
Journal of the Inst. of Math. Jussieu (2012) 11(2), 333–349 333
doi:10.1017/S1474748011000107 c© Cambridge University Press 2011

SADDLE TOWERS AND MINIMAL k-NOIDS IN H
2 × R

FILIPPO MORABITO1∗ AND M. MAGDALENA RODRÍGUEZ2
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Abstract Given k � 2, we construct a (2k − 2)-parameter family of properly embedded minimal surfaces
in H2 ×R invariant by a vertical translation T , called saddle towers, which have total intrinsic curvature
4π(1 − k), genus zero and 2k vertical Scherk-type ends in the quotient by T . Each of those examples
is obtained from the conjugate graph of a Jenkins–Serrin graph over a convex polygonal domain with
2k edges of the same (finite) length. As limits of saddle towers, we obtain properly embedded minimal
surfaces, called minimal k-noids, which are symmetric with respect to a horizontal slice (in fact they are
vertical bi-graphs) and have total intrinsic curvature 4π(1 − k), genus zero and k vertical planar ends.
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1. Introduction

Scherk [16] found a singly periodic minimal surface in R
3 invariant by a vertical transla-

tion, which can be seen as the desingularization of two orthogonal vertical planes. This
is the conjugate surface of the doubly periodic minimal surface obtained from the graph
surface of

u(x, y) = log
(

cos x

cos y

)
, |x| < 1

2π, |y| < 1
2π,

rotating it by an angle π about the straight vertical lines in its boundary. Such singly
periodic minimal surface can be seen in a one-parameter family of singly periodic minimal
surfaces invariant by a vertical translation, by changing the angle between the vertical
planes. They are called singly periodic Scherk minimal examples.

In general, consider a convex polygonal domain Ω ⊂ R
2 with 2k edges of length 1, with

k � 2. Mark its edges alternately by +∞ and −∞. Jenkins and Serrin [5] gave necessary
and sufficient conditions for the existence of a function u defined on Ω which goes to
±∞ on the edges, as indicated by the marking and whose graph surface is minimal. To
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satisfy such conditions, Ω is assumed to be different from a parallelogram bounded by
two sides of length 1 and two sides of length k − 1, for k � 3, which consist of the union
of k − 1 edges of Ω whose interior angles equal π (see, for example, [9, Proposition 1.3]).

The graph surface Σu of u is bounded by 2k vertical straight lines above the vertices
of Ω. The conjugate minimal surface of Σu is then bounded by 2k horizontal geodesic
curvature lines, lying in two horizontal planes at distance 1 from each other. By reflecting
in one of the two symmetry planes, we obtain a fundamental domain for a properly
embedded singly periodic minimal surface M of period T = (0, 0, 2). In the quotient
by T , M has genus zero and 2k ends asymptotic to flat vertical annuli (quotients of
vertical half-planes by T ). This kind of ends are classically called Scherk-type ends. We
remark that by changing the length � of the edges of Ω we get nothing but M rescaled
by �. This is why we can fix � = 1.

This procedure provides for k = 2 the one-parameter family of Scherk examples; and
for any k � 3, a (2k − 3)-parameter family of examples, which were constructed by
Karcher [6,7] and called saddle towers. These examples have recently been classified by
Pérez and Traizet [13] as the only complete embedded singly periodic minimal surfaces
in R

3 with genus zero and finitely many Scherk-type ends in the quotient.
In this paper we follow the same strategy in H

2 × R to construct properly embedded
singly periodic minimal surfaces in H

2 × R invariant by a vertical translation T , with
genus zero and 2k vertical Scherk-type ends in the quotient by T . We say that an end is
a vertical Scherk-type end when it is asymptotic to the quotient by T of half a vertical
geodesic plane.

Theorem 1.1. Given an integer number k � 2 and a vertical translation T , there exists
a (2k − 3)-parameter family of properly embedded singly periodic minimal surfaces in
H

2 × R with total (intrinsic) curvature 4π(1− k), genus zero and 2k vertical Scherk-type
ends in the quotient by T . Moreover, they are symmetric with respect to a horizontal
slice (in fact they are vertical bi-graphs). We call them saddle towers.

Independently, Pyo [14] has recently constructed symmetric saddle towers following
two different approaches: the conjugation method explained above and a barrier method
(see Remark 3.2).

We observe that we do not have homotheties in H
2 × R, so the length of T gives us

another parameter of the family. Then, we obtain a (2k − 2)-parameter family of saddle
towers in H

2 × R. The following theorem gives possible limits of saddle towers when the
length of T goes to +∞.

Theorem 1.2. Given k � 2, there exists a (2k − 3)-parameter family of properly embed-
ded minimal surfaces in H

2 ×R with total (intrinsic) curvature 4π(1 − k), genus zero and
k ends, each end asymptotic to a vertical geodesic plane. Those surfaces are invariant
by the reflection in a horizontal slice (in fact they are vertical bi-graphs). We call them
minimal k-noids.

Theorem 1.2 includes the one-parameter family that Pyo [15] has independently con-
structed very recently. These are the examples described in Remark 4.3.
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Meeks et al . proved in [11] that the only properly embedded minimal surfaces with
genus zero and finite topology in the Euclidean space R

3 are the plane, the helicoid and
the catenoid. In particular, there are no examples with genus zero and k � 3 ends in R

3.
Theorem 1.2 says this is not the case in H

2 × R.
Hauswirth and Rosenberg proved in [3] that, when it is finite, the total curvature of

a complete embedded minimal surface in H
2 × R is a multiple of 2π. The only examples

they were allowed to give were minimal graphs over polygonal domains with 2(m + 1)
edges, whose vertices are located at the infinite boundary ∂∞H

2 of H
2 (usually called

ideal polygonal domains), with boundary values ±∞ alternately. These graphs, which can
also be obtained by taking limits of saddle towers, have total curvature −2πm. Hauswirth
and Rosenberg suggested that it would be interesting to construct non-simply connected
examples of finite total curvature; for example, an annulus of total curvature −4π. The-
orem 1.2 includes such examples.

2. Preliminaries

Throughout the paper, all surfaces are supposed to be connected and orientable.
We consider the Poincaré disc model of H

2,

H
2 = {(x, y) ∈ R

2 | x2 + y2 < 1},

with the hyperbolic metric

g−1 =
4

(1 − x2 − y2)2
(dx2 + dy2),

and denote by t the coordinate in R. Consider in H
2 × R the usual product metric

ds2 =
4

(1 − x2 − y2)2
(dx2 + dy2) + dt2.

2.1. Minimal graphs in H
2 × R

Let Ω ⊂ H
2 be an open domain and let u : Ω → R be a smooth function. The (vertical)

graph of u is minimal in H
2 × R if, and only if,

div
(

∇u√
1 + |∇u|2

)
= 0, (2.1)

where all terms are calculated in the metric of H
2.

In [12], Nelli and Rosenberg proved a Jenkins–Serrin type theorem for simply con-
nected bounded convex domains in H

2 × R. Let Ω ⊂ H
2 be a simply connected bounded

convex domain whose boundary consists of a finite number of geodesic arcs A1, . . . , An,
B1, . . . , Bm and a finite number of convex arcs C1, . . . , Cp (convex with respect to Ω),
together with their endpoints, such that no two Ai edges and no two Bi edges have a
common endpoint. They gave necessary and sufficient conditions (in terms of the lengths
of the boundary arcs of Ω and of the perimeter of inscribed polygons in Ω whose vertices

https://doi.org/10.1017/S1474748011000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000107


336 F. Morabito and M. Magdalena Rodŕıguez

are among the vertices of Ω) for the existence and uniqueness (up to an additive con-
stant, in the case the family of Ci arcs is empty) of a solution u for the minimal graph
equation (2.1) such that

u|Ai
= +∞, u|Bi

= −∞ and u|Ci
= fi,

for arbitrary continuous functions fi.
Collin and Rosenberg [1] solved the Jenkins–Serrin problem for unbounded simply

connected domains bounded by a finite number of complete geodesic arcs and a finite
number of complete convex arcs, together with their endpoints at ∂∞H

2, with the addi-
tional assumption that two consecutive boundary edges of Ω are asymptotic at their
common endpoint at ∂∞H

2. A general Jenkins–Serrin problem in H
2 × R was solved by

the second author together with Mazet and Rosenberg in [10].
In this work we will consider the particular case where Ω is a convex polygonal

domain with 2k geodesic edges A1, B1, . . . , Ak, Bk (cyclically ordered) of the same length
� ∈ (0, +∞]. When � = +∞, we will assume Ω is a semi-ideal polygonal domain (see
Definition 2.1 below). We will state the Jenkins–Serrin theorem for such a domain Ω.
Before, we fix some notation.

Definition 2.1. Let Ω be a polygonal domain (i.e. a domain whose edges are geodesic
arcs). The vertices of Ω that are at ∂∞H

2 are called ideal vertices. We say that Ω is
semi-ideal when it has an even number of vertices p1, . . . , p2k (cyclically ordered), such
that the odd vertices p2i−1 are in H

2 and the even vertices p2i are at infinity ∂∞H
2 (or

vice versa).

For each ideal vertex pi of Ω (if it exists), we consider a horocycle Hi at pi. Assume
Hi is small enough so that it only intersects ∂Ω at the boundary edges having pi as an
endpoint, and so that Hi∩Hj = ∅, for every i �= j. Given a polygonal domain P inscribed
in Ω (i.e. a polygonal domain P ⊂ Ω whose vertices are drawn from the set of endpoints
of the Ai, Bi edges, possibly at infinity), we denote by Γ (P) the part of ∂P outside the
horocycles (observe that Γ (P) = ∂P in the case Ω has no ideal vertices). Also let us call

α(P) =
∑

i

|Ai ∩ Γ (P)| and β(P) =
∑

i

|Bi ∩ Γ (P)|,

where | · | = lengthH2(·).
Definition 2.2. Let Ω be a convex polygonal domain as above. We say that Ω is
a Jenkins–Serrin domain when the following two additional conditions hold for some
choice of horocycles at its ideal vertices:

(i) α(Ω) = β(Ω);

(ii) 2α(P) < |Γ (P)| and 2β(P) < |Γ (P)| for every polygonal domain P inscribed in Ω,
P �= Ω.

Remark that condition (i) in the above definition does not depend on the choice of
horocycles Hi; and if the inequalities of condition (ii) are satisfied for some choice of
horocycles, then they continue to hold for ‘smaller’ horocycles.
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Figure 1. Consider the translation φ in the direction of the x-axis such that the edges of the
geodesic square D determined by Γ and φ(Γ ) (the shadowed region) have length �. Translating
twice D by φ we get a polygonal domain of eight edges of length � which is not a Jenkins–Serrin
domain.

Theorem 2.3 (Nelli and Rosenberg [12]; Collin and Rosenberg [1]; Mazet
et al . [10]). Let Ω be a convex polygonal domain with 2k edges A1, B1, . . . , Ak, Bk

(cyclically ordered) of the same length � ∈ (0, +∞]. There exists a solution u for the
minimal graph equation (2.1) such that

u|Ai
= +∞ and u|Bi

= −∞

if, and only if, Ω is a Jenkins–Serrin domain. Moreover, if it exists, then it is unique up
to an additive constant.

Remark 2.4. In R
3, the only convex polygonal domains with 2k edges of the same

length � ∈ (0, +∞) which are not Jenkins–Serrin domains are parallelograms bounded
by two sides of length � and two sides of length (k − 1)�, with k � 3, which consist of
the union of k − 1 edges of Ω whose interior angles equal π (see [9, Proposition 1.3]). In
H

2 × R, it is not so restrictive. For instance, we have the following.

• Let Γ be a geodesic arc of length �, and let p be its middle point. Consider a geodesic
γ passing through p, and a hyperbolic translation φ along γ such that the distance
from the endpoints of Γ to the endpoints of φ(Γ ) is �. Call D the polygonal domain
of four edges determined by Γ , φ(Γ ). The convex polygonal domain obtained from
D by translating it k times by φ (see Figure 1) is a polygonal domain of 4 + 2k
edges of length � which is not a Jenkins–Serrin domain.
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Figure 2. The shadowed region D is a geodesic hexagon whose edges have length � and their
interior angles are π/2 up to at two opposite vertices p, q where the interior angles are strictly
smaller than π/2. By reflecting D in one of the edges who has not p nor q as an endpoint, we
get a polygonal domain of ten edges of length � which is not a Jenkins–Serrin domain.

• It can be also considered a convex polygonal domain D of 2n edges of length �, for
n � 3, such that the interior angles at their vertices are smaller than or equal to
π/2. By reflecting D in an edge (respectively k times in two opposite edges), we
obtain a convex polygonal domain with 4n − 2 edges (respectively 2n + 2(n − 1)k
edges) of length � which is not a Jenkins–Serrin domain (see Figure 2).

2.2. Conjugate surfaces in H
2 × R

In this subsection we will recall how to obtain minimal surfaces in H
2×R by conjugation

from other known minimal examples. For more details see [2] and [4].
Let Σ be a simply connected Riemann surface and J be the rotation of angle π/2

on TΣ. Denote by 〈·, ·〉 the Riemannian metric on Σ. Given a conformal minimal immer-
sion X : Σ → H

2 × R, let us call

• S the symmetric operator on Σ induced by the shape operator of X(Σ);

• T the vector field such that dX(T ) is the projection of ∂/∂t onto T (X(Σ));

• N the induced unit normal vector field on X(Σ);

• ν = 〈N, ∂/∂t〉 the angle function (in particular, ‖T‖2 + ν2 = 1).

Theorem 2.5 (Daniel [2, Theorem 4.2]). Let X : Σ → H
2 × R be a conformal

minimal immersion. There exists a conformal minimal immersion X∗ : Σ → H
2 × R such

that
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• the metrics induced on Σ by X and X∗ are the same;

• the symmetric operator on Σ induced by the shape operator of X∗(Σ) is S∗ = JS;

• ∂/∂t = dX∗(T ∗) + νN∗, where T ∗ = JT and N∗ is the unit normal vector to
X∗(Σ).

Definition 2.6. The immersion X∗ obtained in Theorem 2.5, which is well defined up
to isometries of H

2 × R, is called the conjugate immersion of X; and X∗(Σ) is called
conjugate surface of X(Σ).

Let us denote by X = (h, f) : Σ → H
2 × R a conformal minimal immersion, and by

X∗ = (h∗, f∗) : Σ → H
2 ×R its conjugate immersion. Then f∗ is the harmonic conjugate

of f (see [2, Proposition 4.6]). This implies that the Hopf differentials of h and h∗ are
opposite:

Qh := 〈hw, hw〉 dw2 = −(fw)2 dw2 = (f∗
w)2 dw2 = −Qh∗ , (2.2)

where w is a conformal parameter on Σ for X (and then also for X∗). In [4], the conjugate
immersion is defined using identity (2.2). Given a conformal minimal immersion X =
(h, f) : Σ → H

2 × R, there exists a conformal minimal immersion X∗ = (h∗, f∗) : Σ →
H

2 × R, called conjugate immersion of X, such that the metrics induced on Σ by X

and X∗ coincide and Qh∗ = −Qh. The following theorem shows these two definitions of
conjugate immersion are equivalent.

Theorem 2.7 (Hauswirth et al . [4, Theorem 6]). Let X1 = (h1, f1), X2 =
(h2, f2) : Σ → H

2 × R be two isometric conformal minimal immersions such that
Qh1 = Qh2 . Then, X1, X2 coincide up to an isometry of H

2 × R.

Some geometric properties of conjugate surfaces in H
2 × R are discussed in [2]. As in

R
3 (see Karcher [6–8]), we get the following lemma.

Lemma 2.8. The conjugation exchanges the following Schwarz reflections.

• The symmetry with respect to a vertical plane containing a geodesic curvature line
becomes the rotation with respect to a horizontal geodesic of H

2, and vice versa.

• The symmetry with respect to a horizontal plane containing a geodesic curvature
line becomes the rotation with respect to a vertical straight line, and vice versa.

We will use the above correspondence to study the conjugate surfaces of minimal
graphs defined on convex polygonal domains of H

2. The surfaces constructed in this way
are minimal graphs (and consequently embedded), as ensured by the following generalized
version of Krust’s Theorem.

Theorem 2.9 (Hauswirth et al . [4, Theorem 14]). Let X(Σ) be a (vertical) minimal
graph over a convex domain Ω ⊂ H

2. Then X∗(Σ) is a (vertical) minimal graph.

We finish this section by showing the following convergence result.
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Proposition 2.10. For every n, let Xn : Σn → H
2 × R be a conformal minimal immer-

sion. Suppose Mn = Xn(Σn) can be written as the graph surface of un : Ωn → R, where
Ωn is a convex domain. Assume there exists a domain U ⊂ H

2 contained in Ωn, for
every n; {Ωn} converges to a convex domain Ω, U ⊂ Ω; and {un} converges uniformly
on compact subsets of Ω to a minimal graph u : Ω → R (i.e. Mn → M , where M is the
graph surface of u). Then, after passing to a subsequence, M∗

n → M∗ (up to an isometry
of H

2 × R), where the convergence is uniform on compact subsets.

We first prove the following technical lemma.

Lemma 2.11. For every n, let Xn : Σn → H
2 × R be a conformal minimal immersion.

Suppose Xn converges to a conformal minimal immersion X : Σ → H
2 × R, in the

sense that Mn = Xn(Σn) converges (uniformly on compact subsets) to M = X(Σ).
If the sequence of conjugate surfaces M∗

n = X∗
n(Σn) converges, it must converge to

M∗ = X∗(Σ), up to an isometry of H
2 × R.

Proof. Let p be a point in Σ, and D a small neighbourhood of p in Σ. We denote
by z a conformal parameter on D for X. Let pn ∈ Σn be a sequence of points such
that Xn(pn) converges to X(p). We can identify a neighbourhood of pn in Σn with D,
adapted to have z as a conformal parameter. We work locally in D, i.e. we consider the
restriction of Xn = (hn, fn), X = (h, f), X∗

n = (h∗
n, f∗

n) and X∗ = (h∗, f∗) to D. Suppose
X∗

n = (h∗
n, f∗

n) converges to a conformal minimal immersion Y = (h̃, f̃) : D → H
2 × R.

Let us prove that Y = X∗ in D. Since p has been chosen arbitrarily, that finishes the
proof.

By hypothesis, the real harmonic maps fn converge to f , together with their deriva-
tives. Then

Qhn = −(fn)2z dz2 → −f2
z dz2 = Qh. (2.3)

(Observe that another consequence is that the real harmonic conjugate f∗
n of fn converges

to the real harmonic conjugate f∗ of f , and then f̃ = f∗.) Since Qh∗
n

= −Qhn , then we
also have Qh∗

n
→ −Qh = Qh∗ . On the other hand, we can prove similarly as in (2.3) that

Qh∗
n

→ Qh̃. Thus Qh̃ = Qh∗ .
Since Xn → X (respectively X∗

n → Y ), we know that the angle function νn of Xn

(respectively ν∗
n of X∗

n) converges to the angle function ν of X (respectively νY of Y ).
As νn = ν∗

n, we deduce that ν = νY . We conclude that the metrics induced in D by X∗

and Y coincide (see Equation (14) in [4]):

ds2
X∗ = 4 cosh2 ω|Qh∗ | = 4 cosh2 ω|Qh̃| = ds2

Y ,

where ν = tanhω. We finish the proof of Lemma 2.11 by Theorem 2.7. �

Proof of Proposition 2.10. By Lemma 2.11, it suffices to prove that the sequence
{M∗

n} converges.
Theorem 2.9 says that each M∗

n can be written as a graph u∗
n over a (not necessarily

convex) domain Ω∗
n ⊂ H

2.
Let x be a point in U , which is contained by hypothesis in every Ωn. Denote by pn the

point in Mn which projects vertically on x, and let p∗
n be the corresponding point in M∗

n
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(a) (b)

Figure 3. (a) An example of a (symmetric) bounded Jenkins–Serrin domain Ω with six edges of
the same length. (b) The vertical projection over H

2 of the conjugate surface (which is a graph)
of the graph over Ω with boundary values +∞ over A1 ∪ A2 ∪ A3 and −∞ over B1 ∪ B2 ∪ B3.

by conjugation. Up to an isometry of H
2 × R, we can assume that p∗

n projects vertically
on x, and u∗

n(x) = 0.
We call M1,n the part of Mn which projects over U . Since un converges on U , the

sequence of absolute values of gradients {|∇un|} is uniformly bounded on U , after passing
to a subsequence. That implies that the angle function of M1,n is uniformly bounded
away from zero. Hence the same thing happens to its conjugate M∗

1,n. In particular,
there exists a neighbourhood V of x in H

2 such that V ⊂ Ω∗
n, for any n. Then, by passing

to a subsequence, we can assume that there exists a domain Ω∗ in the set of limit points
of Ω∗

n.
Let y∗ be a point in Ω∗. We have that y∗ ∈ Ω∗

n for n big enough, and dist(y∗, ∂Ω∗
n) � δ,

for some small δ > 0. Let yn ∈ Ωn be the point corresponding by conjugation to y∗.
There exists a big compact set K ⊂ Ω containing yn, for every n. By convergence of
{un}, we have that {|∇un|} is uniformly bounded in K. Arguing as above, we get that
{|∇u∗

n(y∗)|} is bounded. Since this holds for arbitrary y∗, we get by [10, Proposition 4.4]
that u∗

n converges to a minimal graph u∗ over Ω∗. This finishes Proposition 2.10. �

3. Saddle Towers in H
2 × R

This section deals with the construction of properly embedded minimal surfaces in H
2×R

invariant by a vertical translation T , which have total curvature 4π(1 − k), genus zero
and 2k vertical Scherk-type ends in the quotient by T (Theorem 1.1). The construction
is similar to the one of Karcher’s saddle towers in R

3. We also call these new examples
saddle towers.

Consider a convex Jenkins–Serrin domain Ω whose edges A1, B1, A2, B2, . . . , Ak, Bk

(cyclically ordered) have length � ∈ (0, +∞). Denote by p1, . . . , p2k the vertices of Ω,
such that p2i−1, p2i are the endpoints of Ai and p2i, p2i+1 are the endpoints of Bi, for
i = 1, . . . , k (as usual, we consider the cyclic notation p2k+1 ≡ p1; see Figure 3).
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By Theorem 2.3, there exists a solution u : Ω → R to the minimal graph equation (2.1)
on Ω satisfying u|Ai

= +∞ and u|Bi
= −∞, for any i = 1, . . . , k.

The geometry of the graph surface Σ of u near ∂Ω is explained in [12]. When we
approach a point in Ai (respectively Bi) within Ω, the tangent plane to Σ becomes
vertical, asymptotic to Ai × R (respectively Bi × R), i.e. the angle function ν goes to
zero as we approach Ai, Bi. Moreover, Σ is bounded by 2k vertical straight lines passing
through the vertices of Ω. Since Σ is asymptotic to Ai × R (respectively Bi × R) over Ai

(respectively Bi), the intrinsic distance on Σ from {p2i−1}×R to {p2i}×R (respectively
from {p2i}× R to {p2i+1}× R) is �, which is never attained (� is the asymptotic intrinsic
distance at infinity).

Proposition 3.1. The conjugate surface Σ∗ of Σ is a (vertical) minimal graph, whose
boundary is of the form ∂Σ∗ = γ∗

1 ∪ δ∗
1 ∪ · · · ∪ γ∗

k ∪ δ∗
k, where

γ∗
1 , . . . , γ∗

k ⊂ {t = 0} and δ∗
1 , . . . , δ∗

k ⊂ {t = �}

are geodesic curvature lines. Let us call Ω∗, δ̃∗
i the respective vertical projection of Σ∗,

δ∗
i over {t = 0}. Then

• the curves γ∗
i , δ̃∗

i are strictly concave (with respect to Ω∗);

• γ∗
i and δ̃∗

i (respectively δ̃∗
i and γ∗

i+1) are asymptotic at their common endpoint at
∂∞H

2;

• ∂Ω∗ = γ∗
1 ∪ δ̃∗

1 ∪ · · · ∪ γ∗
k ∪ δ̃∗

k (cyclically ordered);

• Σ∗ − ∂Σ∗ ⊂ {0 < t < �}.

Proof. Since Ω is convex, Theorem 2.9 says that the conjugate surface Σ∗ of Σ is
a minimal graph over a domain Ω∗ ⊂ H

2. By Lemma 2.8, we know that the conju-
gation transforms vertical straight lines into horizontal geodesic curvature lines. Then
∂Σ∗ consists of 2k horizontal geodesic curvature lines γ∗

1 , δ∗
1 , . . . , γ∗

k , δ∗
k. Assume those

boundary curves are ordered so that two consecutive ones correspond by conjugation to
vertical straight lines in ∂Σ through consecutive vertices of Ω. For every i = 1, . . . , k, let
γi, δi ⊂ ∂Σ be the straight lines which correspond by conjugation to γ∗

i , δ∗
i ⊂ ∂Σ∗; and

γ̃∗
i , δ̃∗

i be the vertical projection of γ∗
i , δ∗

i over {t = 0} ≡ H
2, respectively.

Consider the surface M obtained by extending Σ∗ by symmetry with respect to the
horizontal plane containing γ∗

1 . If γ̃∗
1 is convex (with respect to Ω∗) at some point, then

we will obtain by the maximum principle that M is contained in a vertical plane, a
contradiction with the fact that Σ∗ is a graph. Similarly, we deduce that none of vertical
projections of the curves in ∂Σ∗ has a convexity point. This proves (1).

The asymptotic intrinsic distance at infinity between γi, δi (respectively δi, γi+1) is
� since the surface Σ is asymptotically vertical. By Theorem 2.5, Σ, Σ∗ are isometric
and have the same angle function. Thus the asymptotic intrinsic distance between γ∗

i , δ∗
i

(respectively δ∗
i , γ∗

i+1) is �, and the unit normal vector field N∗ to Σ∗ is asymptotically
horizontal between γ∗

i and δ∗
i (respectively between δ∗

i and γ∗
i+1). In particular, δ̃∗

i shares
an endpoint with γ̃∗

i and the other with γ̃∗
i+1. Observe that this proves (3).
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To finish (2), it remains to prove that the endpoints of each δ̃∗
i (and then also of

γ̃∗
i ) are at ∂∞H

2. (As γ̃∗
i , δ̃∗

i are strictly concave, they must arrive tangentially.) Fix a
point p∗ ∈ δ∗

i , and let p̃∗ ∈ δ̃∗
i be its vertical projection. The point p∗ corresponds by

conjugation to a point p ∈ δi, which divides δi in two curves of infinite length. Since Σ

and Σ∗ are isometric, then each component of δ̃∗
i − {p̃∗} has infinite length as well, and

finishes at a common endpoint with γ̃∗
i or γ̃∗

i+1. Since all γ̃∗
i , δ̃∗

i , γ̃∗
i+1 are strictly concave

(with respect to Ω∗), we deduce that the endpoints of δ̃∗
i must be at ∂∞H

2.
Recall that the asymptotic intrinsic distance between γ∗

i , δ∗
i (respectively δ∗

i , γ∗
i+1) is

�, for any i = 1, . . . , k. We can assume that γ∗
1 ⊂ {t = 0} and δ∗

1 ⊂ {t = �}. We know that
either γ∗

2 ⊂ {t = 0} or γ∗
2 ⊂ {t = 2�}. Let us prove that the second case is impossible. We

call q∗
1 ∈ ∂∞H

2 the common endpoint of γ̃∗
1 , δ̃∗

1 . Since Σ∗ is asymptotic to {q∗
1} × (0, �)

when we approach q∗
1 within Ω∗, then Σ∗ is locally below δ∗

1 near the asymptotic point
(q∗

1 , �) at infinity. Since N∗ is horizontal along δ∗
1 , then Σ∗ is locally below {t = �} in

a small neighbourhood of δ∗
1 . In particular, Σ∗ is locally below δ∗

1 near (q∗
2 , �), where q∗

2
is the common endpoint of δ̃∗

1 , γ̃∗
2 . Thus Σ∗ cannot be asymptotic to {q∗

2} × (�, 2�), and
then γ∗

2 ⊂ {t = 0}. Arguing similarly we prove

γ∗
1 , . . . , γ∗

k ⊂ {t = 0} and δ∗
1 , . . . , δ∗

k ⊂ {t = �}.

Finally, we obtain (4) by the maximum principle using horizontal slices. �

Since Σ∗ is a graph, it is in particular embedded. By reflecting Σ∗ in the horizontal
plane {t = �} we get a surface M whose boundary consists of horizontal geodesic curva-
ture lines at heights 0 and 2�, which differ by the translation by T = (0, 0, 2�). Moreover,
M is embedded, as Σ∗ − ∂Σ∗ ⊂ {0 < t < �}.

Extending Σ∗ by symmetry with respect to the horizontal planes at heights multiple of
�, we obtain an embedded singly periodic minimal surface M with period T = (0, 0, 2�).
Furthermore, M is proper, by item (2) in Proposition 3.1. It is easy to see that the
quotient of M by T has genus 0 and 2k ends asymptotic to flat vertical annuli (named
vertical Scherk-type ends). M is called a saddle tower.

Moreover, Nelli and Rosenberg [12], using the Gauss–Bonnet Theorem, proved that Σ

has total curvature 2π(1− k). Thus the same holds for Σ∗, and the fundamental domain
of M has total curvature 4π(1 − k).

To finish Theorem 1.1, it remains to prove that, given k � 2 and � ∈ (0, +∞), there
exist 2k − 3 possible Jenkins–Serrin domains Ω with 2k edges A1, B1, A2, B2, . . . , Ak, Bk

of length �, after identifying them by isometries of H
2. Up to an isometry of H

2 we can
assume that A1 is fixed, i.e. the vertices p1, p2 are fixed. Observe that once we have
chosen the vertices p3, . . . , p2k−1, then the vertex p2k is determined by p2k−1 and p1, as
Ω is a Jenkins–Serrin domain. Each vertex pi, i = 3, . . . , 2k−1, is at distance � from pi−1,
hence pi is determined by the interior angle θi−1 at pi−1 (i.e. the interior angle at pi−1

between the edges in ∂Ω which have pi−1 as a common endpoint). Since Ω is convex,
0 � θi−1 � π. Additional constraints for θi−1 come from the facts that ∂Ω is closed, and
that Ω is a Jenkins–Serrin domain. We have obtained that the space of Jenkins–Serrin
domains Ω with 2k edges of length �, one of them fixed, has 2k − 3 freedom parameters
θ2, . . . , θ2k−2. This proves Theorem 1.1.
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Remark 3.2 (symmetric case).

(1) In the case the vertices p2i−1 of Ω are at distance λ from a point of H
2, say the

origin 0, and the vertices p2i of Ω are at distance µ from 0 (see Figure 3(a)), then
the graph Σ over Ω can be obtained (up to a vertical translation) by reflection from
the minimal graph ΣT over a triangle T with vertices p1, p2,0 with boundary values
+∞ along A1 and 0 along ∂T − A1. Then Σ contains k geodesic arcs at height 0
meeting at 0 ∈ Σ equiangularly (as usual, we are identifying H

2 ≡ H
2 × {0}):

• k geodesic arcs of length λ + µ, if k is odd;

• k/2 geodesic arcs of length 2λ and k/2 geodesic arcs of length 2µ, when k is
even.

Those horizontal geodesics give us by conjugation k vertical geodesic curvature
lines in Σ∗ (of the same length as in Σ) meeting with angle π/k. Then Σ∗ can be
obtained from Σ∗

T by symmetries.

(2) By uniqueness of the Jenkins–Serrin graphs, when λ = µ we have that ΣT is
symmetric with respect to the vertical plane which bisects T at its vertex 0. That
symmetry says that Σ∗

T contains half a geodesic, and then we can obtain Σ∗ from
half a Σ∗

T bounded by a horizontal geodesic curvature line γ at height 0, a vertical
geodesic curvature line α of length 2λ and half a horizontal geodesic curve L at
height �/2; α, L meeting at an angle π/(2k). These symmetric examples are the
ones Pyo has constructed in [14].

4. Properly embedded minimal surfaces of genus zero in H
2 × R

In this section we obtain as a limit of saddle towers with 2k vertical Scherk-type ends and
period vector (0, 0, 2�), with � → +∞, a properly embedded minimal surface in H

2 × R

with total curvature 4π(1 − k), genus zero and k ends asymptotic to vertical geodesic
planes (Theorem 1.2). It will be the conjugate surface of a Jenkins–Serrin graph over a
convex semi-ideal polygonal domain.

Consider a convex semi-ideal Jenkins–Serrin domain Ω with 2k vertices p1, . . . , p2k

cyclically ordered so that the vertices p2i−1 are in the interior of H
2, and the vertices p2i

are at ∂∞H
2, for i = 1, . . . , k. As in the previous section, call Ai the edge of Ω whose

endpoints are p2i−1, p2i, and Bi the edge of Ω whose endpoints are p2i, p2i+1. We also
require that Ω satisfies the following additional condition.

(�) For each p2i ∈ ∂∞H
2, there exists a sufficiently small horocycle H2i such that it only

intersects ∂Ω along Ai, Bi, and

distH2(p2i−1, H2i) = distH2(p2i+1, H2i).

Observe we can choose the horocycles H2i so that, for any i = 1, . . . , k,

distH2(p2i−1, H2i) = distH2(p2i+1, H2i) = �0,
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for some �0 > 0, independently of i. Also we can choose them small enough so that

distH2(p2i−1, p2i+1) < 2�0, for any i = 1, . . . , k. (4.1)

Consider the nested sequence of horocycles H2i(n) at p2i, n � 0, converging to p2i as
n → +∞, such that H2i(0) = H2i and distH2(H2i(n + 1), H2i(n)) = 1. We set

�n = �0 + n.

We are going to obtain Ω as limit of convex Jenkins–Serrin domains Ωn as n → +∞,
each Ωn with 2k edges of length �n.

Firstly, we remark the following fact. Condition (�) ensures the existence of a horocycle
C2i at p2i passing through p2i−1, p2i+1. Call D2i the component of H

2 − C2i whose only
point of ∂∞H

2 at its infinite boundary is p2i (i.e. D2i is the horodisk at p2i bounded
by the horocycle C2i), and D̄2i = D2i ∪ C2i. We get the following lemma, since Ω is a
Jenkins–Serrin domain.

Lemma 4.1. Every interior vertex p2j−1 of Ω, for j �∈ {i, i+1}, is contained in H
2−D̄2i.

Proof. Suppose there exists some p2j−1 ∈ D̄2i, with j �∈ {i, i + 1}. Then for n large we
have

distH2(p2j−1, H2i(n)) � �n = distH2(p2i−1, H2i(n)) = distH2(p2i+1, H2i(n)).

Let γ be the geodesic from p2j−1 to p2i, and P be the component of Ω−γ containing Ai on
its boundary. Clearly, P is a polygonal domain inscribed in Ω. It holds β(P) = α(P)−�n

for this choice of horocycles, and then

|Γ (P)| = distH2(p2j−1, H2i(n)) + α(P) + β(P) � 2α(P).

And this holds for every n large enough, a contradiction as Ω is a Jenkins–Serrin domain.
�

Now let us construct the Jenkins–Serrin domains Ωn. All the vertices p2i−1 ∈ H
2 of Ω

will be vertices of each Ωn as well. Let us obtain the vertices p2i(n) of Ωn such that, for
each i = 1, . . . , k:

(a) distH2(p2i(n), p2i−1) = distH2(p2i(n), p2i+1) = �n;

(b) p2i(n) ∈ Ω and p2i(n) → p2i as n → +∞.

By (4.1), distH2(p2i−1, p2i+1) < 2�0 < 2�n. This guarantees that the circles of radius
�n centred at p2i−1, p2i+1 intersect at exactly two points, each one lying in a different
component of H

2 − γ2i, where γ2i is the complete geodesic passing through p2i−1, p2i+1

(see Figure 4). We define p2i(n) as the intersection point of those circles which is contained
in the component of H

2 − γ2i having p2i at its boundary at infinity. The point p2i(n) lies
in the region of Ω bounded by Ai, H2i(n), Bi and γ2i. By construction, p2i(n) verifies
conditions (a) and (b) above, and the domain Ωn is convex, has 2k edges of length �n

and converges to Ω as n → +∞. Call Ai(n) the edge of Ωn whose endpoints are p2i−1,
p2i(n), and Bi(n) the edge of Ωn whose endpoints are p2i(n), p2i+1.
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Figure 4. Construction of the vertex p2i(n) of Ωn as the intersection point in
the shadowed region of the circles of radius �n centred at p2i−1, p2i+1.

Lemma 4.2. For n big enough, Ωn is a Jenkins–Serrin domain.

Proof. By construction, α(Ωn) = β(Ωn). Suppose there exists an inscribed polygonal
domain P in Ωn, P �= Ωn, such that |∂P| � 2α(P) (the case |∂P| � 2β(P) follows
similarly). Since P �= Ωn, there is at least an interior geodesic γ1 in ∂P (i.e. γ1 ⊂
∂P ∩Ωn). We can assume that there are no two consecutive interior geodesics γ1, γ2: we
would replace P by another inscribed polygonal domain satisfying the same properties
by replacing the geodesics γ1, γ2 by the geodesic γ3 such that γ1 ∪ γ2 ∪ γ3 bounds a
geodesic triangle contained in Ωn. In a similar way, we can assume that

∂P = Ai1(n) ∪ γ1 ∪ · · · ∪ Aij (n) ∪ γj ∪ Aij+1(n) ∪ · · · ∪ Ais(n) ∪ γs,

where each γj is either an interior geodesic or a Bi(n) edge, and at least γ1 ⊂ Ωn.
In particular, each γj joins an even vertex q2j(n) = p2ij

(n) to an odd vertex q2j+1 =
p2ij+1−1. Remark that when γj is a Bi(n) edge, then γj = Bij

(n) and ij+1 = ij + 1.
As

s∑
j=1

|γj | = |∂P| − α(P) � α(P) = s�n,

there must be some interior geodesic γj ⊂ ∂P whose length is smaller than or equal
to �n. Take the hyperbolic circle S(n) of centre q2j(n) and radius �n, and let D(n)
be the hyperbolic disc bounded by S(n) (see Figure 5). Then the vertex q2j+1 lies in
D(n) = D(n) ∪ S(n). Let us prove that this is not possible for n large.

The circles S(n) converge to the horocycle C2ij as n → +∞. And by Lemma 4.1, q2j+1

cannot be contained in the closed horodisc D̄2ij
bounded by C2ij

. Then q2j+1 ∈ H
2−D(n)

for n large enough. �
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Figure 5. The circle S(n) of radius �n centred at q2j(n)
converges to the horocycle C2ij at p2ij as n → +∞.

Observe that the inscribed polygonal domain P0 whose vertices are the vertices p2i−1

of Ω, is contained in all the domains Ωn. Fix a point p0 ∈ P0.
By Theorem 2.3, there exists a solution u (respectively un, for any n) to the minimal

graph equation defined over Ω (respectively Ωn) with boundary values +∞ over Ai

(respectively Ai(n)) and −∞ over Bi (respectively Bi(n)). Denote by Σ (respectively
Σn) the graph surface of u (respectively un). Up to a vertical translation we can assume
u(p0) = un(p0) = 0. (Observe that we could have exchanged the edges Ai, Bi, but the
graph we would have obtained would be Σ up to a symmetry about H

2 × {0}.)
The domains Ωn converge to Ω. Since Ω is a Jenkins–Serrin domain and un(p0) = 0

for any n ∈ N, a subsequence of the un converges uniformly on compact sets of Ω to a
solution u∞ of the minimal graph equation with the same boundary values as u (it can be
proved as the convergence of the sequence {um} at the end of the proof of Theorem 4.9
in [10]). By uniqueness, u∞ = u. Hence the minimal graphs Σn converge to Σ, after
taking a subsequence.

Observe that the vertical straight lines Γi = {p2i−1}×R are contained in the boundary
of all the Σn and also of Σ. In particular, none of the distances distΣn(Γi, Γj) can diverge,
for any i, j ∈ {1, . . . , k}. After passing to a subsequence, we can assume that there exists
a constant C > 0 such that, for any i, j ∈ {1, . . . , k},

distΣn(Γi, Γj) � C, for any n ∈ N,

and distΣ(Γi, Γj) � C.
Denote by Σ∗ (respectively Σ∗

n) the conjugate surface of Σ (respectively Σn). By
Theorem 2.9, Σ∗ is a minimal graph, as Σ is a minimal graph over Ω, which is convex.
Moreover, ∂Σ = Γ1∪· · ·∪Γk, so the boundary of Σ∗ is composed of k horizontal geodesic
curvature lines Γ ∗

i , by Lemma 2.8. Since Σ, Σ∗ are isometric, then distΣ∗(Γ ∗
i , Γ ∗

j ) � C
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for every i, j ∈ {1, . . . , k}. We want to prove that all the curves Γ ∗
i lie in the same

horizontal plane, say {t = 0}, and Σ∗ is contained in one of the half-spaces determined
by {t = 0}.

For any n, Σn is a graph over the convex domain Ωn and the boundary of Σn equals
Γ1 ∪ η1(n) ∪ · · ·Γk ∪ ηk(n), where each Γi is defined as above and ηi(n) = {p2i(n)} × R,
for any i = 1, . . . , k. By Proposition 3.1, Σ∗

n is a graph over a domain Ω∗
n and

∂Σ∗
n = Γ ∗

1 (n) ∪ η∗
1(n) ∪ · · · ∪ Γ ∗

k (n) ∪ η∗
k(n),

where Γ ∗
1 (n), . . . , Γ ∗

k (n) (respectively η∗
1(n), . . . , η∗

k(n)) are horizontal geodesic curvature
lines contained in the same horizontal plane, and both planes are at distance �n from
each other.

Call Γ̃ ∗
i (n) (respectively η̃∗

i (n)) the vertical projection of Γ ∗
i (n) (respectively η∗

i (n))
over {t = 0}. Then ∂Ω∗

n = Γ̃ ∗
1 (n)∪ η̃∗

1(n)∪· · ·∪ Γ̃ ∗
k (n)∪ η̃∗

k(n), and two consecutive curves
in ∂Ω∗

n are asymptotic at ∂∞H
2. Proposition 2.10 ensures that the graphs Σ∗

n converge
to the graph Σ∗, up to an isometry of H

2 ×R. It could happen that the boundary values
of the graphs over the boundary curves Γ̃ ∗

i (n) would diverge to −∞; but this is not
possible as distΣ∗

n
(Γ ∗

i (n), Γ ∗
j (n)) � C, for any i, j ∈ {1, . . . , k} and any n ∈ N. Therefore,

up to a vertical translation we can assume that Γ ∗
1 (n), . . . , Γ ∗

k (n) ⊂ {t = 0}; the curves
Γ̃ ∗

i (n) = Γ ∗
i (n) converge to the curves Γ ∗

i . So ∂Σ∗ ⊂ {t = 0}.
Suppose η∗

1(n), . . . , η∗
k(n) ⊂ {t = �n} (if they are contained in {t = −�n} we argue

similarly). The height of each curve η∗
i (n) diverge to +∞, hence its projection η̃∗

i (n)
converge to the geodesic η̃∗

i ∈ H
2 joining the corresponding endpoints of Γ ∗

i , Γ ∗
i+1 at

∂∞H
2. Moreover, since the graph Σ∗

n is contained in {t � 0} for any n, then the same
holds for Σ∗. If we reflect Σ∗ in the plane {t = 0}, we get a properly embedded minimal
surface M of genus zero and k planar ends in H

2 × R (the ends of M are asymptotic to
the vertical geodesic planes η̃∗

i × R).
Collin and Rosenberg [1] proved that Σ (and so Σ∗) has total curvature 2π(1 − k).

Hence M has total curvature 4π(1 − k).
To complete the proof of Theorem 1.2, it remains to show that, given k � 2, there

exist 2k − 3 possible semi-ideal Jenkins–Serrin domains Ω satisfying condition (�), after
identifying them by isometries of H

2. Firstly we observe that, for i = 1, . . . , k, the vertex
p2i ∈ ∂∞H

2 is determined once we have chosen p2i−1 and p2i+1, since Ω satisfies condi-
tion (�). Thus we have to compute the parameters which determine the vertices having
odd subindex. We can assume that p1 is fixed as well as the direction of the geodesic arc
α1 from p1 to p3. So the vertex p3 is determined by the length of α1. That gives the first
parameter. For i = 2, . . . , k − 1, the vertex p2i+1 is determined by both the direction and
the length of the geodesic arc αi joining p2i−1, p2i+1 (the direction of αi is given by the
interior angle at p2i−1 between αi−1 and αi). So we have two additional parameters for
the remaining k − 2 vertices of Ω, and the total number of freedom parameters equals
2k − 3. This finishes Theorem 1.2.

Remark 4.3 (symmetric case). In the case the vertices p2i−1 of Ω are at distance λ

from the origin 0 of H
2, then we can get Σ∗ as limit of symmetric surfaces as at item (1)

of Remark 3.2 (when µ → +∞). In particular, Σ∗ contains k vertical geodesic curvature
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lines (of infinite length when k is odd; or k/2 of length 2λ and k/2 of infinite length when
k is even). These are the examples constructed by Pyo in [15].
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Reine Angew. Math. 13 (1935), 185–208.

https://doi.org/10.1017/S1474748011000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748011000107



