereo, and RGB-D cameras,”

IEEE Trans. Rob. 33(5), 1255–1262 (2017).
[9] T. Pire, T. Fischer, J. Civera, P. D. Cristóforis and J. J. Berlles, “Stereo parallel tracking and mapping for robot localization,”

Paper presented at: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 28 Sept.–2 October
2015 (2015).

[10] D. G. Lowe, “Object recognition from local scale-invariant features,” Paper presented at: Proceedings of the Seventh IEEE
International Conference on Computer Vision; 20–27 Sept. 1999 (1999).

[11] H. Bay, A. Ess, T. Tuytelaars and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image Underst. 110(3),
346–359 (2008).

[12] M. Calonder, V. Lepetit, C. Strecha and P. Fua, “BRIEF: Binary robust independent elementary features,” Paper presented
at: Computer Vision – ECCV (Berlin, Heidelberg, 2010).

[13] P. F. Alcantarilla, A. Bartoli and A. J. Davison, “KAZE Features,” Paper presented at: Computer Vision – ECCV (Berlin,
Heidelberg, 2012).

[14] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,” Paper presented at: Computer Vision –
ECCV (Berlin, Heidelberg, 2006).

[15] E. Rublee, V. Rabaud, K. Konolige and G. Bradski, “ORB: An efficient alternative to SIFT or SURF,” Paper presented at:
2011 International Conference on Computer Vision; 6–13 Nov. 2011 (2011).

[16] A. Huletski, D. Kartashov and K. Krinkin, “Evaluation of the modern visual SLAM methods,” Paper presented at: 2015
Artificial Intelligence and Natural Language and Information Extraction, Social Media and Web Search FRUCT Conference
(AINL-ISMW FRUCT); 9–14 Nov. 2015, (2015).

[17] W. Churchill and P. Newman, “Practice makes perfect? Managing and leveraging visual experiences for lifelong navigation,”
Paper presented at: 2012 IEEE International Conference on Robotics and Automation; 14–18 May 2012 (2012).

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1109/TPAMI.2020.3010942
https://doi.org/10.1017/S0263574721001521

2090 Lhilo Kenye and Rahul Kala

[18] W. Churchill and P. Newman, “Continually improving large scale long term visual navigation of a vehicle in dynamic urban
environments,” Paper presented at: 2012 15th International IEEE Conference on Intelligent Transportation Systems; 16–19
Sept. 2012 (2012).

[19] W. Churchill and P. Newman, “Experience-based navigation for long-term localization,” Int. J. Robot. Res. 32(14), 1645–
1661 (2013).

[20] C. Linegar, W. Churchill and P. Newman, “Work smart, not hard: Recalling relevant experiences for vast-scale but time-
constrained localization,” Paper presented at: 2015 IEEE International Conference on Robotics and Automation (ICRA);
26–30 May 2015 (2015).

[21] Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du, Chang Huang,
Philip H. S. Torr, “Conditional random fields as recurrent neural networks,” Paper presented at: 2015 IEEE International
Conference on Computer Vision (ICCV); 7–13 Dec. 2015 (2015).

[22] M. R. U. Saputra, A. Markham and N. Trigoni, “Visual SLAM and structure from motion in dynamic environments: A
survey,” ACM Comput. Surv. 51(2) Article 37 (2018).

[23] I. Parra, M. A. Sotelo and L. Vlacic, “Robust visual odometry for complex urban environments,” Paper presented at: 2008
IEEE Intelligent Vehicles Symposium; 4–6 June 2008 (2008).

[24] B. Kitt, F. Moosmann and C. Stiller, “Moving on to dynamic environments: Visual odometry using feature classification,”
Paper presented at: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems; 18–22 Oct. 2010 (2010).

[25] D. Zou and P. Tan, “CoSLAM: Collaborative visual SLAM in dynamic environments,” IEEE Trans. Pattern Anal. Mach.
Intell. 35(2), 354–366 (2013).

[26] H. Azartash, K. Lee and T. Q. Nguyen, “Visual odometry for RGB-D cameras for dynamic scenes,” Paper presented at:
2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 4–9 May 2014 (2014).

[27] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” Int. J. Comput. Vis. 59(2), 167–181
(2004).

[28] L. An, X. Zhang, H. Gao and Y. Liu, “Semantic segmentation–aided visual odometry for urban autonomous driving,” Int.
J. Adv. Rob. Syst. 14(5) (2017). doi: 10.1177/1729881417735667.

[29] S. Lee, C. Y. Son and H. J. Kim, “Robust real-time RGB-D visual odometry in dynamic environments via rigid motion
model,” Paper presented at: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 3–8 Nov.
2019 (2019).

[30] Y. Sun, M. Liu and M. Q. H. Meng, “Improving RGB-D SLAM in dynamic environments: A motion removal approach,”
Rob. Auton. Syst. 89, 110–122 (2017).

[31] Y Sun, M Liu and M. Q. H. Meng, “Motion removal for reliable RGB-D SLAM in dynamic environments,” Rob. Auton.
Syst. 108, 115–128 (2018).

[32] Y. Zhang, W. Dai, Z. Peng, P. Li and Z. Fang, “Feature regions segmentation based rgb-d visual odometry in dynamic
environment,” Paper presented at: IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society;
21–23 Oct. 2018 (2018).

[33] C. B. Barber, D. P. Dobkin and H. Huhdanpaa, “The quickhull algorithm for convex hulls,” J ACM Trans. Math. Softw.
22(4), 469–483 (1996).

[34] R. Scona, M. Jaimez, Y. R. Petillot, M. Fallon and D. Cremers, “StaticFusion: Background reconstruction for dense RGB-D
SLAM in dynamic environments,” Paper presented at: 2018 IEEE International Conference on Robotics and Automation
(ICRA); 21–25 May 2018 (2018).

[35] J. Cheng, Y. Sun and M. Q. H. Meng, “Robust semantic mapping in challenging environments,” Robotica 38(2), 256–270
(2020).

[36] J. Cheng, C. Wang and M. Q. Meng, “Robust visual localization in dynamic environments based on sparse motion removal,”
IEEE Trans. Autom. Sci. Eng. 17(2), 658–669 (2020).

[37] J. Cheng, H. Zhang and M. Q. Meng, “Improving visual localization accuracy in dynamic environments based on dynamic
region removal,” IEEE Trans. Autom. Sci. Eng. 17(3), 1585–1596 (2020).

[38] Z. Zhao, P. Zheng, S. Xu and X. Wu, “Object detection with deep learning: A review,” IEEE Trans. Neural Networks Learn.
Syst. 30(11), 3212–3232 (2019).

[39] B. D. Lucas and T. Kanade, “An iterative image registration technique with an application to stereo vision,” Proceedings of
the 7th international joint conference on Artificial intelligence – Volume 2 (Vancouver, BC, Canada, 1981).

[40] Jianbo Shi and Tomasi, “Good features to track,” 1994 Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, 1994, pp. 593-600, doi: 10.1109/CVPR.1994.323794.

[41] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna,
Yang Song, Sergio Guadarrama, Kevin Murphy, “Speed/accuracy trade-offs for modern convolutional object detectors,”
Paper presented at: Proceedings of the IEEE conference on computer vision and pattern recognition 2017 (2017).

[42] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual simultaneous localization and mapping library
for large-scale and long-term online operation,” J. Field Robot. 36(2), 416–446 (2019).

Cite this article: L. Kenye and R. Kala (2022). “Improving RGB-D SLAM in dynamic environments using semantic aided
segmentation”, Robotica 40, 2065–2090. https://doi.org/10.1017/S0263574721001521

https://doi.org/10.1017/S0263574721001521 Published online by Cambridge University Press

https://doi.org/10.1177/1729881417735667
https://doi.org/10.1017/S0263574721001521
https://doi.org/10.1017/S0263574721001521

	
	Introduction
	Literature Review
	Framework
	Object Detection
	Masking and Point Filtering
	Box merging
	Generating mask from a selected source
	Generating mask using seed points
	DFS Based masking
	Point filtering or point classification
	Eliminating invalid features
	Separating seed points from extracted features
	Tracking Module
	Results and Discussions
	Experimental setup
	Comparison specifications
	Evaluation of box tracking module
	Evaluation of the proposed approach and comparisons
	Conclusions

