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Abstract

We give a conjecture for the moments of the Dedekind zeta function of a Galois exten-
sion. This is achieved through the hybrid product method of Gonek, Hughes and Keating.
The moments of the product over primes are evaluated using a theorem of Montgomery
and Vaughan, whilst the moments of the product over zeros are conjectured using a heuris-
tic method involving random matrix theory. The asymptotic formula of the latter is then
proved for quadratic extensions in the lowest order case. We are also able to reproduce
our moments conjecture in the case of quadratic extensions by using a modified version of
the moments recipe of Conrey et al. Generalising our methods, we then provide a conjecture
for moments of non-primitive L-functions, which is supported by some calculations based
on Selberg’s conjectures.

2010 Mathematics Subject Classification: 11M06 (Primary); 11R42, 11M50 (Secondary)

1. Introduction and statement of results

Let K be a number field of discriminant dK and let ζK(s) be its Dedekind zeta function.
In this note we are interested in the asymptotic behaviour of the moments

Ik(T ) = 1

T

∫ 2T

T

∣∣ζK (
1
2 + i t

)∣∣2k
dt (1·1)

with k real. The only known asymptotic for Ik(T ) was given by Motohashi [18] in the case
where K is quadratic and k = 1. He showed that

I1(T ) ∼ 6

π2
L(1, χ)2

∏
p|dK

(
1 + 1

p

)−1

log2 T, (1·2)

where χ is the Kronecker character (dK| · ). Other results concerning the mean values of
ζK(s) can be found in [1, 2, 10, 12, 19, 24].

Similarly to the Riemann zeta function, it is difficult to even form conjectures on the
higher asymptotics of Ik(T ). In the paper [7], Conrey and Ghosh were able to provide a
conjecture for the sixth moment of ζ(1/2 + i t). Later, Conrey and Gonek [9] described
a method that could also give a conjecture for the eighth. Their methods involved mean
values of long Dirichlet polynomials, and it seems these methods reach their limit with the
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eighth moment. It is only recently that believable conjectures have been made for all values
k > −1/2. These were first given by Keating and Snaith [14] and took the form

1

T

∫ 2T

T

∣∣ζ (
1
2 + i t

)∣∣2k
dt ∼ a(k)g(k)

�(k2 + 1)
logk2

T, (1·3)

where

a(k) =
∏

p

(
1 − 1

p

)k2 ∑
j≥0

dk(p j )2

p j
(1·4)

and

g(k)

�(k2 + 1)
= G(k + 1)2

G(2k + 1)
, (1·5)

where G is Barnes’ G-function. Their main idea was to model the zeta function as a charac-
teristic polynomial. This was motivated by the apparent similarities between the non-trivial
zeros of the zeta function and eigenangles of matrices in the circular unitary ensemble.
However, one drawback of their method was that the arithmetic factor had to be incorporated
in an ad hoc fashion. Later, Gonek, Hughes and Keating [11] reproduced this conjecture in
such a way that the arithmetic factor was included in a more natural way. In this paper we
reproduce these results for the Dedekind zeta function.

The method of Gonek, Hughes and Keating first involves expressing the zeta function as a
partial product over primes times a partial product over the zeros. This uses a smoothed form
of the explicit formula due to Bombieri and Hejhal [3]. The equivalent for the Dedekind zeta
function takes the following form:

THEOREM 1. Let X ≥ 2 and let l be any fixed positive integer. Let u(x) be a real, non-
negative, smooth function with mass 1 and compact support on [e1−1/X , e]. Set

U (z) =
∫ ∞

0
u(x)E1(z log x)dx,

where E1(z) = ∫ ∞
z e−w/w dw. Then for σ ≥ 0 and |t | ≥ 2 we have

ζK(s) = PK(s, X)ZK(s, X)

(
1 + O

(
Xl+2

(|s| log X)l

)
+ O(X−σ log X)

)
, (1·6)

where

PK(s, X) = exp

⎛
⎜⎝ ∑

a⊆OK

N(a)≤X

�(a)

N(a)s log N(a)

⎞
⎟⎠ (1·7)

with

�(a) =
{

log N(p) if a= pm,

0 otherwise,
(1·8)

and

ZK(s, X) = exp

(
−

∑
ρ

U ((s − ρ) log X)

)
, (1·9)

where the sum is over all non-trivial zeros of ζK(s).

https://doi.org/10.1017/S030500411900046X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411900046X


Moments of the Dedekind zeta function 193

Following a similar reasoning to that in [11] we can view formula (1·6) as a hybrid of a
truncated Euler product and a truncated Hadamard product. We can then make the equivalent
of their splitting conjecture for the moments Ik(T ). This takes the form:

CONJECTURE 1. Let X, T → ∞ with X 	 (log T )2−ε . Then for k > −1/2, we have

Ik(T ) ∼
(

1

T

∫ 2T

T

∣∣PK

(
1
2 + i t, X

)∣∣2k
dt

)
×

(
1

T

∫ 2T

T

∣∣ZK

(
1
2 + i t, X

)∣∣2k
dt

)
. (1·10)

We plan to evaluate the moments of PK by using the Montgomery–Vaughan mean value
theorem [16]. Due to the nature of how primes split, or rather, how they are not known to
split in some cases, we restrict ourselves to Galois extensions. It may be possible to remove
this restriction given milder conditions on K. In Section 3 we show:

THEOREM 2. Let K be a Galois extension of degree n with Galois group G = Gal(K/Q)

and for a given prime p let gp denote the index of the decomposition group Gp in G. Let
ε > 0, k > 0 and suppose that X and T → ∞ with X 	 (log T )2−ε . Then

1

T

∫ 2T

T

∣∣PK

(
1
2 + i t, X

)∣∣2k
dt ∼ aK(k)χnk2

K
(eγ log X)nk2

, (1·11)

where χK denotes the residue of ζK(s) at s = 1 and

aK(k) =
∏

p⊆OK

⎛
⎝(

1 − 1

N(p)

)nk2
(∑

m≥0

dgpk(p
m)2

N(p)m

)1/gp
⎞
⎠ (1·12)

with dk(p
m) = dk(pm) = �(m + k)/(m!�(k)).

In considering the moments of ZK for Galois extensions we first express ζK(s) as a product
of Artin L-functions. For each individual L-function we then follow the heuristic argument
given in [11, section 4]. This essentially allows us to write the moments of ZK as an expec-
tation over the unitary group. We then assume a certain quality of independence between
the Artin L-functions, namely, that the matrices associated to the zeros of L(s, χ,K/Q) at
height T , act independently for distinct χ . This allows for a factorisation of the expectation
and we are led to

CONJECTURE 2. Let K be a Galois extension of degree n. Suppose that X, T → ∞ with
X 	 (log T )2−ε . Then for k > −1/2 we have

1

T

∫ 2T

T

∣∣ZK

(
1
2 + i t, X

)∣∣2k
dt

∼ (eγ log X)−nk2
∏
χ

G(χ(1)k + 1)2

G(2χ(1)k + 1)

(
log

(
q(χ)T dχ

))χ(1)2k2

, (1·13)

where the product is over the irreducible characters of Gal(K/Q), G is the Barnes
G-function, q(χ) is the conductor of L(s, χ,K/Q) and dχ is its degree.

We remark that for Artin L-functions the degree is simply the number of Gamma func-
tions appearing in its completed form. We also note that we have kept the conductors in the
statement of the conjecture. This is merely to emphasise our belief that, to leading order,
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the moment of a product of L-functions should factorise as the product of the moments.
Although conductors are fixed throughout the paper, we retain this point of emphasis since
it appears quite naturally in our arguments.

By combining Conjecture 2 with Theorem 2 and Conjecture 1 we see that the fac-
tors of eγ log X cancel, as expected, and we acquire a full conjecture for the moments
of ζK(1/2 + i t) when K is Galois. We note that after using

∑
χ χ(1)2 = |Gal(K/Q)|= n

the resulting expression in this conjecture is ∼ c lognk2
T for some constant c. Now, in the

paper [5], Conrey and Farmer express the idea that the mean square of ζ(s)k should be a mul-
tiple of the sum

∑
n≤T dk(n)2n−1, and that this multiple is the measure of how many Dirichlet

polynomials are needed to capture the full moment. Their reasoning is based on a combina-
tion of the Montgomery-Vaughan mean value Theorem and the form of the sixth and eighth
moment conjectures given in [9]. Assuming this idea applies to other L-functions, we note
a result of Chandrasekharan and Narasimhan [4]. They showed that for a Galois extension
of degree n, ∑

m≤T

fK(m)2 ∼ cT logn−1 T, (1·14)

where fK(m) is the number of integral ideals of norm m and c is some constant. Applying
partial summation we thus gain a result which supports our conjecture, at least in the case
k = 1 (we note the results of [4] should easily extend to general k, and remain consistent
with our conjecture). Alternatively, one could view our conjecture as adding support to the
idea of Conrey and Farmer.

In this paper a particular emphasis is placed on quadratic extensions, so let us first fix our
notation. We note that if dK is the discriminant of a quadratic field and χ(n) = (dK|n) where
( · | · ) is the Kronecker character, then χ is a real Dirichlet character mod

q =
{

4|dK| if dK ≡ 2(mod 4),

|dK| otherwise
(1·15)

and ζK(s) = ζ(s)L(s, χ). In section 5 we prove Conjecture 2 in the lowest order case. That
is, we prove

THEOREM 3. Let K be a quadratic extension. Suppose that X, T → ∞ with X 	
(log T )2−ε . Then

1

T

∫ 2T

T

∣∣ZK

(
1
2 + i t, X

)∣∣2 dt ∼ log T · log qT

(eγ log X)2
. (1·16)

By combining this with Theorem 2 and then comparing with Motohashi’s result (1·2), we
see that Conjecture 1 is true for k = 1 in the case of quadratic extensions.

Recently, an alternative method for conjecturing moments of primitive L-functions was
given by Conrey et al. in [6]. In section 6·1, we use a slight modification of the recipe to
reproduce the full moments conjecture for quadratic extensions. This is given by

CONJECTURE 3. Let K be a quadratic extension and let aK(k) be given by (1·12). Then

Ik(T ) ∼ aK(k)L(1, χ)2k2

(
G(k + 1)2

G(2k + 1)

)2

(log T · log qT )k2

. (1·17)
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Finally, in section 6·2 we attempt to generalise the main ideas of this paper to non-
primitive L-functions. We restrict ourselves to reasonable L-functions, which is to say, we
consider functions of the form

L(s) =
∑

αL(n)n−s =
m∏

j=1

L j (s)
e j (1·18)

where e j ∈N and the L j (s) are distinct, primitive members of the Selberg class S . We
assume that we have the functional equation

�L j (s) := γL j (s)L j(s) = ε j�L j (1 − s) (1·19)

where ε j is some number of absolute value 1 and

γL j (s) = Qs/2
j

d j∏
i=1

�(s/2 + μi, j ) (1·20)

with the {μi, j } stable under complex conjugation. We assume the conductors Q j to be
distinct1 for distinct j . We also require that the ‘convolution’ L-functions

M j (s) =
∞∑

n=1

|αL j (n)|2
ns

(1·21)

behave reasonably, in particular, that they have an analytic continuation. We then claim

CONJECTURE 4. With the notation as above, let αL ,k(n) be the Dirichlet coefficients of
L(s)k . Then for k > −1/2,

1

T

∫ T

0

∣∣L (
1
2 + i t

)∣∣2k
dt ∼ bL(k)

m∏
j=1

G2(e j k + 1)

G(2e j k + 1)

(
log

(
Q j T

d j
))(e j k)2

, (1·22)

where

bL(k) =
∏

p

(
1 − 1

p

)nL k2 ∞∑
n=0

|αL ,k(pn)|2
pn

(1·23)

with nL =∑m
j=1 e2

j .

We remark that if L(s) = ζK(s) with K Galois and we have a factorisation in terms of
Dirichlet series, then the residue term χnk2

K
of (1·11) is a factor of bL(k).

Note that the right-hand side of (1·22) is ∼ (bL(k)gL(k)/�(nLk2 + 1)) lognL k2
T where

gL(k) = �(nLk2 + 1)

m∏
j=1

G2(e j k + 1)

G(2e j k + 1)
d

(e j k)2

j . (1·24)

As previously noted, one expects the mean square of L(1/2 + i t)k to be asymptotic to
a multiple of the sum

∑
n≤T |αL ,k(n)|2n−1. On the assumption of Selberg’s conjectures, we

1See section 6·2 for a discussion of the possible ambiguities here.
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give an argument showing that

∑
n≤T

|αL ,k(n)|2
n

∼ bL(k)

(nLk2)! lognL k2
T, (1·25)

which adds further support to our conjecture. We also note that for integral k,

gL(k) =
(

nLk2

(e1k)2, . . . , (emk)2

) m∏
j=1

g(e j k)d
(e j k)2

j , (1·26)

where the first factor is the multinomial coefficient and the function g is defined by
g(n)/n2!= G(n + 1)2/G(2n + 1). It is shown in [5] that g(n) is an integer, and hence gL(k)

is an integer for integral k.

2. The hybrid product

In this section we prove Theorem 1. For this we require a smoothed version of the explicit
formula which is given by the following lemma.

LEMMA 1. Let u(x) be a real, nonnegative smooth function with compact support in
[1, e], and let u be normalized so that if

v(t) =
∫ ∞

t
u(x)dx, (2·1)

then v(0) = 1. Let

û(z) =
∫ ∞

0
u(x)xz−1dx (2·2)

be the Mellin transform of u. Then for s not a zero or a pole of ζK(s) we have

−ζ ′
K
(s)

ζK(s)
=

∑
a⊆OK

�(a)

N(a)s
v(elog N(a)/ log X ) −

∑
ρ

û(1 − (s − ρ) log X)

s − ρ

− (r1 + r2)

∞∑
m=1

û(1 − (s + 2m) log X)

s + 2m

− r2

∞∑
j=0

û(1 − (s + 2 j + 1) log X)

s + 2 j + 1
− χK

û(1 − (s − 1) log X)

s − 1
,

(2·3)

where �(a) is as in (1·8) and r1, r2 are, respectively, the number of real and complex
embeddings K→C.

This lemma is essentially due to Bombieri–Hejhal [3]. It is proved in the familiar way by
first considering the integral

1

2π i

∫
(c)

ζ ′
K
(s + z)

ζK(s + z)
û(1 + z log X)

dz

z

with (z) = c = max{2, 2 − (s)} and then shifting contours to the far left.
The support condition on u implies v(elog N(a)/ log X ) = 0 when N(a) > X . Since there are

at most n prime ideals above the rational prime p we see the sum over a⊆OK is finite.
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Also, similarly to [11], we can show the sums over ρ, m and j converge absolutely so long
as s �= ρ, s �= −2m or s �= −(2 j + 1). We now turn to the proof of Theorem 1.

Let fK(n) represent the number of ideals of OK with norm n. Then

ζK(s) =
∞∑

n=1

fK(n)

ns
= 1 +

∞∑
n=2

fK(n)

ns
(2·4)

and so ζK(σ + i t) → 1 as σ → ∞ uniformly in t . Integrating (2·3) along the horizontal line
from s0 = σ0 + i t0 to +∞, with σ0 ≥ 0 and |t0| ≥ 2, we get on the left-hand side − log ζK(s0).
We can now follow the arguments in [11] to find

ζK(s) = P̃K(s, X)ZK(s, X)

(
1 + O

(
Xl+2

(|s| log X)l

))
, (2·5)

where

P̃K(s, X) = exp

( ∑
a⊆OK

�(a)

N(a)s log N(a)
v(elog N(a)/ log X )

)
. (2·6)

We note that this is not too different to PK(s, X). Indeed, since v(elog N(a)/ log X ) = 1 for
N(a) ≤ X 1−1/X we have

P̃K(s, X) = PK(s, X) exp

( ∑
a⊆OK

�(a)

N(a)s log N(a)
(v(elog N(a)/ log X ) − 1)

)

= PK(s, X) exp

⎛
⎝ ∑

X1−1/X ≤N(a)≤X

�(a)

N(a)s log N(a)
(v(elog N(a)/ log X ) − 1)

⎞
⎠

= PK(s, X) exp

⎛
⎝O

⎛
⎝ ∑

X1−1/X ≤p≤X

p−σ

⎞
⎠
⎞
⎠

= PK(s, X) exp
(
O

(
X−σ log X

))
= PK(s, X)

(
1 + O(X−σ log X)

)
,

where we have again used the fact that at most n prime ideals lie above the rational prime p.
To remove the restriction on s, we note that we may interpret exp(âĹŠU (z)) to be

asymptotic to Cz for some constant C as z → 0, so both sides of (1·6) vanish at the zeros.

3. Moments of the arithmetic factor

In this section we prove Theorem 2. For a rational prime p we have the decomposition

pOK =
g∏

i=1

pei
i (3·1)

with

N(pi) = p fi , (3·2)
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where ei and fi are positive integers. Since K is Galois, e1 = e2 = · · · = eg = e and f1 =
f2 = · · · = fg = f , say. We then have the identity e f g = n. Let gp(e) denote the number of
prime ideals lying above p with ramification index e. Then

PK(s, X)k = exp

⎛
⎝k

∑
N(a)≤X

�(a)

N(a)s log N(a)

⎞
⎠= exp

⎛
⎝k

∑
m≥1

∑
N(p)m≤X

1

mN(p)ms

⎞
⎠

= exp

⎛
⎜⎜⎜⎝k

∑
m≥1

∑
g|n

g
∑
e| n

g

∑
p

mn
eg ≤X

gp(e)=g

1

mp(n/eg)ms

⎞
⎟⎟⎟⎠ (3·3)

=
∏
g|n

∏
e| n

g

∏
p

n
eg ≤X

gp(e)=g

exp

⎛
⎜⎜⎝log(1 − p−(n/eg)s)−gk − gk

∑
m≥2

p
mn
eg >X

1

mp(n/eg)ms

⎞
⎟⎟⎠.

We now write the innermost product as the Dirichlet series

∞∑
l∈Le,g(X)

βgk(l)

l(n/eg)s
, (3·4)

where Le,g(X) = {l ∈ Im(N) : p|l ⇒ gp = g and pn/eg ≤ X}. We see that βgk(l) is a multi-
plicative function of l, 0 ≤ βgk(l) ≤ dgk(l) for all l and βgk(pm) = dgk(pm) if pm ≤ X .

For an integer l, let le,g denote the greatest factor of l composed of primes p for which
gp(e) = g. Now,

PK(s, X)k =
∏
g|n

∏
e| n

g

( ∞∑
l∈Le,g(X)

βgk(l)

l(n/eg)s

)
=

∞∑
l∈W(X)

γk(l)

ls
, (3·5)

where

γk(l) =
∏
g|n

∏
e| n

g

βgk(l
eg/n
e,g ) (3·6)

and W(X) = {l ∈ Im(N) :N(p)|l ⇒N(p) ≤ X} and Im(N) stands for the image of the norm
map. The product representation of γ is made possible by the fact that for integers l, m
belonging to different Le,g(X), we have (l, m) = 1. This would not necessarily be the case
for non-Galois extensions. For example, in a cubic extension we may have the factorisation
pOK = p1p2 and hence one of these ideals has norm p, whilst the other has norm p2. We
could then follow the previous reasoning whilst redefining the sets L with a consideration
of this difference. However, we would then lose the coprimality condition.

Since we want to apply the mean value theorem for Dirichlet series we split the sum at
T θ where θ is to be chosen later and obtain

PK(s, X)k =
∑

l∈W(X)

l≤T θ

γk(l)

ls
+ O

( ∑
l∈W(X)

l>T θ

γk(l)

ls

)
. (3·7)
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Now for ε > 0 and σ ≥ c the error term is

	 T −εθ
∑

l∈W(X)

∏
g|n

∏
e| n

g
dgk(leg/n

e,g )

nc−ε
= T −εθ

∏
N(p)≤X

(1 −N(p)ε−c)−k

= T −εθ exp

(
O

(
k

∑
N(p)≤X

N(p)ε−c

))
= T −εθ exp

(
O

(
k X 1−c+ε

(1 − c + ε) log X

))
,

where in the last line we have used the prime ideal theorem. If we let X 	 (log T )1/(1−c+ε)

then this is

	 T −εθ exp

(
O

(
k

log T

log log T

))
	k T −εθ/2 (3·8)

and hence

PK(s, X)k =
∑

l∈W(X)

l≤T θ

γk(l)

ls
+ Ok(T −εθ/2). (3·9)

We now let θ = 1/2 and apply the Montgomery–Vaughan mean value theorem [16] to give

1

T

∫ 2T

T

∣∣∣∣ ∑
l∈W(X)

l≤T 1/2

γk(l)

lσ+i t

∣∣∣∣
2

dt = (1 + O(T −1/2))
∑

l∈W(X)

l≤T 1/2

γk(l)2

l2σ

= (1 + O(T −1/2))

( ∑
l∈W(X)

γk(l)2

l2σ
+ O(T −ε/4)

)
(3·10)

= (1 + O(T −ε/4))
∑

l∈W(X)

γk(l)2

l2σ
.

Therefore by (3·9) and the Cauchy–Schwarz inequality we have

1

T

∫ 2T

T
|PK (σ + i t, X)|2k = (1 + O(T −ε/4))

∑
l∈W(X)

γk(l)2

l2σ
. (3·11)

We can now re-factorise the above Dirichlet series to give

∑
l∈W(X)

γk(l)2

l2σ
=

∏
g|n

∏
e| n

g

( ∞∑
l∈Le,g(X)

βgk(l)2

l2(n/eg)σ

)
. (3·12)

For an individual series in the above product we can follow the arguments in [11] to find
∞∑

l∈Le,g(X)

βgk(l)2

l2(n/eg)σ
= (1 + O(X−1/2+ε))

∏
p

n
eg ≤X

gp(e)=g

∑
m≥0

dgk(pm)2

p2m(n/eg)σ
. (3·13)

Now, the above product may be divergent as X → ∞. In order to keep the arithmetic
information, we factor out the divergent part and write it as

∏
p

n
eg ≤X

gp(e)=g

((
1 − p−2(n/eg)σ

)ngk2 ∑
m≥0

dgk(pm)2

p2m(n/eg)σ

) ∏
p

n
eg ≤X

gp(e)=g

(
1 − p−2(n/eg)σ

)−ngk2

. (3·14)
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In terms of divergence, the worst case scenario is when n/eg = 1. If in this case gp(e) = g <

n, then p is ramified and hence the product is finite. Therefore, we only need consider the
case g = n, for which the above equals

∏
p>X

gp(e)=n

((
1 − p−2σ

)n2k2 ∑
m≥0

dnk(pm)2

p2mσ

)
=

∏
p>X

gp(e)=n

(
1 − n2k2 p−2σ + n2k2 p−2σ + Ok(p−4σ )

)

=
∏
p>X

gp(e)=n

(
1 + Ok(p−4σ )

)

=1 + Ok(1/(X log X)). (3·15)

It follows that we can extend the first product in (3·14) over all primes. Specialising to
σ = 1/2 and using the product representation in (3·12) we see

∑
l∈W(X)

γk(l)2

l
= aK(k)

∏
N(p)≤X

(1 −N(p)−1)−nk2
(1 + Ok(X−1/2+ε)). (3·16)

By a generalisation of Mertens theorem [21], we have∏
N(p)≤X

(1 −N(p)−1)−nk2 = χnk2

K
(eγ log X)nk2

(1 + O(1/ log2 X)) (3·17)

and the result follows.

4. Support for Conjecture 2

Let K be a Galois extension of degree n with Galois group G. Then it is well known (see
for example [20, chapter 7]) that

ζK(s) =
∏
χ

L(s, χ,K/Q)χ(1) (4·1)

where the product is over the non-equivalent irreducible characters of G and L(s, χ,K/Q) is
the Artin L-function attached to χ . For each character χ , the associated L-function satisfies
the functional equation

�(s, χ) := q(χ)s/2γ (s, χ)L(s, χ) = W (χ)�(1 − s, χ) (4·2)

where W (χ) is some complex number of modulus one and q(χ) is the conductor, for which
we do not require an explicit expression. The gamma factor is given by

γ (s, χ) = π−sdχ /2

dχ∏
j=1

�

(
s + μ j

2

)
(4·3)

with μ j equal to 0 or 1. If we assume the Artin conjecture then L(s, χ) is an entire function
for all non-trivial χ . If χ is the trivial character then L(s, χ) equals the Dedekind zeta
function of the base field, which in our case is ζ(s). Under this assumption, these L-functions
exhibit reasonable behaviour and the usual arguments (e.g. [13, theorem 5·8]) give the mean
density of zeros of L(β + i t, χ), 0 ≤ β ≤ 1, as

https://doi.org/10.1017/S030500411900046X Published online by Cambridge University Press

https://doi.org/10.1017/S030500411900046X


Moments of the Dedekind zeta function 201

1

π
log

(
q(χ)

(
t

2π

)dχ
)

=: 1

π
Lχ (t), (4·4)

say. For each L(s, χ) in the product of equation (4·1), we associate to its zeros γn(χ) at
height T , a unitary matrix U (N (χ)) of size N (χ) = �Lχ(T )� chosen with respect to Haar
measure, which we denote dμ(χ). After rescaling, the zeros γn(χ) are conjectured [23] to
share the same distribution as the eigenangles θn(χ) of U (N (χ)) when chosen with dμ(χ).

In addition to the previous assumptions, we now also assume the extended Riemann
hypothesis. Let ZK(s, X) be given by (1·9). Since E1(i x) = −Ci(|x |) for x ∈R, where

Ci(z) = −
∫ ∞

z

cos w

w
dw, (4·5)

we see that

1

T

∫ 2T

T

∣∣ZK

(
1
2 + i t, X

)∣∣2k
dt

= 1

T

∫ 2T

T

∏
γn

exp

(
2k

∫ e

1
u(y)Ci(|t − γn| log y log X)

)
dydt

= 1

T

∫ 2T

T

∏
χ

∏
γn(χ)

exp

(
2kχ(1)

∫ e

1
u(y)Ci(|t − γn(χ)| log y log X)

)
dydt,

(4·6)

where u(y) is a smooth, non-negative function supported on [e1−1/X , e] and of total mass
one. We now replace the zeros with the eigenangles and argue that the above should be
modeled by

E

[∏
χ

N (χ)∏
n=1

φ(kχ(1), θn(χ))

]
, (4·7)

where

φ(m, θ) = exp

(
2m

∫ e

1
u(y)Ci(|θ | log y log X)

)
(4·8)

and the expectation is taken with respect to the product measure
∏

χ dμ(χ). We now assume
that the matrices U (N (χ)) can be chosen independently for any two distinct χ . This cor-
responds to a ‘superposition’ of ensembles; the behaviour of which is also shared by the
distribution of zeros of a product of distinct L-functions [15]. With this assumption, the
expectation factorises as

∏
χ

E

[ N (χ)∏
n=1

φ(kχ(1), θn(χ))

]
. (4·9)

In [11] it is shown (Theorem 4) that for k > −1/2 and X ≥ 2,

E

[ M∏
j=1

φ(m, θ j )

]
∼ G(m + 1)2

G(2m + 1)

(
M

eγ log X

)m2 (
1 + Om

(
1

log X

))
. (4·10)

Therefore, by forming the product over χ and using
∑

χ χ(1)2 = |Gal(K/Q)|= n we are led
to Conjecture 2.
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5. The second moment of ZK for quadratic extensions

In this section we prove Theorem 3. For the most part, the remainder of this paper is
concerned with quadratic extensions so we first state some useful facts whilst establishing
our notation.

As mentioned in the introduction, ζK = ζ(s)L(s, χ) where χ is the Kronecker character.
We shall have occasion to work with more general (complex) characters χ mod q > 1 when
the arguments in question work in such generalities, however, at some points we may spe-
cialise to the Kronecker character without mention. We also note in quadratic extensions the
splitting of primes admits the following simple description:

p is split : (p) = p1p2 =⇒ N(p1) =N(p2) = p

p is inert : (p) = p1 =⇒ N(p1) = p2

p is ramified : (p) = p2
1 =⇒ N(p1) = p.

5·1. The setup

Our aim is to show

1

T

∫ 2T

T

∣∣ZK

(
1
2 + i t, X

)∣∣2 dt ∼ log T · log qT

(eγ log X)2 (5·1)

for X, T → ∞ with X 	 (log T )2−ε and K quadratic. Since ζK(1/2 + i t)PK(1/2 + i t, X) =
ZK(1/2 + i t, X)(1 + o(1)) for t ∈ [T, 2T ], it is enough to show that

1

T

∫ 2T

T

∣∣∣ζK (
1
2 + i t

)
PK

(
1
2 + i t, X

)−1
∣∣∣2 dt ∼ log T · log qT

(eγ log X)2 . (5·2)

To evaluate the left-hand side we first express PK(1/2 + i t)−1 as a Dirichlet polynomial and
then apply a formula given the author in [12].

By formula (3·9) we have

PK

(
1
2 + i t

)−1 =
∑

n∈W(X)

n≤T θ

γ−1(n)

n1/2+i t
+ Ok(T −εθ/2) (5·3)

for any θ > 0. Applying this, along with Cauchy–Schwarz and Motohashi’s formula (1·2),
gives

1

T

∫ 2T

T

∣∣∣ζK (
1
2 + i t

)
PK

(
1
2 + i t, X

)−1
∣∣∣2 dt

=
(

1 + O

(
1

log X

))
1

T

∫ 2T

T

∣∣∣∣ζK (
1
2 + i t

) ∑
n∈W(X)

n≤T θ

γ−1(n)

n1/2+i t

∣∣∣∣
2

dt
(5·4)

since T −δ 	 1/ log X for any δ > 0.
The behaviour of the coefficients γ−1(n) may be determined from the Euler product given

in (3·3). Indeed, the last line of equation (3·3) gives
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PK(s, X)−1 =
∏
g|2

∏
e| 2

g

∏
p

2
eg ≤X

gp(e)=g

(
1 − p−(2/eg)s

)g
exp

(
g

∑
m≥2

p
2m
eg >X

1

mp(2/eg)ms

)

=
∏
g|2

∏
e| 2

g

∏
p

2
eg ≤√

X
gp(e)=g

(
1 − p−(2/eg)s

)g

×
∏

√
X<p

2
eg ≤X

gp(e)=g

(
1 − p−(2/eg)s

)g
(

1 + g

2
p−(4/eg)s + O(p−(6/eg)σ )

)
.

(5·5)

Since we are considering the case σ = 1/2 we may remove the term O(p−(6/eg)σ ) in the final
product at the cost of a factor of (1 + O(1/ log X)). By (5·4), we can clearly incur this with
no real loss, and hence we may assume that γ−1(n) is supported on cube-free split/ramified
primes and 6th power-free inert primes. Then, upon reading the behaviour of γ−1 from the
Euler product we see that

γ−1(p j
s ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2 if j = 1, ps ≤ X ,

1 if j = 2, ps ≤ √
X ,

2 if j = 2,
√

X < ps ≤ X ,

0 if j ≥ 3,

γ−1(p2 j
i ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if j = 1, p2
i ≤ X ,

0 if j = 2, p2
i ≤ √

X ,
1
2 if j = 2,

√
X < p2

i ≤ X ,

0 if j ≥ 3
(5·6)

and

γ−1(p j
r ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if j = 1, pr ≤ X ,

0 if j = 2, pr ≤ √
X ,

1
2 if j = 2,

√
X < pr ≤ X ,

0 if j ≥ 3,

(5·7)

where the notation ps, pi, pr denotes split, inert and ramified primes respectively. We also
note the bound γ−1(n) 	 d(n) for all n ∈W(X).

We are now required to show that for X, T → ∞ with X 	 (log T )2−ε ,

1

T

∫ 2T

T

∣∣∣∣ζK (
1
2 + i t

) ∑
n∈W(X)

n≤T θ

γ−1(n)

n1/2+i t

∣∣∣∣
2

= log T · log qT

(eγ log X)2

(
1 + O

(
1

log X

))
. (5·8)

In order to state the formula given in [12] we must first establish some notation. So, let
α, β, γ, δ be complex numbers 	 1/ log T and let

Aα,β,γ,δ(s) = ζ(1 + α + γ + s)ζ(1 + β + δ + s)L(1 + β + γ + s, χ)

× L(1 + α + δ + s, χ)

ζ(2 + α + β + γ + δ + 2s)

∏
p|q

(
1 − p−1−s−β−δ

1 − p−2−2s−α−β−γ−δ

)
.

(5·9)

For integers h and k let

Bα,β,γ,δ,h,k(s, χ) =
∏
p|hk

∑
j≥0 fα,β(pkp+ j , χ) fγ,δ(ph p+ j , χ)p− j (1+s)∑

j≥0 fα,β(p j , χ) fγ,δ(p j , χ)p− j (1+s)
, (5·10)
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where

fα,β(n, χ) =
∑

n1n2=n

n−α
1 n−β

2 χ(n2) (5·11)

and where h p and kp are the highest powers of p dividing h and k respectively. Now let

Zα,β,γ,δ,h,k(s) = Aα,β,γ,δ(s)Bα,β,γ,δ,h,k(s, χ). (5·12)

We must also define a slight variant of the above. For this we let

A′
α,β,γ,δ(s, χ)

= L(1 + α + γ + s, χ)L(1 + β + δ + s, χ)L(1 + α + δ + s, χ)L(1 + β + γ + s, χ)

L(2 + α + β + γ + δ + 2s, χ2)

(5·13)

and

B ′
α,β,γ,δ,h,k(s, χ) =

∏
p|hk

∑
j≥0 χ(p j )σα,β(pkp+ j )σγ,δ(ph p+ j )p− j (1+s)∑

j≥0 χ(p j )σα,β(p j )σγ,δ(p j )p− j (1+s)
, (5·14)

where

σα,β(n) =
∑

n1n2=n

n−α
1 n−β

2 . (5·15)

Now let

Z ′
α,β,γ,δ,h,k(s, χ) = G(χ)A′

α,β,γ,δ(s, χ)B ′
α,β,γ,δ,h,k(s, χ), (5·16)

where G(χ) is the Gauss sum associated to χ .

THEOREM 4 ([12]). Let

I (h, k) =
∫ ∞

−∞

(
h

k

)−i t

ζ
(

1
2 + α + i t

)
L
(

1
2 + β + i t, χ

)
× ζ

(
1
2 + γ − i t

)
L
(

1
2 + δ − i t, χ

)
w(t)dt,

(5·17)

where w(t) is a smooth, nonnegative function with support contained in [T/2, 4T ], satis-
fying w( j)(t) 	 j T − j

0 for all j = 0, 1, 2, . . . , where T 1/2+ε 	 T0 	 T . Suppose (h, k) = 1
and that hk ≤ T

2
11 −ε . Then

I (h, k) = 1√
hk

∫ ∞

−∞
w(t)

(
Zα,β,γ,δ,h,k(0) + 1

qβ+δ
Z−γ,−δ,−α,−β,h,k(0)

(
t

2π

)−α−β−γ−δ

+ Z−γ,β,−α,δ,h,k(0)

(
t

2π

)−α−γ

+ 1

qβ+δ
Zα,−δ,γ,−β,h,k(0)

(
t

2π

)−β−δ

+ 1q|h
χ(k)

qδ
Z ′

−δ,β,γ,−α, h
q ,k(0, χ)

(
t

2π

)−α−δ

+ 1q|k
χ(h)

qβ
Z ′

α,−γ,−β,δ,h, k
q
(0, χ)

(
t

2π

)−β−γ )
dt + E(T ), (5·18)
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where

E(T ) 	 T 3/4+ε(hk)7/8+εq1+ε(T/T0)
9/4. (5·19)

Now take a Dirichlet polynomial M(s) =∑
n≤T θ a(n)n−s with θ ≤ 1/11 − ε and let w(t)

satisfy the conditions of Theorem 4. Then, upon expanding, we have∫ ∞

−∞

∣∣ζK (
1
2 + i t

)∣∣2 ∣∣M (
1
2 + i t

)∣∣2 w(t)dt

=
∑

h,k≤T θ

a(h)a(k)√
hk

(h, k) lim
α,β,γ,δ→0

I (hk, kh), (5·20)

where hk = h/(h, k). In order to evaluate this inner limit we express Zα,β,γ,δ,h,k(0) as a
Laurent series and express the other terms as Taylor series. In doing this, the only real diffi-
culty lies in calculating the derivatives of Bα,β,γ,δ,h,k(0). For our purposes, which is to work
over X -smooth numbers, we only need upper bounds however. The first order derivatives of
Bα,β,γ,δ,h,k(0) are

	 B0,0,0,0,h,k(0)

(
log hk +

∑
p|hk

log p

p

)
	 B0,0,0,0,h,k(0)

(
log hk + log log hk

)
. (5·21)

Similarly, one finds that the second order derivatives are

	 B0,0,0,0,h,k(0)
(

log2 hk + log hk log log hk + log2 log hk
)
. (5·22)

A short calculation gives

B0,0,0,0,h,k(0) = δ(h)δ(k), (5·23)

where

δ(h) =
⎧⎨
⎩
∏

p|h
p split

(
1 + h p

1−p−1

1+p−1

)
if hi is square

0 otherwise
(5·24)

and hi is the greatest factor of h composed solely of inert primes.
Upon taking the limit as α, β, γ, δ → 0 and taking smooth approximations to the

characteristic function of the interval [T, 2T ] with T0 = T 1−ε we get the following:

PROPOSITION 1. Let M(s) =∑
n≤T θ a(n)n−s with θ ≤ 1/11 − ε. Then,

1

T

∫ 2T

T

∣∣ζK (
1
2 + i t

)∣∣2 ∣∣M (
1
2 + i t

)∣∣2 dt

=
∑

h,k≤T θ

a(h)a(k)

hk
(h, k)

[ 2∑
n=0

cn(h, k, T ) + O
(

T − 1
4 +ε (hkkh)

7/8+ε
) ]

. (5·25)

The leading order term is given by

c2(h, k, T ) = 6

π2
L(1, χ)2

∏
p|dK

(
1 + 1

p

)−1

× δ(hk)δ(kh)
[

log T · log qT + O(log T log hkkh)
]
. (5·26)
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For the lower order terms we have

c1(h, k, T ) 	 δ(hk)δ(kh) log T log log hkkh (5·27)

and

c0(h, k, T ) = c′
0(h, k, T ) + 1q|hk χ(kh)Z ′

0,0,0,0,
hk
q ,kh

(0, χ)

+ 1q|kh χ(hk)Z ′
0,0,0,0,hk ,

kh
q

(0, χ)
(5·28)

with

c′
0(h, k, T ) 	 δ(hk)δ(kh)(log log hkkh)

2. (5·29)

The Z ′ terms may be written as

Z ′
0,0,0,0,m,n(0, χ) = G(χ)

L(1, χ)4

L(2, χ2)
δ′(m)δ′(n), (5·30)

where

δ′(m) =
∏
p|m

p split

(
1 + m p

p − 1

p + 1

) ∏
p|m

p inert

(
1 + m p

p + 1

p − 1

)
. (5·31)

5·2. Evaluating the main term

PROPOSITION 2. Let c2(h, k, T ) be given by (5·26). Suppose X, T → ∞ with X 	
(log T )2−ε . Then

∑
h,k≤T θ

h,k∈W(X)

γ−1(h)γ−1(k)c2(h, k, T )

hk
(h, k) = (1 + o(1))

log T · log qT

(eγ log X)2 . (5·32)

Proof. Inputting the formula for c2(h, k, T ) we see that we are required to show

S0 :=
∑

h,k≤T θ

h,k∈W(X)

γ−1(h)γ−1(k)δ(hk)δ(kh)

hk
(h, k)

[
log T · log qT + O(log T log hkkh)

]

=(1 + o(1))
π2

6
L(1, χ)−2

∏
p|dK

(
1 + 1

p

)
log T · log qT

(eγ log X)2 . (5·33)

We first group together the terms for which (h, k) = g. Replacing h by hg and k by kg we
obtain

S0 =
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g

k∈W(X)

γ−1(kg)δ(k)

k

∑
h≤Y/g

h∈W(X)
(h,k)=1

γ−1(hg)δ(h)

h

×
[

log T · log qT + O(log T log hk)
]
, (5·34)
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where Y = T θ . Let us first estimate the error term. We have∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g

k∈W(X)

γ−1(kg)δ(k)

k

∑
h≤Y/g

h∈W(X)
(h,k)=1

γ−1(hg)δ(h)

h
log (hk)

	
∑

g∈L(X)

d(g)2

g

∑
h,k∈L(X)

d(k)2d(h)2

hk
log hk

	
∑

g∈L(X)

d(g)2

g

( ∑
m∈L(X)

d(m)2 log m

m

)2

.

(5·35)

Writing f (σ ) =∑
m∈L(X) d(m)2m−σ the inner sum is − f ′(1). Since f (σ ) =∏

p≤X (1 −
p−σ )−4(1 − p−2σ ) we see f ′(1) 	 f (1)

∑
p≤X log p/(p − 1) 	 log5 X and hence the

above sum is 	 log14 X . We can now turn to the main term and consider

S :=
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g

k∈W(X)

γ−1(kg)δ(k)

k

∑
h≤Y/g

h∈W(X)
(h,k)=1

γ−1(hg)δ(h)

h
. (5·36)

We define the function μ′ : Im(N) →C, N(a) �→ μ(a) where μ is the extension of the usual
möbius function to ideals given by

μ(a) =

⎧⎪⎨
⎪⎩

1 if a=OK,

(−1)r if a= p1p2 . . . pr ,

0 otherwise.

(5·37)

So basically; for split and ramified primes μ′(p) = −1 and μ′(p j ) = 0 for j ≥ 2; for inert
primes μ(p2) = −1 and μ(p2 j ) = 0 for j ≥ 2, and μ′ is multiplicative. Similarly to the usual
möbius function we now have

∑
d|h
d|k

d∈Im(N)

μ′(d) =
{

1 if (h, k) = 1

0 otherwise
(5·38)

for h, k ∈ Im(N). Substituting this into the sum over h in S we see

S =
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g

k∈W(X)

γ−1(kg)δ(k)

k

∑
h≤Y/g

h∈W(X)

( ∑
d|h
d|k

d∈Im(N)

μ′(d)

)
γ−1(hg)δ(h)

h

=
∑
g≤Y

g∈W(X)

1

g

∑
l≤Y/g

l∈W(X)

μ′(l)
l2

( ∑
m≤Y/gl

m∈W(X)

γ−1(glm)δ(lm)

m

)2

.

(5·39)

Manipulating the sums in this way allows us to avoid the rather technical and lengthy
calculations involved in [11].

We wish to extend these sums over all W(X) and this requires some estimates. These
will follow in a similar fashion to that found between (3·7) and (3·9). Throughout we use
γ−1(m), δ(m) 	 d(m) and d(mn) ≤ d(m)d(n). First, let b be positive and small, then
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1

d(g)d(l)2

∑
m>Y/ lg

m∈W(X)

γ−1(glm)δ(lm)

m
	

∑
m>Y/ lg

m∈W(X)

d(m)2

m
	

(
Y

lg

)−b ∑
m∈W(X)

d(m)2

m1−b

	
(

Y

lg

)−b ∏
p≤X

(
1 − p−1+b

)−4 (
1 − p−2(1−b)

)

	
(

Y

lg

)−b

e8Xb/ log X 	 (lg)bT −bθ/2.

(5·40)

Second,

∑
m∈W(X)

γ−1(glm)δ(lm)

m
	 d(g)d(l)2

∑
m∈W(X)

d(m)2

m
	 d(g)d(l)2 log4 X. (5·41)

From these it follows that the square of the sum over m in (5·39) is

( ∑
m∈W(X)

γ−1(glm)δ(lm)

m

)2

+ O
(
d(g)2d(l)4(lg)2bT −bθ/4

)
. (5·42)

Similarly we find

∑
l∈W(X)

μ′(l)d(l)4

l2−2b
	 1,

∑
l>Y/g

l∈W(X)

μ′(l)d(l)4

l2−2b
	 gcT −cθ , (5·43)

for some small c > 0, and

∑
g∈W(X)

d(g)2

g1−2b−c
	 T ε,

∑
g>Y

g∈W(X)

d(g)2

g1−2b−c
	 T −dθ (5·44)

for some small d > 0. The above estimates give

S =
( ∑

g∈W(X)

−
∑
g>Y

g∈W(X)

)
1

g

( ∑
l∈W(X)

−
∑

l>Y/g
l∈W(X)

)
μ′(l)

l2

×
[( ∑

m∈W(X)

γ−1(glm)δ(lm)

m

)2

+ O
(
d(g)2d(l)4(lg)2bT −bθ/4

) ]

= (1 + o(1))
∑

g∈W(X)

1

g

∑
l∈W(X)

μ′(l)
l2

( ∑
m∈W(X)

γ−1(glm)δ(lm)

m

)2

.

(5·45)

Now, since all coefficients in S are multiplicative we may expand the sum into an Euler
product:

S =(1 + o(1))
∏
p≤X

p split

G(p)
∏

p≤√
X

p inert

G(p2)
∏
p≤X

p ramified

G(p)
(5·46)
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with

G(p) =
∑

i, j,u,v≥0

μ′(p j )γ−1(pi+ j+u)γ−1(pi+ j+v)δ(p j+u)δ(p j+v)

pi+2 j+u+v
. (5·47)

Performing the various sums whilst using the support conditions of γ−1 and μ′ we see

G(p) = 1 + 2γ−1(p)δ(p) + γ−1(p)2

p
+ 2γ−1(p2)δ(p2) + γ−1(p2)2 + 2γ−1(p)γ−1(p2)δ(p)

p2
.

(5·48)

Recall that for a split prime p we have δ(pr ) = 1 + r(p − 1)/(p + 1) and hence δ(p) =
2p/(p + 1) and δ(p2) = 2δ(p) − 1. We also have γ−1(p) = −2 for all p ≤ X , γ−1(p2) = 1
for p ≤ √

X and γ−1(p2) = 2 for
√

X < p ≤ X . A straightforward calculation now gives

∏
p≤X

p split

G(p) =
∏

p≤√
X

p split

(
(1 − 1/p)4

1 − 1/p2

) ∏
√

X<p≤X
p split

(
(1 − 1/p)4

1 − 1/p2
+ O

(
1

p2

))

=
∏
p≤X

p split

(
(1 − 1/p)4

1 − 1/p2

) ∏
√

X<p≤X
p split

(
1 + O

(
1

p2

))

= (1 + o(1))
∏
p≤X

p split

(
1 − 1

p

)4 ∏
p split

(
1 − 1

p2

)−1

.

(5·49)

In evaluating the remaining products in (5·46) we note that γ−1 behaves the same on square
inert primes as it does on ramified primes. The same goes for δ since the number 1 varies
little. We describe the ramified case since the inert case is simply handled by replacing p
with p2.

For a ramified prime p we have δ(p) = δ(p2) = 1, γ−1(p) = −1 for all p ≤ X , γ−1(p2) =
0 for p ≤ √

X and γ−1(p2) = 1/2 for
√

X < p ≤ X . With this information we see

∏
p≤X

p ramified

G(p) =
∏

p≤√
X

p ramified

(
1 − 1

p

) ∏
√

X<p≤X
p ramified

(
1 − 1

p
+ 1

4p2

)

=
∏
p≤X

p ramified

(
1 − 1

p

) ∏
√

X<p≤X
p ramified

(
1 + O

(
1

p2

))

= (1 + o(1))
∏
p≤X

p ramified

(
1 − 1

p

)
.

= (1 + o(1))
∏
p≤X

p ramified

(
1 − 1

p

)2 ∏
p ramified

(
1 + 1

p

)(
1 − 1

p2

)−1

.

(5·50)

In the last line here we have used the fact that a prime is ramified if and only if it divides dK

and hence
∑

X<p|dK 1/p = o(1). Similarly, for inert primes we find
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p≤√

X
p inert

G(p2) = (1 + o(1))
∏

p≤√
X

p inert

(
1 − 1

p2

)

= (1 + o(1))
∏

p≤√
X

p inert

(
1 − 1

p2

)2 ∏
p inert

(
1 − 1

p2

)−1

.

(5·51)

Collecting the infinite products in (5·49), (5·50) and (5·51) we acquire the factor

π2

6

∏
p|dK

(
1 + 1

p

)
. (5·52)

The remaining terms are then given by

(1 + o(1))
∏

N(p)≤X

(
1 − 1

N(p)

)2

= (1 + o(1))(L(1, χ)eγ log X)−2. (5·53)

5·3. Estimating the lower order terms

By virtue of the upper bounds (5·27), (5·29) and Proposition 2 we are only required to
evaluate the sum of the ‘big O’ and Z ′ terms of formula (5·25). For the ‘big O’ term we have

T − 1
4 +ε

∑
h,k≤T θ

h,k∈W(X)

γ−1(h)γ−1(k)(h, k)

hk

(
hk

(h, k)2

)7/8+ε

	 T − 1
4 +ε

( ∑
n≤T θ

d(n)

)2

	 T 2θ− 1
4 +ε

(5·54)

and so taking θ ≤ 1/11 − ε the error term is o(1).
We now estimate the sums involving the Z ′ terms. By (5·28) and (5·30) we see that we

must consider sums of the form

S′ :=
∑

h,k≤Y
h,k∈W(X)

γ−1(h)γ−1(k)

hk
(h, k)1q|hk χ(kh)δ

′(hk/q)δ′(kh)

=
∑
g≤Y

g∈W(X)

1

g

∑
k≤Y/g

k∈W(X)

χ(k)γ−1(kg)δ′(k)

k

∑
h≤Y/g

h∈W(X)
(h,k)=1

1q|h
γ−1(hg)δ′(h/q)

h
,

(5·55)

where Y = T θ . The innermost sum is given by∑
h≤Y/qg

qh∈W(X)
(qh,k)=1

γ−1(qhg)δ′(h)

qh
	

∑
h≤Y/g

h∈W(X)
(h,k)=1

γ−1(hg)δ′(h)

h
, (5·56)

where we have used |γ−1(qm)| ≤ γ−1(m) which follows from (1·15) and the definition of
γ−1. We deduce that S′ is 	 a sum of the form (5·36) with δ replaced by δ′. Using the bound
δ′(n) ≤ d(n2) we may follow the analysis of Proposition 2 to see that

S′ 	 (1 + o(1))
∏
p≤X

p split

G ′(p)
∏

p≤√
X

p inert

G ′(p2)
∏
p≤X

p ramified

G ′(p), (5·57)
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where

G ′(p) = 1+ 2γ−1(p)δ′(p)+γ−1(p)2

p
+ 2γ−1(p2)δ′(p2)+γ−1(p2)2 +2γ−1(p)γ−1(p2)δ′(p)

p2
.

(5·58)
For split and ramified primes we have δ′(pr ) = δ(pr ) and so we only need evaluate G at the
inert primes. For inert p we have δ(p2) = 1 + 2(p + 1)/(p − 1) ≤ 5 and hence

G ′(p2) = 1 + O

(
1

p2

)
. (5·59)

For the sake of argument we write

∏
p≤√

X
p inert

G ′(p2) = (1 + o(1))
∏

p≤√
X

p inert

(
1 − 1

p2

)2

(5·60)

and then combine this with the products over split and ramified primes given by (5·49) and
(5·50). This gives

S′ 	 (log X)−2. (5·61)

6. The moments recipe for non-primitive L-functions

6·1. Conjecture 3 via the recipe

In this section we use the moments recipe given in [6] to reproduce Conjecture 3. The
recipe in question is concerned with primitive L-functions, so cannot be applied directly to
our situation without some slight modification. Our modifications are in-keeping with the
reasoning of the original recipe, with which we assume some familiarity.

Consider the shifted product

Z(s, α, β) = Zζ (s, α)ZL(s, β), (6·1)

where

Zζ (s, α) = ζ(s + α1) · · · ζ(s + αk)ζ(1 − s − αk+1) · · · ζ(1 − s − α2k) (6·2)

and

ZL(s, β) = L(s + β1, χ) · · · L(s + βk, χ)L(1 − s − βk+1, χ) · · · L(1 − s − β2k, χ). (6·3)

We first substitute the respective approximate functional equations, which we write as

ζ(s) =
∑

m

1

ms
+κζ (s)

∑
n

1

n1−s
, (6·4)

L(s, χ) =
∑

m

χ(m)

ms
+κL(s)

∑
n

χ(n)

n1−s
. (6·5)

We have (after an application of Stirling’s formula)

κζ (s) =
(

t

2π

) 1
2 −s

eit+iπ/4

(
1 + O

(
1

t

))
(6·6)
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and

κL(s) = G(χ)

ia
√

q

(
qt

2π

) 1
2 −s

eit+iπ/4

(
1 + O

(
1

t

))
, (6·7)

where G(χ) is the Gauss sum of χ and a is defined by the equation χ(−1) = (−1)a.
We now expand the resulting expression and throw away any oscillatory terms. This

includes any terms involving t i t , but also any terms that may solely involve qit since this
still oscillates mildly. The effect is to retain only the terms with an equal number of κζ (s)
and κζ (1 − s) factors and an equal number of κL(s) and κL(1 − s) factors. This gives a

sum of
(2k

k

)2
terms. We then retain only the diagonals in each term and extend them over all

positive integers. We denote the resulting expression by M(s, α, β) and conjecture that∫ ∞

−∞
Z
(

1
2 + i t, α, β

)
w(t)dt ∼

∫ ∞

−∞
M

(
1
2 + i t, α, β

)
w(t)dt (6·8)

for any ‘reasonable’ w.
Note that before retaining the diagonals, we could essentially apply the first two steps

of the recipe to the product of zeta functions and then to the product of L-functions inde-
pendently, since the result is the same. Consequently, the combinatorics are not much more
complicated than that of the original recipe when applied to primitive L-functions. Indeed,
as in [6], let � ⊂ S2k denote the set of permutations τ for which

τ(1) < . . . < τ(k), τ (k + 1) < . . . < τ(2k). (6·9)

Then we see that

M(s, α, β) =
(

t

2π

)(−α1−···−αk+αk+1+···+α2k )/2 ( qt

2π

)(−β1−···−βk+βk+1+···+β2k )/2

,

×
∑

τ,τ ′∈�

W (s, α, β, τ, τ ′)
(6·10)

where

W (s, α, β, τ, τ ′) =
(

t

2π

)(ατ(1)+···+ατ(k)−ατ(k+1)−···−ατ(2k))/2

×
(

qt

2π

)(βτ ′(1)+···+βτ ′(k)−βτ ′(k+1)−···−βτ ′(2k))/2

× S(σ ; ατ(1), . . . , ατ(2k); βτ ′(1), . . . , βτ ′(2k))

(6·11)

with

S(σ ; α1, . . . , α2k; β1, . . . , β2k)

=
∑

m1···mk m ′
1···m ′

k=
n1···nk n′

1···n′
k

χ(m ′
1) · · · χ(m ′

k)χ(n′
1) · · · χ(n′

k)

[
mσ+α1

1 · · · mσ+αk
k

× m ′
1
σ+β1 · · · m ′

k
σ+βk n1−σ−αk+1

1 · · · n1−σ−α2k
k n′

1
1−σ−βk+1 · · · n′

k
1−σ−β2k

]−1

. (6·12)
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Since the condition m1 · · · mkm ′
1 · · · m ′

k = n1 · · · nkn′
1 · · · n′

k is multiplicative we have

S(σ ; α1, . . . , α2k; β1, . . . , β2k)

=
∏

p

∑
∑k

j=1 e j +e′
j =∑k

j=1 e j+k+e′
j+k

χ(pe′
1) · · · χ(pe′

k )χ(pe′
k+1) · · · χ(pe′

2k )

[
pe1(σ+α1)+···+ek (σ+αk )

× pe′
1(σ+β1)+···+e′

k (σ+βk )+···+ek+1(1−σ−αk+1)+···+e2k (1−σ−α2k )

× pe′
k+1(1−σ−βk+1)+···+e′

2k (1−σ−β2k )

]−1

= Ak(σ, α, β)

k∏
i, j=1

ζ(1 + αi − αk+ j )L(1 + βi − βk+ j , |χ |2)

× L(1 + βi − α j+k, χ)L(1 + αi − β j+k, χ)

= Ak(σ, α, β)

k∏
i, j=1

ζ(1 + αi − αk+ j )ζ(1 + βi − βk+ j )

× L(1 + βi − α j+k, χ)L(1 + αi − β j+k, χ)

(∏
p|q

(
1 − p−1−βi +βk+ j

) )
,

(6·13)

where Ak is an Euler product that is absolutely convergent for σ > 1/4.
Now, denote the holomorphic part of S(1/2, α, β) by

A′
k(1/2, α, β) =Ak(1/2, α, β)

k∏
i, j=1

L(1 + βi − α j+k, χ)L(1 + αi − β j+k, χ)

×
(∏

p|q

(
1 − p−1−βi +βk+ j

) )
.

(6·14)

As in [6], we may express the combinatorial sum over � in equation (6·10) as a multiple
contour integral. Applying [6, Lemma 2·5·1] twice to (6·10) we see that M(1/2 + i t, 0, 0)

is given by

(
(−1)k

k!2(2π i)2k

)2 ∮
· · ·

∮
A′

k(1/2, u1, . . . , u2k, v1, . . . , v2k)

×
k∏

i, j=1

ζ(1 + ui − uk+ j )ζ(1 + vi − vk+ j )
�2(u1, . . . , u2k)∏2k

j=1 u2k
j

�2(v1, . . . , v2k)∏2k
j=1 v2k

j

× e
1
2 L

∑k
j=1 u j −uk+ j e

1
2 Lq

∑k
j=1 v j −vk+ j du1 · · · du2kdv1 · · · dv2k,

(6·15)

where L= log(t/2π), Lq = log(qt/2π), and � is the Vandermonde determinant. Since
A′

k(1/2, α, β) is holomorphic in the neighbourhood of (α, β) = (0, 0) after a change of
variables this becomes
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(−1)k

k!2(2π i)2k

)2 ∮
· · ·

∮
A′

k

(
1/2,

u1

L/2
, . . . ,

u2k

L/2
,

v1

Lq/2
, . . . ,

v2k

Lq/2

)

×
k∏

i, j=1

ζ

(
1 + ui − uk+ j

L/2

)
ζ

(
1 + vi − vk+ j

Lq/2

)
�2(u1, . . . , u2k)∏2k

j=1 u2k
j

× �2(v1, . . . , v2k)∏2k
j=1 v2k

j

e
∑k

j=1 u j −uk+ j e
∑k

j=1 v j −vk+ j du1 · · · du2kdv1 · · · dv2k .

= A′
k (1/2, 0, 0)Lk2Lk2

q

(
1 + O

(
1

L
))(

(−1)k

2k2 k!2(2π i)2k

)2 ∮
· · ·

∮

× �2(u1, . . . , u2k)∏k
i, j=1(ui − uk+ j )

∏2k
j=1 u2k

j

�2(v1, . . . , v2k)∏k
i, j=1(vi − vk+ j )

∏2k
j=1 v2k

j

× e
∑k

j=1 u j −uk+ j e
∑k

j=1 v j −vk+ j du1 · · · du2kdv1 · · · dv2k .

∼ A′
k (1/2, 0, 0)Lk2Lk2

q

(
(−1)k

2k2 k!2(2π i)2k

∮
· · ·

∮

× �2(u1, . . . , u2k)∏k
i, j=1(ui − uk+ j )

∏2k
j=1 u2k

j

e
∑k

j=1 u j −uk+ j du1 · · · du2k

)2

.

(6·16)

It is shown in [6, section 2·7] that the quantity in parentheses is given by G(k +
1)2/G(2k + 1) and so it only remains to show that A′

k (1/2, 0, 0) = aK(k)L(1, χ)2k2
where

aK(k) is given by (1·12). Since,

A′
k (1/2, 0, 0) = Ak (1/2, 0, 0) L(1, χ)2k2

∏
p|q

(1 − p−1)k2
(6·17)

we only need show that aK(k) = Ak (1/2, 0, 0)
∏

p|q(1 − p−1)k2
. In the case of quadratic

extensions, aK(k) is the product of the following three factors

∏
p split

(
1 − 1

p

)4k2 ∞∑
m=0

d2k(pm)2

pm
, (6·18)

∏
p inert

(
1 − 1

p2

)2k2 ∞∑
m=0

dk(pm)2

p2m
, (6·19)

∏
p ramified

(
1 − 1

p

)2k2 ∞∑
m=0

dk(pm)2

pm
(6·20)

and from (6·13) we see that

Ak (1/2, 0, 0)
∏
p|q

(1 − p−1)k2 =
∏

p

(
1 − 1

p

)2k2(
1 − χ(p)

p

)k2(
1 − χ(p)

p

)k2

×
∑

∑k
j=1 e j +e′

j =∑k
j=1 e j+k+e′

j+k

χ(pe′
1) · · · χ(pe′

k )χ(pe′
k+1) · · · χ(pe′

2k )p− 1
2

∑2k
j=1(e j +e′

j ). (6·21)
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Since χ(p) = 1 for split primes, the relevant factor in (6·21) is given by

∏
p split

(
1 − 1

p

)4k2 ∑
∑k

j=1 e j +e′
j =∑k

j=1 e j+k+e′
j+k

p− 1
2

∑2k
j=1(e j +e′

j ).
(6·22)

Clearly, for each m ≥ 0 there are d2k(pm) choices of e j , e′
j such that

∑k
1 e j + e′

j = m. For

each such choice there are another d2k(pm) choices of e j+k, e′
j+k such that

∑k
1 e j+k +

e′
j+k = m. Hence the total number of choices is d2k(pm)2 and so the above product is seen

to equal (6·18).
For inert primes we have χ(p) = −1 and so the relevant factor is

∏
p inert

(
1 − 1

p2

)2k2 ∑
∑k

j=1 e j +e′
j =∑k

j=1 e j+k+e′
j+k

(−1)
∑k

j=1(e
′
j +e′

j+k ) p− 1
2

∑2k
j=1(e j +e′

j ).
(6·23)

In this case the quickest argument is analytic. Applying the orthogonality of exponential
characters to detect the condition

∑k
1 e j + e′

j =∑k
1 e j+k + e′

j+k , we see that, after a short
manipulation, the inner sum is given by

∫ 1

0

(
1 − e4π iθ

p

)−k(
1 − e−4π iθ

p

)−k

dθ.

Expanding the integrand as two geometric series, pushing the integral through, and applying
orthogonality shows the equivalence with (6·19).

Finally, for ramified primes, or equivalently the primes dividing q, we have χ(p) = 0.
Here, the relevant factor is given by

∏
p|q

(
1 − 1

p

)2k2 ∑
∑k

j=1 e j =∑k
j=1 e j+k

p− 1
2

∑2k
j=1 e j

(6·24)

which is easily seen to be equal to (6·20).

6·2. Moments of general non-primitive L-functions

A key point in both derivations of Conjecture 3 was that, aside from the arithmetic factor,
the leading term in the moment of ζ(1/2 + i t)L(1/2 + i t, χ) was given by the product of
the leading terms of the moments of ζ(1/2 + i t) and L(1/2 + i t, χ). We believe this should
be the case for general non-primitive L-functions too. Indeed, by applying our modified
moments recipe to non-primitive L-functions this idea becomes more apparent.

The recipe for general non-primitive L-functions goes as follows. Suppose we have the
product L(s) =∏m

j=1 L j (s)e j where the L j (s) are distinct, primitive members of the Selberg
class S . Suppose for each L j (s) we have the functional equation

ξL j (s) = γL j (s)L j(s) = ε jξ L j
(1 − s), (6·25)
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where

γL j (s) = Qs/2
j

d j∏
i=1

�(s/2 + μi, j ), (6·26)

with the {μi, j } stable under complex conjugation, and where ε j is the so-called root number
which satisfies |ε j | = 1. We then have the approximate functional equations

L j (s) =
∑

n

αL j (m)

ms
+ εκL j (s)

∑
n

αL j (n)

ns
, (6·27)

where

κL j (s) = γL j (1 − s)

γL j (s)
= Q1/2−s

j

d j∏
i=1

�((1 − s)/2 + μi, j )

�(s/2 + μi, j )
. (6·28)

Similarly to before, if we apply the original recipe we encounter terms of the form
(Q j/Q j ′)−i t which are oscillating. We can prevent the occurrence of these terms by apply-
ing the first step of the recipe to each L j (s) separately. We then continue as in the original
recipe. It should be clear that when the resulting expression is written as a contour integral,
the same manipulations used on (6·16) will allow for a factorisation of the main term.

On a side note, the term (Q j/Q j ′)−i t is oscillating only if we assume that the conductors
Q j and Q j ′ are distinct when j �= j ′. Although it seems likely that distinct L-functions of the
above form should have distinct conductors, the author is not aware of such a result (Note
that if we generalised the above form by replacing the gamma functions with �(wi, j s + μi, j )

then one can apply the duplication formula to show that Q j , wi, j , μi, j are not uniquely
defined for a given L j (s)).

In terms of the random matrix theory, let us assume that we have a hybrid product for
L(s). Since it is believed that when the L j (s) are distinct their zeros are uncorrelated [15],
their associated matrices should act independently. Hence, when the moment of the product
over zeros is considered as an expectation, it will factorise.

As we have already seen, this phenomenon occurs when considering ζ(s)L(s, χ). Let us
restate the conjecture in the more descriptive form

1

T

∫ T

0

∣∣ζ (
1
2 + i t

)∣∣2k ∣∣L (
1
2 + i t, χ

)∣∣2k
dt

∼ c(k)
G(k + 1)2

G(2k + 1)
logk2

T · G(k + 1)2

G(2k + 1)
logk2

qT, (6·29)

with

c(k) =
∏

p

(
1 − 1

p

)2k2 ∑
m≥0

|Fχ,k(pm)|2
pm

, (6·30)

Fχ,k(n) =
∑

n1n2=n

dk(n1)dk(n2)χ(n2). (6·31)

The coefficients Fχ,k(n) are, of course, the Dirichlet coefficients of ζ(s)k L(s, χ)k .
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As another example, we state a result from an unpublished note of the author and Caroline
Turnage–Butterbaugh. Here it is established, by an application of Theorem 4, that

1

T

∫ T

0

∣∣∣∣ζ (
1
2 + i t

)
L
(

1
2 + i t, χ

) ∑
n≤T θ

1

n1/2+i t

∣∣∣∣
2

dt

∼ γ (1) log4 T · log qT

(
4θ3 − 3θ4

12

)
(6·32)

where

γ (1) =
∏

p

(
1 − 1

p

)5 ∑
m≥0

|Hχ (pm)|2
pm

, Hχ (n) =
∑

n1n2=n

d(n1)χ(n2) (6·33)

and θ < 1/11 − ε. It is expected that Theorem 4 remains valid for θ = 1, in which case the
Dirichlet polynomial is a good approximation to ζ(1/2 + i t) and the above relation reads as

1

T

∫ T

0

∣∣ζ (
1
2 + i t

) ∣∣4∣∣L (
1
2 + i t, χ

) ∣∣2dt

∼ γ (1)

12
log4 T · log qT = b(1) · G(3)2

G(5)
log4 T · G(2)2

G(3)
log qT . (6·34)

In terms of the T behaviour, this can be thought of as the product of the fourth moment
of zeta times the second moment of L . Again, this is consistent with our random matrix
theory/moments recipe reasoning. Guided by these examples we are led to Conjecture 4
which, after ignoring the conductors, we restate as

1

T

∫ T

0

∣∣L (
1
2 + i t

)∣∣2k
dt ∼ bL(k)gL(k)

�(nLk2 + 1)
lognL k2

T, (6·35)

where nL =∑m
j=1 e2

j ,

gL(k) = �(nLk2 + 1)

m∏
j=1

G2(e j k + 1)

G(2e j k + 1)
d

(e j k)2

j , (6·36)

and

bL(k) =
∏

p

(
1 − 1

p

)nL k2 ∞∑
n=0

|αL ,k(pn)|2
pn

. (6·37)

Let us cast this in the light of some of the Selberg’s conjectures. First, we note that the
integer nL is the same integer appearing in Selberg’s ‘regularity of distribution’ conjecture:

∑
p≤x

|αL(p)|2
p

= nL log log x + O(1). (6·38)

This is not so surprising since one expects the mean square of L(1/2 + i t) to be asymptotic
to a multiple of the sum

∑
n≤T |αL(n)|2n−1. The implication of (6·38) is that this sum is in

fact ∼ (bL(1)/nL !) lognL T .
For general k, we outline a verification of this last assertion. We assume the following two

conjectures of Selberg [26]: For primitive F ∈ S we have
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p≤x

|αF(p)|2
p

= log log x + O(1), (6·39)

and for two distinct and primitive F, G ∈ S we have

∑
p≤x

αF(p)αG(p)

p
= O(1). (6·40)

We also require that the functions

M j (s) =
∞∑

n=1

|αL j (n)|2
ns

(6·41)

behave ‘reasonably’, in particular, that they posses an analytic continuation.
Now, given the factorisation L(s) =∏m

j=1 L j (s)e j into primitive functions we have

∑
p≤x

|αL ,k(p)|2
p

=
∑
p≤x

k2

⎛
⎝ m∑

j=1

e2
j |αL j (p)|2 +

∑
i �= j

ei e jαLi (p)αL j (p)

⎞
⎠ p−1

= nLk2 log log x + O(1).

(6·42)

If M(s) =∑ |αL ,k(n)|2n−s , then the above equation implies a factorisation of the form

M(s) = Uk(s)
m∏

j=1

M j (s)
(e j k)2

, (6·43)

where Uk(s) is some Euler product that is absolutely convergent for σ > 1/2. Therefore, we
may analytically continue M(s) to σ > 1/2. Also, by applying partial summation to (6·42)
we see ∑

p

|αL ,k(p)|2
ps+1

= nLk2

∫ ∞

2

dx

xs+1 log x
+ · · · = −nLk2 log s + · · · , (6·44)

for small σ > 0. If we write

M(s + 1) =
∏

p

(
1 + |αL ,k(p)|2

ps+1
+ |αL ,k(p2)|2

p2(s+1)
+ · · ·

)

=
∏

p

(
exp

( |αL ,k(p)|2
ps+1

)
+ Ek(p, s)

)

= exp

(∑
p

|αL ,k(p)|2
ps+1

)∏
p

(1 + Fk(p, s)),

(6·45)

where Ek(p, s) and Fk(p, s) are both 	 p−2(σ+1)+ε , we see that M(s + 1) has a pole of
order nLk2 at s = 0. It is shown in [8] that on the assumption of Selberg’s conjectures, if
F ∈ S has a pole of order m at s = 1 then ζ(s)m divides F(s). Consequently, the residue of
M(s + 1) at s = 0 is given by bL(k). The usual argument involving Perron’s formula now
gives ∑

n≤T

|αL ,k(n)|2
n

∼ bL(k)

(nLk2)! lognL k2
T . (6·46)
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