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Abstract

Shape grammars come in a variety of forms. Algebras of shapes have been defined for spatial
elements of different kinds, as well as for shapes augmented with varying attributes, allowing
for grammar forms to be expressed in terms of a direct product of basic algebras. This alge-
braic approach is extended here to the algebraic derivation of combinations of basic shape
algebras with attribute algebras. This algebraic abstraction at the same time serves as a proce-
dural abstraction, giving insights into the modular implementation of a general shape gram-
mar interpreter for different grammar forms. In addition, we consider practical limitations on
algebraic compositions of basic shape algebras with attribute algebras and identify a compli-
cation with respect to solving the matching problem for parallel and compound shape gram-
mars, suggesting a way to address this complication.

Introduction

A shape grammar is a formal rewriting system for producing languages of shapes (Stiny &
Gips, 1972; Stiny, 1980). A shape grammar is typically specified to consist of a set of produc-
tions, or shape rules, operating over a vocabulary of (terminal) spatial elements and a
vocabulary of (non-terminal) symbols or markers, for example, labels, and to include an initial
shape as the starting point in the productive (generative) process (Stiny, 1980; Yue &
Krishnamurti, 2013). Then, a shape is defined as any composition of spatial elements and,
optionally, symbols from the respective vocabularies. A shape rule is commonly expressed
in the form a→b, with both a and b constituting shapes, such that the application of the
rule to a shape s under a (similarity) transformation t yields the shape s− t(a) + t(b), with
the condition that t(a)≤ s. The left-hand side of the rule, a, must necessarily be non-zero,
that is, non-empty, otherwise the transformation t is indeterminate. The language defined
by a shape grammar is the set of shapes generated by the grammar that do not contain any
non-terminal symbols.

Grammar formalisms for design come in a large variety, requiring different representations
of the entities being generated, and different interpretative mechanisms for this generation.
Shape grammars also come in a variety of forms, even if less broadly. Most examples of
shape grammars rely on labeled shapes, a combination of line segments and labeled points
(in two dimensions) (Stiny, 1980). Stiny (1992) proposes numeric weights as attributes to
denote line thicknesses or surface tones. Knight (1989, 1993) considers a variety of qualitative
aspects of design, such as color, as shape attributes. Stiny (1981) also proposes to augment a
shape grammar with a description function in order to enable the construction of verbal
descriptions of designs. Note that shape attributes may be considered to form part of the term-
inal vocabulary of the shape grammar.

Implementing a shape grammar interpreter requires implementing the part relationship for
shapes – with or without attributes – the operations of sum and difference on shapes, and solv-
ing the matching problem, that is, identifying under which transformation a rule may apply to
a given shape. Beirão (2012, pp. 228–236) offers a survey of (implementations of) shape gram-
mar interpreters, and must conclude that they have common limitations. Many of them com-
pute only on two-dimensional (2D) shapes; and most do not apply sub-shape detection and
therefore do not support emergence; also, “very few shape grammar interpreters allow for
the implementation of rules operating with symbols” (Beirão, 2012, p. 235), never mind
other attributes or a description function.

In this paper, we address the problem of developing an implementation of a shape grammar
interpreter supporting varying shape grammar formalisms, by focusing on the procedural
abstraction of operations underlying parallel and compound shape grammars. We review the
literature on parallel and compound shape grammars (sections “Parallel and compound
shape grammars” and “Shape algebras”) and propose an algebraic treatment of shape grammar
representations and their operations (section “Algebraic abstractions”). This algebraic treatment
facilitates a modular approach, based on a similarity between algebraic abstraction and
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procedural abstraction (Frank, 1999). We emphasize the algebraic
derivation of shape algebras from partial algebras operating on
spatial elements (section “Deriving algebras from two-sorted par-
tial algebras”) and of combinations of basic shape algebras with
attribute algebras (section “Deriving augmented shape algebras”)
as novel contributions to the shape algebra theory. We consider
practical limitations on algebraic compositions of basic shape alge-
bras with attribute algebras (section “Algebraic compositions”)
and address the complication of efficiently resolving the matching
problem for parallel and compound shape grammars when the
particular compound algebra underlying the shape grammar is
not known in advance (section “The matching problem”).

Parallel and compound shape grammars

Originally, a parallel shape grammar was defined by Stiny (1975,
p. 37) and Gips (1975, p. 7) as a shape grammar intended to be
used in the parallel generation of shapes, that is, “whenever a
shape rule is used, it is applied simultaneously to every part of
the shape to which it is applicable” (Gips, 1975, p. 7; Stiny,
1975, p. 37). This is in contrast to the more common serial appli-
cation of shape rules, where at each step of the generation, a shape
rule is applied to only one part of a shape. However, more
recently, the term parallel (shape) grammar has been adopted
in the context of parallel computations on multiple descriptions.

Li (1999) defines a parallel grammar as a grammar operating
on different descriptions with the objective to resolve parametric
dependencies. For example, consider a shape grammar generating
a plan where the number of rooms is dependent on the selection
of rules applied. In this process, it is almost impossible to con-
strain the boundaries of the plan at the same time, as this
would require the room sizes to be made dependent on the
total number of rooms, which is only known at the end of the pro-
duction process. Instead, Li (1999) suggests adopting (at least)
two descriptions, the first one a diagram with the number of
rooms as (an) independent parameter(s), and the second one
the plan with the room sizes as dependent parameters (of the
number of rooms). By staging the production of the diagram
before the production of the plan, the assignment of values to
the dependent parameters can be postponed until after the assign-
ment of values to the independent parameters. Figure 1 illustrates
a single diagram production rule (Li, 1999), embedding line seg-
ments and markers, and labels/descriptions as attributes.

Duarte (2001) defines a parallel grammar as separating differ-
ent representations or aspects of a design into different computa-
tions that interact with each other. Specifically, Duarte (2001,
2005) considers a discursive (parallel) grammar incorporating a
shape grammar and a description grammar – as well as a set of
heuristics, where the latter is intended to constrain the rules
that are applicable at each step of the design generation. While
the shape grammar operates on shapes and the description gram-
mar on textual (including numeric) descriptions, their rules are
commonly coupled, with the description rule part constraining
the shape rule part. This combination of a shape grammar and

a description grammar follows Stiny’s (1981) definition of a
description function to augment a shape grammar in order to
construct design descriptions. Where Stiny (1981) considers a
description function as made up of functions, with each function
assigned to a shape rule and computing in parallel to the shape
rule, Duarte instead denotes the functions as description rules
and the description function as a description grammar.
Otherwise, these operate in exactly the same way and with the
same intention. In fact, although Stiny nowhere adopts the term
parallel grammar in this sense, Knight (1999, 2003a) explicitly
attributes the concept to Stiny (1981). Knight (2003a) also offers
a definition of a parallel grammar as “a network of two or more
grammars that operate simultaneously”.

Admittedly, Li (1999) and Knight’s (2003a; also, Duarte 2001)
interpretations are not unequivocal. Following Stiny’s (1990) def-
inition of a design as “an element in an n-ary relation among
drawings, other kinds of descriptions, and correlative devices as
needed,” Li (2001, 2004) considers seven drawings (from plan
diagram to plan, section, and elevation) and nine descriptions
(specifying measures of width, depth, and height, among others),
in his specification of a shape grammar for (teaching) the archi-
tectural style of the Yingzao fashi. However, he considers only
four grammar components to define his parallel grammar, corre-
sponding to four stages in the production (Li, 1999). However, in
Knight’s (2003a) parallel grammar interpretation of Stiny’s (1981)
example, the two grammar components of the parallel grammar –
the shape grammar and the description function – apply hand in
hand: “the rules of a parallel grammar may be linked so that the
application of a rule in one grammar triggers the application of
one or more rules in other grammars” (Knight, 2003a). In fact,
Knight (2003a) suggests the same interpretation for Li’s (2001,
2004) grammar, with each drawing and description specifying a
component grammar in the parallel grammar, for each stage.
Duarte (2001) takes a similar position when describing his discur-
sive grammar applied to the houses designed by the architect
Alvaro Siza at Malagueira. Even though, strictly speaking, he
only refers to two grammars – a shape grammar and a description
grammar – he specifically acknowledges that both grammars
include several sub-grammars. “These sub-grammars correspond
to viewpoints in the shape grammar (e.g., first-floor plan), and to
features in the description grammar (e.g., morphology)” (Duarte,
2001). Viewpoints define separate drawings (sketches, plans, ele-
vation, envelope, etc.) while features specify individual descrip-
tions. Figure 2 shows a rule from Duarte’s Malagueira grammar
including views relating to the envelope (walls; W), spaces
(rooms; R), first-floor plan (F1), second-floor plan (F2), and
descriptions (D). These views embed line segments, plane seg-
ments, volume segments, or descriptions, and weights (gray
scales, dashed strokes) and descriptions (labels) as attributes.

When the rules of a parallel grammar are linked, the linked
rules can be expressed as one compound rule (Knight, 2003a).
Therefore, some authors consider compound grammars as an
alternative term to parallel grammars, though others adopt the
term compound grammars also to denote compositions of gram-
mars that do not operate in parallel. For example, Beirão (2012)
uses the term compound grammar to denote a composition of
several discursive grammars, where each discursive grammar for-
malizes a so-called urban induction pattern, encoding a typical
urban design operation or design move. Knight (2004), instead,
suggests a distinction between synchronized and a-synchronized
parallel grammars, where the latter allows for sequential produc-
tion stages as proposed by Li (1999, 2001).Fig. 1. A diagram production rule adding two bays at a time (after Li, 1999: 266).
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Shape algebras

While Stiny avoids the term parallel grammar when referring to
parallel computations, he does emphasize parallel computations
in multiple algebras. For example, when a rule applies to a shape
composed of points and line segments, though the rule may require
both one andmore points and one or more line segments to be pre-
sent within a prescribed spatial relationship, the rule computes
with points and line segments in parallel. The overall shape rule
computation actually combines two computations – one with
shapes of line segments and one with shapes of points – “that are
carried out in parallel and influence one another mutually”
(Stiny, 1990).

Points and line segments, and by extension other spatial ele-
ments, can be considered to adhere to an algebra [specifically, a
generalized Boolean algebra (Krstic, 1999)] that is ordered by a
part relation (“≤”) and closed under the operations of sum
(“+”), product (“·”), and difference (“−”), as well as relevant trans-
formations. For example, points may belong to the algebra U02

and line segments to the algebra U12 [in two dimensions (2D)]
(Stiny, 1992); Uij denotes the algebra of rectilinear spatial ele-
ments of dimension i, for example, 0 for points, 1 for line seg-
ments, 2 for plane segments, embedded in a space with
dimension j, for example, 1D, 2D, 3D. Stiny (1992) extends the
notion of algebras to shapes with attributes: labeled points belong
to the algebra V02, while weighted line segments belong to the
algebra W12. Then, shapes of line segments and labeled points
can be said to belong to an algebra that is the direct product of

the algebras U12 and V02, U12 × V02. Consequently, a shape rule
applying to shapes of line segments and labeled points can be
considered to combine two shape rules, one in U12 applying to
line segments and one in V02 applying to labeled points.

Any selection of shape algebras, including labeled and weighted
shape algebras, can be combined using the direct product into a
compound algebra of compound shapes that are made up of a
mix of various spatial elements, and optionally augmented with
labels or weights. Chase (1999) notes that “this is common in
maps, as map features may be distinguished by different element
types (for example, lines representing roads, points representing
cities), or labels used to distinguish elements with the same
basic geometry but different semantics (e.g., lines can represent
roads and rivers)”. Examples in architectural representation
abound as well. Compound shapes may be expressed in unions
of the sets that form shapes from different algebras, with the
understanding that basic and augmented spatial elements only
interact if they are of the same kind (same dimension and attribute
kind, if any), and are independent otherwise (Stiny, 1992).

Embedding spaces

Whereas we consider shape algebras Uij specifying rectilinear spa-
tial elements of dimension i within an (embedding – as opposed
to visual –) space of dimension j, the specification of the dimen-
sion of the space is often omitted, assuming that the actual
dimension, for example, 2D or 3D, is unimportant within the

Fig. 2. Rule dissecting an outside zone into yard and sleeping zones (after Duarte, 2005: 359).
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context or, otherwise, can be construed from the context. While
there is little issue with the assumption itself, the implicit atten-
tion to the dimension of the space hides the fact that, irrespective
of the dimension, shape algebras may operate in the same space or
in different spaces. Jowers and Earl (2015) recognize that a (basic)
shape algebra is not only dependent on the representation of the
shape, but also on the space and the set of transformations used.
At a minimum, shape algebras operating in the same space com-
pute under the same transformations, while shape algebras oper-
ating in different spaces may use different transformations. For
example, in the case of a drawing of line segments and labeled
points, the segments and points operate in the same (2D or 3D)
Euclidean space and transformations of shapes of line segments
and shapes of labeled points necessarily need to go hand in
hand. Instead, when shape algebras operate in a different space
(or drawing), transformations may differ.

Stiny (1992) shows an example where a series of cubes is
described separately in plan – presented in the algebra U12, in a
front elevation with line weights decreasing as the edges of
cubes recede – presented in the algebra W12, and in a side eleva-
tion as an arrangement of shaded areas that decrease in weight as
the faces of cubes advance – in the algebraW22. For each drawing,
the grammar considers three rules, an initialization rule, a rule to
add a cube to the series – decreasing in size geometrically at a spe-
cified rate – and a finalization rule. Figure 3 shows Stiny’s rule(s)
adding a cube to the series in plan, front, and side elevation view.
The three views embed points, line segments, and plane segments,
and weights (line thicknesses and surface tones) and descriptions
(labels) as attributes. Note that the weights themselves are also
governed by descriptions.

Although the dimension of the spaces is two for all three draw-
ings, plan, front elevation, and side elevation, the three drawings
define three separate spaces. The respective rules compute in par-
allel, however, under different transformations. Only if the algebras
are defined in three dimensions, that is, U13, W13, and W23, can
the algebras be selected to operate in the same 3D space and a sin-
gle transformation be determined that applies to all rules in paral-
lel. Such a solution may not always be applicable, as when working
with diagrams and sketches, next to other drawings, such as plans,
elevations, and even 3D models (e.g., Li, 1999).

Knight (2003b; see also, Krstic, 2012) therefore distinguishes
an operation of sum of algebras from the operation of direct
product on algebras. Whereas the latter allows algebras to operate
in different spaces, the former requires algebras to be specified in
the same space. Space is however only part of the picture; the
allowable transformations matter separately as well.

Allowable transformations

Ultimately, and especially from an implementation point of view,
whether algebras operate in the same space or in different spaces
can be merely a visualization issue, the most important issue
being whether they adopt the same or different transformations.
Knight (2003a) even gives the following example of the compo-
nent rules of a compound rule as being defined to operate in
the same space: “the rules of color grammars as defined by
Knight (1989) are compound rules with three components
defined in the same 2D or 3D space: a shape component, a
label component, and a color field component”. This is not
entirely true; while shapes, labels, and color fields may be visually
represented in the same space, they inhabit completely different
spaces. A shape component exists in a 2D or 3D space, a label
component inhabits a quasi-alphanumeric space, and a color
field component a color space. If they would be defined – other
than visualized – in the same space, then the same types of
(e.g., geometric) transformations would apply to them.

Firstly, it is important to note that space is not just defined by its
dimension. Jowers and Earl (2015) provide an example of a 2D
conic space (Fig. 4), rather than the traditional 2D Euclidean
space. In a 2D conic space, line segments may become circular,
elliptic, or parabolic arc segments under rotation, whereas in
Euclidean space, line segments, circular, elliptic, and parabolic arc
segments are all distinct under similarity transformations. This
example also emphasizes the importance of the allowable transfor-
mations. If we allow affine transformations in Euclidean space, then
circular arc segments can be transformed into elliptic arc segments
and vice versa. Under projective transformations, circular arc seg-
ments can even be transformed into parabolic arc segments and
vice versa. Nonetheless, from an implementation point of view,
we can consider the shape algebras of circular, elliptic, and para-
bolic arc segments as distinct – or consider circular arcs as a subset
of elliptic arcs, with both distinct from parabolic arcs – and con-
sider an algebra of conic line segments as an algebraic composition
under sum of all these algebras together with the shape algebra of
line segments. Transformations – and spaces – that may result in
interalgebra exchanges of spatial elements may then be considered
separately as part of the matching mechanism.

Secondly, Krstic (1999) points out that even if algebras operate in
different spaces and allow for different sets of transformations, these
sets of allowable transformations may not necessarily be indepen-
dent, but may actually be related via some mapping. For example,
in the case of Stiny’s (1992) series of cubes described in plan,
front elevation, and side elevation, it may be possible to conceive
of these three descriptions as projections of a 3D series of cubes,
with transformations in each drawing or algebra, mapped to a single,
if hypothetical, 3D transformation. However, from an implementa-
tion point of view, it may be easier to consider this mapping only
implicit rather than explicit; that is, the allowable transformations
for each algebra may be considered independent if only the author
of the shape rules carefully considers the relationships between the
three drawings, as Stiny (1992) does. Krstic (1999) instead offers
examples where labels or descriptions change with geometric trans-
formations. For example, building elevation labels, for example, indi-
cating north, east, south, or west elevations may change when the
building plan is rotated. Though perfectly acceptable, the problem
from an implementation point of view is that such mappings are
specific and cannot easily be generalized. As such, we largely ignore
transformations from here on and, instead, refer to Krstic (2012) for
a treatment of transformations in the context of shape algebras.Fig. 3. Rule adding a cube in plan, front, and side elevation view (after Stiny, 1992:

425–426)
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Algebraic abstractions

The notion of compound shapes, as resulting from compound
algebras defined by the sum or direct product of basic shape
algebras, is useful for a modular (or procedural) implementation
of a shape grammar interpreter (e.g., Frank, 1999). Each basic
shape algebra can define a single module (or a class in an object-
oriented programming paradigm), andmodules can be combined to
define compound algebras, facilitating a variety of shape grammar
formalisms.

The algebra’s signature specifies the operations of the algebra,
at a minimum, the operations of sum (“+”), product (“·”), and dif-
ference (“−”). The allowable transformations can be considered
external to the algebra, as part of the signature or as part of the
algebra’s carrier, that is, the set of elements of the algebra
(Krstic, 1999; 2012). The part relation (“≤”) is not an operation
of the algebra but can be expressed in terms of the operation of
product: t(a)≤ s⇔ t(a) s = t(a). From a modular implementation
point of view, the algebra’s signature contributes to the module’s
interface (the class methods in object-oriented programming), but
the interface can be extended to include, among others, the part
relation. Nevertheless, having a (even partially) uniform interface,
that is, sharing the same class methods, greatly eases the imple-
mentation of a general shape grammar interpreter.

Unfortunately, as Knight (2003b) acknowledges, “the algebras
that designers use, informally or formally, are many”. Beyond labels
and weights, shapes can be augmented with attributes of any kind:
“aesthetic, formal, functional, structural, and so on. For example,
points can have diameters, lines can have thicknesses, planes can
have colors, solids can have materials” (Knight, 2003b) (see also
Fig. 1 through Fig. 3). “The only condition is that the operators
of any shape algebra are defined on all its elementary objects, are
recursively applicable, and are closed” (Yue & Krishnamurti,
2013). Fortunately, the notion of an algebra as derived from exist-
ing algebras can be extended to shapes augmented with attributes,

for example, of labeled points (Stouffs, 2008). Defining an algebra
for labels is straightforward. Similar to points, a label can be said to
be part of another label only if these are identical. Then, the opera-
tions of sum, product, and difference correspond to the set opera-
tions of union, intersection, and difference. Labels may not exhibit
any allowable transformations, unless we consider, for example,
case transformations. However, the operations of sum and direct
product on algebras do not support an attribute behavior, and it
is not straightforward to consider an alternative operation on alge-
bras. Krstic (1999) offers an unintentional hint.

Krstic (1999) notes the difference between an algebra of (max-
imal) spatial elements and an algebra of shapes, shapes referring
to collections of spatial elements. The former is a partial algebra
as the operations of sum, product, and difference are not closed.
The sum of two spatial elements is a spatial element only if the
two elements overlap or are both parts of another spatial element
and have boundaries that overlap. In general, the operations of
sum, product, and difference on spatial elements are only defined
if the spatial elements exist in the same subspace, where the
dimension of the subspace equals the dimension of the spatial ele-
ments. For example, two line segments must be part of the same
infinite line, two plane segments of the same infinite plane, and
two volumes of the same 3D hyperplane. This subspace is denoted
as the carrier of the spatial element, but in order to avoid any con-
fusion with the carrier of an algebra, we instead refer to the
descriptor of the subspace. Krishnamurti (1992) adopts the func-
tional co to denote when two spatial elements of the same type
share the same descriptor: “two points can combine when they
are co-incident; two lines can combine when they are co-linear;
two planes can combine when they are co-planar; and so on.
Two spatial elements that share the same co-descriptor are
referred to as co-equal” (Krishnamurti, 1992). Then, the opera-
tions of sum, product, and difference on spatial elements are
defined only if the spatial elements are co-equal. Note from

Fig. 4. Rotation of a line segment in a 2D conic space (after
Jowers & Earl, 2015: 959).
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above that, in and of itself, it is not a sufficient condition for the
operations to be closed (Table 1).

Having established the difference, Krstic (1999) goes on to
focus solely on shape algebras. However, it is possible to derive
shape algebras from partial algebras of spatial or other elements
in a general way (Fig. 5). First, let us assume a two-sorted partial
algebra with carrier {A, ℘(A)} and signature including operations
of combine, common, and complement on members of A. We
consider a two-sorted algebra because we want the operations of
combine, common, and complement to extend upon the respec-
tive operations of sum, product, and difference, and at the same
time be closed for co-equal (spatial) elements. For example, the
combination of two co-equal spatial elements that do not have
overlapping boundaries is the set of the two spatial elements
(e.g., Table 1). Thus, each of the operations of combine, common,
and complement takes as argument two (co-equal) elements of A
and returns an element of ℘(A), the set of all subsets of A
(Table 1). We then derive shape and attribute algebras from two-
sorted partial algebras and algebras for shapes augmented with
attributes from the combination of a two-sorted partial algebra
and an attribute algebra (Fig. 5). We use the term augmented
shape algebra to denote an algebra for shapes (of a single type
of spatial elements) augmented with attributes (also of a single
kind) in order to distinguish it from general compound (shape)
algebras (which may include algebraic compositions under the
direct product or sum). Figure 5 shows two variants: the structure
on the left distinguishes basic shape algebras and basic attribute
algebras. This is the standard view, in which shapes are para-
mount and shapes can be differentiated into attributes. This is
also the view we will conform to in this section. The structure

on the right, instead, follows the definition of sortal structures
and grammars (Stouffs et al., 2007) where no explicit distinction
is made between shape and attribute algebras and shape algebras
can serve as attribute algebras and vice versa. From an application
point of view, we prefer this second view (see “Algebraic compo-
sitions” section).

Deriving algebras from two-sorted partial algebras

To derive a shape algebra from this two-sorted partial algebra, we
need to distinguish the desired behavior. Each behavior results in
a different derivation. Fortunately, we can reuse behaviors for dif-
ferent kinds of spatial or other elements. The simplest behavior is
a discrete behavior, applying to both points and labels.

An algebra with carrier ℘(A) and signature including sum
(“+”), product (“·”), difference (“−”), and reduce (“r”) can be
defined for a discrete behavior as follows:

∀X, Y [ ‘ (A) ⇒
X + Y = X < Y

X · Y = X > Y

X − Y = X\Y
r (X) = X. (1)

In a discrete behavior, the operations of sum, product, and differ-
ence correspond to the normal set operations of union, intersec-
tion, and difference. The reduce operation reduces any set to a
set of maximal elements (Krishnamurti, 1992). Under a discrete

Table 1. The “sum” of two line segments may or may not be a line segment, that is, the operation of
sum on line segments may or may not be closed

Fig. 5. Dependency structure underlying the construc-
tion of (compound) shape algebras (two variants).
Basic (shape and attribute) algebras can be defined
from two-sorted partial algebras. Augmented shape
algebras are defined from a two-sorted partial (shape)
algebra and a basic attribute algebra. Compound
shape algebras combine basic and/or augmented
shape algebras under the direct product.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 167

https://doi.org/10.1017/S0890060417000270 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060417000270


behavior, any set is maximal because any duplicates are automat-
ically removed. The algebras U0 (shapes of points; we omit the
dimension of the space for simplicity) and L, sets of labels, can
be defined in this way (Table 2). Note that descriptions, from an
algebraic point of view, behave exactly as labels, and thus, the alge-
bra D of sets of descriptions can be defined in this way as well.

Before we address other spatial elements, let us first consider a
behavior for weights (e.g., line thicknesses or surface tones), as is
apparent from drawings on paper – a single line drawn multiple
times, each time with a different thickness, appears as if it were
drawn once with the largest thickness, even though it assumes
the same line with other thicknesses (Stiny, 1992).

An algebra with carrier ℘1(A), the set of all singleton subsets
of A, and signature including sum (“+”), product (“·”), difference
(“−”), and reduce (“r”) can be defined for an ordinal behavior,
applying to weights, in terms of the two-sorted partial algebra
with carrier {A, ℘(A)} and signature including the operations
of combine, common, and complement, as follows:

∀ (x), (y) [ ‘1 (A) ⇒
(x) + (y) = combine (x, y)
(x) · (y) = common (x, y)
(x) − (y) = complement (x, y)
r ({x}) = {x}. (2)

For weights, we know that the result of the operations of com-
bine, common, and complement on two singleton weights is
always a singleton weight. We use this knowledge to define
the operations of sum, product, and difference in terms of the
operations of combine, common, and complement. Again, the
reduce operation results in the argument (singleton) set itself.
The algebra N of singletons of numeric weights can be defined
in this way. Table 2 illustrates the algebra N if combine (x, y)≡
max (x, y), common (x, y)≡min (x, y), and complement
(x, y)≡ x− y (i.e., arithmetic difference) as suggested by Stiny
(1992).

Deriving a shape algebra for spatial elements other than
points from a two-sorted partial algebra is a little bit more com-
plicated because of the need to consider co-equal shapes. We
take a two-step approach. First, we derive a sub-algebra for
co-equal shapes of spatial elements, next we define a shape alge-
bra for a single type of spatial elements from this sub-algebra
(Table 3).

A sub-algebra with carrier ℘(A) and signature including sum,
product, difference, and reduce can be defined for an areal

behavior as follows:

∀X, Y [ ‘ (A) : ∀ x [ X, ∀ y [ Y, co(x) = co(y) ⇒
sum (X, Y) = construct (outside (b (X), Y)<

outside (b (Y), X) < same-side (b (X), b (Y)))
product (X, Y) = construct (inside (b (X), Y)<

inside (b (Y), X) < same-side (b (X), b(Y)))
difference (X, Y) = construct (outside (b (X), Y)<

inside(b (Y), X) < opposite-side (b (X), b (Y)))
reduce (X) = sum ((x), reduce (X\x)) if ∃ x [ X

∅ otherwise. (3)

Instead of comparing the shape operands for coequality, it is
checked that all spatial elements are co-equal, that is, share the
same (co-)descriptor (“co”). Then, the operations can be
expressed in terms of the boundaries (“b”) of each (co-equal)
shape (Krishnamurti & Stouffs, 2004; Stouffs & Krishnamurti,
2006). Specifically, “outside(b(X), Y)” returns the collection of
boundaries of shape X that lie outside of shape Y. Similarly,
“inside(b(Y), X)” returns the collection of boundaries of shape
Y that lie inside of shape X. “same-side(b(X), b(Y))” denotes the
collection of boundaries that belong to both shapes X and Y,
and where the interiors of the respective shapes lie on the same
side of the boundary, and “opposite-side(b(X), b(Y))” denotes
the collection of boundaries that belong to both shapes X and
Y, and where the interiors of the respective shapes lie on opposite
sides of the boundary. Then, the boundary of the shape resulting
from the co-sum operation is formed by the “outside(b(X), Y)”,
“outside(b(Y), X)”, and “same-side(b(X), b(Y))” collections, and
the shape can be constructed from the union of these collections.
The product and difference operations are similarly defined
(Table 4). In the case of the reduce operation, each spatial element
in the shape is summed with the reduced remainder of the shape.
From an implementation point of view, this recursive definition of
reduce is certainly not the most efficient; actually, the same can be
said about the other operations – the classification of boundary
segments with respect to another shape can be computed once
for all of the classes inside, outside, same-side, and opposite-side.
Obviously, these definitions only serve as abstractions of the
actual procedures, we refer to Stouffs and Krishnamurti (2006)
for actual, and efficient, algorithms.

Then, a shape algebra with carrier ℘(A) and signature includ-
ing sum (“+”), product (“·”), difference (“−”), and reduce (“r”) can
be defined for an areal behavior, applying to line segments, plane
segments, and volumes, in terms of the sub-algebra with carrier ℘

Table 2. Algebraic operations of sum, product, and the difference for points (U0), labels (L), and numeric weights (N)
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(A) and signature sum, product, difference, and reduce, as follows:

∀X, Y [ ‘ (A) ⇒
X + Y = r (X < Y)
X · Y = <c product ({x [ X : co(x) = c},

{y [ Y : co(y) = c})
X − Y = <c{x [ X : co(x) = c ^ ¬∃ y [ Y : co(y) = c}<

<c difference ({x [ X : co(x) = c}, {y [ Y : co(y) = c})
r(X) = <creduce ({x [ X : co(x) = c}). (4)

The operations of product, difference, and reduce are expressed
directly in terms of the similar operations on the respective sub-
shapes of co-equal spatial elements. In the case of complement,
shapes of co-equal spatial elements from X for which there exists
no (co-equal) shape in Y also form part of the result. A similar
approach can be taken for the operation of sum; however, for sim-
plicity, we prefer to express the operation of sum in terms of the
operation of reducing (“r”) on the combined sets of spatial ele-
ments. Note that the algebras U1 (shapes of line segments), U2

(shapes of plane segments), and U3 (shapes of volumes) can all
be defined in this way (Table 5).

We should note that while an areal behavior applies to shapes
of line segments as well, from an implementation point of view, it
is more efficient to define an interval behavior for shapes of line
segments. Additionally, while these behaviors cover shapes of dif-
ferent kinds of spatial elements and sets of labels and singletons of
weights, other behaviors can be identified to apply to other kinds
of attributes, for example, for material rankings (Knight, 1993).
Instead, we continue with the derivation of compositions of alge-
bras under the direct product.

Deriving algebras with sum and direct product

The operations of sum and direct product apply to all algebras
that share the same signature, specifically, the algebras U0, U1,
U2, U3, L, D, and N we have previously defined. We address
some implications of this in the section Algebraic

Compositions. Here, we define an (shape) algebra with carrier
℘(A) ×℘(B) and signature including sum (“+”), product (“·”),
difference (“−”), and reduce (“r”) in terms of the (shape) algebras
with carriers ℘(A) and ℘(B) and identical signatures, as follows:

∀(A1, B1), (A2, B2) [ ‘(A) × ‘(B) ⇒
(A1,B1) + (A2,B2) = (A1 + A2, B1 + B2)
(A1, B1) · (A2, B2) = (A1 · A2, B1 · B2)
(A1, B1) − (A2, B2) = (A1 − A2, B1 − B2)
r(A1,B1) = (r(A1), r(B1)). (5)

An algebra of shapes of points and line segments, U0 +U1, and an
algebra of shapes of line segments and sets of descriptions, U1 ×
D, among others, can be defined in this way. We do not distin-
guish algebraic derivations under sum or direct product, the dis-
tinction only relates to the (embedding) space(s) and the
allowable transformations, neither of which is considered here.
As we have mentioned before, for algebraic compositions under
the direct product – and sum – shape rules and the operations
of sum, product, and difference (and reduce) operate in parallel
on the various component algebras.

Deriving augmented shape algebras

Next, we can tackle the issue of an algebra for shapes augmented
with attributes. When defining the augmented shape algebra,
rather than referring to a shape algebra and an attribute algebra
(e.g., L or N), we instead refer to the partial algebra for the spatial
elements, just as we define the shape algebra from the partial alge-
bra of its spatial elements. That is, we derive the operational
behavior of an augmented shape algebra from the behaviors of
the partial algebra of spatial elements and the algebra of attribute
elements. For example, consider two co-equal line segments that
overlap. Without attributes, these combine into a single line seg-
ment. With attributes, they combine only if they share the same
attributes or, otherwise, if the segments are identical. In the latter
case, the attributes combine. Otherwise, different segments (or
parts thereof) necessarily have different attributes and need to

Table 3. Dependencies underlying the construction of shape algebras from sub-algebras for co-equal shapes and two-sorted partial algebras of spatial elements

Algebra Signature Arguments Returns
Depends
upon

0. Two-sorted partial (shape)
algebra

Combine, common, and
complement

x, y ∈ A:
co(x) = co( y)

R ∈ ℘(A):
∀ x, y ∈ R,
co(x) = co( y)

1. Sub-algebra for co-equal shapes Sum, product, difference, and
reduce

X, Y ∈ ℘(A):
∀ x ∈ X, ∀ y ∈ Y, co(x) = co( y)

R ∈ ℘(A):
∀ x, y ∈ R,
co(x) = co( y)

0.

2. Shape algebra +,·,−, r X, Y ∈ ℘(A) R ∈ ℘(A) 1.

Table 4. Classified boundary segments that make up the shape resulting from a shape operation

Operation: * x + y x · y x− y

Boundary: b(x * y) Outside(b(X), Y) ∪ outside(b(Y), X) ∪
same-side(b(X), b(Y))

Inside(b(X), Y) ∪ inside(b(Y), X) ∪
same-side(b(X), b(Y))

Outside(b(X), Y) ∪ inside(b(Y), X) ∪
opposite-side(b(X), b(Y))
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Table 5. Algebraic operations of sum, product, and difference for plane segments (U2) and volumes (U3)

Table 6. Two spatial elements (line segments) combine depending on whether their attributes combine
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be represented separately (Table 6). The behavior of the attribute
elements, for each of the different line segments (or parts thereof),
however remains the same.

An algebra with carrier ℘[A ×℘(B)] and signature including
sum (“+”), product (“·”), difference (“−”), and reduce (“r”) can
be defined for a discrete behavior, in terms of the (attribute) alge-
bra℘(B) with signature including sum (“+”), product (“·”), differ-
ence (“−”), and reduce (“r”), as follows:

∀X, Y [ ‘ [A× ‘(B)] ⇒
X + Y = {(x, Bx + By) : (x, Bx) [ X ^ (x, By) [ Y}<

{(x, Bx) : (x,Bx) [ X ^ ¬∃(x,By) [ Y}<
{(y, By) : (y, By) [ Y ^ ¬∃(y, Bx) [ X}

X · Y = {(x, Bx · By) : (x, Bx) [ X ^ (x, By) [ Y}
X − Y = {(x, Bx − By) : (x, Bx) [ X ^ (x, By) [ Y}<

{(x, Bx) : (x, Bx) [ X ^ ¬∃(x, By) [ Y}
r(X) = {(x, Bx)} + r[X\(x, Bx)] if ∃(x, Bx) [ X

∅ otherwise. (6)

Comparing this to the discrete behavior for a non-augmented
shape algebra, we observe that for the operations of sum, product,
and difference, if a spatial element is shared between both (aug-
mented) shapes, we combine both attributes of the spatial element
under the same operation. In the case of the operations of sum
and difference, we may need to add spatial elements, with their
original attribute, that belong to one augmented shape but not
the other. We express the operation of reducing in terms of the
operation of sum for the same algebra. An algebra of shapes of
labeled points, V0, or shapes of weighted points, W0, with the
weights representing gray scales or diameters, can be defined in
this way (Table 7).

Having established an augmented shape algebra for points, a
demonstration of an augmented shape algebra for other spatial
elements, using the areal behavior, remains. In fact, where the
shape algebra for an areal behavior is expressed in terms of the
sub-algebra for co-equal shapes, we can define a sub-algebra for
co-equal augmented shapes and retain the definition for the
shape algebra as a definition for the augmented shape algebra
as well. The only difficulty is the use of the (co-)descriptor func-
tion (“co”) on elements of the shape algebra. However, if we over-
load the function “co” to accept augmented spatial elements, that
is, elements with attributes, then there is no issue.

A sub-algebra with carrier ℘(A ×℘(B)) and signature includ-
ing sum, product, difference, and reduce can be defined for an
areal behavior, in terms of the two-sorted partial algebra with

carrier {A, ℘(A)} and signature including the operations of com-
bine, common, and complement, and the (attribute) algebra ℘(B)
with signature including sum (“+”), product (“·”), difference
(“−”), and reduce (“r”), as follows:

∀X,Y [ ‘(A× ‘(B)) : ∀(x, Bx) [ X, ∀(y, By) [ Y,

co(x) = co(y) ⇒
sum (X, Y) = consolidate (common-with-sum (X,Y)<

remainder (X, Y)< remainder (Y,X))
product (X, Y) = consolidate(

common-with-product (X, Y))
difference (X, Y) = consolidate(

common-with-difference (X, Y)<
remainder (X, Y))

reduce (X) =
sum ({(x, Bx)}, reduce (X\(x, Bx))) if ∃ (x, Bx) [ X

∅ otherwise. (7)

We cannot simply determine a resulting shape – from one of the
operations of sum, product, and difference – from the classification
of the boundaries of both (co-equal) shapes in their entirety.
Instead, we need to apply the classification and construction to
each pair of spatial elements from the respective shapes, in order
to be able to assign the appropriate attributes – as defined by the
operation of sum, product, or difference applied to the respective
attributes of the spatial elements. Basically, we split any overlapping
spatial elements into their common parts and the remaining com-
plement parts. For each common part, we combine the attributes
under the respective operation of sum, product, or difference.
This is expressed by the helper functions “common-with-sum”,
“common-with-product”, and “common-with-difference”; these
return the common shape of two co-equal spatial elements, with
as attribute, respectively, the sum, product, and difference of the
respective attributes (see below for their specification). Any comple-
ment part that forms part of the result naturally retains its attribute;
the helper function “remainder” returns the complement shape of a
spatial element with respect to a co-equal shape, with as attribute
the original attribute of the spatial element. Finally, we combine
any parts that end up having the same attribute. The helper function
“consolidate” is a variant of the operation of reducing (for a
co-equal shape) that assumes that none of the spatial elements over-
lap, though they may share boundaries. It recursively tries to find
two spatial elements that share a boundary and also share the

Table 7. Algebraic operations of sum, product, and difference for labeled points (V0) and weighted line segments (W1)
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same attribute(s), in which case it combines both elements into a
single element.

common-with-sum (X,Y) = <x <y {(z, Bx + By) :
(x, Bx) [ X ^ (y, By) [ Y ^ z [ common (x, y)}

common-with-product (X, Y) = <x <y {(z, Bx · By) :
(x, Bx) [ X ^ (y, By) [ Y ^ z [ common (x, y)}

common-with-difference (X, Y) = <x <y {(z,Bx − By) :
(x,Bx) [ X ^ (y,By) [ Y ^ z [ common (x, y)}

remainder (X, Y) = <x{(z, Bx) : (x, Bx) [ X^
z [ difference ({x}, Y)}

consolidate (X) =
consolidate ({(z, Bx)}< X\{(x, Bx), (y, Bx)})

if ∃ (x, Bx) [ X ^ (y, Bx) [ X : x = y^
{z} = combine (x, y)

X otherwise.

An algebra of shapes of weighted line segments, W1, or shapes of
labeled plane segments, V2, among others, can be defined in this
way (Table 7).

Algebraic compositions

We have adopted a constructive, algebraic approach to defining
shape algebras and compound (shape) algebras (Fig. 5). This
allows for a variety of algebras to be defined from an array of
basic (partial) algebras of spatial and other elements. For example,
we can define an algebra of shapes of line segments and labeled
points, U1 +V0, from basic partial algebras of points, line seg-
ments, and labels. We can extend this notation to the definition
of augmented (shape) algebras, considering an operation of attri-
bution, denoted with the operator “∧”, as in V0 =U0 ∧ L and W1

=U1 ∧N. Note that this is not formally correct; while the opera-
tions of sum and direct product operate on two algebras, the
operation of attribution combines a two-sorted partial algebra
with an algebra. Nevertheless, for the sake of simplicity and read-
ability, we adopt the notation above. Having established this nota-
tion, let us assess the generality of the adopted approach, starting
with augmented (shape) algebras.

Attribution

The derivation of augmented (shape) algebras distinguishes
between shape algebras and attribute algebras. However, consider-
ing that shape and attribute algebras may share the same behavior,
and no conditions have been specified on the behavior of the
attribute algebra component of the augmented (shape) algebra,
the derivations above equally apply to augmented algebras
where the base component is a two-sorted partial algebra for,
for example, labels, and the attribute algebra is a shape algebra.
Thus, we can conceivably write L ∧U0, an algebra for sets of labels
with points as attributes. In fact, any two-sorted partial algebra
can be considered as a base component and any basic algebra
as attribute algebra, allowing for combinations of shapes and non-
geometric attributes, non-geometric elements and shape attri-
butes, shapes and shape attributes, and non-geometric elements
and non-geometric attributes (see Fig. 5, right). For example,

Stouffs et al. (2007) consider algebras of shapes as attribute alge-
bras, with the base algebra defined as an algebra of labels, for
example, L ∧U3. As an example, the primary information target
of a planner of embedded sensors is the building slab for the sen-
sor to be embedded, for example, represented as a label identify-
ing the slab, while the shape of the slab is also required, but only
as an attribute to the label. While visual calculating (Stiny, 2006)
is a powerful paradigm for design, design actions also move
beyond the visual, requiring alternative design representations
that primarily target non-spatial data elements. A truly algebraic
approach to representing design data enables such flexibility.
For example, consider the algebra D of sets of descriptions.
While most authors consider descriptions parallel to drawings,
for example, U1 ×D, Beirão (2012) considers descriptions as attri-
butes to spatial objects, allowing for objects to refer to alternate,
though similar, descriptions, thus, U1 ∧D.

Returning to the derivation of augmented algebras, admittedly,
we did not specify an augmented algebra for an ordinal behavior.
This, however, can be easily done and we leave it as an exercise to
the reader. Similarly, other behaviors can also be considered, such
as an enumerative behavior allowing for Knight’s (1989, 1993) color
grammars. Knight (1993) considers explicit rankings for colors,
materials, or other qualitative aspects of design. Alternatively,
we can consider a behavior for colors based on a method to
combine RGB or HSV color values and determine the common
and complement value of one color with respect to another.
Whichever approach we adopt to represent colors, once we have
defined a basic algebra of sets of colors, C, we can define an alge-
bra of shapes of colored plane segments as U2 ∧ C.

One step further, the derivation of augmented algebras does
not restrict the attribute component to only basic algebras. Any
algebra ℘(B) with signature including sum, product, difference,
and reduce can serve as attribute component, including both aug-
mented and compound algebras. As such, we can define an attrib-
ute algebra as the sum of two basic attribute algebras, for instance,
U0 ∧ (L +N) defines an algebra of shapes of points with both
labels and weights (e.g., diameters or gray scales) as attributes.
Intuitively, we can consider the operation of sum to distribute
over the operation of attribution, that is, U0 ∧ (L +N) = (U0 ∧ L)
+ (U0 ∧N) =V0 +W0, combining points with labels and points
with weights.

A hierarchical modus operandi

Considering these extensions, it is useful to further explore how
the different operations on algebras – direct product, sum, and
attribution – may combine to define compound algebras, and
thus, shape grammars. From an algebraic point of view, the
base component of an augmented algebra should always be a two-
sorted partial algebra, and therefore, we restrict the base operand
under attribution to a basic algebra. That is, we never write (U0 +
U1) ∧ L but, instead, always (U0 ∧ L) + (U1 ∧ L). Secondly, though
operations of sum and the direct product could be mixed indiscri-
minately from an algebraic point of view, conceptually, we may
choose to restrict the use of the direct product to the first –
outer – compositional layer (Fig. 6). That is, we take the point
of view that each (compound) algebra under the operation of
direct product represents a different drawing or information
view and that all the information within the same drawing or
view (corresponding to different component algebras within a
composition under sum) adopts a single set of allowable transfor-
mations for rule application. The opposite, an algebra that is
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composed under direct product and itself takes part in a compo-
sition under sum is not feasible; it is impossible to determine
which transformation(s) applies over the composition under
sum, since at least one component – the composition under direct
product – is unequivocal on the transformation(s) to apply.
Obviously, when we write L +N or U1 +D, clearly, we are not
assuming that labels and weights populate the same space or, sim-
ilarly, for line segments and descriptions, nor that their respective
sets of allowable transformations necessarily must be related via
some mapping. Within a single set of allowable transformations
for rule application, subsets of allowable transformations can be
identified for different algebras. In fact, even if neither labels
nor weights allow any transformations, we can consider them
under the operation of sum. The operation of sum simply implies
that if two algebras allow for the same set of transformations, for
example, similarity transformations for geometric elements,
including points, lines segments, and plane segments, they must
share the same transformation – under rule application. Otherwise,
they can simply operate in parallel under different transformations,
or none at all.

The same applies for attribute shape algebras. Referring once
again to the example of the embedded sensor view presented by
Stouffs et al. (2007), a more extensive information list required
by the embedded sensor planner includes the target slab, repre-
sented as a label or description, its shape, represented as a volume
in U33, its material type, again represented as a label or descrip-
tion, and its location, represented as a point in U03. The corre-
sponding algebra for this view may be defined as L ∧U33 ∧ L ∧
U03. Although the algebras U33 and U03 are related through attri-
bution, rather than the sum, they should still be considered as
using the same space, not just from a dimensional point of
view. In this example, it makes perfect sense that the shape and
location of the slabs are subject to the same transformation.

Thus, if the first – outer – compositional layer is specified
under the operation of the direct product, its components can
be algebraic compositions under sum, augmented algebras and/
or basic algebras, together defining a second compositional layer
(Fig. 6). Compositions under sum are themselves made up of aug-
mented algebras and/or basic algebras; while, augmented algebras
are considered – informally – as compositions of a basic algebra as
a base and either a composition under sum, an augmented algebra,
or a basic algebra as an attribute (Fig. 6). Some implications of this
hierarchical modus operandi are discussed below.

Though the definition of a compound algebra under sum or
direct product (5) is strictly speaking non-commutative, intui-
tively, and from an implementation point of view, it makes
more sense to consider the operations of sum and direct product
on algebras as both commutative and associative, for example, for
an algebra of shapes of labeled points and line segments, V0 +U1

=U1 +V0, and for an algebra of shapes of labeled points, weighted
line segments, and plane segments, V0 + (W1 +U2) = (V0 +W1) +
U2 =V0 +W1 +U2. Hereto, we can consider a canonical ordering
of the component algebras within a composition under sum or
direct product. On the other hand, the operation of attribution
on algebras is, obviously, non-commutative and, considering
that the base is in fact defined as a two-sorted partial algebra,
non-associative. Given a basic algebra of sets of colors, C, we
might conceive of an algebra U0 ∧ L ∧ C. This should always be
interpreted as U0 ∧ (L ∧ C), that is, an algebra of points, where
each point has one or more labels and each label has a color spe-
cified. If we want colors to be applied to points instead, we can
write U0 ∧ (L + C), and if we want colors to be applied to both
points and labels, we must write U0 ∧ [(L ∧ C) + C]. As a conse-
quence of the latter, the points might exhibit different colors
than the points’ labels. Any constraints relating the labels’ colors
to the points’ colors would have to be specified outside of the
algebraic composition, for example, in the shape rules and initial
shape. We already considered the operation of sum to distribute
over the operation of attribution, that is, U0∧ (L +N) = (U0∧ L) +
(U0∧N) =V0 +W0, combining points with labels and points with
weights. Considering the hierarchical modus operandi, other dis-
tributive rules do not apply.

Finally, let us revisit Stiny’s (1992) example describing a series
of cubes separately in the plan, in front elevation, and in side ele-
vation. While the resulting shapes are presented in the algebras
U12, W12, and W22, respectively, the shape rules additionally
make use of labeled points – and line segments in the case of
the side elevation – to constrain rule application. That is, the
shape rules are presented in the algebras U12 +V02, W12 + V02,
and W22 +U12 + V02, respectively. Considering that Stiny (1992)
only considers the operation of direct product on algebras, he
poses the question whether to write (U12 ×V02) × (W12 ×V02) ×
(W22 ×U12 × V02) – with or without parentheses – or to simplify
this as U12 ×V02 ×W12 ×W22. However, when we distinguish the
operations of sum and direct product on algebras and adopt the
operation of direct product exclusively to combine different draw-
ings or information views, the question is no longer pertinent
and the only appropriate representation is the compound algebra
(U12 +V02) × (W12 +V02) × (W22 +U12 +V02). Here the parentheses
are only added for readability.

The matching problem

One consequence of supporting a wide variety of algebraic com-
positions within a single shape grammar interpreter is that the

Fig. 6. A hierarchical modus operandi for the three operations on algebras, direct
product (“×”), sum (“+”), and attribution (“∧”). Basic algebras are indicated with a
black core; ellipses mark undeveloped branches that are, each, similar to the devel-
oped branch for the same operation (as illustrated with a miniature expansion); each
developed branch indicates its potential cardinality.
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process of determining the applicable transformation(s) for shape
rule application is further complicated from what was already far
from straightforward. Recall that a shape rule a→b applies to a
shape s if there exists a (similarity) transformation t such that t
(a)≤ s. Let us assume we have a shape rule defined over an alge-
braic composition under sum and attribution. Obviously, if the
algebraic composition is defined under the direct product, we
can split the problem into a few smaller problems, one for each
algebraic component under the direct product, as the operation
of direct product assumes each component to apply under a dif-
ferent transformation.

Krishnamurti and Stouffs (1997) consider all possible cases
of applicable similarity transformations for shapes in the algebra
U0 +U1 +U2 +U3, or any other combination of U0, U1, U2, and/or
U3 under sum. These include both determinate, resulting in a
finite number of possible transformations, and indeterminate,
allowing for an infinite number of possible transformations, cases,
based on the process of identifying and constructing distinguish-
able elements – that is, spatial elements (points, lines, or planes)
the properties of which (with respect to the original shape) are
preserved under the part relation and (similarity) transforma-
tions. They also allude to the fact that these spatial elements
may have attributes assigned.

However, from an implementation point of view, whether spa-
tial elements have attributes and the kind of attributes can make
an important difference in the efficiency of the matching algo-
rithm. After all, it is not just important to find all possible trans-
formations under which the left-hand side of a shape rule is a part
of a given shape s, this should also be done efficiently within a
reasonable time frame. For instance, labeled points are often con-
sidered in shape grammars in order to reduce the number of pos-
sible ways – that is, transformations – under which a rule may
apply to a given shape. Labeled points are particularly appropri-
ate for this as both labels and points adhere to a discrete behav-
ior. As labels only match if they are identical, labeled points only
match if they have identical labels. Furthermore, three non-
collinear distinguishable points – additional distinguishable
points can be constructed as the intersection points of two
lines, or a line and a plane, or two lines of intersection of corre-
sponding planes, or as the feet of the common perpendicular of
two skew lines – is the only possible determinate case in three
dimensions. As such, considering labeled points not only
reduces the number of possible transformations, labeled points
can also be considered preferential in the process of determining
distinguishable elements in order to address the matching
problem.

In general, we may conclude that both a basic algebra’s behav-
ior and the allowable transformations for the algebra contribute to
the preferential applicability of this particular basic algebra in the
process of determining applicable transformations for shape rule
application. Thus, we can prioritize the basic algebras that parti-
cipate in an algebraic composition under sum and attribution for
their role in the process of determining applicable transforma-
tions based on these two characteristics. We suggest a classifica-
tion of basic algebras based on their behavioral specification
into four classes: discrete, linear, planar, and spatial. These may
be assigned consecutive numeric values, such as 0, 1, 2, and 3,
respectively. Obviously, both points (U0) and labels (L), as well
as (textual) descriptions (D) adhere to the discrete class. Other
spatial and non-spatial elements that can be classified as discrete
are circles, ellipses, infinite lines, numeric labels, images, dates,
enumerative values, etc. Line segments (U1) and weights (N)

form part of the linear class, as do any other elements that adhere
to a linear dimension, such as, circular arcs and elliptical arcs, but
also time periods and, potentially, colors (C). Whether colors are
classified as linear or, instead, spatial, is dependent on their exact
behavioral specification. Classifying colors as linear reflects on
Knight’s (1993) adoption of notions of transparency, opacity,
and ranking to regulate the behavior of colors on interacting
areas or volumes. Finally, plane segments (U2) and volumes
(U3) are classified as planar and spatial, respectively.

Additionally, we suggest a classification of allowable transfor-
mations by their degrees-of-freedom. Similarity transformations
demonstrate seven degrees-of-freedom: three translational, three
rotational, and one (uniform) scaling. These can apply to all spa-
tial elements. Most other basic algebras do not allow for any
transformations, the corresponding degrees-of-freedom is there-
fore zero. However, if case transformations would be considered
for labels, the degrees-of-freedom could be specified as one.
This is also the case for descriptions, even if case transformations
for descriptions are not considered. Description rules (or a
description function, Stiny, 1981) allow for parameters to be spe-
cified in the left-hand side of the rule, thereby allowing for more
than an exact match. Such necessitates a degrees-of-freedom of at
least one. Considering these classifications of behavioral specifica-
tions and allowable transformations, a simple prioritization of
basic algebras in the process of determining applicable transfor-
mations can be based on adding both values, the numeric value
of the behavioral class and the degrees-of-freedom, together. In
addition, if relevant, the algebraic operation under which the
basic algebra forms part of the overall algebraic composition,
that is, sum or attribution, can be considered as an additional
prioritization factor.

For example, an algebra of labeled points and line segments dis-
tinguishes three basic algebras: labels, points, and line segments.
Points and labels are classified as discrete, with value 0, while
line segments belong to the linear class, with value 1. Labels may
not allow for any transformations, specifying the degrees-
of-freedom as 0; whereas points and line segments, under similar-
ity transformations, have 7 degrees of freedom. Adding the
classification value and the degrees-of-freedom results in prioritiza-
tion values of 0, 7, and 8 for labels, points, and line segments,
respectively. Thus, when determining potential matches, we can
first look for different labels on the left-hand side of the shape
rule. Obviously, if all points share the same label, there is little
benefit in considering the labels and the problem remains to
identify three distinguishable points. Assuming there are (at least)
three distinguishable (labeled) points in the left-hand side of the
shape rule and n distinguishable (labeled) points in the shape
under rule application, the number of combinations of points
matching the three selected points from the left-hand side equals
n
3

( )
= n!
3!(n−3)!=(1/6)n(n−1)(n−2)=O(n3). This assumes

all points share the same label or no label at all. However, if
there are three (or more) distinct labels in the left-hand side of
the shape rule, we can classify the points by their label and select
just one point per label. Assuming an equal distribution of the
labeled points over the three distinct labels in the shape under
rule application, the number of combinations of points matching

the three selected points equals 3
n/3
1

( )
= 3(n/3)!
1!((n/3)−1)!=n. We

only need to consider each point once. Note that this holds even
if the labeled points are not evenly distributed per label. Thus,
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the presence of three distinct labels reduces the number of combi-
nations from O(n3) to O(n). Similarly, if there are only two distinct
labels, the number of combinations is reduced to O(n2), which is
potentially still an important improvement. Note that this applies
as well for labeled line segments, with distinguishable points (e.g.,
intersection points) classified by the label. Obviously, considering
that points have a lower prioritization value than line segments,
7 versus 8, gives preference to labeled points over labeled line seg-
ments. Similarly, if we assume an algebra of labeled points and line
segments as well as labels, U0 ∧ L +U1 + L, we must prioritize
between the two basic algebras of labels. Considering that one
instance stands on its own under the operation of sum, while the
other is part of an augmented algebra (under attribution), the latter
receives higher priority among the two. That is perfectly logical;
while the attribute labels constrain the similarity transformations
over points and line segments, the other labels can only serve to
constrain transformations over labels, if any.

Discussion

The above is certainly not the only complication with respect to
implementing a shape grammar interpreter supporting a wide
variety of compositions of basic algebras under the operations
of direct product, sum, and attribution. A number of authors
of description grammars consider parallel descriptions,
specifying interdependencies between these parallel descriptions
or between (textual) descriptions and shape descriptions.
Specifically, Li (2001) considers description rules referencing
the current value of other, parallel, descriptions, in the specifica-
tion of the right-hand side of the description rule. For example,
having one description count the number of rafters, another
description describes the disposition of the beams, including
the resulting number of rafters. Others, similarly, consider
description rules referencing other parallel descriptions. Aside
from referring to the entire description value, these may include
only a specific entity, where the entity in question is identified
by a parameter in a parallel description rule that, otherwise,
may leave this other description unchanged, or they may require
the parallel shape rule to provide specific values, for example,
referring to dimensions within a shape or shape rule. In such
cases, the timing of the resolution of the rules may be important
in order to ensure that the information from one description,
shape, or rule may be available to another rule. Alternatively,
the resolution process could be split into two phases, a first
phase in which dependencies are identified and stored, and a
second phase in which these dependencies are revisited and
resolved. Of course, circular dependencies must be avoided
any time.

Conclusion

We presented an algebraic approach to describing compound
shapes that includes the definition of non-spatial algebras and
the combination of shape algebras and non-spatial algebras
under an operation of attribution. This algebraic abstraction
serves as a procedural abstraction for the modular implementa-
tion of a general shape grammar interpreter. We have extended
the algebraic approach to the operation of sum, as compared
with direct product, reflecting on whether shape algebras adhere
to the same or different transformations under rule application,
although we limited this to capturing the limitations that may
be placed on algebraic compositions in light of practical

applications and their implementation. The main contributions
of this paper are the algebraic derivation of shape algebras from
partial algebras operating on spatial elements as well as of com-
binations of basic shape algebras with attribute algebras. We
have also identified practical limitations on algebraic composi-
tions of basic shape algebras with attribute algebras and pro-
posed prioritizing basic algebras with respect to solving the
matching problem for parallel and compound shape grammars
efficiently.
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