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We use lubrication theory on the flow equations for nematic liquid crystals to derive a

simple model describing the evolution of the film height under gravity, in the case of finite

surface “anchoring energy” at the free surface and at the rigid substrate. This means that the

molecules of the nematic have a preferred alignment at interfaces, modelled by a single-well

potential surface energy (first introduced by Rapini & Papoular [9]). This paper generalises

the earlier work of Ben Amar & Cummings, in which the orientation of the nematic liquid

crystal molecules is effectively specified at both surfaces (strong anchoring; isotropic surface

tension). Additional terms, analogous in some sense to Marangoni terms, are introduced into

the PDE governing the film height evolution. The stability of the derived model is considered,

and stability criteria are presented and discussed. The existence of static, drop-like solutions

to the model is also briefly considered.

1 Introduction

In this paper we follow Ben Amar & Cummings [1] to derive a simple model, based

on standard lubrication theory, describing the free boundary evolution of a thin film of

nematic liquid crystal (NLC) on a rigid substrate. That paper assumed strong anchoring

conditions on the director field n at both the rigid substrate and at the free surface of

the film. Loosely speaking, the director field n = (sin θ cosφ, sin θ sinφ, cos θ) is a unit

vector that gives the local preferred direction of the liquid crystal molecules; thus the

strong anchoring condition amounts to saying that the orientation of the nematic liquid

crystal molecules is effectively specified at interfaces. Here, we investigate the effect of

finite anisotropic surface energy (in the form of finite anchoring strength for the azimuthal

angle θ of the director), firstly at the free surface only, and secondly at both the free

surface and the rigid substrate. We do this using the standard Rapini–Papoular [9] type

formulae for the surface energy g

g = γ ± A

2
(n · p)2.

The (+) sign here corresponds to the (unit) vector p being the unfavoured director

orientation, as any component of ±n in the direction of p gives rise to an energy penalty.

(The vectors +n and −n are considered equivalent in the theory.) The (−) sign corresponds
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to p being the favoured orientation, since the surface energy is a minimum when n is

parallel to p. Both types of anchoring arise in practice, and both are considered in this

paper. Strong anchoring corresponds to the limit A → ∞.

The original study of Ben Amar & Cummings [1] was motivated by several experiments

carried out by Cazabat et al. [2] at the Laboratoire de Physique de la Matiere Condensée

du Collège de France, in which spontaneous fingering instabilities can be observed in such

thin films, under certain circumstances. The basic physical set-up we consider is flow of a

thin film of nematic liquid crystal, resting on a rigid substrate z = 0. The film height is

given by z = h(x, y, t), and gravity is assumed to be the only external force acting on the

system.

2 Leslie–Ericksen equations

The details of the theory governing the flow of NLCs are beyond the scope of this paper,

and we refer the reader elsewhere [3, 4, 7] for a discussion of the full model equations. The

notation we employ is mostly the same as that used by Leslie [7], the two main functions

being the velocity field of the flow, v = (v1, v2, v3) = (u, v, w), and the director field n, which

is a unit vector describing the orientation of the anisotropic axis in the liquid crystal (the

preferred direction of the liquid crystal molecules). Using standard tensor notation, and

an over-dot to denote the usual convective derivative ∂t + v · ∇, the governing equations

holding in the bulk sample, in the absence of any applied external fields (except gravity),

are given by Leslie [7] as:

σn̈i = λni − ∂W

∂ni
+

(
∂W

∂ni,j

)
,j

+ G̃i, (2.1)

ρv̇i + σn̈knk,i = −π,i + G̃knk,i + t̃ij,j , (2.2)

∇ · v = 0. (2.3)

Here, σ is an inertial constant; λ is a Lagrange multiplier ensuring that the director n is

a unit vector; ρ is the constant density of the liquid crystal; W is the bulk elastic (Frank)

energy, defined in terms of the director by

2W = K1(∇ · n)2 +K2(n · ∇ ∧ n)2 +K3((n · ∇)n) · ((n · ∇)n); (2.4)

G̃i = −γ1Ni − γ2eiknk, eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
; (2.5)

Ni = ṅi − ωiknk, ωij =
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)
; (2.6)

π = p+W + ψg, (2.7)

where K1, K2, K3, γ1 and γ2 are constants; p is the pressure and ψg is the gravitational

potential (given, for instance, by ρgz or ρgx, depending on the orientation of the sample).

Finally, t̃ij is the extrastress tensor (related to the stress tij by tij = −pδij + t̃ij), given by:

t̃ij = α1nknpekpninj + α2Ninj + α3Njni + α4eij + α5eiknknj + α6ejknkni, (2.8)
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where the αi are constant coefficients having the dimensions of viscosity1 (though they are

not necessarily positive), and µ := α4/2 corresponds to the usual viscosity in the standard

Newtonian (isotropic) case, when all other αi are zero. The viscosities are related via the

‘Onsager’ relation

α2 + α3 = α6 − α5. (2.9)

Equation (2.1) is the energy equation, in which the term in σ represents the rotational

kinetic energy of the NLC molecules, the terms inW represent the elastic energy associated

with the director field, and the G̃ term couples to the fluid flow. The three contributions to

the elastic energy in (2.4) are known as splay, twist and bend, respectively, and represent

energy penalties incurred when the director field has local behaviour of this kind. (See

De Gennes & Prost [4] for further physical interpretation.)

Equation (2.2) is Newton’s second law applied to the liquid crystal, the momentum

equation for the flow, analogous in many ways to the Navier-Stokes equations, though

with a much more complex stress tensor. Equation (2.3) represents incompressibility of

the nematic liquid crystal.

2.1 Nondimensionalisation

Since we have a thin film, we make the usual lubrication theory scalings,

(x, y) = L(x̃, ỹ), z = δLz̃, u = Uũ, v = Uṽ, w = δUw̃, t =
L

U
t̃, p =

µU

δ2L
p̃,

where L is the lengthscale of typical variations in the x- and y-directions, U is a typical

flow speed; δ = h0/L � 1 is the aspect ratio of the film based on a typical film height

h0, and µ ≡ α4/2 was chosen as the representative viscosity scaling in the pressure, since

this corresponds to the usual viscosity in the isotropic case in (2.8). The coefficient α4 is

always positive, as may be shown by considering the entropy of the system [7]. If the free

surface in the dimensional variables is given by z = h(x, y, t) then we write h = h0h̃, and in

the dimensionless variables the free surface representation is z̃ = h̃(x̃, ỹ, t̃), with outward

normal ν+ given by

ν+ = (−δh̃x̃,−δh̃ỹ , 1)(1 + O(δ2)). (2.10)

If K = K1 is a representative value of the elastic constants K1, K2, K3, (2.4) gives

W = O

(
K

δ2L2

)
⇒ W =

K

δ2L2
W̃ .

Henceforth we drop the tildes, on the understanding that we are working in the dimen-

sionless variables (unless explicitly stated otherwise).

3 Strong anchoring at substrate

In this section we derive the governing equations for the case in which the anchoring at

the rigid substrate is strong, but that at the free surface is relatively weak (finite anchoring

1 In fact they are related to the γi in (2.5) by γ1 = α3 − α2, γ2 = α6 − α5, though we shall not need

this.
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strength). Since it is fairly simple experimentally to change the anchoring strength at

a solid/nematic interface (and thus create a strongly anchoring surface if desired) by

suitable treatment of the solid [4, 11], it is legitimate to do this. The case of finite

anchoring strength at both boundaries is considered in § 4.

3.1 Energy

In the dimensionless variables equations (2.1) become

σδ2U2

K
n̈1 =

λδ2L2

K
n1 −

[
∂W

∂n1
− ∂

∂x

(
∂W

∂n1x

)
− ∂

∂y

(
∂W

∂n1y

)
− ∂

∂z

(
∂W

∂n1z

)]

+
UδL

2K
(γ1 − γ2)uzn3 = 0,

σδ2U2

K
n̈2 =

λδ2L2

K
n2 −

[
∂W

∂n2
− ∂

∂x

(
∂W

∂n2x

)
− ∂

∂y

(
∂W

∂n2y

)
− ∂

∂z

(
∂W

∂n2z

)]

+
UδL

2K
(γ1 − γ2)vzn3 = 0,

σδ2U2

K
n̈3 =

λδ2L2

K
n3 −

[
∂W

∂n3
− ∂

∂x

(
∂W

∂n3x

)
− ∂

∂y

(
∂W

∂n3y

)
− ∂

∂z

(
∂W

∂n3z

)]

− UδL

2K
(γ1 + γ2)(uzn1 + vzn2) = 0.

Anticipating the velocity scale U = O(δ3ρgL2/µ) fixed by gravity acting perpendicular to

the film driving the flow, we see that provided

σδ8

K

(
ρgL2

µ

)2

� 1,
δ4ρgL3

2Kµ
(γ1 ± γ2) � 1, (3.1)

which should be the case for the O(µm)-thickness films we consider, then the left-hand

sides and each of the final terms on the right-hand sides of the above equations may

be neglected, and (2.1) reduces to the appropriate static Euler-Lagrange equations for

minimising the free energy of the film subject to the constraint n · n = 1.2 Our (slow)

timescale is based on the fluid flow; we consider the regime in which the director

configuration moves on a much faster timescale, so that the director ‘instantaneously’

adjusts to the fluid motion, and the director is thus always in its static equilibrium

configuration.

Imposing the constraint n · n = 1 directly we have

n = (sin θ cosφ, sin θ sinφ, cos θ) (3.2)

for some functions θ(x, y, z), φ(x, y, z), where φ is the azimuthal angle of the vector n

about the axis θ = 0; this enables us to eliminate the Lagrange multiplier λ in the Leslie

formulation above. Making the simplifying assumption K1 = K3 = K (the validity of this

widely-used simplification is discussed by, for example, de Gennes & Prost [4, § 3.1.3.2]),

2 Note though that if gravity instead acts parallel to the film the velocity scale is larger by a

factor 1/δ, and the film must be correspondingly thinner for neglect of these terms.
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the leading order elastic energy in the bulk is given by (2.4) as

2W = θ2
z + φ2

z sin2 θ + O(δ). (3.3)

The anisotropic surface energy enters only via the boundary conditions; to see how this

arises it is instructive to carry out the free energy minimisation directly using a variational

principle. Allowable director configurations are found at minima of the free energy, J ,

which is made up of contributions from the bulk, and from surface effects. We write

J =

∫∫∫
Ω(t)

W dV +

∫∫
∂Ω(t)

g dS, (3.4)

where W is the leading order bulk elastic energy density defined in (3.3), g is the surface

energy density, Ω(t) is the domain occupied by the liquid crystal sample, and ∂Ω(t) is

the union of the free surface, ∂Ω+(t), and the fixed interface ∂Ω− at z = 0. The form of

the surface energy, g, is chosen to mimic the fact that the NLC molecules at a boundary

have a preferred direction (which depends on the properties of the boundary, and may be

altered by treating the boundary). At the free interface we assume a Rapini–Papoular [9]

formula for g, given in dimensional form by

g = γ+ +
A+

2
(n · ν+)2 = γ+ +

A+

2
cos2 θ + O(δ), (3.5)

where γ+ is the isotropic contribution, and ν+ is the normal to the free surface given by

(2.10). Thus the surface energy is a minimum when the director lies in the plane of the

free surface, and A+ is the anchoring strength for this preferred configuration. This is

known as planar anchoring, and is thought to be the situation holding at the free surface

of certain nematic liquid crystals (e.g. PAA [4]). At the fixed interface z = 0 we shall for

the moment assume strong anchoring, for simplicity: θ = 0, and the director is forced to

align perpendicular to the substrate (this is known as homeotropic anchoring; the angle φ

is then arbitrary). The case of finite anchoring strength at this surface will be considered

later.

We consider the variation induced in the energy J by small variations in the fields θ

and φ:

θ(x, y, z; t) 	→ θ(x, y, z; t) + εη(x, y, z; t), φ 	→ φ(x, y, z; t) + ελ(x, y, z; t),

where 0 < ε � 1. Considering J as a functional of θ, θz and φz , in accordance with (3.4),

(3.3) and (3.5), we may compute its first and second variations, that is, the order-ε and

order-ε2 terms in

∆J := J[θ + εη, θz + εηz, φz + ελz] − J[θ, θz, φz].

We find, after applying the Divergence theorem,

∆J = ε

∫∫∫
Ω

η
(
Wθ −

(
Wθz

)
z

)
− λ

(
Wφz

)
z
dV + ε

∫∫
∂Ω

η
(
gθ + ν3Wθz

)
+ λν3Wφz dS

+
ε2

2

∫∫∫
Ω

η2
(
Wθθ −

(
Wθθz

)
z

)
+ η2

zWθzθz + λ2
zWφzφz + 2ηλzWθφz + 2ηzλzWθzφz dV

+
ε2

2

∫∫
∂Ω

η2
(
gθθ + ν3Wθθz

)
dS + O(ε3), (3.6)

https://doi.org/10.1017/S095679250400573X Published online by Cambridge University Press

https://doi.org/10.1017/S095679250400573X


656 L. J. Cummings

where ν3 = ±1 (the z-component of the vector ν± normal to the upper/lower surface of

the film, in the direction away from the fluid).

The first variation must vanish at a minimum, for all admissible variations η and λ.

(The second variation tells us whether or not we have an energy minimum, and hence

whether or not the solution is stable, and will be used later.) Hence using (3.3), the volume

integral at order ε gives

θzz =
φ2
z

2
sin 2θ in Ω, (3.7)(

φz sin2 θ
)
z
= 0 in Ω, (3.8)

while the surface integral at this order tells us that (1) either η must vanish at the

boundary, i.e. θ is specified at the boundary (a strong anchoring condition on θ); or

gθ ± θz = 0 on ∂Ω±, (3.9)

and (2) either λ must vanish at the boundary, i.e. φ is specified at the boundary (a strong

anchoring condition on φ); or

φz sin2 θ = 0 on ∂Ω± (3.10)

(a ‘natural’ boundary condition on φ). A discussion of possible boundary conditions at

nematic/isotropic interfaces is given in De Gennes & Prost [4, § 3.1.4]. As outlined above,

we shall assume strong anchoring of θ at the rigid substrate (such conditions may be

created by suitable treatment of the bounding surface, e.g. rubbing or etching), and finite

surface energy defined by (3.5) at the free surface. Unless strong anchoring on the twist

angle φ is imposed (which is not anticipated at a free interface, and in any case is not

consistent with the assumed form for the surface energy g) it is immediate from (3.8) and

(3.10) that φz sin2 θ = 0 throughout Ω, and so, unless θ is a multiple of π throughout the

sample, φ must be constant everywhere. We thus set

φ ≡ 0 (3.11)

throughout the sample without loss of generality, and the director field is effectively

two-dimensional within the validity of our model. However, this does not preclude two-

dimensional disturbances to the film height.

Since we impose strong anchoring θ = 0 at z = 0, to leading order the solution for the

director angle θ is

θ = a(x, y, t)z. (3.12)

Thus, ah represents the total angle turned through by the director across the sample. To

satisfy the free surface condition (3.9) a(x, y, t) satisfies

a(x, y, t) =
A+

2
sin

[
2a(x, y, t)h(x, y, t)

]
, (3.13)

where the dimensionless anchoring strength A+ = δLA+/K . Nontrivial solutions of (3.13)

exist only if A+h > 1 everywhere; if this is the case then there may be multiple solutions

of (3.13) (see Figure 1). Solutions a may be found in terms of h by considering the

intersections of the curves y = 2ah/(A+h) and y = sin 2ah. In the case that multiple
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–1

–0.5

0

0.5

1
y

1 2 3 4 5 6 7 8

ah

y = 2(ah) / (A +h)

y = sin(2ah)

y = cos(2ah)

Figure 1. Solutions a are given by the intersection of the solid curves y = sin(2ah) and y =

2(ah)/(A+h), and these are stable if the corresponding value of cos(2ah) (the dotted curve) is

negative. Thus, the first (trivial) root is unstable, the second stable (provided it lies in ah > π/4), the

third unstable, and so on, nontrivial solutions alternating between stable and unstable as a increases

for as long as roots exist.

solutions exist, not all will be stable. By considering the sign of the second variation in

(3.6), given by

(∆J)2 =
ε2

2

∫∫∫
Ω

η2
z dV − ε2A+

2

∫∫
∂Ω+

η2 cos 2ah dS, (3.14)

it may be deduced that roots for which cos(2ah) < 0 are stable (small variations in

the solution only increase the energy), while those for which cos(2ah) > 0 are unstable.

Hence, considering Figure 1, only if A+h > π/2 everywhere will stable solutions for a

exist. The stable configuration observed in experiments will correspond to the smallest

(positive, without loss of generality) nontrivial root of (3.13), as this is the lowest energy

state (recall that ah represents the angle the director turns through across the film). Thus,

when nontrivial solutions exist, the observed solution will be such that

π

4h
< a <

π

2h
. (3.15)

The free elastic energy W is then given by

W =
θ2
z

2
=
a(x, y, t)2

2
. (3.16)

https://doi.org/10.1017/S095679250400573X Published online by Cambridge University Press

https://doi.org/10.1017/S095679250400573X


658 L. J. Cummings

3.2 Momentum

3.2.1 Gravity perpendicular to the film

We turn now to the momentum equations (2.2), considering first the case in which gravity

acts in the z-direction. Looking at the x- and y-components, the dominant balance of

terms must be such that, in the original dimensional variables,

∂π

∂x
∼ ∂t̃13

∂z
,

∂π

∂y
∼ ∂t̃23

∂z
,

and examination of the dominant terms in π, t̃13 and t̃23 gives the leading order equations

in the dimensionless variables as

∂p

∂x
+ N∂W

∂x
=

∂

∂z

{
∂u

∂z

(
2α1 sin2 θ cos2 θ + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + 1

)}
(3.17)

∂p

∂y
+ N∂W

∂y
=

∂

∂z

{
∂v

∂z

(
(α5 − α2) cos2 θ + 1

)}
. (3.18)

Here the dimensionless parameter N is defined by N = K/(µUL), and is the inverse

Ericksen number. The αi are now normalised by division by α4 = 2µ. Note that if αi = 0

(i� 4) and N = 0 (zero Frank elastic energy), which is the case for a Newtonian fluid,

then (3.17) and (3.18) reduce to the standard Newtonian thin film equations (for example,

see Myers [8]).

The z-component of (2.2) gives

0 =
∂p

∂z
+ B (3.19)

at leading order (W , as given by (3.3), (3.11) and (3.12) is independent of z), where the

Bond number B = δ3ρgL2/(µU). If gravity is the driving force, we fix the velocity scale

U = δ3ρgL2/µ. As in Newtonian flows with surface tension gradients (Marangoni flows),

we assume that the normal component of the stress vector at the free surface balances

surface tension times curvature, and that the in-plane component of the stress vector is

balanced by surface tension (or surface energy) gradients in the plane of the surface. With

the stress tensor tij = −pδij + t̃ij this yields the leading order boundary conditions:

p = −C
(

∂2h

∂x2
+

∂2h

∂y2

)
on y = h(x, y, t), (3.20)

∂u

∂z

(
2α1 sin2 θ cos2 θ + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + 1

)

= −A+N ∂a

∂x
h sin θ cos θ = −Nha

∂a

∂x
on y = h(x, y, t), (3.21)

∂v

∂z
((α5 − α2) cos2 θ + 1) = −A+N ∂a

∂y
h sin θ cos θ

= −Nha
∂a

∂y
on y = h(x, y, t), (3.22)
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((3.13) was used to simplify the right-hand sides of (3.21) and (3.22)), where the inverse

capillary number C = δ3γ+/(µU). We also impose no slip on z = 0:

u = v = 0 on z = 0,

and a kinematic boundary condition

w =
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
, on z = h(x, y, t),

which, taken together with (2.3), gives conservation of flux,

∂h

∂t
+

∂

∂x

(∫ h(x,y,t)

0

u dz

)
+

∂

∂y

(∫ h(x,y,t)

0

v dz

)
= 0. (3.23)

One can then solve (3.19) for p, substitute in (3.17) and (3.18) to solve for uz and vz using

the boundary conditions derived above, and, using the relations∫ h

0

u dz =

∫ h

0

us(h− s) ds,

∫ h

0

v dz =

∫ h

0

vs(h− s) ds,

finally substitute the results into (3.23) to obtain a partial differential equation governing

the evolution of the film height:

∂h

∂t
+

∂

∂x

[(
C

(
∇2h

)
x

− Bhx − Naax
)

I1 − NhaaxI2

]

+
∂

∂y

[(
C

(
∇2h

)
y

− Bhy − Naay

)
I3 − NhaayI4

]
= 0 (3.24)

where, recall, h and a are related by (3.13), subject to the restriction (3.15), and I1 to I4

are defined by:

I1 =
F1(2ah)

a3
, I2 =

F2(2ah)

a2
, I3 =

F3(2ah)

a3
, I4 =

F4(2ah)

a2
, (3.25)

where

F1(λ) =
1

4

∫ λ

0

(λ− ξ)2 dξ

α1 sin2 ξ + 2ηb(1 − cos ξ) + 2ηc(1 + cos ξ)

F2(λ) =
1

2

∫ λ

0

(λ− ξ) dξ

α1 sin2 ξ + 2ηb(1 − cos ξ) + 2ηc(1 + cos ξ)

F3(λ) =
1

4

∫ λ

0

(λ− ξ)2 dξ

2ηc(1 + cos ξ) + (1 − cos ξ)

F4(λ) =
1

2

∫ λ

0

(λ− ξ) dξ

2ηc(1 + cos ξ) + (1 − cos ξ)
.

Here the Miesowicz viscosities ηb and ηc are defined by [4]

ηb =
1

2
(1 + α3 + α6), ηc =

1

2
(1 − α2 + α5), (3.26)

and the Onsager relation (2.9) was used in simplifying the expressions. These viscosities

ηb and ηc are real physical viscosities, and hence are positive. It is thus clear that F3(λ)

and F4(λ) are positive for λ > 0, and hence that I3 > 0 and I4 > 0. Whilst the signs of
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Figure 2. The functions Fi(λ) for π/2 < λ < π, using the values for the viscosities αi of MBBA at

25◦C given in Kneppe et al. [6].

I1 and I2 are not immediately obvious, we would at least anticipate I1 > 0, given the

form of the governing equation (3.24).

For the liquid crystal MBBA in the nematic state at 25◦C, the values for the viscosities

provided by Kneppe et al. (Table I) [6] yield α1 = −0.2191, α2 = −1.3365, α3 = −0.0133,

α5 = 0.9431 α6 = −0.4068 for the normalised viscosities. In this case the functions Fi(λ)

are all positive. They are sketched in figure 2, for π/2 < λ < π, which, by (3.15), is the

range of interest. Thus the Ii are all positive for MBBA.

Note that the film thickness h cannot go to zero within the framework of this model,

since for sufficiently small thicknesses h no stable energy minima will exist (the stable roots

a all disappear; see Figure 1). Hence we are restricted to considering films sufficiently

thick that stable energy minima exist.

3.2.2 Gravity parallel to the film

When gravity in the (−x)-direction is assumed to be the driving mechanism, which is

equivalent to a flow driven by a constant influx supplied at x = +∞, (3.19) is replaced by

pz = 0, and (3.17) is modified with an extra gravity term (−B1) on the right-hand side,

where B1 = B/δ. An analogous procedure then leads to

∂h

∂t
+

∂

∂x

[(
C

(
∇2h

)
x

− B1 − Naax
)

I1 − NhaaxI2

]

+
∂

∂y

[(
C

(
∇2h

)
y

− Naay

)
I3 − NhaayI4

]
= 0. (3.27)
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Note that if the gravity is the driving mechanism, then the velocity scale here is fixed by

setting B1 = 1, giving a velocity scale a factor of 1/δ larger than in the preceding case.

3.3 Limiting cases of the governing equations

Newtonian fluid

With α1 = α2 = α3 = α5 = α6 = 0 it is easily verified that

I1 = I3 =
h3

3
, and I2 = I4 =

h2

2
.

If we also take N = 0 (which is the case if the Frank energy coefficient K is zero, as is

the case for a Newtonian fluid), then equations (3.24) and (3.27) are standard, and have

been widely studied. The review article by Myers [8] gives an overview of lubrication-type

equations, and many related references.

A+ → ∞, strong anchoring

This is the case previously studied by Ben Amar & Cummings. In this case the function

a determined by (3.13) approaches π/(2h) as

a ∼ π

2h

(
1 − 1

A+h
+ · · ·

)
,

so I1 → F1(π)/a3 = k1h
3, I2 → F2(π)/a2 = k2h

2, I3 → F3(π)/a3 = k3h
3, I4 →

F4(π)/a2 = k4h
2, for some positive constants k1-k4. In this case equation (3.24) reduces to

∂h

∂t
+

∂

∂x

[
k1h

3
(
C

(
∇2h

)
x

− Bhx
)

+ Ñhx(k1 + k2)
]

+
∂

∂y

[
k3h

3
(

C
(
∇2h

)
y

− Bhy
)

+ Ñhy(k3 + k4)
]

= 0, (3.28)

where Ñ = Nπ2/4, and (3.27) reduces to

∂h

∂t
+

∂

∂x

[
k1h

3
(
C

(
∇2h

)
x

− B1

)
+ Ñhx(k1 + k2)

]

+
∂

∂y

[
k3h

3
(

C
(
∇2h

)
y

)
+ Ñhy(k3 + k4)

]
= 0. (3.29)

The one-dimensional version of these equations is equivalent to that given in Ben

Amar & Cummings [1] (redefine N and rescale time appropriately, as was done there),

but the two-dimensional versions given above are different, as the naive two-dimensional

generalisation assumed in Ben Amar & Cummings [1] does not in fact hold. The above

equations are the correct two-dimensional version when there is strong anchoring at the

free surface. Flows driven both by gravity parallel to the film, and by gravity perpendic-

ular to the film, were considered in Ben Amar & Cummings [1], instabilities being found

in both cases.
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3.4 Analysis of gravity-spreading case

We focus now on the case of § 3.2.1, in which gravity acts perpendicular to the film.

There are two possible experimental situations: either partial or total wetting, according

as the ‘spreading power’ of the liquid crystal/substrate system is negative or positive [5].

We mostly consider the case of total wetting in this paper, to avoid the delicate issue of

contact lines.

3.4.1 Stability analysis of flat film

In the totally wetting case, in the absence of instability, we expect the drop to continue

spreading indefinitely, the ultimate state being a monolayer. For small drops spreading

under gravity, if the Bond number is unity, the timescale of the spreading is very long,

L/U = µ/(δ3ρgL) � 1, so the spreading occurs slowly; however after some time the

initial drop will have flattened considerably.

Taking into account this flattening, and the slow timescale of the spreading, we simplify

the problem by considering the stability of the simplest static solution to the equation

(3.24): the flat profile h ≡ 1. We perturb this solution, writing

h(x, y, t) = 1 + εeβth1(x, y) + O(ε2),

a(x, y, t) = a0 + εeβta1(x, y) + O(ε2),

where, in line with the observations after (3.13), and the inequalities (3.15), a0 is the

solution of

2a0 = A+ sin 2a0,
π

4
< a <

π

2
.

Since the solutions a and h must both more generally satisfy (3.13), it follows that a1 and

h1 are related by

a1 = −
a0h1

√
A2

+ − 4a2
0

1 +
√

A2
+ − 4a2

0

= −λh1 (3.30)

(the restriction A+ > 2a0 is necessary for the solution a0 to exist), where the second

equality defines the positive constant λ. Substitution in (3.24) gives the eigenvalue problem

for h1

βh1 + I1
∂

∂x

[
C

(
∇2h1

)
x

− Bh1x

]
+ Na0λh1xx(I1 + I2) +

I3
∂

∂y

[
C

(
∇2h1

)
y

− Bh1y

]
+ Na0λh1yy(I3 + I4) = 0,

where the Ii are evaluated at the leading-order solution a = a0, h = 1. Bounded solutions

to this equation are (up to constant multiples) of the form h1(x, y) = exp(ikx+ iqy) for k,

q ∈ �. Thus the dispersion relation between β and the wavenumbers (k, q) is:

β(k, q) = −[I1k
2 + I3q

2](C(k2 + q2) + B − Na0λ) + Na0λ[I2k
2 + I4q

2],
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and the general solution to this order is of the form

h(x, y, t) = 1 + ε

∫ ∞

−∞

∫ ∞

−∞
Λ(k, q)eβ(k,q)teikxeiqydk dq.

Clearly, assuming the Ii are positive (which we have seen is the case for the liquid crystal

MBBA in the nematic state), then depending on the relative sizes of B and N there is a

range of positive eigenvalues β(k, q) for small wavenumbers (the capillary terms are then

negligible), hence for N sufficiently large the film will be unstable to small wavenumber

perturbations.

From the definitions of N and B we see that

N
B =

K

ρg(δL)3
.

The factor (δL) in the denominator is the representative thickness of the droplet, h∗

say, which decreases as the droplet spreads. The ratio N/B thus inevitably increases as

the spreading progresses, and, if it exceeds the critical value required to give a range

of positive eigenvalues then instability will set in. We conclude that when the anchoring

strength at the free surface is finite, with strong anchoring at the substrate, a sufficiently

thin film will destabilise spontaneously. This result is in line with the strong anchoring

result of Ben Amar & Cummings [1].

Physically, as the film gets thinner, the director is still required to bend through some

finite angle across it, and this becomes more and more difficult to achieve. Ultimately,

it is preferable for the film to change the orientation of its free surface, giving the

instability. In the extreme case of strong anchoring at both surfaces, the director is forced

to bend through a constant angle, irrespective of the thickness of the film. With finite

surface energy there is some leeway in the angle the director must turn through; roughly

speaking, the lower the value of the surface energy, the smaller the angle that the director

must bend through, and the thinner a film can be sustained stably.

4 Finite surface energy at substrate

We now derive the governing equations for the case in which the anchoring strength at

the solid substrate and at the free surface are both finite.

4.1 Energy: Finite homeotropic anchoring at substrate and finite planar

anchoring at free surface

The surface energy at the free surface is again given by (3.5) (planar anchoring of

finite anchoring strength), and as before we assume homeotropic anchoring at the solid

substrate, but now of finite anchoring strength A−, so that the surface energy at this

surface is given by

g = γ− − A−
2

(n · ν−)2 = γ− − A−
2

cos2 θ. (4.1)

One may again carry out the variational process, obtaining equations (3.6)–(3.10) exactly

as before. Now, however, we do not impose the value of θ on z = 0, but fix it by (3.9).
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With the same assumptions as before we again obtain φ ≡ 0 without loss of generality,

and the director angle θ is then given by

θ = a(x, y, t)z + b(x, y, t), (4.2)

where to satisfy the boundary conditions (3.9) at each interface a and b must satisfy

a =
A+

2
sin(2ah+ 2b), (4.3)

a =
A−
2

sin(2b). (4.4)

Clearly a ≡ 0, b = 0, π/2 are possible solutions (these are the only possible solutions with

a = 0, because two solutions in which a is the same and b differs only by an integer

multiple of π, are equivalent).

To enable further analytical progress with the nontrivial solutions, we make the simpli-

fying assumption that the two anchoring strengths A+ and A− are equal (this is in the

same spirit as the equal-elastic-constants assumption made earlier in § 2.1):

A+ = A− = A. (4.5)

Then, combining equations (4.3) and (4.4), we find that possible solutions must satisfy

(1) sin(ah) = 0, or (2) cos(ah+ 2b) = 0. (4.6)

Stability of these solutions is determined by the sign of the second variation, which from

(3.6) has the form

(∆J)2 =
ε2

2

∫∫∫
Ω

η2
z dV − Aε2

2

∫∫
∂Ω+

η2 cos(2ah+ 2b)dS

+
Aε2

2

∫∫
∂Ω−

η2 cos(2b)dS. (4.7)

Case (1): sin(ah) = 0

Here, ah = nπ for integers n (which may be assumed positive without loss of generality),

and there are two relevant solutions for b for each n:

b =
1

2
Sin−1

(
2nπ

Ah

)
, b =

π

2
− 1

2
Sin−1

(
2nπ

Ah

)
,

where Sin−1 denotes the principal branch of the inverse sine function. Clearly, these

solutions exist only if 2nπ/(Ah) � 1. If they exist, then

cos(2ah+ 2b) = cos(2b+ 2nπ) = cos(2b).

Hence in the 2nd variation (4.7), whatever the sign of cos(2b), there is always one positive

surface contribution and one negative surface contribution, and so, by suitable choice of

test function η one will be able to make the 2nd variation negative. It follows that there

are nearby solutions with lower energy, and we deduce that solutions of this kind are

unstable.
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Case (2): cos(ah+ 2b) = 0

In this case we have

sin(ah+ 2b) =

{
1 case (2(i))

−1 case (2(ii))

so using (4.3) it is easily deduced that solutions a are given by the roots of

a =

{A
2

cos(ah) case (2(i))

− A
2

cos(ah) case (2(ii)).
(4.8)

With these two cases allowed, we may assume a > 0 without loss of generality, since the

a < 0 solutions in case (2(i)) are exactly equivalent to those a > 0 solutions in case (2(ii)).

The corresponding solutions b satisfy

Case (2(i)): sin(ah+ 2b) = 1 ⇒ b = π
4

− ah
2

(modulo π), (4.9)

Case (2(ii)): sin(ah+ 2b) = −1 ⇒ b = 3π
4

− ah
2

(modulo π). (4.10)

Then, considering the surface contributions to the 2nd variation, we have

cos(2b) =

{
sin(ah) case (2(i)),

− sin(ah) case (2(ii)),

and

cos(2ah+ 2b) =

{
− sin(ah) case (2(i)),

sin(ah) case (2(ii)).

So, stability depends on the sign of sin(ah) in each case. For case (2(i)), a = A cos(ah)/2,

if sin(ah) > 0 then both surface contributions are positive, giving a net positive 2nd

variation, and a stable solution. If sin(ah) < 0 then both surface contributions to the 2nd

variation (4.7) are negative, and thus the 2nd variation can be made negative for a suitable

choice of η, so the solution is unstable. For case (2(ii)), a = −A cos(ah)/2, the reverse

holds: if sin(ah) < 0 then both surface contributions to the 2nd variation are positive,

giving a net positive 2nd variation, and a stable solution, while if sin(ah) < 0 then both

surface contributions are negative, so the solution is unstable. Figure 3 illustrates the

situation.

The solution observed in practice will be that stable solution of lowest energy, i.e. that

with the lowest value of a, since ah represents the angle turned through by the director

across the film. Thus, the observed solution will be the smallest stable root of

a =
A
2

cos ah (4.11)

(case (2(i)), with b given by (4.9) (see Figure 3(a)); this solution always exists, whatever

the value of A), which lies in the range

0 < a <
π

2h
. (4.12)

The free elastic energy W is again given by

W =
θ2
z

2
=
a2

2
. (4.13)
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Figure 3. (a): Case (2(i)) a = A cos(ah)/2. Solutions a are given by the intersection of the solid

curves y = cos(ah) and y = 2(ah)/(Ah), and these are stable if the corresponding value of sin(ah)

(the dotted curve) is positive. Thus, the first root is stable, the second unstable, the third stable, and

so on, alternating between stable and unstable as a increases for as long as roots exist. (b): Case

(2(ii)) a = −A cos(ah)/2. Solutions a are given by the intersection of the solid curves y = − cos(ah)

and y = 2(ah)/(Ah), and are stable if the corresponding value of sin(ah) (dotted) is negative. Thus,

the first root is unstable, the second stable, the third unstable, and so on.

4.2 Momentum

We now return to the momentum equations to see how the analysis of § 3.2 is modified.

Equations (3.17)–(3.20) are unchanged; but the different solution for θ means that the

right-hand sides of the stress conditions (3.21) and (3.22) are altered, giving the modified

stress boundary conditions

∂u

∂z

(
2α1 sin2 θ cos2 θ + (α5 − α2) cos2 θ + (α3 + α6) sin2 θ + 1

)
= −Na(hax + bx)

= −Na

2

(
hax − ahx

)
on z = h(x, y, t), (4.14)

∂v

∂z

(
(α5 − α2) cos2 θ + 1

)
= −Na(hay + by)

= −Na

2

(
hay − ahy

)
on z = h(x, y, t), (4.15)

where we have used (4.9) to eliminate b from the right-hand sides. Imposing no-slip at

z = 0 and the kinematic condition at the free surface as before, we may again obtain a

https://doi.org/10.1017/S095679250400573X Published online by Cambridge University Press

https://doi.org/10.1017/S095679250400573X


Evolution of a thin film of nematic liquid crystal 667

partial differential equation governing the evolution of the film height:

∂h

∂t
+

∂

∂x

[
J1

(
C

(
∇2h

)
x

− Bhx − Naax
)

− J2Na(hax − ahx)
]

+
∂

∂y

[
J3

(
C

(
∇2h

)
y

− Bhy − Naay

)
− J4Na(hay − ahy)

]
= 0, (4.16)

where a is determined by (4.11) and (4.12), and J1 to J4 are defined by

J1 =
G1(ah)

a3
, J2 =

G2(ah)

a2
, J3 =

G3(ah)

a3
, J4 =

G4(ah)

a2
, (4.17)

where

G1(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ)2 dξ

α1 sin2 ξ + 2ηb(1 − cos ξ) + 2ηc(1 + cos ξ)
(4.18)

G2(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ) dξ

α1 sin2 ξ + 2ηb(1 − cos ξ) + 2ηc(1 + cos ξ)
(4.19)

G3(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ)2 dξ

2ηc(1 + cos ξ) + (1 − cos ξ)
(4.20)

G4(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ) dξ

2ηc(1 + cos ξ) + (1 − cos ξ)
(4.21)

where the ηb, ηc are the Miesowicz viscosities defined in (3.26). The Gi(λ) are plotted in

Figure 4 for 0 < λ < π/2 (this being the physically-relevant range, by (4.12)) for the

αi-values of MBBA at 25◦C quoted in Kneppe et al. [6]. Again, they are always positive

on the range of interest.

Again, if gravity instead acts parallel to the film then the governing equation analogous

to (3.27) is easily written down:

∂h

∂t
+

∂

∂x

[
J1

(
C

(
∇2h

)
x

− B1 − Naax
)

− J2Na(hax − ahx)
]

+
∂

∂y

[
J3

(
C

(
∇2h

)
y

− Naay

)
− J4Na(hay − ahy)

]
= 0. (4.22)

4.3 Energy: Finite planar anchoring at substrate and finite homeotropic

anchoring at free surface

If we reverse the anchoring conditions considered above, and instead assume that the

liquid crystal molecules prefer to lie parallel to the rigid substrate, and perpendicular to

the free surface, then the above analysis follows through almost unchanged. The surface

energies now have the form

g± = constant ∓ A±
2

cos2 θ, (4.23)

the director solution is again given by (4.2), where, to satisfy the boundary conditions
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Figure 4. The functions Gi(λ) for 0 < λ < π/2, using the values for the viscosities αi of MBBA at

25◦C given in Table I of Kneppe et al. [6].

(3.9) at each interface a and b must satisfy

a = −A+

2
sin(2ah+ 2b), (4.24)

a = −A−
2

sin(2b). (4.25)

Again, a ≡ 0, b = 0, π/2 are the only possible solutions with a = 0, and both are unstable.

If we again assume A+ = A− = A then possible solutions must satisfy one of the

possibilities (4.6). Stability of solutions is determined by the sign of the second variation,

which here is

(
∆J

)
2

=
ε2

2

∫∫∫
Ω

η2
z dV +

Aε2

2

∫∫
∂Ω+

η2 cos(2ah+ 2b)dS

− Aε2

2

∫∫
∂Ω−

η2 cos(2b)dS. (4.26)

Case (1)

Here ah = nπ, and so again cos(2ah+ 2b) = cos(2b). Hence as before there is always one

positive and one negative contribution to the surface energy, and by suitable choice of

the test function η the 2nd variation (4.26) may be made negative. These solutions are

thus unstable.
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Case (2)

We have two subcases

sin(ah+ 2b) =

{
1 case (2(i))

−1 case (2(ii)),

with a > 0 without loss of generality; and correspondingly

Case (2(i)): b =
π

4
− ah

2
(modulo π), (4.27)

Case (2(ii)): b =
3π

4
− ah

2
(modulo π). (4.28)

Thus considering the terms in the 2nd variation (4.26),

cos(2b) =

{
sin(ah) case (2(i)),

− sin(ah) case (2(ii)),

and

cos(2ah+ 2b) =

{
− sin(ah) case (2(i)),

sin(ah) case (2(ii)),

so stability depends on the sign of sin(ah). For case (2(i)), a = −A cos(ah)/2, if sin(ah) > 0

then both surface contributions are negative and the solution is unstable, and if sin(ah) < 0

then both surface contributions are positive and the solution is stable. This is exactly

equivalent to the case (2(ii)) considered in § 4.1 previously, and the situation is sketched

in figure 3(b). (The director solution is not identical however, as the value of b differs in

the two cases.)

For case (2(ii)), a = A cos(ah)/2, if sin(ah) < 0 then both surface contributions are

negative and the solution is unstable, and if sin(ah) > 0 then both surface contributions are

positive and the solution is stable. This is exactly equivalent to the case (2(i)) considered

in § 4.1 previously, and the situation is sketched in Figure 3(a) (again though, the solution

for b differs).

Hence the observed solution will be the smallest positive root of

a =
A
2

cos(ah), (4.29)

with b given by (4.28). This director solution is exactly as in § 4.1 except for an additive

term π/2. Thus the PDE governing the film height evolution follows almost exactly as

before, with just minor changes to the definitions of the Ji:

∂h

∂t
+

∂

∂x
[K1(C(∇2h)x − Bhx − Naax) − K2Na(hax − ahx)]

+
∂

∂y
[K3(C(∇2h)y − Bhy − Naay) − K4Na(hay − ahy)] = 0, (4.30)

where a is determined by (4.29), and K1 to K4 are defined by

K1 =
H1(ah)

a3
, K2 =

H2(ah)

a2
, K3 =

H3(ah)

a3
, K4 =

H4(ah)

a2
, (4.31)
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Figure 5. The functions Hi(λ) for 0 < λ < π/2, using the values for the viscosities αi of MBBA at

25◦C given in Table I of Kneppe et al. [6].

H1(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ)2 dξ

α1 sin2 ξ + 2ηb(1 + cos ξ) + 2ηc(1 − cos ξ)
(4.32)

H2(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ) dξ

α1 sin2 ξ + 2ηb(1 + cos ξ) + 2ηc(1 − cos ξ)
(4.33)

H3(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ)2 dξ

2ηc(1 − cos ξ) + (1 + cos ξ)
(4.34)

H4(λ) =
1

4

∫ π
2 +λ

π
2 −λ

(π/2 + λ− ξ) dξ

2ηc(1 − cos ξ) + (1 + cos ξ)
(4.35)

where the ηb, ηc are the Miesowicz viscosities defined in (3.26). The functions Hi are

plotted in Figure 5.

4.4 Linear stability revisited

We again consider the linear stability of the simplest static solution to these two models

(4.16) and (4.30): the uniform film h = 1. We write

h = 1 + εeβth1(x, y) + O(ε2), (4.36)

a = a0 + εeβta1(x, y) + O(ε2), (4.37)
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where to satisfy (4.11) (or (4.29)) we require

a0 =
A
2

cos a0, a1 = −
h1a0

√
A2 − 4a2

0

2 +
√

A2 − 4a2
0

= −λ2h1 (4.38)

(the inequality A2 > 4a2
0 is satisfied automatically), where the second equality in the

equation for a1 defines the positive constant λ2.

Substitution in (4.16) then gives the eigenvalue problem for h1:

βh1 +
∂

∂x

[
J1

(
C

(
∇2h1

)
x

− Bh1x + Na0λ2h1x

)
+ J2Na0(λ2 + a0)h1x)

]

+
∂

∂y

[
J3

(
C

(
∇2h1

)
y

− Bh1y + Na0λ2h1y

)
+ J4Na0(λ2 + a0)h1y)

]
= 0, (4.39)

if we instead substitute in (4.22) then we simply replace Ji by Ki in the above. Bounded

solutions to this problem are of the form h1 = exp(ikx + iqy). Hence the eigenvalues

β(k, q) are given by

β = −[J1k
2 + J3q

2]
(
C(k2 + q2) + B − Na0λ2) + [J2k

2 + J4q
2]Na0(λ2 + a0), (4.40)

(or the equivalent expression with Ki) and stability again depends on the relative values

of B and N, with instability if N is sufficiently large relative to B.

4.5 Physical examples

We consider a film with the following physical characteristics:

• δL = film thickness = O(10−5)m

• L = horizontal extent of film, in range 10−3–10−2m

• Elastic constant K = O(10−11)N

• Anchoring energy A in range 10−6–10−5 Jm−2 [10]

• Representative viscosity µ = 4 × 10−2 Pa s (based on MBBA)

• Leslie viscosities αi as for MBBA at 25◦C [6]

• Density ρ = 103 kg m−3 (based on water).

Assuming a Bond number of unity, which fixes the velocity scale U, this gives approx-

imate values for the remaining dimensionless parameters:

N = O(1), 1 < A < 10, γ < C < γ102, (4.41)

where γ is the isotropic contribution to the surface tension. In the absence of accurate

data for γ, if we assume it is not too different to that for an air-water interface, and

take γ = 0.1Nm−1, then we obtain a range of values 0.1 < C < 10, the value C = 1

corresponding to a film of horizontal extent L ≈ 3mm.

If we take A = 5 then the value of a0 as determined by (4.38) is a0 = 1.1105, with

λ2 = 0.7677. The functions Ji can be easily evaluated at h = 1, a = a0, and we find that
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Figure 6. The stability curve for the solution h = 1 of (4.16), in (A,N)-space, using the values

for the viscosities αi of MBBA at 25◦C given in Table I of [6]. Here the instability is always via a

k-mode.

the dispersion relation (4.40) becomes

β = −C(k2 + q2)[0.141k2 + 0.128q2] − 0.374k2[0.376 − N] − 0.328q2[0.388 − N]. (4.42)

Thus in this case we anticipate instability of the free surface if N > 0.376 (a k-mode),

which will likely be the case for the parameters quoted.

If we take A = 1 then a0 = 0.45018, with λ2 = 0.08044. The Ji are again easily

evaluated at h = 1, a = a0, giving the dispersion relation (4.40) as

β = −C(k2 + q2)[0.159k2 + 0.140q2] − 0.0359k2[4.428 − N] − 0.0313q2[4.491 − N].

(4.43)

Thus in this case we anticipate instability of the free surface only if N > 4.428, again via

a k-mode.

More generally we may plot the curve of Nc as a function of A, where Nc is the

critical value of N at which instability sets in for the given value of A (N > Nc

corresponds to instability). Figure 6 gives the stability diagram for the solution h ≡ 1 of

(4.16); solutions for which (A,N) lie above the curve are unstable, and those for which

(A,N) lie below the curve are stable. Figure 7 gives the equivalent stability diagram for

the solution h ≡ 1 of (4.30).

Again, the comments at the end of § 3.4.1 apply. In all cases, the boundary conditions

require that the director bends through some finite angle across the film, which becomes
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Figure 7. The stability curve for the solution h = 1 of (4.30), in (A,N)-space, using the values

for the viscosities αi of MBBA at 25◦C given in Table I of Kneppe et al. [6]. Here the instability is

always via a q-mode.

more difficult to do as the film becomes thinner. The stronger the surface energy, the

more firmly the director is anchored at either surface, and the more difficult its task of

bending when the film is very thin. At some point it becomes energetically favourable for

the free surface to destabilise. The smaller the value of the surface energy, the stabler the

film, as the restrictions on the director at each surface are weaker. This is borne out by

Figures 6 and 7, in each of which the stable region becomes smaller as A increases.

5 Can the film height go to zero?

An important question to consider is whether or not the film height can go to zero in

the modified model of § 4. We know that neither the original model of Ben Amar &

Cummings [1] (with strong anchoring at both surfaces) nor the model of § 3 (with strong

anchoring at the substrate but weak (planar) anchoring at the free surface) admit solutions

with h → 0. To address this issue for the model with weak anchoring at both surfaces, we

consider the 1-d version of (4.16).

As h → 0 the value of a determined by (4.11) may be evaluated asymptotically; and we

find

a =
A
2

− A3h2

16
+ · · · . (5.1)

For small values of the argument λ the functions G1(λ) and G2(λ) may also be evaluated
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as

G1(λ) =
2λ3

3K
+ · · · ⇒ J1 =

2h3

3K
+ · · · , (5.2)

G2(λ) =
λ2

2K
+ · · · ⇒ J2 =

h2

2K
+ · · · , (5.3)

where K = α1 + 2(ηb + ηc).

Thus, retaining the leading order terms in capillarity, gravity, and nematic effects, for

small film heights h the 1-d version of (4.16) becomes

∂h

∂t
+

∂

∂x

[
2h3

3K
(Chxxx − Bhx) +

NA2h2hx

8K

]
≈ 0, (5.4)

in which clearly the term in N dominates the term in B as h → 0. Hence, if static

drop-like solutions (i.e. having compact support) to the full problem (3.27) are to exist,

then locally they must satisfy

d

dx

(
h3 d

3h

dx3
+

3NA2

16C h2 dh

dx

)
≈ 0. (5.5)

Integrating this equation, assuming that h3h′′′ and h2h′ (′ = d/dx) both vanish as h → 0

(thus we avoid the issue of a π/2 contact angle), we obtain

h
d3h

dx3
+ β

dh

dx
= 0, where β =

3NA2

16C

and, integrating twice more,

(
dh

dx

)2

= −βh log h+ (k1 + β)h+ tan2 α, (5.6)

where α > 0 is the contact angle and k1 is a constant of integration. If we take the positive

square root for dh/dx (so that the contact line is to the left of the fluid domain), and fix

constants such that the contact line is at x = 0, then the solution h(x) is determined by

∫ h

0

dH

((k1 + β)H − βH logH + tan2 α)1/2
= x. (5.7)

Clearly h cannot grow unboundedly from zero, as the term −βh log h dominates for

large h, so that the right-hand side of (5.6) becomes negative, which is unacceptable. h

grows until dh/dx = 0, which occurs when h = h∗, where

−βh∗ log h∗ + (k1 + β)h∗ + tan2 α = 0.

This must happen at a finite value of x. If we had h = h∗ and dh/dx = 0 only at x = ∞,

then the integral from H = 0 to H = h∗ in (5.7) must be divergent. This can happen only

if the function D(h) = (k1 + β)H − βH logH + tan2 α in the denominator of the integrand
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Figure 8. (a) The droplet half-volume V/2 as a function of contact angle α and droplet height

h∗ (the physical parameter β is taken to be 1). For each fixed α, V is a monotonic function of h∗,

hence if V and α are specified, the corresponding h∗ is uniquely determined. The droplet length x∗
(plotted in (b) as a function of α and h∗) is then also uniquely determined.

has a repeated zero at h = h∗ (simple zeros, when square-rooted, are integrable). However,

D′(h) = 0 only at h† = exp(k1/β), and D(h†)� 0.

It follows that solutions starting from h = 0 inevitably increase to some finite value

h∗, which is attained at some finite value x = x∗, at which there is a turning-point, and

h must then decrease. Thus, for x > x∗ we must switch to the negative branch of the

square-root, and the solution will again touch down at x = 2x∗. If the volume of the

compactly-supported drop is 2V then

V =

∫ x∗

0

h dx =

∫ h∗

0

h

dh/dx
dh =

∫ h∗

0

h dh

(β log(h∗/h) + (1 − h/h∗) tan2 α)1/2
(5.8)

which fixes the maximum drop height h∗, and its length 2x∗ is determined by

x∗ =

∫ h∗

0

dh

(β log(h∗/h) + (1 − h/h∗) tan2 α)1/2
(5.9)

(see figure 8). Plotting V (α, h∗) (Figure 8 (a)) we see that for a given volume 2V and

contact angle α, the drop height h∗ is uniquely determined, and hence so is the length, by

(5.9) (Figure 8 (b)). Thus, there is a unique droplet solution of volume 2V and contact

angle α, of height h∗, given by (5.7).

As an example, for β = 1, α = π/4 and V = 0.5 we find h∗ = 0.689, x∗ = 1.119, and the

corresponding solution h is shown in Figure 9.
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Figure 9. One half of a typical ‘touchdown’ solution to equation (5.5). The full profile is

symmetric about the point x∗ where the maximum height is attained.

6 Conclusions

We have used lubrication theory to derive a simple model governing the spreading

(under gravity) of thin films of nematic liquid crystal, for various anchoring scenarios.

This generalises the work of Ben Amar & Cummings [1], who considered only strong

anchoring at both surfaces. The relevant partial differential equations governing the film

height evolution were derived, and the stability of the simplest solution (h ≡ 1) to these

PDEs was investigated. In all cases it was found that instability can occur, depending

on the relative sizes of the Bond number, B, and the inverse Ericksen number, N.

This suggests that, for sufficiently thin films, instability will be observed in practice. This

fits with the experimental observations of Cazabat et al. [2], who observed spontaneous

fingering instabilities in thin (O(µm)-thickness) spreading films of NLCs. Such instability

can be understood physically by the fact that the different conditions imposed at the two

interfaces (the anchoring on the NLC molecules) require the director to bend through

some finite angle across the sample. The thinner the sample, the greater the energy penalty

in doing this. At some critical film thickness, it becomes energetically favourable for the

free surface to destabilise. The lower the surface anchoring energy, the stabler the situation,

as is borne out by the stability plots of Figures 6 and 7.

In the case that our model is unstable, our results enable a most unstable wavelength

to be easily identified, given all the relevant experimental parameter values (just solve

∂β/∂k = 0 = ∂β/∂q for k and q to find the most unstable solution). It is hoped to be able

to use this to make comparison with experimental data, once further experimental results

are available.

We neglected the effect of Van der Waals’ forces in this paper, thus, bearing in mind

the upper limits on the film thickness given by (3.1), the model derived is valid for films

of micron-level thickness. However, if thinner films are being modelled, the effect of such

long-range intermolecular forces could easily be incorporated [12].
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A numerical study of the film height evolution equations is underway, which should

provide much greater insight into the possible behaviour of such thin nematic films, and

which may also suggest possible new experimental investigations.

We finally considered briefly whether or not the models admit solutions in which the

film height can go to zero, and found compactly-supported solutions for the simplified

time-independent small-h equation; but the stability of these static solutions was not

addressed. Neither was the case in which the contact angle is π/2 considered. Again,

detailed numerical investigation of the equations will be of help.
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