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The hydrodynamic genesis of linear karren
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In karst and alpine areas, the interactions between water and rocks give rise to a large
variety of marvellous patterns. In this work, we provide a hydrodynamic model for the
formation of dissolutional patterns made of parallel longitudinal channels, commonly
referred to as linear karren forms. The model addresses a laminar film of water flowing
on a rock that is dissolving. The results show that a transverse instability of the water–rock
system leads to a longitudinal channelization responsible for the pattern formation. The
instability arises because of a positive feedback within the channels between the higher
water flow and the enhanced chemical dissolution. The spatial scales predicted by the
linear stability analysis span different orders of magnitude depending on the Reynolds
number. This may explain why similar patterns of different sizes are observed on natural
rocks. Results also show that the rock solubility affects just the temporal scale of the
instability and the rock inclination plays a minor role in the pattern formation. It is
eventually discussed how rain is not strictly necessary for the appearance of linear karren
patterns, but it may affect some of their features.
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1. Introduction

Water is an impressive sculptor. It shapes remarkably regular and beautiful patterns
throughout the Earth using different tools, such as sediment mobilization, thermal
gradients and chemistry. In karst environments, water carves through chemical dissolution
and precipitation a plethora of peculiar patterns on soluble rocks (e.g. Meakin & Jamtveit
2009; Jamtveit & Hammer 2012). Because of the considerable variety of hydrodynamic
and chemical processes involved in karst pattern formation, different criteria may be
adopted for their classification, which thus remains an open debate (Ginés et al. 2009).
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At first, we may separate between dissolution and precipitation patterns, even though in
many modelling aspects these two reverse processes can be treated in a unified manner
(Ford & Williams 2013).

Dissolution occurs when undersaturated water, commonly coming from rain or snow
melt, interacts with a soluble rock. It is the most common process in chemical weathering
and, because the dissolution of some rocks involves the capture of CO2 from the
atmosphere, it has profound implications on the Earth carbon cycle (e.g. Berner, Lasaga
& Garrels 1983; Regnier et al. 2013). Dissolution patterns are mostly found on exposed
limestone, dolomite, gypsum and salt rocks and they are usually referred to with the
German word karren (Bögli 1960). A wide overview on the state of karren research may
be found in the contributions collected in Ginés et al. (2009). Dissolution patterns may
also arise below ground, as for example in the case of cave scallops, which are formed on
cave walls by turbulent flows of water (Curl 1966; Claudin, Durán & Andreotti 2017).

Precipitation patterns occur after the water has reached a supersaturated state by
percolating through the soil. This happens mainly in caves, where water shapes a great
variety of speleothems. Because speleothem formation endures over millennia, they are
precious sources of information on past climates (Fairchild & Baker 2012). Some aspects
of speleothems have been characterized by hydrodynamic models in recent years, such as
the stalactite shape (Short, Baygents & Goldstein 2005), the ripple forms appearing on the
stalactite surface (Camporeale & Ridolfi 2012; Vesipa, Camporeale & Ridolfi 2015) and
the longitudinal precipitation flutes (Camporeale 2015; Bertagni & Camporeale 2017). Yet,
many speleothem features still need to be unveiled (Fairchild & Baker 2012). Exceptionally,
precipitation patterns also occur above ground in geothermal hot springs, where admirable
travertine terraces emerge (Goldenfeld, Chan & Veysey 2006; Veysey & Goldenfeld 2008).

This work deals with dissolutional karren forms. Because karren are characterized by a
multitude of shapes (e.g. circular, linear, polygenetic) and spatial scales (from micrometres
to tens of metres), karren classification is still debated (Ginés et al. 2009). Specifically,
we deal with karren of linear forms that are hydrodynamically controlled (instead of
fracture controlled, see the classification by Ford & Williams (2013), table 9.1). These are
longitudinal patterns in which the channels originate from the dissolution process driven
by the water flow (figure 1). Linear karren patterns are usually grouped in relation to their
transverse wavelength (distance between two quasi-parallel channels), which can span
different orders of magnitude: from decimetric wandkarren (figure 1a,b) and rinnenkarren,
also called runnels, to centimetric rillenkarren (figure 1c,d) and millimetric microrills
(figure 1e), also called rillenstein. The pattern classification is not always straightforward.
For example, the wandkarren in (b) much recalls the rillenkarren in (d) and probably
some authors would call them decantation flutings (Ford & Williams 2013). Furthermore,
superimposition of one pattern onto another are very common, such as microrills on
rillenkarren, or rillenkarren on rinnenkarren (Ginés et al. 2009). There is a reason for these
impressive similarities: all these patterns share a common hydrodynamic origin. Although
this has always been recognized, to date there is not a comprehensive theory that might
explain the regular channelization induced by water (Ginés et al. 2009). This theoretical
lack is the goal of the present paper.

To this aim, we model a laminar film of undersaturated water that flows down a
dissolving inclined rock (see figure 2 for a graphical sketch). The overall chemistry
is reduced to the total concentration ĉ(x̂, t̂) of the solute species within the water
film (the hat refers to dimensional quantities). The interactions between the flow field
and the concentration field define the temporal evolution of the rock surface. From a
mathematical point of view, the dynamic water–rock boundary delineates a Stefan problem
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(a) (b)

(c) (d)

Figure 1. Linear karren forms of different spatial scales. (a) Wandkarren in limestone, Asturias, Spain.
(b) Wandkarren in dolomite, Brenta Dolomites, Italy. (c) Rillenkarren in dolomite, Brenta Dolomites, Italy.
(d) Microrills in limestone, Verzino, Calabria, Italy. Credits: I. Benvenuty Cabral for panel (a); Sauro (2009)
for (d).

for the underlying system of partial differential equations. Notably, in recent years,
Stefan problems involving fluid motion have been the subject of several experimental
investigations (e.g. Mac Huang, Moore & Ristroph 2015; Wykes et al. 2018; Cohen et al.
2020; Guérin et al. 2020) and theoretical analyses (e.g. Moore 2017; Morrow et al. 2019).

A modelling novelty of this work regards the dissolution rate, that we here define by
directly addressing the local gradient of concentration at the rock–water interface. This is
done by spatially solving the advection–diffusion equation for ĉ(x̂, t̂) and it allows us to
avoid the empirical formulations for the dissolution rate that are commonly used in the
context of karst pattern formation. These are here briefly summarized for completeness.
The simplest formulations link the dissolution–precipitation flux to a hydrodynamic
quantity, e.g. the depth-averaged velocity (Goldenfeld et al. 2006; Veysey & Goldenfeld
2008) or the water depth (Camporeale 2015; Bertagni & Camporeale 2017). Another
common approach is to linearly link the dissolution flux to the difference between the
saturation concentration and a certain concentration within the water film, e.g. the –
uniform – bulk concentration (e.g. Camporeale 2017) or the concentration at the solid
wall (e.g. Claudin et al. 2017). A more complete formulation for the dissolution flux is
the seminal Plummer–Wigley–Parkhurst equation (Plummer, Wigley & Parkhurst 1978),
which has been successfully used within the context of karst pattern formation (e.g.
Camporeale & Ridolfi 2012; Vesipa et al. 2015). Although these empirical formulations
are sustained by experimental and numerical evidence (Buhmann & Dreybrodt 1985;
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Figure 2. Sketch of the water film flowing on soluble rock. The flat state is characterized by a semi-parabolic
profile for the longitudinal velocity u0(ζ ) and a two-dimensional concentration field c0(x, ζ ). This is the base
state of the transverse (z-direction) stability analysis.

Hammer et al. 2008; Dreybrodt 2012), they do not address the local gradients of
concentration that may develop within the water film.

The paper is structured as follows: in § 2, we formulate the problem of linear karren
formation; in § 3, we find the mathematical solutions for the hydrodynamics and the solute
concentration in the initial case of a flat rock surface; in § 4, we investigate the linear
stability of the flat solution to eventually achieve the dispersion relationship that describes
incipient karren formation. The results of the linear stability analysis are reported in § 5
and further discussed, together with some limits of the present model, in § 6. We finally
add some concluding remarks in § 7.

2. Formulation of the problem

2.1. Governing equations
A steady water film flowing on a flat surface performs a semi-parabolic velocity profile
(figure 2). This is commonly referred to as the Nusselt solution and it can be readily derived
from momentum conservation (Nusselt 1916). Accordingly, the dimensional film thickness
and the surface velocity read

ĥ0 =
(

3νq̂
g sin θ

)1/3

, ûs =
(

9gq̂2 sin θ

8ν

)1/3

, (2.1a,b)

where ν = 10−6 m2 s−1 is the water kinematic viscosity, g is the gravitational acceleration,
θ is the angle with the horizontal and q̂ = 2ûsĥ0/3 is the flow rate per unit span.
The hat refers to dimensional variables. We use the quantities in (2.1a,b) to scale the
governing equations of the problems, which are the Navier–Stokes equations and the
advection–diffusion equation for the solute concentration c (scaled with its equilibrium

913 A34-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.39


The hydrodynamic genesis of linear karren patterns

Dissolution reaction ρs (kg m−3) ĉeq (kg m−3) γ

Calcite CaCO3 + H2O + CO2 ↔ Ca2+ + 2HCO−
3 2700 0.055 49 091

Gyspum CaSO4 · 2H2O → Ca2+ + SO2−
4 + 2H2O 2300 2.4 958

Halite (salt) NaCl + H2O → Na+ + Cl− + H+ + OH− 2300 360 6.4

Table 1. Dissolution reaction, density and solubility of some representative karst minerals. Solubility is given
as the amount of mineral that can be dissolved in water at 25◦ and pCO2 = 4 · 10−4 atm (Dreybrodt 2012; Ford
& Williams 2013).

value ĉeq, see table 1)

∇ · u = 0, (2.2)

Re(u · ∇u + ∇p) = ∇2u + f , (2.3)

Pe u · ∇c = ∇2c, (2.4)

where ∇ = (∂x, ∂y, ∂z), u = (u, v, w) is the velocity field (figure 2), p is pressure – scaled
with ρû2

s , with ρ the water density – and f = (2, −δ, 0) is the gravity term, with δ =
2 cot θ . Because of the slow morphological evolution of the rock surface, the quasi-steady
approximation (∂t = 0) is used in (2.2)–(2.4). The dimensionless numbers appearing in
(2.2)–(2.4) are the Reynolds and Péclet numbers, which read

Re = ûsĥ0

ν
, Pe = ûsĥ0

D
= Re Sc, (2.5a,b)

where D is the molecular diffusivity coefficient. For the solute species considered (table 1),
an average value of D � 10−9 m2 s−1 can be assumed (Ford & Williams 2013). Notice that
Pe and Re are linked through the Schmidt number Sc = ν/D = 103 (Pe = 103Re).

2.2. Hydrodynamic boundary conditions
The boundary conditions are defined on the rock–water interface η(x, z, t) and water–air
interface η(x, z, t) + h(x, z, t) (figure 2). It is thus convenient to introduce the vertical
coordinate

ζ = y − η(x, z, t)
h(x, z, t)

, (2.6)

so that the water domain is always defined between ζ = 0 (rock–water interface) and
ζ = 1 (water–air interface). Notice that y and η are measured relative to the position of
the initially flat rock surface and they are scaled with ĥ0.

At the rock–water interface (ζ = 0), the velocity field satisfies the no-slip and
impermeability conditions, which are respectively

u = w = 0, v = 0, (2.7a,b)

where we neglect the influence of the slow dissolution process in the vertical
hydrodynamic velocity. At the water–air interface (ζ = 1), the continuity of the stress
is ensured by the so-called dynamic conditions

n · T · n = −WeK, n · T · t = 0, (2.8a,b)

where n = [∇( y − η − h)]/n and t are the versors normal and tangent to the free surface

(n = {1 + [∂x(h + η)]2 + [∂z(h + η)]2}1/2 is the versor normalization). Here, T is the
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stress tensor (T ij = pδij − (∂xiuj + ∂xjui)/Re). The term WeK accounts for the normal
stress induced by the surface tension σ , where We is the Weber number and K is the
mean curvature of the free surface (e.g. Chang & Demekhin 2002)

We = σ

ρĥ0û2
s

= Ka

Re5/3 sin (θ)
, (2.9)

K = ∂x

[
∂x(h + η)

n

]
+ ∂z

[
∂z(h + η)

n

]
. (2.10)

From (2.9) we notice that We is a function of Re and the angle θ through the Kapitza
number Ka = 21/3σ/(g1/3ν4/3ρ); Ka only depends on the water properties and is thus
constant for our purposes.

The temporal evolution of the free surface is described by the kinematic condition in
ζ = 1

∂th = u · n = v − u(h + η)x − w(h + η)z, (2.11)

where, as in (2.7a,b), we neglected the influence of ηt in the hydrodynamics. Equation
(2.11) ensures the water mass conservation and will be later used as the first solvability
equation.

2.3. Concentration boundary conditions
Differently from the hydrodynamic quantities, the concentration c has also a longitudinal
dependence due to the downstream solute accumulation within the water film (see
figure 2). Basically, this makes the concentration field a three-dimensional problem. In
fact, c depends on x because of the downstream solute accumulation, on y due to the
normal-to-wall effect of the dissolution occurring at the rock–water interface and on z
because of the transverse nature of linear karren forms.

Upstream, as the water film is generally produced by rain or snow melt, it might be
considered free of solute

c|x=0 = 0. (2.12)

With the dissolution of the rock surface, solute molecules are dissociated from the solid
through chemical reactions and then transported into the film bulk by diffusion. In general,
the slowest between these two processes (surface reaction and transport by diffusion)
controls the dissolution kinetics of a karst rock. Very soluble minerals, such as salt, have
a rapid dissolution reaction and thus the kinetics is always diffusion controlled (Ford &
Williams 2013). For relatively less soluble minerals, such as gypsum or calcite, numerous
studies have demonstrated that in very undersaturated waters, such as those commonly
found in exposed karst environments, a diffusion-controlled dissolution kinetics prevails
(see the review on dissolution kinetics by Morse & Arvidson (2002), and references
therein). As equilibrium is approached, there is a transition region to a surface-controlled
dissolution kinetics. Moreover, for calcite, which dissolves in water enriched with CO2, the
slow uptake of CO2 from the atmosphere may also become a limiting factor as equilibrium
is approached (Buhmann & Dreybrodt 1985; Kaufmann & Dreybrodt 2007). Notice that
CO2-conversion does not influence salt and gypsum dissolution as they directly dissociate
in pure water (table 1).

Since we wish to model incipient karren formation and linear karren forms have been
observed to develop upstream first, i.e. where the water is very undersaturated (Glew
& Ford 1980; Ginés et al. 2009; Slabe, Hada & Knez 2016), we consider a dissolution
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kinetics that is diffusion controlled. This implies that surface reactions are fast compared
to diffusion and that the solute accumulates in a very thin diffusion boundary layer
at the solid–liquid interface that is nearly saturated (e.g. Ford & Williams 2013). By
also imposing no flux of solute between water and air, the vertical boundary conditions
eventually read

∂ζ c|ζ=1 = 0, c|ζ=0 = 1. (2.13a,b)

The morphological evolution of the rock surface is thus regulated by the flux of solute
that moves into the bulk of the water film through diffusion, i.e. ρs(V̂ + ∂t̂η̂) = D∂ŷĉ,
where ρs is the rock density and V̂ is the dissolution rate induced by the uniform
hydrodynamic flow (V̂ < 0). In dimensionless form, the same equation reads

γ Pe h(V + ∂tη) = ∂ζ c, (2.14)

where γ = ρs/ĉeq � 1 is related to the mineral considered (table 1). Equation (2.14) will
be used as the second solvability equation.

3. Flat-rock solution

We here find the solution to the problem (2.2)–(2.14) for an initially flat rock surface, i.e.
η0 = ∂z = 0 and h0 = 1, where the subscript 0 denotes the absence of karren patterns.

3.1. Hydrodynamics
The Navier–Stokes equations (2.2) and (2.3) reduce to

u′′
0 = −2, p′

0 = −δ/Re, (3.1a,b)

with boundary conditions

u0|ζ=0 = 0, u′
0|ζ=1 = 0, p0|ζ=1 = 0, (3.2a–c)

where ′ denotes differentiation in ζ . The solutions are the Nusselt semi-parabolic profile
for the longitudinal velocity and the hydrostatic pressure profile

u0 = (2 − ζ )ζ, v0 = w0 = 0, p0 = δ

Re
(1 − ζ ). (3.3a–c)

3.2. Concentration
The advection–diffusion equation (2.4) reduces to

Pe u0(ζ )∂xc0 = c′′
0, (3.4)

where the longitudinal diffusion has been neglected since its effect is smaller than that of
longitudinal advection. The initial and boundary conditions (2.12) and (2.13a,b) read

c0|x=0 = 0, c0|ζ=0 = 1, c′
0|ζ=1 = 0. (3.5a–c)

Equation (3.4) highlights the coupling between the concentration field c0 and the
velocity profile u0(ζ ), as well as the x-dependency of the concentration distribution
due to the downstream solute accumulation. The solution to this problem is resumed in
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Polyanin et al. (2001, pp. 130–132) and it is here more extensively reported. For x ≥ 0, we
seek the solution in the form of the series (Davis 1973)

c0 = 1 −
∞∑

m=0

AmFm(x)Gm(ζ ), (3.6)

where Am, Fm(x), Gm(ζ ) are unknown functions that must be determined. Substituting the
expansion (3.6) into (3.4) and then separating the variables, we obtain

∂xFm(x) + α2
m

Pe
Fm(x) = 0, (3.7)

G′′
m(ζ ) + α2

mu0(ζ )Gm(ζ ) = 0. (3.8)

The solution to the x-problem (3.7) is readily given by

Fm(x) = exp
(
−α2

m
x

Pe

)
. (3.9)

Instead, (3.8) defines a Sturm–Liouville problem, whose boundary conditions, that are
obtained after replacement of (3.6) into the second and third equations in (3.5a–c), are

Gm|ζ=0 = 0, G′
m|ζ=1 = 0. (3.10a,b)

The solution of the Sturm–Liouville problem for the eigenfunctions Gm (up to a constant
factor) is

Gm(ζ ) = exp
[
−αm

2
(1 − ζ )2

]
�

(
1
4

− αm

4
,

1
2
;αm(1 − ζ )2

)
, (3.11)

where �(·, ·; ·) is the degenerate hypergeometric function (Abramowitz, Stegun & Romer
1988). Substituting (3.11) into the first of the boundary conditions (3.10a,b) provides the
transcendental equation for the eigenvalues αm > 0

�

(
1
4

− αm

4
,

1
2
;αm

)
= 0. (3.12)

For the definition of the coefficients Am, the first step is to substitute the series (3.6) into
the first equation in (3.5a–c), which yields

∞∑
m=0

AmGm(ζ ) = 1. (3.13)

Multiplying (3.13) by u0Gn, with n /= m, then integrating between ζ = 0 and ζ = 1, and
using the orthogonality condition

∫ 1
0 u0GmGndζ = 0, one obtains

Am =
∫ 1

0 u0Gm(ζ ) dζ∫ 1
0 u0Gm(ζ )2 dζ

. (3.14)

Notably, instead of solving numerically (3.12) and (3.14), it is possible to evaluate the
constants Am and αm with the approximated relationships (Polyanin & Nazaikinskii 2015)

αm = 4m + 1.68 (m = 0, 1, 2 · · · ), (3.15)

A0 = 1.2, Am = (−1)m2.27α−7/6
m (m = 1, 2, 3 · · · ), (3.16a,b)
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X = x/Pe

ζ

0

10–3 10–2

1.0

10–1

0.5

c0 10 c0 10 c0 10 c0 10

1

(a) (b) (c) (d)

Figure 3. Vertical profiles of c0 at different X (log scale). The solid red lines refer to the exact solution (3.6).
The dotted-black lines refer to the asymptotic solution (3.17), which is shown to be valid up to X ∼ 0.1. The
coloured areas evidence the saturation ratio of water in the solute.

whose maximum error is less than 0.2 %. It is also worth mentioning that, for x/Pe → 0,
an easier asymptotic solution for c0 can be obtained (Polyanin et al. 2001)

c0 = 


(
1
3
,

2ζ 3

9X

)
/


(
1
3

)
for x/Pe = X → 0, (3.17)

where 
(·) and Γ (·, ·) are the complete and incomplete gamma functions (Abramowitz
et al. 1988); X = x/Pe is a convenient scaling that maps the dissolution domain of the
problem between X = 0, where the water is free of solute, and X = 1, where the water
film is basically saturated. In fact, some easy algebra shows that the time scale τ̂ needed
by water to go from X = 0 to X = 1 is τ̂ ∼ ĥ2

0/D, i.e. equivalent to the time scale required
by diffusion to involve the full water depth.

The spatial trends of the exact solution (3.6) and the asymptotic solution (3.17) for c0
are shown in figure 3.

3.3. Dissolution
The dissolution rate V can be evaluated by combining the evolution equation for the rock
surface (2.14) and the solution for c0

V = 1
γ Pe

c′
0|ζ=0. (3.18)

It is also convenient to define the saturation ratio s as

s =
∫ 1

0
c0 dζ, (3.19)

where s = 0 indicates pure water and s = 1 corresponds to saturated water (ion pairing is
neglected). Because the concentration has been scaled with its saturation value, s is also
equivalent to the dimensionless depth-averaged concentration. A graphical evidence of the
saturation ratio of the water film is given by the light red areas in the panels of figure 3.

The trend V = V(X), obtained after replacing (3.6) in (3.18), is reported in figure 4(a).
Notice that the quantity γ Pe |V| is independent of the rock type and the film
hydrodynamics. The dissolution rate decreases with X as the water loses chemical
aggressivity by increasing its saturation ratio s (right y-axis). Because clear water enhances
dissolution, half-saturation (s = 0.5) is reached in the upstream part of the flow (X ∼ 0.2)
and the rate of solute accumulation progressively decreases downstream. Although at
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γ Pe|V|

0.9

0.1
0

0.3

0.5

0.7

s
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0

1
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X s
0 1.00.2 0.4 0.6 0.8

2
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0

8
(a) (b)

Figure 4. Dissolution of an initially flat rock. (a) Longitudinal trends of the scaled dissolution rate γ Pe|V|
(blue) and the saturation ratio s (red); (b) γ Pe|V| versus s, from the previous panel, highlighting a nonlinear
relationship with a change of dissolution rate around s ∼ 0.3.

X = 1 the flow is not completely saturated (coloured area in figure 3d) at those levels of
saturation – and even before (s > 0.9) – dissolution is known to drop drastically because of
the inhibitory action of other chemical species in the rock texture (Kaufmann & Dreybrodt
2007; Ford & Williams 2013).

Between the saturation ratio s and the dissolution rate, there is a nonlinear relationship
(figure 4b). This nonlinearity, which here arises thanks to the spatially dependent solution
for the concentration, highlights the limits of the common assumption of a diffusive flux
linearly related to the saturation ratio, i.e. V ∝ (s − 1). Indeed, the dissolution of the
rock surface is better specified by the local gradient of concentration at the rock surface
(c′

0|ζ=0), rather than by the average concentration gradient along the film thickness (s − 1
dimensionally scales with (ĉ − ĉeq)/ĥ0). Furthermore, it is remarkable to notice that the
trend in figure 4(b) is qualitatively similar to experimental evidence for calcite dissolution
(Buhmann & Dreybrodt 1985; Kaufmann & Dreybrodt 2007), even though we here
consider a simplified dissolution kinetics that is controlled just by diffusion. Kaufmann
& Dreybrodt (2007) have in fact shown that two quasi-linear regimes (for s < 0.3 and
s > 0.3) can be considered in the dissolution rate of calcite. These regimes have linear
coefficients separated by an order of magnitude and they have been qualitatively plotted
with dashed lines in figure 4(b).

4. Linear stability analysis

We here evaluate the stability of the flat-rock solution reported in the previous section to a
small transverse perturbation written in normal modes

(u, p, c, h, η) = (u0(ζ ), p0(ζ ), c0(ζ, X), 1, 0)

+ ε(u1(ζ ), p1(ζ ), c1(ζ, X), h1, η1) exp(ωt + ikz), (4.1)

where ε is an infinitesimal parameter, k is the transverse wavenumber and ω is the growth
rate. Due to the transverse invariance of the problem, ω is a real number, i.e. there is no
angular phase. When ω > 0, the base state is unstable and the perturbation grows in time
to eventually form periodic longitudinal patterns.

The ansatz (4.1) follows the assumption of longitudinal invariance (∂x = 0) just for
the hydrodynamic quantity (u, p, h) and not for the concentration field, which has a
longitudinal structure given by the solute accumulation within the water film. The variable
X defines the transverse section wherein the linear stability analysis is performed.
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4.1. Hydrodynamics
Since the hydrodynamic problem is longitudinally invariant, the continuity equation (2.2)
at the linear order (ε) imposes v′

1 + i kw1 = 0. Therefore, we can introduce the scalar
streamfunction ϕ, such that

v1 = −ikϕ, w1 = ϕ′. (4.2a,b)

After some algebraic manipulations, the Navier–Stokes equations (2.2)-(2.3) are reduced
to the Orr–Sommerfeld equation for a domain longitudinally invariant (e.g. Chang &
Demekhin 2002; Kalliadasis et al. 2011)

ϕiv − 2k2ϕ′′ + k4ϕ = 0, (4.3)

with boundary conditions

ϕ′ = ϕ = 0 in ζ = 0, (4.4)

ϕ′′ + k2ϕ = ϕ(3) − 3k2ϕ′ − ik(η1 + h1)(k2Re We + δ) = 0 in ζ = 1. (4.5)

We recall that (4.4) are the no-slip and impermeability conditions at the rock–water
interface (corresponding to (2.7a,b)), while (4.5) are the linearized dynamic conditions
at the water–air interface, (2.8a,b). The advantage of the Orr–Sommerfeld approach is
that the transverse hydrodynamic problem is reduced to the biharmonic equation (4.3), the
solution thereof is

ϕ = i (δ + k2ReWe)(η1 + h1)f (ζ ), (4.6)

where

f (ζ ) = (kζ coth(kζ ) − 1)(k sinh k + cosh k) − k2ζ cosh k
k(2k2 + cosh(2k) + 1)

sinh (kζ ). (4.7)

Combining (4.2a,b) and (4.6) readily provides the solution for v1 and w1 (where the latter
can be shown to be much larger than the former). Because of the longitudinal invariance
of the linear problem, u1 is not explicitly related to ϕ. Thus, for its evaluation, we directly
address the conservation of longitudinal momentum (2.3), which at order ε reads

u′′
1 − k2u1 = −k2u′

0(η1 + ζh1) + Re u′
0v1 + 2u′′

0h1, (4.8)

with boundary conditions

u1|ζ=0 = 0, u′
1|ζ=1 = 0. (4.9a,b)

The terms in the left side of (4.8) are the vertical and transverse diffusion of momentum,
respectively. The terms in the right side arise from advection (Re u′

0v1) and the change of
the vertical coordinate (from y to ζ , see (2.6)).

By solving the (4.8) through the method of variation of parameters (e.g. Bender &
Orszag 2013), we eventually obtain

u1 = 2sechk
[
(η1 + h1) sinh(kζ )/k − η1 cosh(k − kζ )

] + 2(1 − ζ )(η1 + ζh1), (4.10)

where the contribution of v1 in (4.10) has been neglected as it would considerably
complicate the solution without any perceptible numerical change.
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4.2. Concentration
At O(ε), the linearized advection–diffusion equation (2.4) reads

c′′
1 − k2c1 + Υ (ζ, X) = u0(ζ )∂Xc1 (4.11)

where Υ is the inhomogeneous term

Υ (ζ, X) = k2c′
0(η1 + ζh1) − Pe c′

0v1 − 2h1c′′
0 − u1∂Xc0, (4.12)

and the initial and boundary conditions (2.12) and (2.13a,b) are

c1|X=0 = 0, c1|ζ=0 = 0, c′
1|ζ=1 = 0. (4.13a–c)

The solution to the problem (4.11)–(4.13a–c) is (Polyanin & Nazaikinskii 2015)

c1 =
∫ X

0

∫ 1

0
Υ (ζm, Xm)G(ζ, ζm, X − Xm) dζm dX, (4.14)

where ζm and Xm are dummy variables, and G is the modified Green’s function

G(ζ, ζm, X) =
∞∑

m=0

Hm(ζ )Hm(ζm)

‖H2
m‖ Fm(X), ‖H2

m‖ =
∫ 1

0
u0H2

m dζ. (4.15a,b)

Here, Hm(ζ ) and Fm(X) are the solutions associated with the homogeneous part of (4.11).
They can be obtained, after separation of variables, following the procedure used to solve
the base-state problem (3.4)–(3.5a–c) for c0. The X-problem leads to

Fm(X) = exp
(
−λ2

mX
)
. (4.16)

The ζ -problem defines the Sturm–Liouville problem

H′′
m(ζ ) +

(
λ2

mu0(ζ ) − k2
)
Hm(ζ ) = 0, (4.17)

Hm|ζ=0 = 0, H′
m|ζ=1 = 0, (4.18a,b)

whose solution for the eigenfunctions Hm (up to a constant factor) is

Hm(ζ ) = exp
[
−λm

2
(1 − ζ )2

]
�

(
k2 + λm − λ2

m

4λm
,

1
2
; λm(1 − ζ )2

)
. (4.19)

Substituting (4.19) into the first of the boundary conditions (4.18a,b) provides the
transcendental equation for the eigenvalues λm > 0

�

(
k2 + λm − λ2

m

4λm
,

1
2
; λm

)
= 0, (4.20)

which highlights how the eigenvalues λm are functions of the wavenumber k.
We recall that, to evaluate the rock dissolution, we only need the concentration gradient

at the rock–water interface (see (2.14)). Using the solution (4.14) and separating the terms
related to h1 and η1, the gradient at the rock–water interface reads

c′
1|ζ=0 = Ih1h1 + Iη1η1, (4.21)

where the expressions for the integral terms Ih1 and Iη1 are reported in appendix A.

913 A34-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

39
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.39


The hydrodynamic genesis of linear karren patterns

4.3. Dispersion relationship
At this point, (2.11) and (2.14) are adopted as solvability equations. These describe the
temporal evolution of the rock–water and water–air interfaces and, at order ε, they read

ωh1 = ikϕ|ζ=1 (4.22)

ωη1 = 1
γ Pe

c′
1|ζ=0 − h1V. (4.23)

Substituting the solutions for the streamfunction (4.6) and the concentration gradient
(4.21), we obtain the linear system

ω

(
h1
η1

)
=

(
a1 a2
a3 a4

)
·
(

h1
η1

)
, (4.24)

where

a1 = a2 = (k2Re We + δ)(k − cosh k sinh k)
k(2k2 + cosh(2k) + 1)

, (4.25)

a3 = Ih1

γ Pe
− V, a4 = Iη1

γ Pe
. (4.26a,b)

The system (4.24) admits two non-trivial solutions for the eigenvalues

ωη,h = (a1 + a4) ±
√

(a1 + a4)2 − 4a1(a4 − a3)

2
, (4.27)

which we discriminate with the subscripts h and η, as it will be shown in the following
that the former is related to the free surface and the latter to the rock surface.

By assuming the rigid lid approximation (RLA) on the free surface i.e. imposing ht = 0
in the kinematic condition (2.11), the first equation in the system (4.24) reduces to h1 =
−η1. In this case, the problem provides just one eigenvalue

ωRLA = V + (Iη1 − Ih1)

γ Pe
. (4.28)

By substituting h1 = −η1 into the streamfunction (4.6), it is also evident that the RLA
induces zero spanwise and vertical velocities, i.e. v1 = w1 = 0. The existence of a
secondary flow in the cross-sectional plane is in fact strictly related to the free surface
dynamics. Instead, the streamwise velocity perturbation (4.10) is still non-null as it is
triggered by the bottom perturbation. In the next section, we will discuss on the validity
and the convenience of this approximate solution in the context of karren formation.

5. Results

The dispersion relationship (4.27) links the two growth rates, ωh and ωη, to the transverse
wavenumber k and the control parameters that embody the physics of the problem. In
particular, ωh is associated with development of hydrodynamic waves on the free surface
(rivulets) and ωη is related to the growth of patterns on the rock surface (karren). Hence,
our focus is on the morphological eigenvalue ωη. The control parameters are: the Reynolds
number Re, which is related to the flow rate; the longitudinal coordinate X, which is a proxy
for the saturation ratio s (figure 4a); the angle of the rock inclination θ ; the parameter γ ,
which is associated with the mineral type (table 1).
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Figure 5. Karren instability. (a) Contour plot of the least stable growth rate ωη in the {k, Re} plane (X = 0.05,
θ = π/4, calcite). The neutral stability curve is reported with a black solid line. The cutoff kc and fastest
growing km wavenumbers are highlighted. The numbers on the contours are the values of ωη. (b) Growth rates
versus the wavenumber k (X = 0.01,Re = 1). ωh and ωη (red solid lines) are the hydrodynamic-stable and
morphological-unstable eigenvalues, respectively, from (4.27). The value of Δk is the interval of unstable
wavenumbers with growth rate very close to the one of km (see § 6.2); ωRLA (dotted light line) is the
morphological growth rate obtained in the RLA, from (4.28). (c) Role of mass (∂2

z c) and momentum (∂2
z u)

diffusion on ωη. The light-blue line is ωη evaluated including v1 in the solution for u1 and c1 (it is
indistinguishable from the red line for k > 10−4).

Summarizing, when ωη > 0, the perturbation grows in time (instability) generating the
karren pattern. On the contrary, ωη < 0 indicates that the perturbation decays in time
(stability) restoring the base-state solution. The condition ωη = 0 discriminates between
stable and unstable domains, and its trend in the parameter space evidences the neutral
stability curve. Figure 5(a) shows that the rock–water interface is unstable to a band of
wavenumbers between 0 and a cutoff value kc for any Re, i.e. there is no critical Reynolds
number for karren formation. The cutoff wavenumber kc is independent of Re (vertical line
in figure 5a) meaning that, dimensionally speaking, kc scales with the flow depth.

For a fixed value of Re, the behaviour of the morphological eigenvalue ωη versus the
wavenumber is reported in figure 5(b). The maximum of the growth rate, i.e. the fastest
growing mode, is indicated with km. As commonly done in linear stability analyses (Cross
& Hohenberg 1993), we assume km to be pattern wavenumber. Yet, as karren instability
shows a band of wavenumbers (indicated with Δk) with growth rates very close to that of
km, we will later add some considerations on the validity of this assumption (§ 6.2).

Figure 5(b) also reports the trends of the hydrodynamic eigenvalue ωh and the
approximated morphological eigenvalue ωRLA, obtained in the RLA. The hydrodynamic
eigenvalue is always stable (ωh < 0) for the angles of karren formation (θ < π/2) due to
the stabilizing effects of gravity and surface tension, which prevent any transverse wave
(rivulet) forming. It is interesting to notice that gravity becomes instead destabilizing
in overhanging conditions (θ > π/2), creating water rivulets that initiate longitudinal
precipitation patterns (Camporeale 2015; Bertagni & Camporeale 2017).

The morphological eigenvalue ωRLA well reproduces the overall system dynamics when
the free surface responds very quickly to the rock evolution (|ωh| � ωη) and thus it
can be considered flat (∂th = 0). This is indeed the case for the wavenumbers involved
in karren formation. In fact, ωRLA = ωη for the fastest growing mode km. However,
ωRLA loses reliability for perturbations with wavelengths so long that hydrodynamic
and morphological time scales are comparable (|ωh| ∼ ωη). Although these very long
wavelengths are outside the range of karren patterns, to neglect them by freezing the
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Figure 6. Influences of X, the rock angle θ and the rock mineral on karren instability for a fixed water
flow (Re = 1). (a) Contour plot of the morphological growth rate ωη in the {k, X} plane (calcite, θ = π/4).
The dashed line marks the fastest growing modes. (b) Morphological growth rate ωη versus k for several
angles θ (θ = π/8, π/4, 3π/8, π/2, calcite and X = 0.01). The stars mark the fastest growing modes.
(c) Morphological growth rate ωη versus k for several mineral types (θ = π/4, X = 0.01 and γ from table 1
for the three minerals.).

free-surface dynamics prevents us from mathematically obtaining the fastest growing
mode km. We also notice that the RLA introduces an error in the mass conservation
(ωRLA /= 0 for k = 0). In fact, in the particular case k = 0, which corresponds to a spatially
uniform perturbation of the base state – the so-called Goldstone mode (e.g. Kalliadasis
et al. 2011) – the base state is vertically and uniformly shifting, and the water depth
must preserve its length to assure mass conservation. So the correct solution should be
h1 = 0 instead of h1 = −η1 as imposed by the RLA. Yet, the latter approximation may
be adopted, for example, for a quicker evaluation of the time scale of the instability as
ωRLA(km) = ωη(km).

In figure 5(c), we show that the stabilization of the high wavenumbers (short
wavelengths) is induced by a coupling of the transverse diffusion of longitudinal
momentum – ∂2

z u in (2.3) – and solute – ∂2
z c in (2.4). In particular, the dashed green

and orange lines are the eigenvalues obtained without the transverse diffusion of solute
and momentum, respectively. Instead, the dash-dot line is the eigenvalue without both
diffusion processes (∂2

z c and ∂2
z u) that highlights how diffusion in needed for a cutoff

mode kc and a fastest growing mode km to arise.
Furthermore, we may notice by observing the dotted line in figure 5(c) that including the

vertical velocity v1 in the solutions of u1 (4.10) and c1 (4.14) complicates their analytical
expressions (which are not reported here) and causes numerical issues when solving the
integrals in (4.21) for small k, but overall it does not affect karren instability (the dotted
and solid lines in figure 5(c) are indistinguishable for k > 10−4).

The influence of the other control parameters (X, θ , γ ) on the morphological growth
rate ωη is shown in figure 6. The contour plot 6(a) in the plane {k, X} shows two maxima:
one very close to the water inlet (X < 10−2) and one further downstream (X ∼ 0.5). This
suggests that the pattern may first develop at two different longitudinal locations. Yet, a
fully nonlinear analysis could probably reveal some influence of the upstream part of the
growing pattern on the downstream dissolution process. The wavenumber km (dashed line)
is not strongly affected by X.

For a fixed Re, the angle θ seems to have very little influence on karren instability,
besides a stabilizing effect at long wavelengths (figure 6b). In contrast, the solubility of
the mineral is shown to boost the instability (figure 6c), so that the time scale of karren
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Figure 7. Instability mechanism. Transverse sections (vertically exaggerated) showing the response of the
longitudinal velocity u1 (a) and the concentration c1 (b,c) to a small perturbation of the rock surface (calcite,
Re = 1, θ = π/4, ε = 0.05, k = km, X = 0.01 for panel (b) and X = 0.1 for (c)). Here, c1 varies along X
inheriting the longitudinal trend of the concentration c0 at the base state (see figure 3).

formation with respect to the rock type is salt < gypsum < limestone, in agreement with
field observations (Mottershead & Lucas 2001).

6. Discussion

The positive feedback responsible for karren instability can be understood by observing
the longitudinal velocity and concentration fields in perturbed conditions (figure 7). In
correspondence with the rock trough, the deeper and faster flow (a) more efficiently
transports away the solute concentration. This leads to a lower concentration of solute in
the water (b,c) and to an increased dissolution, which further deepens the rock trough. The
opposite happens on the rock crest, where dissolution is dampened. This positive feedback
mechanism generates linear karren forms. The spatial scale of the instability is influenced
by the transverse diffusive processes of longitudinal velocity and solute (figure 5c). In
figure 7, we may also notice that the free surface is basically flat, further indicating the
validity of the RLA for the wavenumber of karren formation (k ∼ km).

6.1. Dimensional features
The fastest growing mode km of the linear stability analysis provides the dimensional
wavelength L̂ = 2π/km and an indication of the time scale of the instability T̂ =
1/ω̂η(km). Figure 8 explores the dependence of these dimensional quantities on the control
parameters Re and X.

The water flow rate (Re) is shown to play a crucial role in karren formation. In fact,
L̂ increases with the Reynolds number, spanning several orders of magnitude: from
millimetric to decimetric values (figure 8a). This result supports the so far speculative
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Figure 8. Contour plots in the {X, Re} plane for the dimensional wavelength L̂ (a) and time scale of the
instability T̂ (b) from the linear stability analysis (calcite and θ = π/4). The upper x-axis reports the saturation
ratio s.

idea that it is the flow rate that discriminates the linear karren type: very thin water films
(Re ∼ 10−3) originating from dew or sea spray give rise to millimetric microrills; thicker
water films (Re ∼ 10−1 − 1) produced by rainwater are responsible for the formation of
centimetric rillenkarren; and decimetric wandkarren are formed by high water flows (Re >

10), which develop downstream of a basin where rain or snow-melt water accumulates (e.g.
on a hill slope). Even T̂ is highly dependent on Re, ranging from tens of minutes to weeks
(figure 8b). These time scales seem pretty short. Indeed, they are closer to experimental
evidence of karren formation under a constant water flow (Guérin et al. 2020), rather
than to field observations (Mottershead & Lucas 2001), where the intermittent nature
of rains prolongs the karren development. Furthermore, the reason for the low values
of T̂ may be twofold: the diffusion-controlled dissolution kinetics may overestimate
the karren-formation rate as the temporal transients of the slow chemical reactions are
neglected; the linear stability analysis provides just an indication of the time scale of the
instability, while nonlinear effects are expected to slow down the pattern formation (by
approximately an order of magnitude if nonlinearities are included into a classical Landau
equation Cross & Hohenberg 1993).

The wavelength and the time scale very weakly depend on the longitudinal coordinate
X, and thus on the level of saturation of water (the values of s are reported on the upper
x-axis). In particular, the time scale T̂ shows a maximum at X ∼ 0.5 (for a fixed Re), which
is due to the second maximum in the growth rate ωη shown in figure 6(a).

6.2. Open issues
The water that shapes some linear karren forms, such as rillenkarren, normally comes
from rain events (Ginés et al. 2009). For this reason, experimental efforts have mainly
focused on reproducing rillenkarren by dissolving blocks of minerals under artificial rain
(Glew & Ford 1980; Slabe et al. 2016). Although rain might affect some features of
karren formation (as we discuss in the following), our model shows that a water flow –
without falling raindrops being involved – is sufficient to generate linear karren forms.
This is in agreement with some notable recent experiments by Guérin et al. (2020), who
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observed initially millimetric rills forming on plaster blocks dissolving under the action of
a wall-induced turbulent flow (200 < Re < 700). Notice that the experimental Reynolds
number (Reexp) is defined through the depth-averaged velocity instead of the free-surface
velocity, i.e., Re ∼ 3Reexp/2. One experimental run was in the laminar regime (Re ∼ 54)
and the same millimetric rills were first observed to arise. The experiments have also
shown that, as the dissolution process endures and the effect of the nonlinearities grow,
the rills coalesce in time to eventually form wider karren patterns. The range of Reynolds
number that was experimentally investigated and the narrow width of the plaster blocks
(10 cm) limit the possibility of a deeper comparison with our theory, which is developed
under the assumption of a laminar flow and predicts a linear wavenumber, for Re ∼ 54,
that is of the same order as the block width. Further research, both at the theoretical and
experimental levels, might shed more light on the complex dynamics that creates these
fascinating patterns.

Here, we further discuss how rain might affect the present model and the results of the
linear stability analysis. A first interesting aspect regards rain stochasticity, that implies
that the water flow is intermittent and highly variable (Re changes in time). This discloses
several questions on the influence of stochasticity on rillenkarren formation, e.g. are
extreme events more efficient? Does a constant flow exist that would create the same
rock morphology produced by the stochastic sequence of rain events? The answers remain
undisclosed for further numerical or experimental research. A second aspect regards rain
spatial extension, which makes it a diffuse source of water: raindrops falling along the
karren length add pure water to the flow, introducing X-dependencies in several parameters
(e.g. Re rises, the saturation ratio s decreases and the penetration length L̂ increases).

Rain might also affect some outputs of the linear stability analysis, such as the selected
wavenumber km. In fact, the classical assumption of the fastest growing mode as the pattern
wavenumber is based on the hypotheses that: (i) the rock–water system is initially flat; (ii)
all modes are decoupled as they are initially perturbed with an infinitesimal perturbation;
(iii) the fastest growing mode overcomes the others. However, figure 5(b) shows that
there is an interval of unstable wavenumbers, indicated with Δk, with growth rates very
close to the one associated with km. This might indicate that, when more realistic finite
perturbations are taken into account, any mode within the interval Δk may overcome
the others (km included) and become the pattern wavenumber. From this perspective,
raindrops, which have a characteristic (sub-)millimetric length scale, may act as a random
spatial forcing on the water film and boost the growth of a mode with a comparable length
scale. In a similar way, defects in the rock texture, moss, decantation wells and preferential
channels for the water flow upstream of the rock, may act as spatial forcings and affect the
selection of the pattern wavenumber.

7. Summary and conclusion

In this manuscript, we have framed the pivotal role of water hydrodynamics into a
theoretical model that explains the genesis of linear karren forms. The model addresses
a film of water that flows on a dissolving rock under some simplifying assumptions: (i) the
water film is laminar; (ii) the overall chemistry is reduced to the solute concentration; (iii)
diffusion is considered as the limiting process in the dissolution kinetics.

The linear stability analysis of the flat solution has revealed that a transverse instability
is responsible for the appearance of longitudinal parallel channels on the rock surface.
The instability mechanism is a positive feedback between the increased flow rate within
the channels and the enhanced dissolution (figure 7). The results show that the transverse
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diffusive processes of solute and longitudinal velocity stabilize the high wavenumbers
and affect the wavenumber selection (figure 5c). Furthermore, the flow rate is shown to
be a discriminating factor in the transverse wavelength of the pattern (figure 8), possibly
explaining why many similar linear karren of different sizes are observed in karst areas
(figure 1). The results also suggest that, even though rain might affect some features of
karren formation (as discussed in § 6.2), a water film without falling raindrops is sufficient
for the pattern occurrence.

Although the linear stability analysis provides encouraging results, we recall that these
are strictly valid just at the pattern genesis, i.e. before nonlinear effects induced by the finite
size of the pattern become preponderant in the overall dynamics. Hence, a (fully) nonlinear
analysis could greatly benefit to the present formulation, providing further insights into
several features of the pattern formation: such as the nonlinear wavelength selection and
the amplitude growth.
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Appendix A. Integral terms

The terms in (4.21) read

Ih1 =
∞∑

m=0

H′
m(0)

∫ X

0

∫ 1

0
Υh1(ζm, Xm)

Hm(ζm)

‖H2
m‖ Fm(X − Xm) dζm dXm, (A1)

Iη1 =
∞∑

m=0

H′
m(0)

∫ X

0

∫ 1

0
Υη1(ζm, Xm)

Hm(ζm)

‖H2
m‖ Fm(X − Xm) dζm dXm, (A2)

where the inhomogeneous term (4.12) has been divided into Υ = Υh1h1 + Υη1η1 and

Υh1(ζ, X) =
[

k2ζ∂ζ c0 − 2∂2
ζ c0 − 2∂Xc0

(
sechk sinh kζ

k
+ ζ(1 − ζ )

)]
, (A3)

Υη1(ζ, X) =
{

k2∂ζ c0 − 2∂Xc0

[
1 − ζ − sechk

(
cosh (k − kζ ) − sinh(kζ )

k

)]}
. (A4)

Notice that the contribution of v1 in Υ has been neglected as it would considerably
complicate the solution without any perceptible numerical change.
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