
Math. Struct. in Comp. Science (2006), vol. 16, pp. 763–788. c© 2006 Cambridge University Press

doi:10.1017/S0960129506005585 Printed in the United Kingdom

On the complexity of inductive definitions

DOUGLAS CENZER† and JEFFREY B. REMMEL‡

†Department of Mathematics, University of Florida, P.O. Box 118105, Gainesville,

Florida 32611, U.S.A.
‡Department of Mathematics, University of California at San Diego, La Jolla, CA 92093, U.S.A.

Received 25 September 2005; revised 15 December 2005

We study the complexity of computable and Σ0
1 inductive definitions of sets of natural

numbers. For example, we show how to assign natural indices to monotone Σ0
1-definitions

and then use these to calculate the complexity of the set of all indices of monotone

Σ0
1-definitions that are computable. We also examine the complexity of a new type of

inductive definition, which we call weakly finitary monotone inductive definitions.

Applications are given in proof theory and in logic programming.

1. Introduction

Inductive definitions play a central role in mathematical logic and computer science. For

example, the set of formulas in a first-order language is given by an inductive definition.

Given a set A of axioms for a mathematical theory T and a set of logical axioms and

rules, the theory T is obtained by an inductive definition. The set of computable functions

can be realised by an inductive definition. Similarly, for any Horn logic program P , the

unique stable model of P is obtained by an inductive definition.

It is well known that for any computable or Σ0
1 monotone inductive definition Γ, one

can construct the closure of Γ, Cl(Γ), in at most ω steps and Cl(Γ) is always a Σ0
1 set.

In some situations it is important that Cl(Γ) is computable. For example, it is important

that the set of formulas in a typical first-order theory is computable. In other situations

we know that Cl(Γ) is Σ0
1 but not computable. For example, even a finitely axiomatisable

theory T may be Σ0
1 but not decidable (computable). In this paper, we explore the

complexity of various properties of the closure of a Σ0
1 monotone inductive definition

Γ. As examples, we consider properties such as when the closure of Γ is finite, cofinite

or computable, or when the closure ordinal of Γ is finite or equal to ω. We do this by

assigning indices to Σ0
1 monotone inductive operators. In particular, this means that we

can effectively enumerate the family of all Σ0
1 monotone inductive operators as Γ0,Γ1,

Then, for example, we show that the set C of indices e such that the closure or least fixed

point lfp(Γe) is computable is Σ0
3 complete.

We also define a new class of inductive operators called weakly finitary monotone

inductive operators. The basic idea is that for a weakly finitary operator there may exist

a finite set of elements x such that x is forced into Γ(A) only if A contains one of

a collection of possibly infinite sets. We show that if Γ is a weakly finitary monotone

‡ This work partially supported by NSF under grant DMS 0400507.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 764

inductive operator, it is still the case that lfp(Γ) will be Σ0
1 but that it can take more than

ω steps to construct lfp(Γ). An example of such an operator is when we allow finitely

many instances of the ω-rule to generate a partial theory of arithmetic. We also assign

indices to the family of weakly finite Σ0
1 monotone inductive operators. We show that the

set of indices of weakly finitary Σ0
1 monotone inductive operators Γ such that lfp(Γ) is

computable is also Σ0
3 complete. However, for certain computable sets R, the set of indices

of weakly finitary Σ0
1 monotone inductive operators Γ such that lfp(Γ) ∩ R is computable

lies in the difference hierarchy over the Σ0
3 sets.

We use standard notation from computability theory (Soare 1987). Let � denote the

set of natural numbers and P(�) denote the set of all subsets of �. In particular, we let

φe (φAe) denote the e-th partial computable function (e-th A-partial computable function)

from � to � and letWe = Dom(φe) (WA
e = Dom(φAe)) be the e-th computably enumerable

(c.e.) (e-th A-computably enumerable) subset of �. Note that computably enumerable and

recursively enumerable (r.e.) have the same meaning, and, similarly, computable functions

are also known as recursive functions. We let We,s (WA
e,s) denote the set of numbers m � s

such that φe(m) (φAe (m)) converges in s or fewer steps. Given a finite set S = {a1 < . . . an},
the canonical index of S is

∑n
i=1 2ai . The canonical index of the empty set is 0. We let Dn

denote the finite set whose canonical index is n.

We fix a primitive recursive pairing function, [x, y] = 1
2
((x+ y)2 + 3x+ y) from �×�

to �. For any sequence a1, . . . , an with n � 3, we define [a1, . . . , an] by the usual inductive

procedure of defining [a1, . . . , an] = [a1, [a2, . . . , an]. The explicit index of the sequence

(a1, . . . , an) is defined by 〈a1〉 = [1, a1] if n = 1 and 〈a1, . . . , an〉 = [n, [a1, . . . , an]] if n � 2.

2. Inductive definitions

In this paper, we are going to consider inductive operators Γ : P(�) → P(�) that

inductively define subsets of �. We begin with a review of basic definitions and results,

which can be found, for example, in Hinman (1978).

Definition 2.1. Let Γ : P(�)→ P(�).

1 Γ is said to be monotone if A ⊂ B implies Γ(A) ⊆ Γ(B) for all A,B.

2 Γ is said to be inclusive if A ⊆ Γ(A) for all A.

3 Γ is said to be inductive if it is either monotone or inclusive.

An inductive operator Γ recursively defines a sequence {Γα : α an ordinal} by setting

Γ0 = �, Γα+1 = Γ(Γα) for all α and Γλ =
⋃
α<λ Γα. It is easy to see that Γα ⊆ Γβ whenever

α < β. By cardinality considerations, there exists a countable ordinal α such that Γα = Γβ

for all β > α. The least such α is called the closure ordinal of Γ and will be denoted by

|Γ|. The set Γ|Γ| is called the closure of Γ or the set inductively defined by Γ and will be

denoted by Cl(Γ).

For a monotone operator, the closure is also the least fixed point lfp(Γ) as indicated by

the following lemma, see Hinman (1978).

Lemma 2.1. If Γ is a monotone operator, Cl(Γ) is the unique least set C such that

Γ(C) = C . In fact, for any set A, we have Γ(A) ⊆ A if and only if cl(C) ⊆ A.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 765

For any operator Γ : P(�) → P(�), let RΓ ⊆ � × P(�) be given by RΓ(m,A) ⇐⇒
m ∈ Γ(A). In general, we say that a predicate R(x1, . . . , xk, A) ⊆ �k ×P(�) is computable

if there is an oracle Turing machine Me such that for any A ∈ P(�), Me with oracle A and

input (x1, . . . , xn) outputs 1 if R(x1, . . . , xn, A) holds, and outputs 0 otherwise. The notation

of a predicate being Σ0
n,Π

0
n,Σ

1
1,Π

1
1, etc. can then be defined as usual over the class of

computable predicates. We then say that an operator Γ is computable (respectively, Σ0
1,

arithmetical, etc.) if the relation RΓ is computable (respectively, Σ0
1, arithmetical, etc.). The

following results are well known.

Theorem 2.1. Let Γ be an inductive operator.

(a) If Γ is computable, the sequence {Γn : n ∈ ω} is uniformly computable, |Γ| � ω, and

Cl(Γ) is Σ0
1.

(b) If Γ is Σ0
1, then |Γ| � ω and if Γ is monotone Σ0

1, then Cl(Γ) is Σ0
1.

(c) Any Σ0
1 set is 1-1 reducible to the closure of some computable monotone operator.

(d) If Γ is monotone arithmetical, |Γ| � ωCK
1 (the least non-computable ordinal) and

Cl(Γ) is Π1
1.

(e) Any Π1
1 set is 1-1 reducible to the closure of a monotone Π0

1 operator.

Example 2.1. The classic example of a computable monotone operator is given by the

definition of the set of sentences of a propositional logic over an infinite set a0, a1, . . . of

propositional variables. Identifying sentences p, q with their Gödel number gn(p), gn(q),

we have for any i, p, q, and A:

(0) ai ∈ Γ(A).

(1) ¬p ∈ Γ(A) if p ∈ A.

(2) p ∧ q ∈ Γ(A) if p ∈ A and q ∈ A.

(3) p ∈ Γ(A) if p ∈ A.

Other clauses could be added to include disjunction, implication or other binary connect-

ives. This operator is computable because for any sentence p, we can compute the (at

most two) other sentences that need to be in A for p to get into Γ(A). Similar computable

inductive definitions can be given for the set of terms in a first-order language and the

set of formulas in predicate logic. In each case, the closure ordinal of such a Γ is ω and

the set of sentences (respectively, terms, formulas) is computable since for any sentence

(term, formula) p of length n, p ∈ lfp(Γ) if and only if p ∈ Γn.

Example 2.2. Suppose we are given a computable or Σ0
1 set A0 of axioms for propositional

logic together with the logical axioms ¬p∨p for each p and a finite set of rules as indicated

below. Then the set of consequences of A0 is generated by the operator Γ where, for all

sentences p, q, r and all A:

(0) p ∈ Γ(A) if p is an axiom.

(1) p ∨ q ∈ Γ(A) if p ∈ A or q ∈ A.

(2) p ∈ Γ(A) if p ∨ p ∈ A.

(3) (p ∨ q) ∨ r ∈ Γ(A) if p ∨ (q ∨ r) ∈ A.

(4) q ∨ r ∈ Γ(A) if p ∨ q ∈ A and ¬p ∨ r ∈ A.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 766

In this case, Γ is a Σ0
1 operator but is not computable since, for example, the Cut Rule

(4) asks for the existence of a p such that p ∨ q and ¬p ∨ r are in A.

Now, in this particular case, the consequences of a computable set A0 will be a

computable set but a similar example can be given for first-order logic where the

consequences of a finite set of axioms for arithmetic is Σ0
1 but not computable.

Example 2.3. The one-step provability operator for a computable Horn logic program is

a Σ0
1 monotone operator. That is, suppose A is a computable set of propositional letters

or atoms. We assume that A = �. A logic programming clause is a construct of the form

C = p← q1, . . . , qm,¬r1, . . . ,¬rn (1)

where p, q1, . . . , qm, r1, . . . , rn are atoms. Given a clause C , we let

[C] = [p, 〈q1, . . . , qm〉, 〈r1, . . . , rn〉]

where, by convention, we let 〈q1, . . . , qm〉 = 0 if m = 0 and 〈r1, . . . , rn〉 = 0 if n = 0. The

atoms q1, . . . , qm,¬r1, . . . ,¬rn form the body of C and the atom p is its head. Given a set

of atoms M ⊆ A, we say M is a model of C if either

(i) there is a qi such that qi /∈ M or there is an rj such that rj ∈ M (M does not satisfy

the body of C); or

(ii) p ∈M (M satisfies the head of C).

The clauses C for which n = 0 are called Horn clauses.

A program P is a set of clauses. We say that P is computable (Σ0
1, arithmetical, etc.)

if {[C] : C ∈ P } is computable (Σ0
1, arithmetical, etc.). A program entirely composed

of Horn clauses is called a Horn program. If P is a Horn program, there is a one-step

provability operator associated with P , TP : P(�)→ P(�), which is defined by

TP (A) equals the set of all p such that there exists a clause C = p ← q1, . . . , qn in P

such that q1, . . . , qn ∈ A.

A Horn program always has a least model, which is the closure of Tp. It is the intended

semantics of such a program.

For programs with bodies containing the negation operator not, we will use the stable

model semantics. Following Gelfond and Lifschitz (1988), we define a stable model of the

program as follows. Assume M is a collection of atoms. The Gelfond–Lifschitz reduct of

P by M is a Horn program arising from P by first eliminating those clauses in P that

contain ¬r with r ∈ M. In the remaining clauses, we drop all negative literals from the

body. The resulting program GLM(P) is a Horn program. We call M a stable model of P

if M is the least model of GLM(P). In the case of a Horn program, there is a unique stable

model, namely, the least model of P . Alternatively, one can define a one-step provabibility

operator TP,M relative to a logic program P consisting of clauses of the form of (1) and

a collection of atoms M by defining TP,M(A) to be the set all p such that there exists a

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 767

clause C = p← q1, . . . , qn,¬r1, . . . ,¬rm in P such that

(i) {q1, . . . , qm} ⊆ A; and

(ii) {r1, . . . , rm} ∩M = �.

Then M is a stable model if and only if the closure of TP,M equals M. In general, if M is

a computable set, TP,M is a monotone Σ0
1 operator.

It should be pointed out that both Examples 1 and 2 can be reformulated in the

framework of logic programming as computable Horn programs. That is, the set of

rules is a computable set, even though the corresponding inductive operator need not be

computable.

Example 2.4. Another setting where computable inductive operators arise is in computable

algebra and computable model theory. Surveys on various topics in computable algebra

and model theory can be found in Ershov et al. (1998a; 1998b).

A generic example of computable inductive operators that arise in computable algebra

are effective closure systems, which were introduced by Remmel (Remmel 1980). An

effective closure system M = (M, cl) consists of a computable set M of the natural

numbers � together with an operation cl : P(M) → P(M), where P(M) denotes the

power set of M, which satisfies the following:

(i) A ⊆ cl(A).

(ii) A ⊆ B implies cl(A) ⊆ cl(B).

(iii) cl(cl(A)) = cl(A).

(iv) x ∈ cl(A) implies that for some finite A′ ⊆ A, x ∈ cl(A′).

Furthermore, we require that cl is effective on (indices of) finite sets. That is, we assume

that there is an effective algorithm that, given x, y1, . . . , yn ∈M, will decide whether or not

x ∈ cl(y1, . . . , yn), where cl(y1, . . . , yn) denotes cl({y, . . . , yn}). Note that this condition plus

conditions (i)–(iv) ensure that such closure operators are at least Σ0
1 monotone operators.

We also assume that(M, cl) always satisfy the non-triviality axiom (v):

(v) cl(�) �=∗ M.

Here we write A =∗ B if there exist finite sets, E and F , such that cl(A∪E) = cl(B ∪F).

Similarly, we write that A ⊆∗ B if there is a finite set F such that A ⊆ cl(B ∪ F).

We say V is a substructure of M, or V is closed, if V ⊆ M and cl(V) = V . It is easy

to see that both the set of c.e. substructures and the set of all substructures of M form a

lattice, where the meet operation is just the set theoretic intersection and the join of two

substructures V and W , denoted V +W , is given by V +W = cl(V ∪W). We use L(M)

to denote the lattice of c.e. substructures of M = (M, cl) and S(M) to denote the lattice

of all substructures of M.

If M also satisfies

(vi) (Exchange) x ∈ cl(A ∪ {y})− cl(A) implies y ∈ cl(A ∪ {x}),
we say M is an effective Steinitz system. Effective Steinitz systems have been extensively

studied: see Nerode and Remmel (1982; 1983), Downey (1983a; 1983b) and Baldwin

(1982; 1984).

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 768

Effective algebras form another natural class of examples. These are obtained as follows.

Let (M,R) be an effective universal algebra in the sense that M is a computable set and

R is a computable set of uniformly computable operations on M. Then we naturally

associate an effective closure system (M, clR) with (M,R) by setting clR(A) to be the

closure of A under the operations of R and their projections. We say that an effective

closure systemM formed in this way is an effective algebra. As we shall see, most natural

examples, such as groups, rings, fields and vector spaces, are effective algebras.

However, not all effective closure systems are effective algebras. For example, for any

effective closure system M = (M, cl), we can define an intersection subsystem (A, cl∗A) for

A ⊆M where for any B ⊆ A,

cl∗A(B) = cl(B) ∩ A.
It is easy to check that (A, cl∗A) is an effective closure system, but not necessarily an

effective algebra.

We conclude this example with a partial list of some specific examples of effective

closure systems that have been studied extensively in the literature. In particular, there

has been considerable work on the lattice of c.e. substructures of various structures.

Details can be found in the survey article Nerode and Remmel (1985). Some general

results on the lattice of substructures of effective closure systems can be found in Downey

and Remmel (1998). Here we shall only give a brief description of the closure systems;

refer to Nerode and Remmel (1985) or Downey and Remmel (1998) for more details.

Sets. LetM = (ω, cl) where cl(A) = A. In this case L(M) is the lattice of c.e. sets. Clearly,

cl is a computable monotone operator in this case.

Vector spaces. Let V∞ denote a fully effective infinite dimensional vector space over a

computable field. That is, V∞ consists of a computable subset U of ω with computable

operations for addition and scalar multiplication on V∞. Moreover, we assume that V∞
has an effective dependence algorithm, that is, there is a uniform algorithm that given

any x, y1, . . . , yn in U, decides whether or not x ∈ ({y1, . . . , yn})∗, where (A)∗ denotes

the subspace generated by A. In this case, cl(A) = (A)∗ and L(V∞) is the lattice of c.e.

subspaces.

In this case, cl is a Σ0
1 monotone operator, but it is not computable. This follows from

a result of Dekker (Dekker 1971), which says that every c.e. subspace V of V∞ has a

computable basis B. Thus, since there are c.e. subspaces that are not computable, it

follows that the relation Rcl is only Σ0
1. Similar results hold for the remaining examples

of closure operators given below.

Fields. Here F∞ denotes a fully effective algebraically closed field with infinite computable

transcendence base, and cl(A) denotes the algebraic closure of A.

Affine spaces. In this case M = (V∞, K�) where V∞ a computable vector space over a

computable ordered field. We define y ∈ K�(y1, . . . , yn) if and only if y = Σλiyi with

Σλi = 1. Again this is a Steinitz algebra. We denote its lattice of c.e. affine subspaces

by L(V∞, K�) to distinguish it from L(V∞) (cf. Downey (1983b)).

Locally computable rings and modules. Many other computable rings and modules are

effective closure systems. For example, consider G = ⊕i∈ω�, the free Abelian group

on ω generators.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 769

Subalgebras of Boolean Algebras (Remmel 1978; 1980). A computable Boolean algebra

B = (B,∨B,∧B,¬B) consists of a computable subset B of ω and computable

operations for the meet, ∧B, join, ∨B, and complement, ¬B, operations, which turn B

into a Boolean algebra. In this case, cl(A) is the subalgebra generated by A.

Convex sets, K(V∞). Finally, consider the structureK(V∞) = (V∞, 〈〉) from Kalantari (1981)

and Downey (1984). Here we consider V∞ where the underlying field is the rationals,

Q, and 〈〉 is the operation of taking the convex hull, viz.,

〈{x1, . . . , xn}〉 = {y|y = Σλixi with Σλi = 1 and 0 � λi � 1}.

Then (V∞, 〈〉) is obviously an effective closure system.

We note that in all the structures above, we can generate many classes of Σ0
1 inductive

operators by simply letting A be any computable or c.e. subset of the structure and

defining a new closure operator ΓA by ΓA(S) = cl(A ∪ S).

3. Index sets for Σ0
1 and computable monotone operators

An important property of Σ0
1 monotone operators Γ is that the relation m ∈ Γ(A) depends

only on positive information about A. That is, we have the following lemma.

Lemma 3.1 (Hinman 1978, page 92). For any Σ0
1 monotone operator Γ, there is a

computable relation R such that, for all m ∈ � and A ∈ P(�),

m ∈ Γ(A) ⇐⇒ (∃n)(Dn ⊆ A & R(m, n)). (2)

It follows from Lemma 3.1 that the Σ0
1 monotone inductive operators may be effectively

enumerated as Γ0,Γ1, . . . in the following manner. For all e, m ∈ � and all A ∈ P(�), let

m ∈ Γe(A) ⇐⇒ (∃n)[Dn ⊆ A and 〈m, n〉 ∈We].

Lemma 3.2.

(a) There is a primitive recursive function f such that for all m, e, a

Γe(Wa) = Wf(e,a).

(b) The relation m ∈ Γte is Σ0
1 in m, e and t.

(c) The relation m ∈ lfp(Γe) is Σ0
1 in m and e.

(d) There is a computable function h such that lfp(Γe) = Wh(e).

Proof.

(a) We have

m ∈ Γe(Wa) ⇐⇒ (∃n)[Dn ⊆Wa and 〈m, n〉 ∈We].

So we may define a partial computable function φc such that to compute φc(e, a, m),

we search for the least pair 〈n, s〉 such that Dn ⊆ Wa,s and [m, n] ∈ We,s. If we find

such a pair, we set φc(e, a, m) = 1; otherwise, φc(e, a, m) is undefined. Then

m ∈ Γe(Wa) ⇐⇒ [e, a, m] ∈ Dom(φc).

Now the s-m-n theorem will provide a primitive recursive f such φf(e,a)(m) = φc(e, a, m).

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 770

(b) Let W0 = � and let f be given by (a). For any fixed e, let ge be the partial computable

function defined by ge(a) = f(e, a). Then clearly, Γte = Wgte(0).

(c) This follows from the fact that m ∈ lfp(Γe) ⇐⇒ (∃t)(m ∈ Γte).

(d) This follows from part (c) by the s-m-n theorem.

Theorem 3.1. Fix an infinite c.e. set W . Then {e : W ∩ lfp(Γe) is computable} is Σ0
3

complete.

Proof. We make use of the well-known fact that Rec = {e : We is computable} is Σ0
3

complete (Soare 1987). Let ψ be a computable function such that W ∩We = Wψ(e) for all

e. Now let C = {e : W ∩ lfp(Γe) is computable} and h be the computable function defined

in the proof of Lemma 3.2.(d). Then e ∈ C ⇐⇒ ψ(h(e)) ∈ Rec, so C is a Σ0
3 set.

For the completeness, first consider the case where W = �. We can use the s-m-n

theorem to obtain a 1:1 computable function g such that

〈m, s〉 ∈ Γg(e)(A) ⇐⇒ m ∈We,s or 〈m, s+ 1〉 ∈ A.

It is easy to see that lfp(Γg(e)) = We ×�, so We is computable if and only if lfp(Γg(e)) is

computable. Hence, g witnesses the fact that Rec is 1:1 reducible to C since e ∈ Rec ⇐⇒
g(e) ∈ C . Thus C is Σ0

3 complete.

For an arbitrary infinite c.e. set W , let R be an infinite computable subset of W and

let f be an increasing, computable function such that R = {f(0), f(1), . . .}. Then, for any

e, let Wp(e) = {f(i) : i ∈ We}, and observe that Wp(e) ⊂ W for all e and that Wp(e) is

computable if and only if We is computable. It follows that We is computable if and only

if W ∩ lfp(Γg(p(e))) is computable. Thus g ◦ p shows that, in general, Rec is 1:1 reducible

to C , so C is Σ0
3-complete for all W .

Computable operators are continuous and we can use the indexing of Cenzer and

Remmel (1999, page 135) to define the e-th computable monotone operator ∆e for e in

the Π0
2 set of indices such that φe is a total function. That is, let σ0, σ1, . . . enumerate the

set {0, 1}∗ of finite strings of 0’s and 1’s. For σ, τ ∈ {0, 1}∗, we write σ � τ if σ is an initial

segment of τ and write σ ⊆ τ if {i : σ(i) = 1} ⊆ {i : τ(i) = 1}. Then the partial computable

function φe : � → � defines a computable monotone operator ∆e : P(�) → P(�) if it

satisfies the following four conditions.

(1) (∀m)(∃n)[φe(m) = n], that is, φe is total.

(2) (∀m)(∀n)[σm � σn −→ σφe(m) � σφe(n)].
(3) (∀m)(∃n)(∀σi ∈ {0, 1}n)[|σφe(i)| � m].

(4) (∀m)(∀n)[σm ⊆ σn −→ σφe(m) ⊆ σφe(n)].
The first three clauses above simply define the set of indices of computably continous

functions from {0, 1}� → {0, 1}�. Then clause (4) ensures that the resulting operator

is monotone. Let ICM denote the set of indices e satisfying (1)–(4). For A ⊆ � and

n ∈ �, identify A with its characteristic function and let An = i where σi = A�n =

(A(0), A(1), . . . , A(n− 1)). Then we may define the e-th computable monotone operator by

declaring that

m ∈ ∆e(A) ⇐⇒ (∃n)(∀σi ∈ {0, 1}n)[|σφe(i)| � m & σφe(An)(m) = 1]. (3)

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 771

Note that if φe satisfies conditions (1)–(4), then ∆e(A) also has a Π0
1 definition, namely,

m ∈ ∆e(A) ⇐⇒ (∀n)[(∀σi ∈ {0, 1}n)[|σφe(i)| � m] −→ σφe(An)(m) = 1]. (4)

Theorem 3.2. The set ICM of indices of computable monotone operators is Π0
2 complete.

Proof. It is clear that ICM is a Π0
2 set. For the completeness, we define a reduction of

the Π0
2 complete set Tot = {e : φe is total} to ICM as follows. Let f be the computable

function such that for any i, we have φf(e)(i) = j where

σj = (φe(0), φe(1), . . . , φe(|σi| − 1)).

Now, if e /∈ Tot, then, clearly, φf(e) is not total, so f(e) /∈ ICM. However, if e ∈ Tot, it is

easy to see that for all A, we have ∆f(e)(A) = {m : φe(m) = 1}, so ∆f(e) is a computable

monotone operator. Thus, e ∈ Tot ⇐⇒ f(e) ∈ ICM.

Lemma 3.3. There is a primitive computable function g such that for all e ∈ ICM,

∆e = Γg(e).

Proof. Define 〈m, n〉 ∈Wg(e) if and only (∃k)(∀σi ∈ {0, 1}k)[|σφe(i)| > m] and there exists

σi ∈ {0, 1}k such that σφe(i)(m) = 1 and {j : σi(j) = 1} ⊆ Dn. We now verify that ∆e = Γg(e)
if e ∈ ICM.

Suppose first that m ∈ ∆e(A). Then we find the least k such that

(∀σi ∈ {0, 1}k)[|σφe(i)| > m] .

Thus, for σi = A�k, we have σφe(i)(m) = 1. Now let

Dn = A ∩ {0, 1 . . . , k − 1} = {j < k : σi(j) = 1}.

It follows that 〈m, n〉 ∈Wg(e), so m ∈ Γg(e)(A).

Next suppose that m ∈ Γg(e)(A) and let n, k and σi ∈ {0, 1}k be given as above so

that σφe(i)(m) = 1 and {j : σ(j) = 1} ⊆ Dn ⊆ A. It follows from clause (4) above that

σφ(e)(Ak)(m) = 1 and, therefore, m ∈ ∆e(A).

Hence we have shown that, for all A, we have ∆e(A) = Γg(e)(A) and hence ∆e =

Γg(e).

Lemma 3.4.

(a) There is a partial computable function δ such that for all m, e, a with a ∈ Tot and

e ∈ ICM, we have δ(e, a) ∈ Tot and ∆e({m : φa(m) = 1}) = {m : φδ(e,a)(m) = 1}.
(b) There is a partial computable function ψ such that for all e, t with e ∈ ICM, we have

φψ(e,t) is the characteristic function of ∆t
e.

(c) There is a Σ0
1 relation S such that

m ∈ lfp(∆e) ⇐⇒ 〈m, e〉 ∈ S.

Proof.

(a) To compute φδ(e,a)(m), first find k so that |σφe(i)| > m for all σi ∈ {0, 1}k . Then let

σi = (φa(0), φa(1), . . . , φa(k − 1)) and set φδ(e,a)(m) = σφe(i)(m).

Parts (b) and (c) follow easily.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 772

This shows that the closure of any computable monotone inductive operator is a c.e.

set. In Cenzer (1978), the first author considered the converse problem of whether any

c.e. set is the closure of some computable monotone inductive operator. It is shown there

that not every c.e. set is the closure of such an operator, but that every c.e. set is one-one

reducible to such a closure. Here is an index set version of that result.

Theorem 3.3. There are primitive recursive functions f and g such that for all e and m,

we have f(e) ∈ ICM and m ∈We ⇐⇒ g(m) ∈ lfp(∆f(e)).

Proof. Define the computable monotone inductive operator ∆f(e) by

〈m, s〉 ∈ ∆f(e)(A) ⇐⇒ [m ∈We,s ∨ 〈m, s+ 1〉 ∈ A].

It is easy to see that lfp(∆f(e)) = {〈m, s〉 : m ∈We}, so for any m and e,

m ∈We ⇐⇒ 〈m, 0〉 ∈ lfp(∆f(e)).

Thus we can take g(m) = 〈m, 0〉.

The index set complexity for Σ0
1 operators given in Theorem 3.1 easily carries over for

computable monotone operators since the operator Γg(e) defined in the proof is uniformly

computable. Thus we have the following theorem.

Theorem 3.4. {e : lfp(∆e) is computable} is Σ0
3 complete.

For the rest of this section, we consider the complexity of two types of index sets

associated with monotone operators. The first type comes from the cardinality of the least

fixed point. For example, we will determine the complexity of the problem of deciding

whether lfp(Γe) is a finite or an infinite set. The second type comes from the closure

ordinal of the operator. For example, we will determine the complexity of the problem of

deciding whether the closure ordinal of ∆e is finite or equals ω. For the remaining results

in this section, we will omit the routine verifications of the complexity upper bounds.

Theorem 3.5. {e : |Γe| > 0} = {e : lfp(Γe) �= �} is Σ0
1 complete and {e : |Γe| = 0} = {e :

lfp(Γe) = �} is Π0
1 complete.

Proof. For the completeness, let E be an arbitrary c.e. set and define a computable

function fE so that

m ∈ ΓfE (e)(A) ⇐⇒ (m = 0 & e ∈ E).

Clearly, if e /∈ E, then |ΓfE (e)| = 0 and lfp(ΓfE (e)) = �, and if e ∈ E, then |ΓfE (e)| = 1

and lfp(ΓfE (e)) = {0}. Thus, fE shows that the arbitrary Σ0
1 set E is 1:1 reducible to

{e : |Γe| > 0}, and at the same time �− E is 1:1 reducible to {e : |Γe| = 0}.

A set is said to be d.c.e. if it is a difference of two c.e. sets.

Theorem 3.6. For any natural number k > 0,

(a) {e : card(lfp(Γe)) > k} is Σ0
1 complete and

{e : card(lfp(Γe)) � k} is Π0
1 complete.

(b) {e : card(lfp(Γe) = k} is d.c.e. complete.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 773

Proof.

(a) For the completeness, modify the definition of fE in the proof of Theorem 3.5 so that

m ∈ ΓfE (e)(A) ⇐⇒ [m � k & e ∈ E].

Then lfp(ΓfE (e)) = � if e /∈ E and lfp(ΓfE (e)) = {0, 1, . . . , k} if e ∈ E. Again fe shows

that E is 1:1 reducible to {e : card(lfp(Γe)) > k} and, hence, {e : card(lfp(Γe)) > k} is

Σ0
1 complete.

(b) Clearly, {e : card(lfp(Γe)) = k} = {e : card(lfp(Γe)) � k} − {e : card(lfp(Γe)) � k − 1}.
For completeness, we need only show that for any c.e. sets C and D with D ⊆ C , there

is 1:1 computable function g such that e ∈ C − D ⇐⇒ g(e) ∈ {e : card(lfp(Γe) = k}.
So let C and D be c.e. sets where D ⊆ C and define g so that

m ∈ Γg(e)(A) ⇐⇒ [(m < k & e ∈ C) ∨ (m = k & k − 1 ∈ A & e ∈ D)].

If e /∈ C , then lfp(Γg(e)) = �. If e ∈ C − D, then |Γg(e)| = k and lfp(Γg(e)) =

{0, 1, . . . , k − 1}. If e ∈ C ∩ D, then |Γg(e)| = 2 and lfp(Γg(e)) = {0, 1, . . . , k}.

Theorem 3.7.

(a) {e : lfp(Γe) is finite} is Σ0
2 complete and {e : lfp(Γe) is infinite} is Π0

2 complete.

(b) {e : lfp(Γe) is cofinite} is Σ0
3 complete and {e : lfp(Γe) is coinfinite} is Π0

3 complete.

Proof. The statements follow easily from the fact that {e : We is finite} is Σ0
2 complete

and that {e : We is cofinite} is Σ0
3 complete by letting Γf(e)(A) = We for all A.

The corresponding result for computable monotone operators is a corollary.

Theorem 3.8.

(a) {e : lfp(∆e) is infinite} is Π0
2 complete.

(b) {e : lfp(∆e) is cofinite} is Σ0
3 complete and {e : lfp(∆e) is coinfinite} is Π0

3 complete.

Next we consider the closure ordinal of a monotone inductive operator.

Theorem 3.9. For any natural number t � 1:

(a) {e : |Γe| > t} is Σ0
2 complete and {e : |Γe| � t} is Π0

2 complete.

(b) {e : |Γe| = 1} is Π0
2 complete.

(c) {e : |Γe| = t+ 1} is D0
2 complete.

Proof. We will use the fact that Fin = {e : We is finite} is a Σ0
2 complete set. We can

define a 1:1 computable function f such that

m ∈ Γf(e)(A) ⇐⇒ m = 0 ∨ (∃n � m)(n ∈ A) ∨ (∃n � m)(n ∈We).

If We is infinite, Γ1
f(e) = � and |Γe| = 1. If We is finite, let M be the largest element

of We ∪ {0}. Then Γ1
f(e) = {0, 1, . . . ,M}, Γ2

f(e) = � and, therefore, |Γf(e)| = 2. Thus

e ∈ Fin ⇐⇒ f(e) ∈ {e : |Γe| > 1}, which establishes completeness for part (a) when t = 1

and the completeness of part (b).

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 774

For the completeness in part (a), fix t � 1 and define a 1:1 computable function g such

that m ∈ Γg(e)(A) if and only if

m = 0 ∨ (m < t & m− 1 ∈ A) ∨ (m � t & [(∃n � m)(n ∈We) ∨ (t− 1 ∈ A)]).

Then it is easy to see that if We is infinite, for all i,

Γig(e) = {x : x < i ∨ x � t},

so |Γg(e)| = t and lfp(Γg(e)) = �. However, if We is finite and M is the largest element of

We, we have, for i � t,

Γig(e) = {x : x < i ∨ t � x � M}

and

Γt+1
g(e) = �,

so |Γg(e)| = t+ 1. Thus e ∈ Fin ⇐⇒ g(e) ∈ {e : |Γe| > t}.
For the completeness in part (c) in the case where t = 1, it suffices to define a computable

function h such that |Γh(a,b)| = 2 if and only if Wa is finite and Wb is infinite. Let Ev

denote the set of even numbers and Od denote the set of odd numbers. First define h(a, b)

so that

2m ∈ Γh(a,b)(A) ⇐⇒ m = 0 ∨ (∃n � m)(n ∈ A ∨ (∃n � m)(n ∈Wa)).

Then, by our argument for case (a), Ev ⊆ Γ1
h(a,b) if Wa is infinite. If Wa is finite and M is

the greatest element of Wa ∪ {0}, then Γ1
h(a,b) ∩ Ev = {2x : x � M} and Ev ⊆ Γ2

h(a,b). We

then complete the definition of h so that

2m+ 1 ∈ Γh(a,b)(A) ⇐⇒ [m = 0 ∨ (∃n � m)(n ∈Wa)]

∨[0 ∈ A & (∃n � m)(n ∈Wb)]

∨[0 ∈ A & m > 0 & (2m− 1 ∈ A)].

Now if Wa is infinite, 0d ⊆ Γ1
h(a,b), so Γ1

h(a,b) = � and |Γh(a,b)| = 1. Next suppose that

Wa is finite and M is the greatest element of Wa ∪ {0}. Then our definition of h ensures

that Γ1
h(a,b) ∩ 0d = {2x + 1 : x � M} since 0 /∈ Γ0

h(a,b). Now, if Wb is infinite, Od ⊆ Γ2
h(a,b),

so Γ2
h(a,b) = � and |Γh(a,b)| = 2. Finally, if Wb is finite and B is the largest element of

Wa ∪Wb ∪{0}, we have Γ2
h(a,b) ∩ 0d = {2x+1 : x � B} and 2B+3 ∈ Γ3

h(a,b), so |Γh(a,b)| � 3.

This shows that {e : |Γe| = 2} is D0
2 complete.

For the general case of part (c), fix t > 1 and define h so that

2m ∈ Γh(a,b)(A) ⇐⇒ m = 0 ∨ (m < t & m− 1 ∈ A)

∨ (m � t & [(∃n � m)(n ∈We ∨ 2(t− 1) ∈ A)]).

Then we can argue as in case (a) that Ev ⊆ Γth(a,b) if Wa if infinite. On the other hand, if

Wa is finite and M is the largest element of Wa ∪ {0}, then

Γth(a,b) ∩ Ev = {0, . . . , 2(t− 1)} ∪ {2x : M � x � t} and

Γt+1
h(a,b) ∩ Ev = Ev.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 775

We now complete the definition of h so that

2m+ 1 ∈ Γh(a,b)(A) ⇐⇒ [m = 0 ∨ (∃n � m)(n ∈Wa)]

∨[2(t− 1) ∈ A & (∃n � m)(n ∈Wa)]

∨ [m > 0 & 2(t− 1) ∈ A & 2m− 1 ∈ A].

It can then be verified that Wa is finite and Wb is infinite if and only if Γh(a,b)| = t+ 1.

Theorem 3.10. {e : |Γe| = ω} is Π0
3 complete and {e : |Γe| < ω} is Σ0

3 complete.

Proof. We use the Σ0
3 completeness of Cof = {e : We is cofinite}. We define a 1:1

computable function f so that We is cofinite if and only if |Γf(e)| < ω. Define f so that

2n ∈ Γf(e)(A) ⇐⇒ n = 0 ∨ 2n− 2 ∈ A ∨ 2n+ 1 ∈ A;

2n+ 1 ∈ Γf(e)(A)⇐⇒ (∃m > n)(2m+ 1 ∈ A)

∨ (∃m < n)[2m ∈ A & (∀i � n)(m � i −→ i ∈We)].

We make the following observations. First, Γ1
f(e) = {0} for all e. Next, it is easy to see by

the first of our two conditions defining f that we certainly have 2n ∈ Γn+1
f(e) for all n and e

and, moreover, 2n ∈ Γtf(e) for n � t if and only if 2n + 1 ∈ Γt−1
f(e). Thus, if Ev is the set of

even numbers, Ev ⊆ lfp(Γf(e)) for all e.

Now fix e and let Γ = Γf(e). First suppose that We is cofinite and M is the smallest

natural number such that i ∈ We for all i � M. It follows from our second condition

defining f that, since 2M ∈ ΓM+1, we have 2n + 1 ∈ ΓM+2 for all n � M. But then it is

easy to see that 2n + 1 ∈ ΓM+3 for all n and 2n ∈ ΓM+4 for all n. Thus lfp(Γ) = � and

|Γ| � M + 4. On the other hand, suppose that |Γ| = k is finite. It follows that 2n ∈ Γk for

all n. Let t � k be the least value such that {n : 2n ∈ Γt} is infinite. By our observations

above, t > 1, so let M be the maximum of {m : 2m ∈ Γt−1}. Thus, for infinitely many

n � t, we have 2n ∈ Γt, so 2n + 1 ∈ Γt−1. Now let s be the least k � t − 1 such that

{n : 2n+ 1 ∈ Γk} is infinite. Again it must be the case that s > 1, so Γs−1 must be finite.

Now let p be the largest element such that 2p ∈ Γs−1. Because {n : 2n+ 1 ∈ Γs} is infinite,

it must be the case that for arbitrarily large n, there is an m � p such that 2m ∈ Γs−1 and

i ∈We for m � i � n. But this implies that We is coinfinite.

The operator Γf(e) defined in the proof of Theorem 3.10 does not define a computable

monotone operator, so we cannot conclude that {e : |∆e| = ω} is Π0
3 complete. In fact,

{e : |∆e| = ω} is Π0
2 complete, as our next result shows.

Theorem 3.11. {e : e ∈ ICM & |∆e| = ω} is Π0
2 complete.

Proof. We define a 1:1 computable function f such that for all e, we have f(e) ∈ ICM
and We is finite if and only if |∆f(e)| < ω. The desired f is the function defined in the

proof of Theorem 3.3 where

〈m, s〉 ∈ ∆f(e)(A) ⇐⇒ [m ∈Wa,s ∨ 〈m, s+ 1〉 ∈ A].

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 776

Suppose first that We is infinite. Then there are arbitrarily large m and s such that

m ∈ We,s+1 −We,s, and, therefore, 〈m, 0〉 ∈ ∆s+2
f(e) − ∆s+1

f(e). Thus |∆f(e)| = ω. On the other

hand, if We is finite, there is a finite s such that m ∈ We implies m ∈ We,s for all m. It

follows that |∆f(e)| � s+ 1, and is finite.

4. Weakly finitary monotone operators

It follows from Lemma 2.1 that any Σ0
1 monotone inductive operator Γ is finitary, that is,

for any x and any set A, we have x ∈ Γ(A) if and only if there is a finite subset D of A

such that x ∈ Γ(D). The idea of a weakly finitary operator is to have a finite set m1, . . . , mk
of exceptional numbers that may be put into Γ(A) when an infinite set is included in A. If

there are exactly k exceptional numbers, the operator Γ will be called k-weakly finitary.

For example, we might allow some finite number of consequences of the ω-rule in a

subsystem of Peano arithmetic and still obtain a c.e. theory.

Definition 4.1.

(1) We say that a monotone inductive operator Γ : P(�) → P(�) is weakly finitary if

there is a finite set SΓ such that for all A:

(a) x /∈ SΓ and x ∈ Γ(A) implies there exists a finite set F ⊆ A such that x ∈ Γ(F).

(b) x ∈ SΓ and there is a family FΓ,x of subsets of � that includes at least one

infinite subset of � such that x ∈ Γ(A) implies there exists an F ⊆ A such that

x ∈ Γ(F) for some F ∈ FΓ,x.

If |SΓ| = k, we say that Γ is k-weakly finitary.

(2) We say Γ = Λk,e is a k-weakly finitary Σ0
1 monotone inductive operator with index

〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉 if:

(i) Γ is a weakly finitary monotone operator with SΓ = {m1 < · · · < mk}.

(ii) For all mi ∈ SΓ, FΓ,mi = {Wa : a ∈Wei}.

(iii) For all A ∈ P(�) and m ∈ �, we have m ∈ Λk,e(A) if and only if either:

(a) m ∈ Γd(A); or

(b) for some i, we have m = mi and (∃a ∈Wei)(Wa ⊆ A).

Example 4.1. One example of this type of operator comes from the attempts described in

Cenzer et al. (2005) to extend logic programming for reasoning about infinite sets. they

defined an extension of logic programming, which they call extended set-based programming

(esb). In this example, we shall give the formal definitions of ESB constraints, clauses

and programs, and define the analogue of Horn programs and stable models for ESB

programs. The basic idea is to incorporate constraints involving infinite sets into logic

programming clauses by using various types of indexing schemes.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 777

To describe the constraints used by Cenzer, Marek and Remmel, we first need to

describe three types of indices for subsets of the natural numbers:

1 Explicit indices of finite sets. Recall that Dn = {x1 < . . . < xk} where n =
∑

i=1k 2xi .

2 Computable indices of computable sets. Let φ0, φ1, . . . be an effective list of all partial

computable functions. By a computable index of a computable set R, we mean an e

such that φe is the characteristic function of R. If φe is a total {0, 1}-valued function,

we will use Re to denote the set {x ∈ � : φe(x) = 1}.
3 C.e. indices of c.e. sets. By a c.e. index of a c.e. set W , we mean an e such that W

equals the domain of φe, that is, We = {x ∈ � : φe(x) converges}.

No matter what type of indices we use, we shall always consider two types of constraints

based on X and a finite set of indices F, namely, 〈X,F〉= and 〈X,F〉⊆. For any subset

M ⊆ ω, we say that M is a model of 〈X,F〉=, written M |= 〈X,F〉=, if there exists an

e ∈ F such that M ∩ X equals the set with index e. Similarly, we say that M is a model

of 〈X,F〉⊆, written M |= 〈X,F〉⊆, if there exists an e ∈ F such that M ∩X contains the

set with index e.

Cenzer, Marek and Remmel then consider three different types of constraints:

(A) Finite constraints. Here we assume that we are given an explicit index x of a finite

set X and a finite family F of explicit indices of finite subsets of X. We identify

the finite constraints 〈X,F〉= and 〈X,F〉⊆ with their codes, 〈0, 0, x, n〉 and 〈0, 1, x, n〉,
respectively, where F = Dn. Here the first coordinate 0 says that the constraint

is finite; the second coordinate is 0 or 1 depending on whether the constraint is

〈X,F〉= or 〈X,F〉⊆; and the third and fourth coordinates are the codes for X and

F, respectively.

(B) Computable constraints. Here we assume that we are given a computable index x of a

computable set X and a finite family R of computable indices of computable subsets

of X. Again we identify the computable constraints 〈X,R〉= and 〈X,R〉⊆ with their

codes, 〈1, 0, x, n〉 and 〈1, 1, x, n〉, respectively, where R = Dn. Here the first coordinate

1 says that the constraint is computable; the second coordinate is 0 or 1 depending on

whether the constraint is 〈X,R〉= or 〈X,R〉⊆; and the third and fourth coordinates

are the codes for X and R, respectively.

(C) C.e. constraints. Here we are given a c.e. index x of a c.e. set X and a finite familyW
of c.e. indices of c.e. subsets of X. Again we identify the finite constraints 〈X,W〉=
and 〈X,W〉⊆ with their codes, 〈2, 0, x, n〉 and 〈2, 1, x, n〉, respectively, where W = Dn.

The first coordinate 2 says that the constraint is c.e.; the second coordinate is 0 or

1 depending on whether the constraint is 〈X,W〉= or 〈X,W〉⊆; and the third and

fourth coordinates are the codes for X and W.

An extended set-based clause is defined to be a clause of the form

〈X,A〉∗ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1,C1〉=, . . . , 〈Zl,Cl〉=, (5)

where ∗ is either = or ⊆. We refer to 〈X,A〉∗ as the head of C , written head(C), and

〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆, 〈Z1,C1〉=, . . . , 〈Zl,Cl〉= as the body of C , written body(C). Here,

either k or l may be 0. M is said to be a model of C if either M does not model every

constraint in body(C) or M |= head(C).

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 778

Again, we consider three different types of clauses:

(a) Finite clauses. These are clauses in which all of the constraints are finite constraints.

(b) Computable clauses. These are clauses where all the constraints appearing in the

clause are finite or computable constraints and at least one constraint is a computable

constraint.

(c) C.e. clauses: These are clauses where all the constraints appearing in the clause are

finite, computable or c.e. constraints and there is at least one c.e. constraint.

An extended set-based (ESB) program P is a set of clauses of the form of (1). We

say that an ESB program P is computable if the set of codes of the clauses of P is a

computable set. Here the code of a clause C of the form of (1) is 〈c, e1, . . . , ek, f1, . . . , fl〉
where c is the code of 〈X,A〉∗, ei is the code for 〈Yi,Bi〉⊆ for i = 1, . . . , k and fj is the

code for 〈Zj,Cj〉= for j = 1, . . . , l.

Given a program P , we use Fin(P) (respectively, Comp(P), CE(P)) to denote the set

of all finite (respectively, computable, c.e.) clauses in P . It is easy to see from our coding

of clauses that if P is a computable ESB program, then Fin(P), Comp(P) and CE(P) are

also computable ESB programs.

Let P be a computable ESB program. We say that P is computable with finite constraints

if P = Fin(P). Similarly, we say that P is computable with computable constraints if

P = Fin(P) ∪ Comp(P) and Comp(P) �= �, and P is computable with c.e. constraints if

CE(P) �= �. Finally, we say that P is weakly finite with computable constraints if P is

computable with computable constraints and the set of heads of clauses in Comp(P) is

finite, and P is weakly finite with c.e. constraints if P is computable with c.e. constraints

and the set of heads of clauses in Comp(P) ∪ CE(P) is finite.

Next we define the analogue of Horn programs for ESB programs. A Horn program P

is a set of clauses of the form

〈X,A〉⊆ ← 〈Y1,B1〉⊆, . . . , 〈Yk,Bk〉⊆ (6)

where A is a singleton. We define the one-step provability operator, TP : 2� → 2�, so

that for any S ⊆ �, we have TP (S) is the union of the set of all Fe such that there exists

a clause C ∈ P with S |= body(C), head(C) = 〈X,A〉⊆ and A = {e} where Fe = De if

head(C) is a finite constraint, Fe = Re if head(C) is a computable constraint, and Fe is

We if head(C) is a c.e. constraint. It is easy to see that TP is a monotone operator, and

hence there is a least fixed point, which we denote by MP . Moreover, it is easy to check

that MP is a model of P .

If P is an ESB Horn program in which the body of every clause consists of finite

constraints, then one can easily show that the least fixed point of TP is reached in ω-steps,

that is, MP = TP ↑ω (�). However, if we allow clauses whose bodies contain either

computable or c.e. constraints, we can no longer guarantee that we reach the least fixed

point of TP in ω steps. Here is an example.

Example 4.2. Let en be the explicit index of the set {n} for all n � 0, let w be a computable

index of � and f be a computable index of the set of even numbers E. Consider the

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 779

following program:

〈{0}, {e0}〉⊆ ←
〈{2x+ 2}, {e2x+2}〉⊆ ← 〈{2x}, {e2x}〉⊆ (for every number x)

〈ω, {w}〉⊆ ← 〈E, {f}〉⊆ .

Clearly, � is the least model of P , but it takes ω + 1 steps to reach the fixed point. That

is, it is easy to check that TP ↑ω= E and that TP ↑ω+1= �

Several results for ESB and weakly ESB programs were proved in Cenzer et al. (2005).

Their basic result for ESB Horn programs is given by the following theorem.

Theorem 4.1.

(a) If P is a computable ESB Horn Program with finite constraints, then the least fixed

point of the one-step provability operator TP is c.e..

(b) If P is a weakly finite ESB Horn program with computable constraints such that

Fin(P) is computable, then the least fixed point of the one step provability operator

TP is c.e..

(c) If P is a weakly finite ESB Horn program with c.e. constraints such that Fin(P) is

computable, then the least fixed point of the one-step provability operator TP is c.e..

In fact, a similar result to Theorem 4.1 holds for k-weakly Σ0
1 monotone operators.

Theorem 4.2. Let Λ be a k-weakly Σ0
1 monotone operator with index

〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉. Then:

(a) |Λ| � ω · (k + 1).

(b) lfp(Λ) is Σ0
1.

Proof. We will present an informal procedure that constructs the closure in � k + 1

rounds where each round may consist of as many as ω steps.

Round (1). First let U0 = lfp(Γd). Since Γd is a Σ0
1 monotone inductive operator, U0 is c.e.

by Theorem 2.1. Next consider the finite set

F0 = {mi : (∃a ∈Wei)(Wa ⊆ U0)}.

We cannot necessarily find F0 effectively, but, nevertheless, F0 is a finite set, so A1 = U0∪F0

will be a c.e. set. If F0 = �, we have lfp(Λ) = U0 and |Λ| � ω. Otherwise, go on to

Round 2.

We now present the description of Round n + 1, for n � 1, assuming that An is the

result of step n.

Round (n + 1). Consider the set Un = Γωd (An). It is easy to see that since An is c.e., Un is

also c.e.. Next consider the finite set

Fn = {mi : (∃a ∈Wei)(Wa ⊆ Un)}.

Again, we cannot necessarily find Fn effectively, but, nevertheless, An+1 = Un ∪ Fn is a c.e.

set. Now, if Fn ⊆ Un, we have lfp(Λ) = Un and |Λ| � ω · (n + 1). Otherwise, go on to

Round (n+ 2).

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 780

It is clear that this process must be completed after at most k + 1 rounds, so |Λ| �
ω · (k + 1) and lfp(Λ) is always a c.e. set.

Example 4.3. It is easy to construct an example Λ of a k-weakly finitary Σ0
1 monotone

operator with |Λ| = ω ·(k+1), as follows. Let A0, . . . , Ak be a set of infinite computable sets

that partition �. Let Ai = {a0,i < a1,i < . . .} for i = 0, . . . , k. Now define a Σ0
1 monotone

operator Γ such that for all A ⊆ �:

(i) a0,0 ∈ Γ(A).

(ii) For all j � 0. aj+1,0 ∈ Γ(A) if and only if aj,0 ∈ A.

(iii) For all i � 1, a1,i ∈ Γ(A) if and only if a0,i ∈ A.

(iv) For all i � 1 and j � 1, aj+1,i ∈ Γ(A) if and only if aj,i ∈ A.

Finally, we complete the definition of Λ by adding the following rules, which govern

when the elements a0,1, . . . , a0,k can be in Λ(A).

For all i > 0, a0,i ∈ Λ(A) if and only if Ai−1 ⊆ A.

It is easy to see that Λ is a k-weakly finitary Σ0
1 monotone operator and that

Λω = A0,

Λω+1 = A0 ∪ {a0,1},
Λ2ω = A0 ∪ A1,

Λ2ω+1 = A0 ∪ A1 ∪ {a0,2},
...

Λkω = A0 ∪ A1 ∪ · · · ∪ Ak−1,

Λkω+1 = A0 ∪ A1 ∪ . . . ∪ Ak−1 ∪ {a0,k}, and

Λ(k+1)ω = A0 ∪ A1 ∪ · · · ∪ Ak = �.

Thus |Λ| = ω(k + 1).

The following lemma gives an alternate approach to proving part (b) of Theorem 4.2,

and will be needed below.

Lemma 4.1. Let Λ be a k-weakly finitary Σ0
1 monotone operator with index

〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉.

Then

(a) for some finite subset F of {m1, . . . , mk}, lfp(Λ) = Γωd (F), and

(b) for some finite subset G of {m1, . . . , mk}, Λω = Γωd (G).

Proof.

(a) Let F = {mi : mi ∈ lfp(Λ)}. Then, certainly, Γωd (F) ⊆ Λω(F) ⊆ lfp(Λ). For the reverse

inclusion, it suffices to show that C = Γωd (F) is closed under Λ. If Λ(C) − C �= �,

then either:

(i) there is some y /∈ SΓ = {m1, . . . , mk} such that y ∈ Γd(C)− C; or

(ii) there is some mi /∈ C such Wa ⊆ C for some a ∈Wei .

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 781

Note that (i) is impossible. That is, Γd(C) ⊆ C because Γd is a Σ0
1 monotone operator,

and thus Γd(Γ
ω(F)) = Γω(F). But (ii) is impossible also since otherwise mi ∈ F and

F ⊆ C . Thus it must be the case that Λ(C) = Γd(C).

(b) Let G = {mi : mi ∈ Λω}. Since G is a finite set, there is some finite t such that G ⊆ Λt.

Then, certainly, Γω
d (G) ⊆ Λω(G) ⊆ Λω(Λt) = Λω . For the reverse inclusion, suppose

D = Γωd (G) and Λω − D �= �. Then let s be the least stage such that there is an

x ∈ Λs − D. Then either:

(I) x /∈ SΓ = {m1, . . . , mk} and hence, there is some finite set F ⊆ Λt−1 such that

x ∈ Γ(F); or

(II) x = mi /∈ G and Wa ⊆ Λt−1 for some a ∈Wei .

Note that in case (I), F ⊆ D by our choice of s. But since F is finite, there must be

some finite t such F ⊆ Γt(G), so x ∈ Γ(F) ⊆ Γ(Γt(G)) ⊆ Γω(G) = D. Thus case (I)

cannot hold. But Case (II) is impossible since otherwise mi ∈ G and G ⊆ D. Thus it

must be the case that Λω = Γωd (G).

It is possible to develop a theory of index sets for weakly finitary Σ0
1 inductive operators.

In general, this theory is more subtle than the corresponding theory of Σ0
1 inductive

operators. We will not attempt in this paper to prove analogues of all the index set results

given in Section 3. Instead, we will give a couple of examples of index set results for

weakly finitary Σ0
1 inductive operators where there is a contrast between the index set

result for weakly finitary Σ0
1 inductive operators and the corresponding index set result

for Σ0
1 inductive operators.

Clearly, {e : |Γe| � ω} = � and is thus computable since for any Σ0
1 inductive operator

Γ, we have Γω = lfp(Γ). By contrast, we have the following theorem for weakly finitary

Σ0
1 inductive operators.

Theorem 4.3.

(a) For all k � 1, the set of e such that 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉〉 and {m1, . . . , mk}∩
cl(Λk,e) = � (in which case cl(Λk,e) = Γωd) is a complete Π0

3 set.

(b) For all k � 1, {e : |Λk,e| � ω & {m1, . . . , mk} ⊆ Λω
k,e} is Σ0

3 complete.

(c) For all k � 2, {e : |Λk,e| � ω} is D0
3 complete.

Proof. For the upper bound for part (a), suppose 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉〉.
Then it is easy to see from our construction in Theorem 4.2 that {m1, . . . , mk}∩cl(Λk,e) = �
only if there is no i and a ∈Wei such that Wa ⊆ Γωd . Since Γd is a Σ0

1 inductive operator,

Γωd is a c.e. set. Thus {m1, . . . , mk} ∩ cl(Λk,e) = � if and only if

(∀i ∈ {1, . . . , k})(∀a ∈Wei)(∃c)(c ∈Wa & c /∈ Γωd) ,

which is a Π0
3 predicate.

Next we consider the upper bounds for parts (b) and (c). Fix a set F ⊆ {1, . . . , k}. For

each index 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉, let MF,k,e = Γωd ({mi : i ∈ F}).
Now fix 〈k, e〉. By Lemma 4.1, we know there there is some F such that MF,k,e = Λω

k,e.

We are interested in analysing the predicate that

Q(F, k, e) : MF,k,e = Λω
k,e . (7)

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 782

First suppose that F,G ⊆ {1, . . . , k} and MF,k,e,MG,k,e ⊆ Λω
k,e. Then it is easy to see that

there must be some finite stage t such that G ∪ F ⊆ Λt
k,e. But then

MF∪G,k,e = Γωd (G ∪ F)

⊆ Γωd (Λt
k,e)

⊆ Λω
k,e(Λ

t
k,e)

= Λω
k,e.

It thus follows that a particular F such that MF,k,e = Λω
k,e is the maximal G such that

MG,k,e ⊆ Λω
k,e.

Now if MF,k,e = Λω
k,e, we can list the elements of F in the order in which they appear in

the sequence {Λt
k,e}t�0. That is, there is listing of F = {f1, . . . , fs}, 1 � i1 < . . . ip < s and

t1 < t2 < · · · < tp+1 such that

f1, . . . , fi1 ∈ Λt1
k,e − Λt1−1

k,e ,

fi1+1, . . . , fi2 ∈ Λt2
k,e − Λt2−1

k,e ,

...

fip−1+1, . . . , fip ∈ Λ
tp
k,e − Λ

tp−1
k,e , and

fip+1, . . . , fs ∈ Λ
tp+1

k,e − Λ
tp+1−1
k,e .

But in such circumstances it is easy to see that

Λt1−1
k,e = Γt1−1

d

Λt1
k,e = Γd(Γ

t1−1
d) ∪ {f1, . . . , fi1} = Γt1d ∪ {f1, . . . , fi1}.

Now we can effectively find an index q1 such that Wq1
= Γt1d ∪ {f1, . . . , fi1} = Λt1

k,e from t1
and f1, . . . , fi1 . This gives

Λt2−1
k,e = Γt2−1−t1

d (Wq1
) and

Λt2
k,e = Γd(Γ

t2−1−t1
d (Wq1

)) ∪ {fi1+1, . . . , fi2}
= Γt2−t1d (Wq1

) ∪ {fi1+1, . . . , fi2}.

Now we can effectively find an index q2 such that Wq2
= Γt2−t1d (Wq1

)∪{fi1+1, . . . , fi2} = Λt2
k,e

from q1, t2, and fi1+1, . . . , fi2 . Continuing in this way, if we have found an index qr such

that Wqr−1
= Λtr−1

k,e , then

Λtr−1
k,e = Γtr−1−tr−1

d (Wqr−1
) and

Λtr
k,e = Γd(Γ

tr−1−tr−1

d (Wqr−1
)) ∪ {fir−1+1, . . . , fir}

= Γtr−tr−1

d (Wqr−1
) ∪ {fir−1+1, . . . , fir}.

Again, we can effectively find an index qr such that

Wqr = Γtr−tr−1

d (Wqr−1
) ∪ {fir−1+1, . . . , fir} = Λtr

k,e

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 783

from qr−1, tr , and fir−1+1, . . . , fir . Finally, to verify that each stage works properly, we must

check for each r that

{fir−1+1, . . . , fir} ⊆ Λk,e(Γ
tr−1−tr−1

d (Wqr−1
))

or that for each mj ∈ {ir−1 + 1, . . . , ir}, we have

(∃a)(a ∈Wei & Wa ⊆ Γtr−1−tr−1

d (Wqr−1
) .

Again, we can effectively find an index vr for Γtr−1−tr−1

d (Wqr−1
) so that the predicate

that Wa ⊆ Wvr = Γtr−1−tr−1

d (Wqr−1
) is a Π0

2 predicate. It follows that for each mj ∈
{ir−1 + 1, . . . , ir},

(∃a)(a ∈Wei & Wa ⊆ Γtr−1−tr−1

d (Wqr−1
))

is a Σ0
3 predicate. Thus the existence of sequences F = {f1, . . . , fs}, 1 � i1 < . . . ip < s,

t1 < t2 � tp+1, q1, . . . , qp+1 satisfying all the properties above is a Σ0
3 predicate. It then

follows that MG,k,e ⊆ Λω
k,e is a Σ0

3 predicate, since it is equivalent to saying that there

exists an F ⊆ {1, . . . , k} such that G ⊆ F and there exist sequences F = {f1, . . . , fs},
1 � i1 < . . . ip < s, t1 < t2 � tp+1, q1, . . . , qp+1 satisfying all the properties above. Thus

the predicate that MG,k,e �⊆ Λω
k,e is Π0

3. Now, for any F �= {1, . . . , k}, the predicate that F

is the maximal G such that MG,k,e ⊆ Λω
k,e is the conjunction of Σ0

3 and Π0
3 predicates. If

F = {1, . . . , k}, the predicate that F is the maximal G such that MG,k,e ⊆ Λω
k,e is just a

Σ0
3 predicate. Note that if {m1, . . . , mk} ⊆ Λω , it must be the case that Λω

k,e = M{1,...,k},k,e
Finally, to say that |Λk,e| > ω, we need only say that there exists an F �= {1, . . . , k} such

that F is the maximal G such that MG,k,e ⊆ Λω
k,e and MF,k,e is not closed under Λk,e. Now

if MF,k,e = Λω
k,e, then, clearly, MF,k,e is closed under Γd, so MF,k,e is not closed under Λk,e

if and only if

(∃mi /∈ F)(∃a ∈Wei)[Wa ⊆MF,k,e] ,

which is a Σ0
3 predicate. Thus the predicate |Λk,e| > ω is a conjunction of Σ0

3 and Π0
3

predicates. Thus we have established the upper bounds for parts (b) and (c).

For the completeness of parts (a),(b) and (c), we will use the Σ0
3 complete set Cof =

{e : We is cofinite}. Let P = {p0 < p1 < · · ·} denote the set of primes.

For completeness for part (a), fix k and let Wfi = {2npm : n � 0 & m � i} for i � 0.

Then define a 1-1 computable function g so that 〈k, g(e)〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉〉
where mi = i − 1 and Wei = {f0, f1, . . .}, for i = 1, . . . , k, and Γd is defined so that for all

A ⊆ N:

(1) for all m � k, pm ∈ Γd(A) ⇐⇒ m ∈We; and

(2) for all n � 1 and m � k, 2npm ∈ Γd(A) ⇐⇒ 2n−1pm ∈ A.

It is then easy to see that Γ1
d = {pm : m ∈ We & m � k}, Γωd = {2npm : m ∈ We & m �

k & n � 0}, and there is no finite t such that Wfi ⊆ Γtd for some i. Thus, if We is cofinite,

there will be an i such Wfi ⊆ Γωd and, hence, {0, . . . , k − 1} ⊆ Γω+1
d − Γωd . However, if

We is not cofinite, there will be no i such that Wfi ⊆ Γωd . Hence Γω
d = cl(Λk,g(e)) and

{0, . . . , k − 1} ∩ cl(Λk,g(e)) = �. Thus

g(e) ∈ {e : 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉〉 & {m1, . . . , mk} ∩ cl(Λk,e = �}

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 784

if and only if We is not cofinite. It follows that

{e : 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉〉 & {m1, . . . , mk} ∩ cl(Λk,e = �}

is Π0
3 complete.

For the completness for part (b), fix k and for i = 1, . . . , k let mi = i − 1 and let

Wei = {b0, b1, b2, . . .} where for each n,Wbn = �−{0, . . . , n}. Then define the 1:1 computable

function f by

f(a) = 〈k, e〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉
where Γd is defined by:

For all A ⊆ �:

(1) k ∈ Γd(A).

(2) For all x � 1, x+ k ∈ Γd(A) ⇐⇒ x ∈Wa ∨ (∀y < x)y + k ∈ A.

Now, if Wa is cofinite, it is easy to see that Λ1
k,e is cofinite and hence {0, . . . , k − 1} ⊆ Λ2

k,e.

It then easily follows that Λω
k,e = � and hence |Λk,e| � ω. However, if We is not cofinite,

it is easy to see that there is no t � 0 such that Λt
k,e is cofinite. However, it will be the

case that Λω
k,e ⊇ {x : k � x}, so Λω+1

k,e = �. Thus

a ∈ Cof ⇐⇒ f(a) ∈ {e : |Λk,e| � ω & {m1, . . . , mk} ⊆ Λω
k,e}

so

{e : |Λk,e| � ω & {m1, . . . , mk} ⊆ Λω
k,e}

is Σ0
3 complete.

For the completeness of part (c), fix k � 2. Then we need only show that there

is a 1:1 computable function h such that h(a, b) ∈ {e : |Λk,e| � ω} if and only if

Wa is cofinite and Wb is not cofinite. Let P = {p0 < p1 < . . .} be the set of prime

numbers. For each i, let Wci = {2npi : n � 1}. Then let h be the computable function

such that 〈k, h(a, b)〉 = 〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉 where mi = 2(i − 1) + 1 for i = 1, . . . k,

We1 = {b0, b1, b2, . . .} where Wbi = {2x+1 : x ∈ �}−{1, 3, . . . , 2i+1}, Wej = {c0, c1, c2, . . .}
for j = 2, . . . , k, where Wci = {2npm : n � 0 & m � i}, and Γd is defined so that for all

A ⊆ �:

(1) 2k + 1 ∈ Γd(A).

(2) For all x � 1, 2(x+ k) + 1 ∈ Γd(A) ⇐⇒ x ∈Wa ∨ (∀y < x)(2(y + k) + 1 ∈ A.

(3) For all m � 0. 2pm ∈ Γd(A) ⇐⇒ m ∈Wb.

(4) For all m � 0 and n � 2, 2npm ∈ Γd(A) ⇐⇒ 2n−1pm ∈ A.

We can use the same analysis as we used in part (a) to conclude {2pm : m ∈ Wb} ⊆ Γ1
d,

{2npm : m ∈ Wb & n � 1} ⊆ Γωd , and there is no finite t such that Wci ⊆ Γtd for some

i. Moreover, {3, . . . , 2k − 1} ⊆ Γω+1
d − Γωd if Wb is cofinite, and {3, . . . , 2k − 1} ∩ Γωd = �

otherwise. Next we can use our analysis from part (b) to conclude that if Wa is cofinite,

1 ∈ Λ1
k,e, and hence {1} ∪ {2s + 1 : s � k} ⊆ Λω

k,e. However, if Wa is not cofinite, there

is no stage t such that 1 ∈ Λt
k,e, so {2s + 1 : s � k} ⊆ Λω

k,e and 1 ∈ Λω+1
k,e . It follows

that |Λk,h(a,b)| � ω if and only if Wa is cofinite and Wb is not cofinite. Hence, for k � 2,

{e : |Λk,e| � ω} is D0
3 complete.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 785

Next we need to define the family of difference sets of Σ0
3 sets. For two Σ0

3 sets A and

B, the difference A − B is the intersection of a Σ0
3 set and a Π0

3 set and is said to be a

2-Σ0
3 set. For n > 0, we say that a set C is 2n-Σ0

3 if and only if A is the union of n 2-Σ0
3

sets and is 2n + 1-Σ0
3 if and only if A is the union of a Σ0

3 set with a 2n-Σ0
3 set. We say

that A is an n-Π0
3 set if the complement of A is an n-Σ0

3 set.

We can then prove the following theorem.

Theorem 4.4. Fix any computable set Rt. Then for each k, we have

{e : lfp(Λk,e) ∩ Rt is computable}

is a (2k+1 − 1)-Σ0
3 set.

Proof. Fix a set F ⊆ {1, . . . , k}. Let MF,k,e = Γωd ({mi : i ∈ F}) for each index 〈k, e〉 =

〈k, 〈d, 〈m1, e1, . . . , mk, ek〉〉. We are interested in analysing the predicate that

P (F, k, e) : MF,k,e = lfp(Λk,e) & Rt ∩MF,k,e is computable. (8)

It follows from Lemma 4.1 that lfp(Λk,e) = MF,k,e if and only if:

1 {mi : (∃a ∈Wei)(Wa ⊆MF,k,e)} ⊆ {mi : i ∈ F}; and

2 for all G � F , {mi : (∃a ∈Wei)(Wa ⊆MG,k,e)} � {mi : i ∈ G}.
The predicate that {mi : (∃a ∈ Wei)(Wa ⊆ MG,k,e)} � {mi : i ∈ G} is Σ0

3 since it holds

if and only if there is an i ∈ {1, . . . , k} − G such that (∃a)(a ∈ Wei & Wa ⊆ MG,k,e).

Since MG,k,e is uniformly c.e., the predicate Wa ⊆ MG,k,e is Π0
2, and hence the predicate

(∃a)(a ∈ Wei & Wa ⊆ MG,k,e) is Σ0
3. It follows that the predicate {mi : (∃a ∈ Wei)(Wa ⊆

MF,k,e)} ⊆ {mi : i ∈ F} is Π0
3 if F �= {1, . . . , k}. Finally, the predicate ‘MF,k,e ∩ Rt is

computable’ is Σ0
3. Thus, if F �= {1, . . . , k}, the predicate P (F, k, e) is the conjunction of a

Σ0
3 and Π0

3 predicate and hence is a 2-Σ0
3 predicate. If F = {1, . . . , k}, we may omit the Π0

3

predicate so that P (F, k, e) is a Σ0
3 predicate.

It follows that the predicate that {e : lfp(Γk,e) ∩ Rt is computable} is a disjunction of

2k − 1 2-Σ0
3 sets and one Σ0

3 set and hence a 2k+1 − 1 set.

It is important to note that the set of all 〈k, e〉 such that lfp(Λk,e) itself is computable

is just Σ0
3. (In fact, if the set Rt in Theorem 4.4 is finite or cofinite, then {e : lfp(Λk,e) ∩

Rt is computable} is Σ0
3.) That is, for each finite F ⊆ {1, . . . , k} and each computable set R,

the question of whether R = MF,k,e is a Π0
2 question since MF,k,e is uniformly c.e.. If there

is an F such that R = MF,k,e, then the question of whether {mi : (∃a ∈ Wei)(Wa ⊆ R)} ⊆
{mi : i ∈ F} is a Π0

2 question. That is, the question whether Wa ⊆ R is a Π0
1 question,

so the question of whether (∃i ∈ {1, . . . , k} − F)(∃a)(a ∈ Wei & Wa ⊆ R) is a Σ0
2 question.

Thus lfp(Λk,e) is computable if and only if there is an s and there exists an F ⊆ {1, . . . , k}
such that Ws is computable, MF,k,e = Ws, {mi : (∃a ∈ Wei)(Wa ⊆ Ws)} ⊆ {mi : i ∈ F},
and for all G � F , {mi : (∃a ∈ Wei)(Wa ⊆ MG,k,e)} � {mi : i ∈ G}. Since the predicate

Ws is computable, MF,k,e = Ws and {mi : (∃a ∈ Wei)(Wa ⊆ Ws)} ⊆ {mi : i ∈ F} are all

Π0
2 and the predicates {mi : (∃a ∈ Wei)(Wa ⊆ MG,k,e)} � {mi : i ∈ G} are Σ0

3, we have

the predicate that lfp(Λk,e) is computable is Σ0
3. We can then proceed as in the proof of

Theorem 4.2 to prove {〈k, e〉 : lfp(Λk,e) is computable} is Σ0
3-complete. Thus we have the

following theorem.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 786

Theorem 4.5. {〈k, e〉 : lfp(Λk,e) is computable} is Σ0
3-complete.

Finally, we give a completeness result for Theorem 4.4 for the case k = 1.

Theorem 4.6. Let Rt be a fixed infinite coinfinite computable set. Then

{e : lfp(Λ1,e) ∩ Rt is computable}

is 3-Σ0
3-complete.

Proof. The upper bound on the complexity is given by the proof of Theorem 4.4.

For the other direction, fix Rt = {2n : n ∈ �} without loss of generality. Let C = {e :

lfp(Λ1,e) ∩ Rt is computable}. Note that it is proved in Soare (1987) that Rec = {e :

We is computable} and Cof = {e : We is cofinite} are Σ0
3 complete.

For the completeness, first we claim that

D = {〈a, b, c〉 : (Wa is not cofinite & Wb is computable) ∨ Wc is computable}

is 3-Σ0
3 complete. Let S = (B − A) ∪ C , where A,B,C are Σ0

3. Then there are functions

f, g, h such that a ∈ A ⇐⇒ f(a) ∈ Cof, b ∈ B ⇐⇒ g(b) ∈ Rec, and c ∈ C ⇐⇒
h(c) ∈ Rec. Thus, s = 〈a, b, c〉 ∈ S iff [(f(a) /∈ Cof) and g(b) ∈ Rec) or h(c) ∈ Rec]

iff φ(s) = 〈f(a), g(b), h(c)〉 ∈ D. Thus it suffices to reduce D to C . So we will define a

1-weakly finitary Σ0
1 monotone operator Λf(a,b,c) such that lfp(Λf(a,b,c)) ∩ Rt is computable

if and only if 〈a, b, c〉 ∈ D. Since Rec and Cof are Σ0
3 complete, it follows that there

exists a computable function g such that Wc is computable or Wa is cofinite if and

only if Wg(a,c) is cofinite. Let h be a computable function such that for each n, we have

Wh(n) = {8i + 3 : i > n}. The 1-weakly finitary inductive operator Λ = Λf(a,b,c) is defined

by the following clauses:

(1) 0 ∈ Λ(A) if Wh(n) ⊆ A for some n.

(2) 8〈i, s〉+ 1 ∈ Λ(A) if i ∈Wg(a,c),s or 8〈i, s+ 1〉+ 1 ∈ A.

(3) 8i+ 3 ∈ Λ(A) if 8〈i, 0〉+ 1 ∈ A.

(4) 8〈i, s〉+ 5 ∈ Λ(A) if i ∈Wb,s or 8〈i, s+ 1〉+ 5 ∈ A.

(5) 8i+ 2 ∈ Λ(A) if 8〈i, 0〉+ 5 ∈ A.

(6) 8〈i, s〉+ 7 ∈ Λ(A) if 0 ∈ A and either i ∈Wc,s or 8〈i, s+ 1〉+ 7 ∈ A.

(7) 8i+ 4 ∈ Λ(A) if 8〈i, 0〉+ 7 ∈ A.

(8) 8i+ 2 ∈ Λ(A) if 0 ∈ A.

It is easy to see that clauses (2)–(8) define a computable monotone inductive operator,

so Λ is a 1-weakly finitary Σ0
1 operator with SΛ = {0}.

Clauses of type (2) and (3) ensure that lfp(Λ) must include {8i + 3 : i ∈ Wg(a,c)}, and

clauses of type (4) and (5) ensure that lfp(Λ) must include {8i+ 2 : i ∈Wb}.
Let M = lfp(Λ). If Wg(a,c) is cofinite, one of the clauses of type (1) will apply and then

the clauses of type (6), (7) and (8) will ensure that M ∩ Rt equals {0} ∪ {8i + 2 : i <

ω} ∪ {8i+ 4 : i ∈ Wc}, so M ∩ Rt will be computable if and only if Wc is computable. If

Wg(a,c) is not cofinite, M∩Rt will consist of {8i+2 : i ∈Wb}, so M∩Rt will be computable

if and only if Wb is computable.

If 〈a, b, c〉 ∈ D, there are two cases. First suppose that Wc is computable. Then Wg(a,c)

is cofinite, so M ∩ Rt is computable, as desired. Next suppose that Wc is not computable.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

On the complexity of inductive definitions 787

Then we must have that Wa is not cofinite and Wb is computable. This means that Wg(a,c)

is not cofinite and M ∩ Rt is again computable.

If 〈a, b, c〉 /∈ D, then Wc is not computable and either Wa is cofinite or Wb is not

computable. Again there are two cases. First suppose that Wa is cofinite. Then Wg(a,c)

is cofinite, so M ∩ Rt is not computable, as desired. If Wa is not cofinite, Wg(a,c) is not

cofinite and Wb is not computable. Thus again M ∩ Rt is not computable.

We conjecture that a similar completeness result will hold for k-weakly Σ0
1 operators.

Finally, we note that k-weakly computable monotone operators may be defined, and

corresponding versions of Theorems 4.4, 4.5 and 4.6 can be shown.

References

Baldwin, J. (1982) Recursion theory and abstract dependence. In: Metakides, G. (ed.) Patras Logic

Symposion, North Holland 67–76.

Baldwin, J. (1984) First order theories of abstract dependence relations. Ann. Pure and Applied

Logic 26 215–243.

Cenzer, D. (1978) Non-generable formal languages. Fundamenta Informaticae 3 95–104.

Cenzer, D., Marek, W. and Remmel, J. B. (2005) Logic programming with infinite sets. Annals of

Mathematics and Artificial Intelligence 44 309–339.

Cenzer, D. and Remmel, J. B. (1999) Index sets in computable analysis. Theoretical Computer Science

219 111–150.

Dekker, J. C. E. (1971) Two notes on vector spaces with recursive operations. Notre Dame Journal

of Formal Logic 12 329–334.

Downey, R.G. (1983) Nowhere simplicity in matroids. J. Austral. Math. Soc. (Series A) 35 28–45.

Downey, R.G. (1983) On a question of A. Retzlaff. Z. Math. Logik Grund. Math. 29 379–384.

Downey, R.G. (1984) Some remarks on a theorem of Iraj Kalantari concerning convexity and

recursion theory. Z. Math. Logik Grund. Math. 30 295–302.

Downey, R.G. and Remmel, J. B. (1998) Effective Algebras and Closure Systems: Coding Properties.

In: Ershov, Y., Goncharov, Y., Nerode, Y. and Remmel, J. B. (eds.) Handbook of Recursive

Mathematics. Volume 2. Studies in Logic and the Foundations of Mathematics 139, Elsevier 997–

1040.

Gelfond, M. and Lifschitz, V. (1988) The stable semantics for logic programs. In: Kowalski, R. and

Bowen, K.A. (eds.) ICLP88 1070–1080.

Ershov, Y., Goncharov, S., Nerode, A. and Remmel, J. B. (eds.) (1998a) Handbook of Recursive

Mathematics, Volume 1: Recursive Model Theory. Studies in Logic and the Foundations of

Mathematics 138, Elsevier.

Ershov, Y., Goncharov, S., Nerode, A. and Remmel, J. B. (eds.) (1998a) Handbook of Recursive

Mathematics, Volume 2: Recursive Algebra, Analysis and Combinatorics. Studies in Logic and

the Foundations of Mathematics 139, Elsevier.

Hinman, P.G. (1978) Recursion-Theoretic Hierarchies, Springer-Verlag.

Kalantari, I. (1981) Effective content of a theorem of M.H. Stone. In: Crossley, J.N. (ed.) Aspects

of effective algebra, U.D.A. Book Company, Steels Greek, 128–146.

Nerode, A. and Remmel, J. B. (1982) Recursion theory on matroids. In: Metakides, G. (ed.) Patras

Logic Symposion, North Holland 41–65.

Nerode, A. and Remmel, J. B. (1983) Recursion theory on matroids, II. In: Chong, C. T. and

Wicks, M. J. (eds.) Southeast Asian Conference on Logic, North Holland 133–184.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

D. Cenzer and J. B. Remmel 788

Nerode, A. and Remmel, J. B. (1985) A survey of the lattices of r.e. substructures. In: Nerode, A.

and Shore, R.A. (eds.) Recursion Theory. Proceedings of the Symposium in Pure Mathematics 42,

Amer. Math. Soc. 323–375.

Remmel, J. B. (1978) Recursively enumerable Boolean algebras. Ann. Math. Logic 14 75–107.

Remmel, J. B. (1980) Recursion theory on algebraic structures with an independent set. Ann. Math.

Logic 18 153–191.

Soare, R. E. (1987) Recursively Enumerable Sets and Degrees, Springer-Verlag.

https://doi.org/10.1017/S0960129506005585 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129506005585

