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The interaction of tandem inverted flexible flags in a uniform flow is investigated.
For the inverted flags, their ends are fixed with their heads freely flapping. A direct
numerical simulation is performed for which the Reynolds number is of order 200.
Large flapping amplitude as well as large drag force is preferred because more energy
may be harvested if more bending energy is generated. For the simple case of two
tandem inverted flags, the drag force and flapping amplitude of the rear flag are
found to be smaller than those of an isolated inverted flag due to the destructive
merging mode of vortices. However, it is still unknown whether more bending energy
can be generated when coupled inverted flags are arranged properly. To explore the
possibility, inverted flags are proposed to be arranged as two rows, which indicate
two lines of inverted flags perpendicular to the direction of the incoming flow, and
flags in the front and rear rows are in-line or staggered. First the results for infinite
flags with periodic boundary condition are presented. In both the in-line and the
staggered arrangements, due to the interactions between the front-rear flags, the
flapping amplitude or the maximum bending deformation and bending energy of a
flag in the rear row can be enhanced, which may be significantly higher than those
of an isolated case. Meanwhile, the bending energy of a flag in the front row is close
to that of an isolated case. Second, results for finite inverted flag groups show that
antiphase synchronization is preferred. When the group number is large enough, the
bending energies of the front and rear flags in the inner groups are close to those in
the infinite case. This finding may be helpful for the designing of an efficient energy
harvesting device using inverted flags.
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1. Introduction

The interactions between fluid flow and flexible structures are ubiquitous in our
daily life as the fluid-structure interaction (FSI) problems, e.g. fish swimming in the
water with fins, birds flying in the sky with wings. The filament or flag movement in
fluid flow is a typical FSI problem in which the filament represents the flexible body
of the biological species. A single filament setting in a two-dimensional flow has
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also been studied experimentally (Zhang et al. 2000) and numerically (Huang, Shin
& Sung 2007; Zhu, He & Zhang 2014b). Numerous studies for two tandem flags
(Ristroph & Zhang 2008; Alben 2009; Zhu 2009; Kim, Huang & Sung 2010) were
also carried out. It is found that for tandem flexible flags, the rear flag experiences a
drag enhancement compared to an isolated one (Ristroph & Zhang 2008; Kim et al.
2010). And for multiple flexible flags, the rear flags may achieve a drag reduction
(Tian et al. 2011; Uddin, Huang & Sung 2013). Experimental study of hydrofoils in
a side-by-side and an in-line configuration were also carried out (Boschitsch, Dewey
& Smits 2014; Dewey et al. 2014). The mechanism of constructive and destructive
vortices merging was applied to explain the relevant phenomena (Kim et al. 2010;
Uddin et al. 2013). Moreover, the tandem arrangement for the self-propelled flexible
bodies was also studied (Zhu, He & Zhang 2014a) and the optimal distance for
efficient self-propulsion is achieved.

An energy harvesting system using the conventional flapping flexible plate (head of
the plate is fixed) with a piezoelectric material attached to its surface was proposed
by Michelin & Doaré (2013). Recently, to improve the energy harvesting by using
flexible oscillating structures, a configuration of an inverted flexible plate in a
uniform flow with Reynolds number Re =~ 10000 has been proposed and studied
experimentally (Kim et al. 2013). It is found that the inverted flag can flap with
large amplitude and more bending energy can be achieved. The study was followed
by a series of numerical studies. Ryu et al. (2015) and Tang, Liu & Lu (2015) studied
the three-dimensional and two-dimensional inverted flags numerically at Re = 200,
respectively. In these studies four different modes for the flag are found, including
the straight, flapping, deflected and deflected—flapping modes. Both Kim et al. (2013)
and Gurugubelli & Jaiman (2015) have found that the mass ratio has a negligible
influence on the value of bending stiffness K where flapping is initiated. Sader et al.
(2016a) and Sader, Huertas-Cerdeira & Gharib (2016b) investigated the stability of
the inverted flag and found that the flapping of the inverted flag is a vortex-induced
vibration. Recently, Shoele & Mittal (2016) coupled the two-dimensional inverted
flag simulation with the piezoelectric mechanism at Re =~ 200. Orrego et al. (2017)
explored an inverted piezoelectric flag experimentally for harvesting ambient wind
energy efficiently and made the practical application for inverted flags plausible.

However, it is still unknown whether the energy harvesting performance can be
enhanced when coupled inverted flags are arranged properly. Here, the configurations
of flags in two rows are explored, and address the issues regarding how far the flags
in the front and rear rows should be placed and what the proper staggered gap in
the lateral direction is. As far as we know, it is the first time that the collective
performance of inverted flags has been investigated.

The paper is organized as follows: the physical problem and mathematical
formulation are described in § 2.1, the numerical method and validation are presented
in §§2.2 and 2.3, the results are discussed in §3, and concluding remarks are
addressed in §4.

2. Computational model
2.1. Physical problem and mathematical formulation

A schematic of the tandem inverted flexible flags system is shown in figure 1. The
computational domain is L, x L,, where L, and L, are the domain sizes along the
x- and y-directions, respectively, and the incoming flow velocity is U.,. The trailing
edges of the flags are fixed but the leading edges of the flags are free. The horizontal
gap distance G, is defined as the horizontal distance between the two inverted flags.
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FIGURE 1. (Colour online) Schematic diagram of two flexible tandem flags in a uniform
flow with incoming velocity U,,. The ends of the flags are fixed and L is the initial length
of each flag. D, is the distance between the fixed points along the x-direction and G, =
D, — L. Each flag is represented by a beam model.

The incompressible viscous Navier—Stokes (NS) equations that govern the fluid are

3 1
O o Vo=——Vp+ Eviy4p, 2.1)
at P P

V.v=0, (2.2)

where p is the fluid density, v is the velocity, p is the pressure, u is the dynamic
viscosity of the fluid and f is the body force term.

To describe the deformation of the flag in a Lagrangian coordinate system, the
structure equation is employed,

90X ox\ "\ ax 8 [_ X
Eh{l—|—+ — — - — | EI—

ds ds ds  ds ds?
where p; is the density of the flag, & is the thickness, s is the Lagrangian coordinate
along the flag, X is the position of the flag and F, is the Lagrangian force exerted
on the flag by the fluid. F, = p;hg is the gravity force, and g =|g| is the acceleration
due to gravity. If not specified, usually gravity is not considered, i.e. F, =0. Eh and

EI are the stretching and bending stiffness, respectively.
The boundary conditions of the flag at the free head are

X

9
hox 2 F,+F, (23
PV SE = s tELA e (2.3)
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which mean no tension force, no bending moment and no shearing force acting at the
free end, respectively. At the fixed end we have

0X
X=X, —=(-10), (2.5a,b)
as
where X, = (0, 0) for the case of an isolated flag.

The reference quantities density p, velocity U, and length L are chosen to
normalize the above formulations. The non-dimensional parameters are listed as
follows: the Reynolds number Re = pUy L/, the bending coefficient K = EI/pU? L?,
the tension coefficient S = Eh/pU2L and the mass ratio of the flag to the fluid
M = p;h/pL.
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2.2. Numerical method

The governing equation (2.1) for the fluid flow is solved by the lattice Boltzmann
method (LBM) (He, Shan & Doolen 1998). The flag deformation equation (2.3) is
solved by the nonlinear finite element method (FEM) with the large-displacement
deformation problem handled by co-rotational scheme. The detailed description of the
method can be found in Doyle (2013). The immersed boundary method (Goldstein,
Handler & Sirovich 1993) is used to couple the LBM and FEM (Huang et al. 2007,
Hua, Zhu & Lu 2014). The Lagrangian force between the fluid and structure F; can
be calculated by the penalty scheme (Goldstein et al. 1993),

F =« / [Vi(s, 1) — Vi(s, £)1dr + B[Vy(s, 1) — Vi(s, D], (2.6)
0

where o and B are negative large penalty parameters which are selected based on
previous studies (Hua et al. 2014; Tang et al. 2015; Ye et al. 2017; Zhang, Huang &
Lu 2017), V,=0X/0t is the velocity of Lagrangian material point of the flag. And
V; is the fluid velocity at the position X obtained by interpolation

Vi(s, ) = / v(x, H(x — X(s, 1)) dx. (2.7)
Then the body force f on the Eulerian points is

fx, 0)=— /FL(s, Né(x — X(s, t)) ds. (2.8)

The numerical strategy used here has been successfully applied to a wide range of
FSI problems (Hua et al. 2014; Tang et al. 2015; Ye et al. 2017; Zhang et al. 2017),
such as the dynamics of fluid flow over a circular flexible plate (Hua er al. 2014),
and the dynamics of an inverted flexible plate (Tang et al. 2015).

2.3. Validation

To validate our numerical methods, two problems for the flexible flag are considered.
One is the lateral displacement of the trailing edge of a conventional flag in a uniform
flow. The other is the lateral displacement of an inverted flag in a uniform flow. In
both simulations, the computational dimensions are [—15, 45] x [—15, 15] with a grid
size of 1920 x 960. The fixed point of the flag is located at (0, 0), and there are 128
Lagrangian nodes along the flag.

In the first validation, the non-dimensional parameters are Re = 200, K = 0.0015,
M = 1.5, Froude number Fr=gL/U? =0.5 and the gravity force is along the x-axis.
The result is shown in figure 2(a). It is seen that our result agrees well with those in
the literature (Huang et al. 2007; Zhu et al. 2014b). In the second validation, the non-
dimensional parameters are Re =250, K=0.25, M=1.0 and T =1.0. From figure 2(b),
it is seen that the lateral displacement of the leading edge of the inverted flag is very
consistent with that in Ryu et al. (2015).

3. Results and discussion

In our study, the flag is unstretchable because the stretching stiffness is very large,
i.e. S=1000. The parameters Re =200 and M =2.9 in Tang et al. (2015) are adopted
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FIGURE 2. (Colour online) Validations for cases: (a) the lateral displacement of the
trailing edge of a conventional flag in a uniform flow with Re =200, K =0.0015, M=1.5
and Fr =0.5; (b) the lateral displacement of the leading edge of an inverted flag in a
uniform with Re =250, K=0.25, M=1.0 and T =1.0.

here and they are fixed in our simulations. The bending coefficient K and the gap
distances G, and L, are allowed to vary to seek for the best arrangement mode of the
two flags which is able to achieve more bending energy.

For the case of an isolated flag and the cases of simple two tandem flags, the
Dirichlet boundary condition v = (U, 0) is applied in the upper and lower boundaries,
which is referred to as the far field boundary condition. Convergence tests for different
computational domains show that the computation domain size L, x L, =[—15, 45] x
[—15, 15] is large enough to eliminate the effect of the boundary condition. Therefore
this domain size is adopted in the simulations. For the simple tandem case, the fixed
point of the front flag is located at (0, 0) and the rear flag is placed at different
positions. A uniform velocity U, is specified in the incoming flow boundary of the
computational domain. A Neumann boundary condition dv/dx =0 is specified at the
outlet boundary. The Eulerian grid size is 1920 x 960 and for each flag there are 128
Lagrangian points. For the cases of periodic arrangements, the setting is introduced in
§3.3.

The drag coefficient C, and the bending energy E, are defined as

C Fx / X 82X (3.1a,b)
= , — . ds, a,
‘T IpULL 352

respectively, where F, is the spatial integrated fluid force acting on flag projection
along the x-direction and K is the bending coefficient.

The mean drag coefficient C, and the mean bending energy E, are defined as
C,=(1/T) ft;"” C,dt and E, = (1/T) ft:’” E, dt, respectively, where T is the flapping
period.

3.1. Flapping modes for an isolated flag

First we would like to present a brief review on the behaviour of an isolated inverted
flag with different bending stiffness K in a uniform flow. Based on the previous
studies (Kim et al. 2013; Gurugubelli & Jaiman 2015; Ryu et al. 2015; Tang et al.
2015; Sader et al. 2016a; Shoele & Mittal 2016), the flapping modes of an isolated
inverted flag in a uniform flow can be approximately classified into the following four
modes: straight mode, flapping mode, deflected mode and deflected—flapping mode,
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FIGURE 3. (Colour online) Flapping amplitude (with the full-body profile) of the flag
versus K. The key parameters are Re =200, M = 2.9 and S = 1000. The amplitude is
measured from the magnitude of the transverse displacement of the flag’s head.

which depend on the bending stiffness K. Those studies concluded that only in the
flapping mode can the bending energy be effectively achieved (Ryu et al. 2015; Tang
et al. 2015; Shoele & Mittal 2016).

In the simulations, the key parameters Re =200, M =2.9 and § = 1000 are fixed
and the bending stiffness K is variable. The flapping amplitude of the inverted flag as
a function of K is shown in figure 3. It is found that when K > 0.4, the flag is in the
straight mode and the amplitude is small and approaches zero. When K € (0.15, 0.35),
the flag adopts the flapping mode, the flapping amplitude as well as the bending
energy of the flag is larger. When K < 0.15, the amplitude of the flag decreases
and the flag adopts the deflected mode. By further decreasing the K, when K < 0.05,
due to the low flexibility, the flag is curved to the rear with small flapping, and the
amplitude is slightly larger than that of the deflected mode. This regime is referred
to as the deflected—flapping mode (Gurugubelli & Jaiman 2015; Tang et al. 2015).
Previous works on the inverted flag have also shown that the flapping mode is able
to achieve larger bending energy than the other modes (Gurugubelli & Jaiman 2015;
Ryu et al. 2015; Tang et al. 2015), therefore the flapping mode is preferred for energy
applications.

3.2. Simple tandem configuration

As discussed in the above section, when K € (0.15, 0.4), the flag adopts the flapping
mode, which is preferred for energy applications. Hence, in the study of simple two
tandem inverted flags, to allow both flags to work in the flapping mode, the bending
stiffness K € (0.15, 0.4) is adopted. In particular, the typical result of K = 0.3 is
presented in detail. In the simulations, the two key parameters are fixed (i.e. Re =200,
M =2.9). The effect of gap distance G, will be investigated in detail.

The mean drag coefficient C, and bending energy E, for K =0.3 as functions of
G, are shown in figure 4(a). It is seen that as G, increases, C; and E, of the rear flag
gradually increase and eventually approach those of the isolated flag. Variations of Cg,
and E,, of the front flag are a little more complex. For short gap distance, e.g. G, < 2.0,
the rear flag has a smaller drag coefficient than that of an isolated flag. Figure 4(b)
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FIGURE 4. (Colour online) (a) The mean drag coefficients (C,) and the mean bending
energies (E,) of the flags as functions of gap distance. The horizontal dashed line and
dash-dotted line represent C, and E, of an isolated flag, respectively. The key parameters
are Re=200, M =2.9 and K =0.3. (b) Instantaneous shapes (full-body profile) with K =
0.3 for case G, =2.0. (c) The phase difference between the flapping of the two flags
(A¢/m) as a function of G,. (d) Instantaneous vorticity contours for the case in (b), where
the solid and dashed lines represent the positive (anticlockwise) and negative (clockwise)
vortices, respectively.

shows an example of flapping shapes for the case of the two tandem inverted flags
with G, = 2.0. It is seen that due to the interaction of the two flags, the flapping
amplitude of the rear flag reduces significantly. Hence, smaller flapping amplitude,
which means smaller area directly facing the incoming flow, leads to smaller drag
force. This is consistent with the theory that the magnitude of the drag is determined
mainly by the flapping amplitude (Ristroph & Zhang 2008; Kim et al. 2010).

The phase difference between the flappings of the two flags A¢/m as a function of
G, is shown in figure 4(c). It is a piecewise function where each segment is almost
linear. Here, the phase difference was measured from the transverse displacements
of the two flags’ heads (see the small schematic diagram in figure 4c). The phase
difference between the two flapping flags dictated the phase in which the rear flag
encountered the vortices (Kim er al. 2010). Hence, the phase difference depends

linearly on G,. This trend is not strongly correlated with the variation of C, in
figure 4(a). Hence, phase difference is not critical for determining the drag or
bending energy.

When 1.0 < G, < 2.0, the inherent mechanism for the small amplitude of the
rear flag may be the destructive vortices merging mode (Kim et al. 2010; Uddin
et al. 2013). The instantaneous vorticity contours for the case G, =2.0 is shown in
figure 4(d). It is seen that at the moment, the rear flag encounters a pair of vortices
(A) + (B) shedding from the front flag. The positive vortex (A) will pass around
the rear flag, while the negative vortex (B) will impact the flag and interact with
the positive vortex generated from the leading edge of the rear flag, resulting in
destructive vortices merging. That will decrease the flapping amplitude of the rear
flag (Alben 2009; Kim et al. 2010). Meanwhile the former flag is almost no longer
affected by the rear flag, flapping as an isolated flag.
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FIGURE 5. (Colour online) Instantaneous shapes (blue solid lines represent the periodic
boundary) with K = 0.3, G, = 2.0 for cases (a) in-line mode (G, = 0, L, = 4.0),
(b) staggered mode (G,=L,/2=2.0, L, =4.0).

On the other hand, it is seen that when G, < 1.0 the drag force of the front flag is
also reduced. The possible reason is that due to the close presence of the rear flag,
the pressure between the flags increases or the pressure behind the front flag increases.
Hence the drag force experienced by the front flag will decrease.

At other K € (0.15, 0.4), the trends of the curves for drag force C, and bending
energy E, are similar to those of K = 0.3, which is discussed above (figure 4).
Actually both the drag force and bending energy are proportional to the flapping
amplitude of the flag facing the incoming flow or the maximum bending deformation.
Smaller flapping amplitude of the rear flag leads to smaller bending energy. Hence,
compared to the two isolated inverted flags, the simple tandem arrangement is
not a good choice since the bending energy of the rear flag reduces significantly.
However, if coupled tandem inverted flags are placed side by side along the y-axis,
the performance of energy applications may be improved. In the following, coupled
inverted flags are proposed to be arranged as two rows and flags in the front and
rear rows are in-line or staggered. The performance of the in-line and the staggered
arrangements will be investigated in detail.

3.3. Periodic arrangement

In order to achieve more bending energy from the inverted flags, a periodic tandem
arrangement in the y direction is proposed. In the arrangement, the inlet and outlet
boundary conditions are identical to those in the above simulations. However, due to
the periodic arrangement, the upper and lower boundaries are set to be the periodic.
The typical domain size is L, x L, =[—15, 45] x [—2, 2] in the case L, =4.0. Two
typical arrangement patterns are considered: the in-line arrangement with G, =0 and
the staggered arrangement with G, = L,/2 (see figure 5). In the simulations, some
parameters Re =200, M =2.9 and K =0.3 are fixed and both G, and L, vary. The
effects of G, and L, are investigated to achieve more bending energy. In this section,
both the in-line arrangement (G, =0, L, =4.0) and the staggered arrangement (G, =
L,/2, L,=4.0) are investigated.

The mean drag coefficients and bending energies of the flags as functions of
horizontal distance G, are shown in figure 6. It is seen that, compared to the case
of an isolated inverted flag (black dashed line), for both arrangements the drag force
and bending energy of the rear flag can be significantly improved, i.e. be higher than
those in the case of an isolated inverted flag. It is also seen that the performances
of the rear inverted flags reach their peaks at G, ~ 2.0 and 3.0 for the in-line and
staggered arrangement, respectively. Meanwhile, the performance of the front flag is
close to that of an isolated flag. Therefore, periodic arrangements do improve the
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FIGURE 6. (Colour online) The mean drag coefficients and bending energies of the flags
as functions of G, with K=0.3 and L, =4.0, for cases (a,b) in-line mode (G, =0), (c,d)
staggered mode (G, =L,/2). Black dashed lines represent the drag coefficient in (a,c) and
the bending energy in (b,d) of an isolated flag.
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FIGURE 7. (Colour online) The mean drag coefficients (a) and bending energies (b) of
the flags as functions of L, with G,=2.0 and K =0.3. Black dashed horizontal lines in
(a) and (b) represent the drag coefficient and bending energy in the case of an isolated
flag, respectively.

bending energy achieved. Compared to the situation of the simple tandem case, the
significant improvement of the rear flag may be attributed to the lateral interaction
among the flags.

Here the effect of L, on the performance is also investigated. In the simulations, for
both arrangements, G, =2.0 is fixed. The mean drag coefficients and bending energies
of the flags as functions of L, are shown in figure 7. The results of cases with L, < 1.5
are not shown here because if the lateral gap is too narrow, the neighbouring flags in
the y-direction initially look like the walls of a narrow channel and the flag’s flapping
will be confined. In other words, the flags are difficult to flap in the cases with narrow
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FIGURE 8. (Colour online) Instantaneous vorticity contours (blue solid lines represent the
periodic boundary) at the time ¢~ 450 with K =0.3, G, =2.0 and L, =4.0 for cases

(a) in-line mode (G, =0), (b) staggered mode (G, = L,/2). The solid and dashed lines
represent the positive (anticlockwise) and negative (clockwise) vortices, respectively.

gaps (see C; and E, of the front flag in figure 7). Besides, in practical applications
the narrow gap arrangement is not preferred because flags may undergo collisions with
their neighbours. It is seen that the drag force and bending energy of the rear inverted
flag reach their peaks at L, =4.0 and 5.0 in the in-line and staggered arrangements,
respectively. As an example, the instantaneous shapes for the in-line case with the
highest C; and E, is shown in figure 5(a). It is seen that in the in-line case the
maximum bending deformation of the rear flag is significantly larger than that of the
front one or the isolated one.

It is also noted that for the staggered arrangement, as L, increases, the drag force
as well as the bending energy of the front and rear inverted flags will approach those
of the isolated case (black dashed line). While for the in-line arrangement, as L,
increases, the drag force and bending energy of the two inverted flags will approach
those in the case of simple tandem inverted flags.

The mechanism of the performance enhancement will be explored. For the in-line
arrangement, the instantaneous vorticity contours are shown in figure 8(a). It is
seen that the wake vortices of the front flag are concentrated in the centre area.
When the pair of vortices P (A + B) are released, an S vortex (C) is also shed
and the vortices mode is the P + S mode (Ryu er al. 2015). The first vortex (A)
shed from the front flag will pass around the rear flag and the latter two vortices
(B) + (C) will impact the rear flag (see supplementary movie available online at
https://doi.org/10.1017/jfm.2017.875). Finally the dominant negative vortex (C)
interacts with the negative vortex generated from the leading edge of the rear flag
by a constructive vortex merging mechanism (Alben 2009; Kim et al. 2010), which
enhances the leading edge vortex of the rear flag. Because the leading edge vortex
is generally attributed to the flapping (Gurugubelli & Jaiman 2015), the enhanced
leading edge vortex results in a significant increase in the flapping amplitude or
the maximum bending deformation of the rear flag. As we discussed in §3.2, the
situation of simple tandem inverted flags is totally different due to the destructive
vortices merging.

In the staggered arrangement, figure 8(b) shows the instantaneous vorticity contours.
It is seen that due to the staggered arrangement, the first two vortices (A) + (B) shed
from the front flag can impact the rear flag, and the third vortex (C) will pass around
the rear flag. For the vortices A and B, the positive vortex (B) shed from the front
flag is dominant and interacts with the positive vortex shed from the leading edge
of the rear flag, which leads to the constructive vortices merging. Hence, in both
arrangements, the leading edge vortex of the rear flag always merges constructively
with the vortex shed from the front flag. This kind of constructive vortex merging
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(a) (b)

FIGURE 9. (Colour online) Instantaneous vorticity contours (blue solid lines represent the
periodic boundary) with K =0.3 for cases (a) in-line mode (G,=1.0, L, =4.0), (b) in-line
mode (G,=2.0, L,=2.0). The solid and dashed lines represent the positive (anticlockwise)
and negative (clockwise) vortices, respectively.

mechanism can amplify the flapping amplitude or the maximum bending deformation
and the bending energy of the rear flag.

The other typical interactions among vortices, which are significantly different from
the constructive merging mode, are shown in figure 9. It is seen from figure 9(a)
that in the case with G, =1.0 and L, =4.0, due to the short longitudinal space, the
vortex generated by the front flag encounters the rear flag before it is shed. It may
transport along the rear flag. Hence, the rear flag is not able to take advantage of the
constructive vortex merging mode and the flapping of the rear flag is inhabited. It is
also seen from figure 6(a,b) that the flapping of the front flag is close to that of the
isolated one.

On the other hand, from figure 9(b), it is seen that when L, is small, due to
the confinement effect from the neighbouring flags in the y-direction, the front flag
experiences less drag and its flapping amplitude decreases (see figure 7). Similar to
the case with G, =2.0 and L, = 4.0, in this case (G, = 2.0, L, = 2.0) the vortex
merging mode is constructive, which may induce a large flapping for the rear flag.
For the rear flag, the negative effect due to the confinement is partially cancelled by
the positive effect due to the constructive vortices merging. Hence, the performance
of the rear flag is close to that of the isolated flag, which is much better than that
of the front flag (see figure 7).

In the above discussion, optimal G, and L, for the best performance of the rear flag
could be identified. The two periodic arrangements are able to enhance the bending
energy of the rear flag significantly. Meanwhile, the bending energy of the front flag
is close to that of an isolated inverted flag.

3.4. Multiple groups of tandem configuration

The above periodic arrangement in the y-direction allows us to mimic an infinite
number of flags along the y-axis which are assumed to be locked in an in-phase
synchronization. On the other hand, in reality, the flags are finite and it is not
obvious that several flags in parallel arrangement should be in phase. The phase
difference of two conventional parallel flags has been studied in the literature (Alben
2009; Mougel, Doaré & Michelin 2016) and seems to depend on the lateral spacing
between flags (i.e. L, here).

In this section, first it is necessary to carry out simulations with multiple inverted
flags to see whether the greater the number of flags, the closer the bending energy is
to that in the periodic arrangement. Second, we also investigate whether the flapping
phase difference would affect the performances of the flags.
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FIGURE 10. (Colour online) Bending energy of the middle flags as a function of the
number of groups. In all cases, G, =2.0, L,=4.0, K=0.3. The upper and lower horizontal
lines denote the bending energy of the rear and front flags in the periodic arrangement,
respectively. The solid lines represent the antiphase equilibrium state. The dashed lines
represent the in-phase quasi-equilibrium state.

In the following descriptions, each tandem configuration is referred to as a group.
Multiple groups of tandem flags placed laterally inside a large computational domain
are simulated. The domain is large enough to eliminate the effect of the boundary
condition. The inverted flags were placed in the central region of the domain. The
far field boundary condition is applied in the upper and lower boundary of the
computational domain. The inlet and outlet boundary conditions are identical to those
in §3. The typical domain size is L, x L, =[—15, 45] x [—45, 45] in the case of 12
groups with L, =4.0.

Since the largest E;, can be achieved in the in-line case (Gy,=0) with G, =2, L, =
4 and K = 0.3 according to the above study (see figure 7), these parameters were
adopted in this section. Cases with 4, 6, 8, 10 and 12 groups of tandem flags are
simulated. The bending energy of the middle group as a function of group number N
is presented in figure 10. It is seen that when N increases, the bending energies of
the front and rear flags in the middle group approach those in the infinite case, i.e.
the periodic case. It is noted that in the cases with finite groups, the bending energies
of the middle groups are larger than those of the outer groups.

The bending energy of each flag in the case with 12 groups is shown in figure 11.
It is seen that the inner groups, i.e. groups 5-8, achieve larger E, values than the outer
groups. The bending energies of the inner groups are close to those of the periodic
case. This can be interpreted in the following way. Section 3.3 has shown that the
periodic arrangement will enhance the performance of the flags. The inner groups
are more periodic-like than the outer groups. Hence, the inner groups will take more
advantage from the periodic-like arrangement than the outer groups. From figure 11,
it is also seen that due to the symmetry of the flow field, the E, distributions for the
front and rear flags are all symmetric with respect to the middle position.

It is noticed that in figure 10, for the rear row, from N =10 to N =12, the increase
of E, is approximately 4.4 %. The increase is essentially reasonable because in the
incompressible flow field, a small disturbance may induce a significant difference
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FIGURE 11. (Colour online) Performance of each flag in the case with 12 groups (Num =
1 and 12 represent the bottom and top groups, respectively). In this case, G, =2.0, L, =
4.0, K=0.3. The upper and lower horizontal lines denote the bending energy of the rear
and front flags in the periodic arrangement, respectively.

for the flow field (Huang et al. 2006). Due to the limited computational resources,
simulations with more groups were not performed. However, the more groups there
are, the closer the situation is to the case of infinite groups. It is believed that the
performance of the inner groups would be identical to that of the infinite case if the
group number N is large enough.

It is noticed that in the above simulations with different group numbers, at the
equilibrium state, the flapping flags of neighbouring groups are usually in antiphase.
Instantaneous vorticity contours in the inner four groups for the case with N =12 are
shown in figure 12. It is seen that at the equilibrium state, the flapping flags of any
two neighbouring flags in the y-direction are antiphase. The state is naturally formed
since initially all the flags are flat and the flags gradually evolve to the equilibrium
state with antiphase flappings. It is also seen from figure 12 that the wake far away
from the rear flags is no longer regular. However, the constructive vortex merging
mode between the front and rear flags in each group can be identified clearly, which
is similar to the mode in figure 8(a).

On the other hand, if all of the flags in the simulation were initially specified
by a small identical in-phase deformation, the flapping of the flags may approach
the in-phase state for a long time, e.g. 20 periods, then gradually approach the
terminal antiphase equilibrium state. The in-phase flapping may be regarded as a
quasi-equilibrium state. The vorticity contours at the quasi-equilibrium state (the
in-phase flapping) for the inner four groups are shown in figure 13. It is seen that the
in-phase flapping is not so perfect, especially for the row of rear flags. However, for
each group, the vortex merging mode is identical to that in the periodic arrangement
(see figure 8a). Hence, the performances of the front and rear flags in figure 13
should also be close to those in the periodic arrangement. Data for in-phase flappings
at the quasi-equilibrium state are also presented in figure 10. It is seen that bending
energies of the rear and front flags in the in-phase state are very close to those in the
antiphase state. Hence, the phase difference of neighbouring groups does not affect
the performance of the inverted flags.
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FIGURE 12. (Colour online) Vorticity contours for the inner four groups in the case with
G,=2.0, L,=4.0, K=0.3, and total group number N =12. The solid and dashed lines
represent the positive (anticlockwise) and negative (clockwise) vortices, respectively.

FIGURE 13. (Colour online) Vorticity contours at the quasi-equilibrium state (the in-phase
flapping) for the inner four groups in the case with G,=2.0, L,=4.0, K=0.3 and N =12.
The solid and dashed lines represent the positive (anticlockwise) and negative (clockwise)
vortices, respectively.

4, Conclusion

The interaction of inverted flexible flags with M =2.9 in a uniform flow with Re
of order 200 is investigated numerically. Although the Reynolds number here is much
lower than that in the experiments (Kim et al. 2013), important insights are made.
First the flapping modes of an isolated inverted flag which depend on K are reviewed.
Proper parameters for the flapping mode are adopted in our studies. Secondly, the drag
force and bending energy of simple two tandem inverted flags as functions of gap
distance G, are investigated. It is found that for a smaller G,, the drag force and the
bending energy of the rear flag may be greatly reduced due to the interaction of the
tandem flags, which may be due to the destructive vortex merging mode.
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In order to achieve more bending energy of the inverted flags, cases of infinite
flags with a periodic boundary condition were simulated. In these cases, two periodic
arrangements for coupled tandem flags were investigated: in-line and staggered
arrangements. It is found that in both arrangements, the flapping amplitude or
maximum bending deformation and bending energy of the rear flag are greatly
improved and the energy reaches a peak at certain positions, such as G, = 2.0 and
L, = 4.0 for the in-line arrangement and G, = 3.0 and L, = 5.0 for the staggered
arrangement. The bending energy obtained from the rear flag is significantly higher
than that from the isolated case. Meanwhile, the energy achieved from the front
flag is close to that of the isolated inverted flag. Hence, an enhancement effect is
achieved. It is also found that the better performance of the two arrangements may
be attributed to the constructive vortex merging mode.

Actually, in the case of an infinite number of flags, due to the lateral periodic
boundary condition, the in-phase synchronization in each row is imposed. In § 3.4,
results for cases of finite multiple flags without such constraint were presented. It is
found that antiphase synchronization is preferred for the cases of multiple flags, which
is different from that in the infinite cases. However, bending energies of the rear and
front flags in the in-phase state are very close to those in the antiphase state. In other
words, the phase difference of neighbouring groups does not affect the performance of
the inverted flags. In addition, when the group number is large enough, the bending
energies of the front and rear flags in the inner groups would be close to those in the
infinite case. The idea here may trigger further innovative designs for better energy
harvesting device using the inverted flags.
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