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The influence of magnetohydrodynamic eigenmodes destabilized by energetic ions on
the momentum of these ions and concomitant sheared plasma rotation are studied.
Two mechanisms affecting rotation are revealed: (i) spatial channelling (SC) –
radially separated emission and absorption of the momentum; (ii) mode induced
redistribution (MIR) across the magnetic field of the momentum of energetic ions. Forces
arising during SC and MIR produce both toroidal and poloidal rotations. In addition, the
momentum emission during SC leads to a radial flux of fast ions and generation of a radial
electric field. Using the developed theory, estimates were made for the ITER (International
Thermonuclear Experimental Reactor) 15 MA baseline scenario. They show that a global
toroidicity-induced Alfvén eigenmode destabilized by alpha particles and neutral beam
injection can result in significant radial electric field and forces applied to plasma.
However, available data are not sufficient for a reliable prediction of the effects of SC and
MIR in ITER. In general, one can expect that sheared rotation arising after destabilization
of Alfvén modes and fast magnetoacoustic modes by energetic ions will tend to suppress
the turbulence and improve plasma performance. The importance of plasma rotation is
supported, in particular, by the fact that during the JET DTE1 experimental campaign
the best parameters were achieved in a deuterium–tritium discharge where the rotation
frequency was largest.
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1. Introduction

In 2010 it was recognized that destabilized Alfvénic modes can transfer the energy of
energetic ions across the magnetic field without producing anomalous heat diffusivity,
just because the unstable region does not coincide with the region of the mode
damping (Kolesnichenko, Yakovenko & Lutsenko 2010a; Kolesnichenko et al. 2010b).
This phenomenon was named ‘spatial channelling’ (SC), see recent work (Kolesnichenko,
Tykhyy & White 2020) which includes an overview of various manifestations of SC and
relevant references.
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When the unstable region is located in the middle of the mode but the mode is damped
in the inner and outer regions, both inward and outward energy fluxes are generated: the
former at smaller radii, the latter at larger radii. When the unstable region is located at the
plasma periphery but the damping region is in the plasma core, inward SC takes place, and
the instability heats the plasma core. However, even in this case a considerable outward
flux may also be generated in the peripheral region of the mode when the instability growth
rate is sufficiently large (Kolesnichenko & Tykhyy 2018).

Presumably, the SC with outward energy flux took place in the NSTX (National
Spherical Torus Experiment) experiments described in Stutman et al. (2009). In these
experiments the increase of neutral beam injection (NBI) power by a factor of three
was accompanied with the growth of Alfvénic activity but did not increase the plasma
temperature near the magnetic axis. The outward energy channelling could be responsible
for this (Kolesnichenko et al. 2010a,b; Belova et al. 2017), although there was also
an alternative explanation of these experiments that an anomalous diffusivity was
generated by multiple modes (Gorelenkov et al. 2010). On the other hand, according to
Kolesnichenko et al. (2018), inward SC of alpha-particle energy by fast magnetoacoustic
modes (FMM, known also as CAE) with frequencies either above or approximately the
ion gyrofrequency may have played a role in the improved confinement and anomalous
ion heating, which seems took place in JET DTE1 experiments with deuterium–tritium
(D–T) plasmas (Thomas et al. 1998; Thomas 2001; Weisen et al. 2014).

The SC leads to radial transfer of not only the energy but also the momentum.
The momentum SC could be another mechanism favourable for plasma confinement

in the mentioned DTE1 experiments: the momentum transfer leads to sheared plasma
rotation, tending to suppress turbulence in the region of mode location. As will be shown
in this work by analysing JET DTE1 data, the best parameters were achieved in the
discharge where plasma rotation frequency was highest (D–T discharge #42847). The
toroidicity-induced Alfvén eigenmode (TAE) activity was absent in these experiments,
only ion cyclotron emission (ICE) which presumably is associated with FMM was
observed. This may support the assumption made in Kolesnichenko et al. (2018) that FMM
could be responsible for the SC (the structure of modes leading to ICE was not measured),
although other modes, such as global Alfvén eigenmodes (known as GAE), could lead to
plasma rotation.

Note that there are a number of experiments confirming improved plasma characteristics
in rotating plasmas. In particular, high fusion performance at high Ti/Te in JET-ILW
baseline plasmas with high NBI heating power was observed, which correlated with
high rotation frequency (Kim et al. 2018). Correlation between high rotation frequency
and confinement was also observed in the DIII-D tokamak; furthermore, it was found in
super H-mode experiments that high rotation, not high pedestal, plays the essential role in
achieving very high confinement (Ding et al. 2020).

Thus, the influence of destabilized eigenmodes on the transverse momentum transfer
and concomitant plasma rotation is an important topic. To study this issue is the purpose
of this work.

We have to note that energetic ions can affect plasma rotation and its performance
through mechanisms which differ from those considered in our work. In particular, they
can suppress plasma turbulence, leading to so-called fast ion-induced anomalous transport
barrier (known as F-ATB) (Siena et al. 2021). Nonlinear evolution of TAE modes can
result in generation of zonal flows (Todo, Berk & Breizman 2010).

The work has the following structure. At the beginning, in § 2, the JET database of
the DTE1 campaign is analysed in order to compare the plasma rotation velocities in
discharges heated by NBI, ion cyclotron resonance heating (ICRH) and fusion produced
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FIGURE 1. Radial dependence of rotation frequency in the JET DTE1 deuterium discharges
(#41067, #41068, #41069) and D–T discharges (#42847, #42856). Time evolution of these
discharges for 52–55 s was considered (see also Kolesnichenko et al. 2018), it clearly shows
that the improved performance (i.e. high Ti thereby high fusion performance) is associated with
the high rotation frequency.

alpha particles. A theory of the influence of destabilized modes on the momentum of
fast-ion population is developed in § 3. At the beginning of this section, a qualitative
analysis based on a quantum mechanics analogy is carried out; after that, an approach
employing a quasilinear equation for distribution function of fast ions is used. An
alternative approach based on a Hamiltonian of a single particle in the presence of a wave
is used in Appendix A. Plasma rotation and generation of the radial electric field caused
by particle radial fluxes during SC are considered in § 4. The developed theory is applied
to ITER (International Thermonuclear Experimental Reactor) in § 5 where effects of a
destabilized TAE mode are evaluated. Section 6 summarizes the results obtained in the
work. Some peculiarities of plasma rotation in tokamaks are described in Appendix B.

2. Evidence of enhanced plasma rotation in JET DTE1 experiments with improved
plasma performance

We selected the same JET discharges of the first deuterium–tritium-experiment
campaign (DTE1) which were analysed in Kolesnichenko et al. (2018) (see also Thomas
et al. 1998; Thomas 2001; Weisen et al. 2014). They have two important features. First,
the overall confinement time was slightly higher at the largest fusion power in D–T
experiments. Second, the central ion temperature in D–T discharges was higher than that in
deuterium discharges where the ICRH was applied with the heating power approximately
that of alpha particles (fusion products) in DT discharges. These facts indicated the
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presence of some anomalous heating mechanism because mainly electrons are heated
during slowing down of 3.5 MeV alpha particles by Coulomb collisions.

It was revealed in Kolesnichenko et al. (2018) that the cyclotron resonance in the
tokamak magnetic field can provide simultaneous interaction of high-frequency FMMs
(having frequencies above the ion gyrofrequency) with MeV alpha particles at the plasma
periphery and near-axis thermal ions. Due to this, inward SC of alpha particle energy can
occur. The analysis carried out in Kolesnichenko et al. (2018) has shown that reasonable
mode amplitudes are sufficient for efficient energy transfer during SC.

On the other hand, estimates show that the momentum SC can lead to a significant
toroidal torque, its value weakly depending on the mode frequency (Kolesnichenko et al.
2020). Therefore, one could expect a considerable influence of the momentum SC on the
plasma rotation in the described experiments.

In order to see whether this was the case. in the experiment we analysed the relevant
JET database. Two D–T discharges (#42847 and #42856) and three deuterium discharges
(#41067, #41068 and #41069) were considered. All these discharges were heated by
NBI with the power Pnbi = 10 MW. In addition, the ICRH power was Picrh = 0.9 MW
and Picrh = 2 MW in discharges #41067 and #41068, respectively; the alpha power was
Pα = 1.4 MW and Pα = 1.34 MW in discharges #42847 and #42856, respectively. The
rotation frequencies are shown in figure 1. We observe that the rotation is largest in the
D–T discharge with highest performance (#42847). The exception is deuterium discharge
#41067 where rotation is very large in the near-axis region. Plasma parameters in this
discharge and in discharge #41068 were very similar, although ICRH power in discharge
#41067 was small, Picrh

#41067/P
icrh
#41068 ≈ 1/2. These facts demonstrate enhanced efficiency of

plasma heating when the rotation is strong.

3. Change of momentum of fast ion population by destabilized modes
3.1. Qualitative consideration of the momentum transfer from energetic ions to a

destabilized mode
We begin with a qualitative analysis of the wave–particle momentum exchange and
concomitant transport processes. We will follow the approach of Kolesnichenko (1980)
and Kolesnichenko et al. (2010b).

Using an analogy with quantum mechanics, we introduce plasmons (other names are
quasiparticles and quantums) with the density nk and momentum M = knk, k is the
wavevector. The plasmon density is defined by nk = Wk/ω, with Wk the wave energy
density (nk has the dimension h/V , where h is the Planck constant and V is the volume).
When the waves are destabilized by fast ions with the growth rate γα, nk decreases
(plasmons are emitted by fast ions) with the rate ṅk = −2γαnk, and the momentum evolves
correspondingly, Ṁα = kṅk, where dot over nk denotes time derivative. This implies that
the emission of plasmons generates the force acting on fast ions,

f α = Ṁα = −2γαknk = −k
2γα
ω

Wk, (3.1)

where subscript α labels fast ions.
Note that quantum mechanics analogy is known in plasma physics, especially in

nonlinear plasma theory (see, e.g. overviews Sagdeev & Galeev (1969), Fukai & Harris
(1971), Tsytovich (1977) and Kadomtsev (1982)). In particular, the density of plasmons,
nk, represents the basic quantity in the theory of weak turbulence, the kinetic equation for
waves is an equation for nk, the conservation of the plasmon energy and momentum leads
to conditions of the decay instability of the waves, etc.
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Equation (3.1) agrees with the known relation between the energy and momentum of a
travelling wave:

M = wave energy
phase velocity

. (3.2)

A question, however, arises whether (3.1) obtained by means of a simple qualitative
consideration, by using quantum mechanics terminology, is applicable to realistic toroidal
plasmas. The answer is given in subsequent sections, where it is shown that (3.1) correctly
reflects the main features of the momentum transfer from resonant particles to the mode.
Being simple, (3.1) enables one to make important conclusions immediately. Therefore,
below we continue our qualitative analysis, applying (3.1) to tokamaks.

It follows from (3.1) that f α is directed along the wavevector but in the opposite
direction. The wavevector is defined by ikX̃ = ∇X̃, where X̃ is a wave perturbation which
we take in the form X̃ = X̂(r) exp(−iωt + imϑ − inϕ), with r the flux radial coordinate,
ϑ and ϕ poloidal and toroidal angles, respectively. Then kϑ = m/r, kϕ = −n/R, and
k‖ = (mι− n)/R = kϕ + ιεkϑ , where k‖ is the wavenumber along the magnetic field, m
and n are the poloidal and toroidal mode numbers, ι = q−1, ι is the rotational transform, q
is the tokamak safety factor, ε = r/R, R is the major radius of the torus. The longitudinal
wavenumber in many cases is small. For instance, this is the case for high frequency FMM
responsible for suprathermal ICE. This is true also for low frequency modes, in particular,
for Alfvén gap modes, such as TAE modes. To see it, let us take into account that the
frequency of TAEs can be approximated as ω = |k‖∗|vA∗, where the star subscript means
that magnitudes are taken at r∗ defined by nq∗ = m ± 1/2. Then∣∣∣∣ k‖

kϕ

∣∣∣∣ = 1
2|n|q < 1,

∣∣∣∣ k‖
kϑ

∣∣∣∣ = ε

2|m|q < 1, (3.3a,b)

and kϑ dominates.
Because |k‖| < |kϕ|, it follows from the relation k‖ = kϕ + ειkϑ that sgn kϑ = −sgn kϕ

(sgn m = sgn n) and, hence, sgn fϑ = −sgn fϕ . Moreover, when |m|q � 1 and/or |n|q � 1,
kϕ ≈ −ειkϑ , and

fϕ ≈ −ειfϑ, | f‖| � | fϕ|. (3.4a,b)

Correspondingly, the toroidal torque, Tϕ = Rfϕ , and poloidal torque, Tϑ = rfϑ , are
connected in this case by relation

Tϕ ≈ −ιTϑ . (3.5)

Due to relation ει = Bϑ/Bϕ (Bϑ and Bϕ are components of the equilibrium magnetic
field, B), (3.4a,b) implies that the product B · f α is relatively small. Nevertheless, it plays
an important role because the power density lost by fast ions (Pα) is determined by f‖:

Pα = −f‖vres, (3.6)

where vres = ω/k‖ is the longitudinal velocity of resonant particles. This equation together
with longitudinal component of (3.1) yields the expected result, Pα = 2γαWk.

The binormal force leads to the flux of fast ions, Γα, across the magnetic field,

Γα = c
eαB2

( f × B)r = c
eαB

( fϑbϕ − fϕbϑ) = c
eαB

fb, (3.7)

where b = B/B, the subscript ‘b’ labels the binormal component of a vector. This flux
generates the radial electric field and the concomitant plasma rotation, both toroidal and
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poloidal. In addition, the binormal force directly affects the toroidal plasma rotation.
Its toroidal component approximately equals to fϕ [kb = (kϕ − k‖bϕ)eϕ + (kϑ − k‖bϑ)eϑ ].
Therefore, it well exceeds toroidal component of the longitudinal force when k‖ is small.

A more rigorous analysis below, while confirming the conclusions drawn, shows that
the obtained relations are not exact. The reason is that the force f is applied to resonant
particles, whereas (3.1) does not take into account specific resonances in toroidal plasmas.
It will be shown that the number m should be corrected by the resonance numbers
(in stellarators both m and n should be corrected for resonances associated with the lack
of axial symmetry of the magnetic configurations, see e.g. Kolesnichenko et al. (2011)).
This is not the only reason why a more rigorous analysis should be done: it is not clear
what is the phase velocity in (3.1) when the mode consists of several Fourier harmonics.
In addition, (3.1) cannot describe effects of finite mode width.

3.2. Basic equations
Let us proceed to a more rigorous description of the influence of destabilized modes on a
fast ion population.

We employ a quasilinear equation for the distribution function of these ions (F) in a
tokamak magnetic field,

∂F
∂t

= Q(F), (3.8)

where Q(F) is a transit-time-averaged quasilinear (QL) operator determined by (39), (43),
(55) and (56) of Belikov & Kolesnichenko (1982).

We restrict our analysis to shear Alfvén waves with ω � ωB (ωB the ion gyrofrequency)
and passing particles with standard orbits, �r � r (�r is the orbit width). The variables
the particle energy (E = Mαv

2/2), the magnetic moment (μ = E⊥/B) and the coordinate
of the particle guiding centre (r) will be used. The perturbed quantities will be labelled
with a tilde and taken in the form X̃ = Re

∑
m Xm(r) exp(iψ), where ψ = −iωt + imϑ −

inϕ. Using the ideal magnetohydrodynamics (MHD) approximation, we assume the
longitudinal component of the perturbed electric field to vanish, Ẽ‖ = 0. In addition, as
we are interested in Alfvén waves, we take B̃‖ = 0. This enables us to take vanishing
transverse vector potential of the electromagnetic field, Ã⊥ = 0, and to write the following
relations:

Ẽ = −∇⊥Φ̃, B̃ = ∇⊥×Ã‖b, (3.9a,b)

Ã‖= c
iω

∇‖Φ̃, (3.10)

where A‖ is the longitudinal component of the vector potential, and Φ̃ is scalar potential.
Thus, the electromagnetic field is expressed through potential Φ̃.

Due to these assumptions the QL operator of Belikov & Kolesnichenko (1982) reduces
to

Q(F) = 1
τb

∑
m,s

Π̂τbDm,sΠ̂F. (3.11)

Here

Dm,s = πe2
α

2
|Jm,s|2δ(Ωs), (3.12)

Ωs = ω − k‖sv‖, (3.13)
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|Jm,s|2 = v2
D

4

∣∣∣sΦ ′
m − m

r
Φm

∣∣∣2 , (3.14)

where vD = (v2 + v2
‖)/(2ωBαR) is the particle drift velocity, τb = 2πqR/|v‖| is the particle

transit time, m�r/r � 1, k‖s = (ms − nq)/(qR), ms = m + s, s = ±1, k‖(m, n) = (m −
nq)/(qR), Φm is a component of the scalar potential of the electromagnetic field, Φ ′ =
dΦ/dr,

Π̂ = ∂

∂E + L1
r
∂

∂r
, (3.15)

L =
(
ωqR
v‖

+ nq
)

1
MαωωBα

, (3.16)

L(vres) ≡ Ls = ms/(MαωωBα), vres is the resonance longitudinal velocity determined by
equation Ωs = 0. Note that the operator Π̂ given by (3.15), (3.16) differs from that in
Belikov & Kolesnichenko (1982) but it reduces to the latter at the resonance Ωs = 0.

In addition to (3.8), we will need a linear growth rate of instability. For Alfvénic
perturbations we can write the following local growth rate (without damping mechanisms):

γα =
∑

s

γs, γs = π2

2
e2
αv

2
A

c2

∫
d3 vv2

Dδ(Ωs)Π̂F, (3.17a,b)

where vA is Afvén velocity. This relation directly follows from equation ε11 = c2k2
‖/ω

2,
where ε11 is a component of the dielectric tensor in a Maxwellian plasma with energetic
ions, provided that kϑvDqR � v‖ and the resonance Ωs = 0 is responsible for the fast-ion
interaction with Alfvén waves (Kolesnichenko 1980; Belikov, Kolesnichenko & Silivra
1992). It can also be obtained from an eigenmode equation when the mode is relatively
narrow, see e.g. Kolesnichenko et al. (2002).

Note that normally, i.e. when the spatial inhomogeneity of energetic ions with density
gradient dnα/dr < 0 drives instability, ms < 0 and n < 0.

3.3. ‘Quasilinear hydrodynamics’ of particles destabilizing the mode
Below we consider the influence of Alfvén modes on the fast-ion flux across the magnetic
field, the rate of change of the fast-ion momentum and energy.

The flux surface averaged volume element in the velocity space in the tokamak magnetic
field (B = B̄/h, h = 1 + ε cosϑ) is d3v̄ = ∑

σ dE dμτbB̄/(M2
αqR), where σ = sign v‖,

and ϑ̇ = v‖/(qR) was used. Taking this into account we calculate integrals
∫

d3v̄GQ for
G = 1, Mαv‖, E , and E‖. After integrating by parts the term with the energy derivative we
obtain ∫

d3 v̄GQ =
∑
m,s

∫
d3 v̄

(
−∂G
∂E + 1

r
∂

∂r
GLs

)
Dm,sΠ̂F. (3.18)

In particular, for G = 1 we obtain

∂nα
∂t

= −1
r
∂

∂r
rΓα, (3.19)

where Γα = ∑
s Γα,s with

Γα,s = −
∑

m

πe2
α

8r
Ls

∣∣∣sΦ ′
m − m

r
Φm

∣∣∣2 ∫ d3 vv2
Dδ(Ωs)Π̂F (3.20)
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being the particle flux across the magnetic field, which is caused by the mode.
Due to (3.17a,b), (3.20) takes the form

Γα = −
∑
m,s

γskϑ,s
MαωωBα

c2

4πv2
A

∣∣∣sΦ ′
m − m

r
Φm

∣∣∣2 , (3.21)

where kϑ,s = ms/r. It follows from here that the flux of resonance ions destabilizing the
modes (γα > 0) is directed outwards when the spatial gradient term dominates in (3.17a,b)
and ∂F/∂r < 0 (in which case kϑ,s < 0). On the other hand, since the mode has finite
width, Γα(r) is a non-monotonic function, having a maximum at a certain radius.

Using Ẽ = −∇⊥Φ̃, in local approximation we obtain

Γα = − 2c
eαB

∑
m,s

kϑ,s
γs

ω
Wm, (3.22)

where

Wm = c2

8πv2
A
|Em|2, (3.23)

is the energy density of the mth harmonic of a mode (which includes both electric and
magnetic perturbations, with |B̃|2 = (c2/v2

A)|Ẽ|2). Because Γα arises due to the f × b drift,
as described by (3.7), (3.22) reads

fb = fϑbϕ − fϕbϑ = −
∑

m

kϑ,s
2γs

ω
Wm. (3.24)

Now we proceed to calculations with G = Mαv‖ in (3.18). Using ∂v‖/∂E = 1/(Mαv‖)
and (3.8), we obtain

∂

∂t

(
Mαnα〈v‖〉

) =
∑
m,s

∫
d3 v̄

(
− 1
vres

+ 1
r
∂

∂r
r

kϑ,svres

ωωBα

)
Dm,sΠ̂F, (3.25)

where vres = ω/k‖s, 〈v‖〉 = ∫
d3vv‖F/(Mαnα) the average velocity of fast ions. Taking into

account (3.17a,b) we can write

∂

∂t

(
Mαnα〈v‖〉

) = f (1)‖ + f (2)‖ , (3.26)

where

f (1)‖ = −
∑
m,s

k‖s
2γs

ω
Wm, (3.27)

f (2)‖ =
∑
m,s

πe2ms

8ωBαω

1
r
∂

∂r
vres

[∣∣∣sΦ ′
m − m

r
Φm

∣∣∣2 ∫ d3 vv2
Dδ(Ωs)Π̂F

]
. (3.28)

The first term in (3.26) corresponds to what is expected from analogy with quantum
mechanics, as described by (3.1) with m replaced by ms. To see the nature of the second
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term let us combine (3.28) and (3.20). This yields

f (2)‖ = −
∑

s

Mα

1
r
∂

∂r
rvresΓα,s. (3.29)

We observe that f (2)‖ is associated with the transverse particle flux generated due to
the interaction of fast ions and the mode. It describes the radial redistribution of the
momentum of resonant particles by the destabilized mode, not the momentum exchange
between the mode and particles:

∫ a
0 dr rf (2)‖ = 0. Due to (3.19), (3.29) can be written in the

form

f (2)‖ =
∑

s

Mαvres
∂nαs

∂t
=
∑

s

Mαvres

∫
d3 vQ(F). (3.30)

Because
∫

d3 xf (2)‖ = 0, (3.30) implies that the redistribution of the momentum of
resonance particles is just a consequence of quasilinear relaxation of distribution function.
When the instability is driven by the spatial gradient of fast ions, the QL relaxation process
decreases nα at small radii and increases nα at larger radii (for n′

α < 0). It is clear that the
presence of sources and sinks of energetic ions is required to provide a steady state value
of
∫

d3 vQ(F), in which case ∂nα/∂t = 0 but
∫

d3 vQ(F) �= ∂nα/∂t (the terms describing
sources and sinks of fast ions should be added to (3.8) to make ∂nα/∂t = 0 in the steady
state).

Thus, the modes can transport the local momentum of fast ions even in the absence of
mismatch of the regions where damping and drive dominate. We refer to this effect as
mode induced redistribution (MIR). The MIR is associated with f (2)‖ , whereas the SC is
due to fb and f (1)‖ . Below we will see the role of poloidal and toroidal components of the
forces.

Knowing f‖ we can write

fϑbϑ + fϕbϕ = −
∑
m,s

k‖s
2γs

ω
Wm + f (2)‖ . (3.31)

This equation should be combined with (3.24), which does not include effects of MIR and,
therefore, contains components of f (1). We find

fϑ = f (1)ϑ + f (2)‖ bϑ, f (1)ϑ = −
∑
m,s

kϑ,s
2γs

ω
Wm, (3.32a,b)

fϕ = f (1)ϕ + f (2)‖ bϕ, f (1)ϕ = −
∑
m,s

kϕ
2γs

ω
Wm, f (2)b = 0, (3.33a–c)

where terms of the order b2
ϑ/b

2
ϕ are neglected.

Equations (3.24), (3.26), (3.32a,b) and (3.33a–c) prove that relation (3.1) is in agreement
with the QL theory (the toroidal components of (3.1) coincides with f (1)ϕ , but m should be
replaced with ms in the binormal, poloidal and longitudinal components of (3.1)). On the
other hand, the f (1) coincides also with the force obtained within Hamiltonian approach,
see Appendix A. It is clear, however, that the MIR force, f (2), cannot be described by the
single-particle approaches of § 3.1 and Appendix A.

In order to see the relative roles of the mode-momentum exchange and the momentum
redistribution we have to estimate the ratio f (2)‖ /f (1)‖ . Assuming that the mode width is
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much less than characteristic lengths of inhomogeneity of the plasma and fast ions (L and
Lα) we obtain

f (2)‖ ∼
∑
m,s

2γskϑ,sWm

ωBαk‖sΔw
, (3.34)

where Δw = (d ln W/dr)−1 is a characteristic width of the mode. On the other hand, the
drift term in Π̂F, with Π̂ given by (3.15), exceeds the term ∂F/∂E with F ∝ E−3/2 (which
is stabilizing, ∂F/∂E < 0) when

ζ ≡ kϑ,svres

3k‖sωBαLα
> 1, (3.35)

where (Lα)−1 = d ln nα/dr. It follows from (3.34), (3.35) that the ratio f (2)‖ /f (1)‖ well
exceeds unity, being a product of ζ and a large multiplier,

f (2)‖
f (1)‖

∼ ζ
3Lα
Δw

� 1. (3.36)

Equations (3.8) and (3.18) with G = E reduce to

∂

∂t
(Mαnα〈E〉) = P(1) + P(2), (3.37)

where P(1) represents the fast-ion power sink because of the instability,

P(1) = −
∑

m

2γαWm, (3.38)

and P(2) is the redistributed power

P(2) = 1
r
∂

∂r

∑
m,s

∫
d3 vEDm,sΠ̂F. (3.39)

When G = E‖, we obtain

P(1)‖ = P(1) =
∑

s

f (1)‖,s vres, (3.40)

which is a consequence of the fact that the resonance mode–particle interaction does not
affect particle transverse velocities distribution, and

P(2)‖ =
∑

s

Mαv
2
res

2
∂nαs

∂t
, (3.41)

which is similar to (3.30).
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3.4. Momentum transfer to gap modes
3.4.1. Simple gap mode

We restrict first our analysis to a gap mode consisting of two harmonics with the poloidal
mode numbers m and m + μ but with the same n, where μ = ±1 for TAE modes, μ = ±2
for EAE modes, etc.

We begin with a consideration of the forces arising due to resonance mode–particle
interaction at the r∗ radius defined by k‖1(r∗)+ k‖2(r∗) = 0, where nq∗ = m + μ/2 and
k‖1(r∗)q∗R = −k‖2(r∗)q∗R = −μ/2. The subscripts 1 and 2 label magnitudes relevant to
the m and m + μ harmonics, respectively. The resonance numbers (s = ±1) should satisfy
equation

s1 + s2 = 0, (3.42)

in order to provide k‖1,s1(r∗)+ k‖2,s2(r∗) = 0. Then we obtain from (3.27) that f (1)‖∗ = 0,
provided that the difference between Wm1(r∗) and Wm2(r∗) is negligible. On the other
hand, because m + μ/2 = nq∗, the condition k‖1(r∗)+ k‖2(r∗) = 0 leads to km̄,∗ = 0,
where km̄,∗ = (m̄ι∗ − n)/R is the longitudinal wavenumber with m̄ = 0.5(m1 + m2) =
0.5(ms1 + ms2) at r = r∗. Taking k‖ with the poloidal mode number m̄ we obtain from
(3.1) the longitudinal force f‖∗ = 0. The poloidal component of (3.1) with m̄ is

fϑ∗ = − m̄
r∗

2γα
ω

W. (3.43)

This corresponds to (3.32a,b) for f (1)ϑ∗ . Thus, (3.1) with kϑ = m̄/r correctly describes the
rate of momentum exchange between the gap modes and fast ions.

The presence of the magnetic shear can strongly break the antisymmetry of the
wavenumbers k‖1,s1 and k‖2,s2 at r �= r∗, making k‖s of a gap mode not vanishing and
considerable. To see this we approximate the mode frequency by ω = |k‖∗|vA∗. Then the
resonance condition (ω = k‖svres) for these harmonics at the radius r = r∗ +�r, where
ι = ι∗ +�ι, can be written as follows:[

sgn k‖1∗ + 2s1

μ
+ 2(m + s1)

μ

�ι

ι∗

]
v(m)res = vA∗, (3.44)

[
sgn k‖2∗ + 2s2

μ
+ 2(m + μ+ s2)

μ

�ι

ι∗

]
v(m+μ)

res = vA∗, (3.45)

where sgn k‖1∗ = −sgn k‖2∗ = −1, s1 and s2 satisfy (3.42). We observe that while v(m)res and
v(m+μ)

res have different signs at r∗, the signs of the terms proportional to �ι are the same for
both harmonics. This implies that |vres| of one of the harmonics grows, whereas |vres| of
another one decreases as r moves away from r∗. For instance, taking s1 = 1 we obtain for
TAE modes,

v(m)res = vA∗
1 + 2(m + 1)�ι/ι∗

, (3.46)

v(m+1)
res = − vA∗

1 − 2m�ι/ι∗
. (3.47)

In particular, at the radius rm where q = m/n (3.46), (3.47) yield

v(m)res = vA∗
1 + (m + 1)/m

, (3.48)

v(m+1)
res = −∞. (3.49)
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Here we took into account that (ιm − ι∗)/ι∗ = 1/(2m), with ιm = ι(rm).
Because of this, |vres| can exceed the maximum velocity of the energetic ions, vα, at

certain radii within the mode width, leading to k‖ determined by another harmonic only,
which decreases the growth rate but may increase of f‖. In contrast, when |vres∗| < vA,
the increase of the resonance velocity can destabilize the mode. Presumably, this was the
case in the Large Helical Device stellarator where odd and even TAEs were observed
(Kolesnichenko et al. 2004).

Below we exclude from the consideration these particular cases to see effects of the
shear only and employ (3.27) with two harmonics equally contributing to γs and with
Wm = Wm+μ. Then the summation in (3.27) over m reduces to calculation of

kΣ‖s ≡
∑

k‖s = ω

(
1

v
(m)
res

+ 1

v
(m+μ)
res

)
. (3.50)

Combining (3.44) and (3.45) we obtain

kΣ‖s(ι)

|k‖1∗| = 4nq∗
μ

�ι

ι∗
(3.51)

and

kΣ‖s = 2n
R
�ι

ι∗
,

kΣ‖s

kΣϕ
= −�ι

ι∗
, (3.52a,b)

where kΣϕ = 2kϕ1, |�ι|/ι∗ � 1/(2|m|). The force f (1) is maximum at the radius where the
product kΣ‖sγsW is largest.

Note that for narrow modes the ratio �ι/ι∗ can be approximated by �ι/ι∗ = −ŝ�r/r∗,
where ŝ is the magnetic shear.

3.4.2. Multiple-harmonic gap mode
Now we proceed to analysis for modes consisting of more than two harmonics, such as

global TAE. Because the mode amplitudes of the pairs of coupled harmonics are localized
around certain radii, each pair can be treated independently. In TAEs harmonics with m
and m + 1 are coupled in the region between the qm = m/n and qm+1 = (m + 1)/n rational
flux surfaces; the width of this region is �q = 1/n. Therefore, when the mode occupies
a certain region (�q)mode, the number of coupled harmonics can be n(�q)mode + 1. Using
(3.52a,b), we can evaluate the longitudinal force f (1) produced by one pair of harmonics
by (3.27) with k‖s ∼ 1/(qR), the total force produced by the mode with n � 1 has kmode

‖ ∼
n/(qR), with some average q. This overestimates kmode

‖ and, hence, f (1)mode, when only a few
harmonics have large local growth rate.

The wavenumber k‖s is not the only factor that determines f (1): it is of importance where
maxima of |Jm,s|2 are located.

4. Plasma rotation and generation of the electric field

To study the rotation caused by destabilized eigenmodes we proceed from the equation
obtained by summing equations of motion for the electrons, bulk plasma ions and energetic
ions. As in the works of Kolesnichenko et al. (2010a,b), we neglect several terms. First, the
electron and fast-ion inertial terms, whose contribution is much less than that of the bulk
plasma ions. Second, the pressure-gradient terms, which implies that we are considering
effects superposed on the neoclassical transport. Third, the centrifugal term which is
beyond applicability of our equations, being proportional to Ẽ4.
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We consider first the binormal component of this equation which contains the binormal
force acting on fast ions due to their emission of the momentum: as shown in § 3, the
binormal force leads to the transverse fast ions flux across, i.e. produces the radial electric
current, jαr, which generates the radial electric field, Er, and can affect plasma rotation. In
the cylindrical approximation we can write

Miniu̇ib =
∑
σ=e,i,α

f (1)σb + f vis
ib − 1

c
Bjr. (4.1)

The following notations are used: ui = V̄ i is the bulk plasma ion hydrodynamic velocity
(V i) averaged over flux surface, a bar over letters denotes flux surface averaging (below
can be omitted), f (1)σ is the force acting on the σ species due to emission/absorption of
the momentum, f vis

i is associated with the ion viscosity or other mechanisms braking the
rotation (discussed at the end of this section), a dot over letters denotes a time derivative,
j is the overall current density (j = ∑

σ=α,e,i jσ ) induced by destabilized modes.
The radial current on the right-hand side of this equation can be expressed through a

time derivative of the radial electric field, as follows from the curl-free Maxwell equation,

Ėr + 4πjr = 0. (4.2)

On the other hand,

u̇ib = −cĖr/B (4.3)

on the left-hand side, which is obtained from the radial component of the equation of
motion for the ion component in the assumption of small u̇ir and ∂(∇rpi)∂t. Due to these
last two relations, (4.1) takes the form

Ėr = − B
cMini

( ∑
σ=e,i,α

f (1)σb + f vis
ib

)
− v2

A

c2
Ėr. (4.4)

We observe that the last term on the right-hand side is much less than the left-hand side
term. The reason is that the bulk plasma current arising in response to the fast ion current
almost compensates the latter.

The physics of this phenomenon is the following: the resonant interaction of the mode
and fast ions leads to the radial flux described by, for example, (3.7) which generates the
radial electric field and concomitant radial current of the bulk plasma particles. We found
that this current is almost equal to the fast-ion current. In other words, the overall current
density, jr = ∑

σ=e,i,α jσ r, is small, the term Bjr/c in (4.1) is less than the inertia term on
the left-hand side of this equation by a factor of v2

A/c
2.

Therefore, below we neglect the last term in (4.4).
Note that in the absence of SC, i.e. when the region driving the instability coincides

with the damping region,
∑

σ f (1)σb = 0 (the diffusion of resonance particles is intrinsically
ambipolar, see e.g. Kolesnichenko et al. (2010b)) and (4.4) yields Er = 0.

The cylindrical approximation adopted in (4.1) underestimates the role of inertia.
Coupling of the poloidal motion to the toroidal one in axisymmetric toroidal
configurations enlarges the plasma inertia in the poloidal rotation by a factor K ≈ 1 + 2q2,
see Helander & Sigmar (2005) and Appendix B. Therefore, equations that determine
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poloidal and toroidal velocities are (the terms proportional to jr are neglected)

KMiniu̇iϑ =
∑
σ=e,i,α

f w
σϑ + f vis

iϑ , (4.5)

Miniu̇iϕ =
∑
σ=e,i,α

f w
σϕ + f vis

iϕ , (4.6)

where f w = f (1) + f (2).
The electric field is determined by (4.2) which can be written as

cĖr + u̇iϑ B̄ϕ − u̇iϕB̄ϑ = 0. (4.7)

Assuming that Er = 0 before the instability (we consider effects superposed on the
neoclassical magnitudes) we can remove dots over letters.

The E × B drift leads to velocities uE
ϑ and uE

ϕ determined by

uE
ϑ = −c

ErBϕ
B2

, (4.8)

uE
ϕ = c

ErBϑ
B2

, (4.9)

so that the poloidal flow dominates. However, toroidicity and trapped particles decrease
the poloidal velocity, whereas the toroidal force, fϕ , can increase the toroidal velocity.
Below we consider this issue.

It follows from (4.7) that the radial electric field is associated with both poloidal rotation
and toroidal rotation. The poloidal and toroidal motions are decoupled only in the limit
cases S � 1 and S � 1, where

S = uϕBϑ
uϑBϕ

= Ωϕ

qΩϑ

, (4.10)

and Ωϑ = vϑ/r, Ωϕ = vϕ/R the rotation frequencies. Note that non-averaged motion can
be completely decoupled only in the toroidal direction, see Appendix B and Helander &
Sigmar (2005). When S � 1, (4.7) determines the poloidal flow which coincides with the
E × B flow,

uϑ = −c
Er

B
≈ uE

ϑ . (4.11)

However, uϕ � uE
ϕ when S � 1:

uϕ = c
Er

Bϑ
= uE

ϕ

Θ2
, (4.12)

where Θ = Bϑ/Bϕ � 1.
For S ∼ 1, although the poloidal and toroidal motion equally contribute to (4.7),

toroidal velocity dominates, uϕ/uϑ ∼ Θ−1 � 1, and the ratio of angular velocities is
Ωϕ/Ωϑ ∼ q.

Note that in neoclassical theory uneo
ϑ /vi,th ∼ ρi/L (vi,th the ion thermal velocity, ρi the

ion Larmor radius, L a characteristic inhomogeneity length), therefore normally S � 1
but

uneo
ϕ = c

Bϑ

(
Er − 1

nσeσ

dpσ
dr

)
. (4.13)

Thus, we have to evaluate S , which requires estimates for uϕ and uϑ .
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In the unstable region we can write

uiϑ = 1
MiniK

f w
αϑ(�t)ϑ, (4.14)

uiϕ = 1
Mini

f w
αϕ(�t)ϕ, (4.15)

where (�t)ϕ � τ vis
ϕ and (�t)ϑ � τ vis

ϑ are characteristic times. At the initial stage
of instability, i.e. when the viscosity and other braking mechanisms are negligible,
(�t)ϕ = (�t)ϑ . Then for f = f (1) we obtain S ≡ S0 and (Ωϕ/Ωϑ)0 with

S0 = KΘ
f (1)αϕ

f (1)αϑ

= (1 + 2q2)Θ2 nq
m
,

(
Ωϕ

Ωϑ

)
0
= qS0. (4.16a,b)

We conclude that S0 ∼ ε2 and (Ωϕ/Ωϑ)0 ∼ qε2 for m ∼ nq. In this case the poloidal
velocity represents the E × B drift and the poloidal frequency dominates when qε2 � 1.
In the presence of the MIR force, such that f (2)ϕ ∼ f (1)ϑ , S0 ∼ KΘ ∼ 1 for q ∼ 1.5 and
ε ∼ 0.2.

In the later stage of instability, rotation braking becomes important. The braking
mechanisms have been extensively studied (see, e.g. the overview Ida & Rice (2014)).
The poloidal rotation braking may be determined by neoclassical or anomalous processes.
In both cases, the damping occurs via friction between trapped and passing ions. As a
result, the poloidal velocity evolution after a change in the driving force is non-exponential
because of the complicated rearrangement of the pitch-angle distribution (Morris, Haines
& Hastie 1996). However, it seems to be reasonably approximated by an exponent with
a characteristic time ∼ τii (Morris et al. 1996; Hinton & Rosenbluth 1999). For the
toroidal rotation in axisymmetric configurations, the braking via friction between trapped
and passing particles is impossible, whereas the neoclassical viscous braking is weak.
Therefore, the toroidal braking results from turbulence and/or symmetry breaking of the
magnetic field (ripple, resonant magnetic perturbations, etc.). The turbulent momentum
transport is characterized by the Prandtl number (the ratio of ion thermal diffusivity to the
perpendicular viscosity coefficient). In experiments, it was found to be less than unity in
JET (Weisen et al. 2012) and larger than unity in TFTR (Scott et al. 1990) (experiments
on other devices are mentioned in Ida & Rice (2014)), but it seems to be ∼ 1. The toroidal
flow damping due to field ripple was observed in experiments with artificially enhanced
ripple (e.g. in JET de Vries et al. (2010), see also another in Ida & Rice (2014)). The
magnetic braking due to resonant magnetic perturbations may be strong but we will not
consider this case here.

We conclude that in the steady state we can use (4.14) and (4.15) with (�t)ϑ ∼ τii
and (�t)ϕ ∼ τE(�r)2/a2, where τE is the overall energy confinement time, and �r is a
characteristic radial extent of the region where the momentum transport takes place. Then
the toroidal velocity exceeds the poloidal one when

f w
αϕ

f w
αϑ

τE

τii

(
�r
a

)2

> 1, (4.17)

in which case the contribution of the E × B drift to toroidal velocity is negligible. It
is clear that the estimate (4.17) is true when the unstable mode exists for (�t)mode >
max[(�t)ϑ, (�t)φ].
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5. Application to ITER

In order to see whether effects of the SC and MIR can be considerable, we have
to make numerical estimates. We selected a global TAE in the ITER 15 MA baseline
scenario, which is located in the region 0.6 � r/a � 0.8 and has n = 20 (Pinches et al.
2015). This mode is destabilized by alpha particles and NBI deuterons with the local
growth rate γα/ω ∼ 10−2. Relevant parameters are: R = 6.2 m; a = 2 m; B = 5.3 T;
plasma elongation κ = 1.7; plasma volume Vp = 830 m3; NBI power Pnbi = 33 MW;
vα = 1.3 × 107 m s−1; vD

beam = 107 m s−1; vA = 7 × 106 m s−1; q ∼ 1.5 at r/a ∼ 0.7
(Pinches et al. 2015). The mode amplitudes are not known. We take B̃/B = 10−4, which is
realistic.

We infer from this the following. The poloidal mode numbers vary from m ∼ 20 to
m ∼ 30. The toroidal force f (1)α,ϕ is

f (1)α,ϕ = 2
n
R
γα

ω

(
B̃
B

)2
B2

8π
= 7.2 × 10−3 N

m3
. (5.1)

Its ratio to the volume averaged NBI force, 〈 f NBI
ϕ 〉 = χbeamPnbi/(Vpvbeam) with χbeam =

vϕ/vbeam, is
f (1)α,ϕ

〈 f NBI
ϕ 〉 = n

4π

γα

ω

B̃2Vpvbeam

χbeamPnbiR
= 3.6. (5.2)

It follows from here that the toroidal torque produced by SC can exceed that of NBI,
especially at the plasma periphery, r/a ∼ 0.7, where f NBI

ϕ < 〈 f NBI
ϕ 〉. Note that other

mode-induced forces, except for f (1)‖ , are even larger than f NBI
ϕ :

f (1)ϑ

f (1)ϕ

= ms

εn
∼ 5,

f (1)‖
f (1)ϕ

= 1
2εnq

= 1
60
,

f (2)‖
f (1)ϕ

∼ 4. (5.3a–c)

Knowing forces and assuming that (�t)ϕ and (�t)ϑ are less than the mode duration, we
can write the following estimates for the generated electric field and plasma rotation in the
steady state due to SC:

|Er| ∼ B
cMiniK

| f (1)ϑ |(�t)ϑ, |uϕ| ∼ 1
Mini

| f (1)ϕ |(�t)ϕ, (5.4a,b)

where (�t)ϑ = τii and (�t)ϕ = τE(�r)2/a2 with �r a characteristic distance between the
regions of drive and damping. We take τE = 3 s (Green et al. 2003), �r = 0.5(�r)mode =
0.1a. Then in the region of mode location (�t)ϑ ∼ 0.01 s and (�t)ϕ ∼ 0.03 s, which leads
to Er ∼ 1 kV m−1 and uϕ = 500m s−1.

For comparison, we calculate the toroidal velocity in JET. According to figure 1,
Ωϕ = (1–2)× 104 rad s−1 at R ∼ 3.4 m. Then the flux surface averaged toroidal velocity
can be evaluated as uϕ = (3–6)× 104 m s−1. This well exceeds the calculated velocity in
ITER. However, in reality the mode amplitude may exceed B̃/B = 10−4. For instance, for
B̃/B = 10−3, we obtain that the rotation velocity in ITER approximately that in JET and
Er ∼ 100 kVm−1.

We remind that the generated electric field and the rotation velocity as well have
opposite directions in the driving region and the damping region during SC. This means
that they produce sheared rotation within the mode width.
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6. Summary

The results of this work can be summarized as follows.
The change of momentum of energetic ions because of MHD modes destabilized by

these ions and the concomitant sheared plasma rotation in tokamaks are studied. Both a
quasilinear theory and a Hamiltonian approach are used to consider the mode–particle
momentum exchange. The plasma rotation is studied by employing a flux surface equation
obtained by summing up plasma fluid equations of motion for different particle species,
where the influence of toroidicity on the ion inertia term is taken into account.

In the framework of quasilinear theory, the analysis is carried out for Alfvénic modes
destabilized due to spatial inhomogeneity of the energetic ions. The moments of a
two-dimensional QL operator are calculated. This enabled us to formulate MHD-like
equations for the particle density, momentum and power density, which contain the
transverse flux of fast ions, the forces (in particular, the binormal force fb and the
longitudinal forces f (1)‖ , f (2)‖ ) acting on fast ions, and the power absorbed and radially
redistributed due to the mode. As a result, two mechanisms of the influence of destabilized
modes on the momentum of resonance particles are revealed. First, emission and
absorption of momentum (resulting in the forces fb, f (1)‖ ), which can lead to SC of the
momentum of fast ions exciting the instability. Second, redistribution of the momentum
of fast ions (resulting in the force f (2)‖ ), which is a consequence of finite mode width – a
phenomenon called MIR.

The same forces (except for the MIR force) are obtained by applying a Hamiltonian
approach. It is found that these forces persist even when the wave frequency is not small
compared with the ion gyrofrequency.

It is concluded that the binormal force arising due to wave emission (fb) leads to the
transverse flux of fast ions and the concomitant radial electric current, j(α)r , during SC, i.e.
when the region driving the instability does not coincide with the damping region. The
current j(α)r is compensated to a large extent by the arising plasma current. However, the
resulting current is still sufficiently large to generate a considerable radial electric field
according to equation Ėr + 4πjr = 0.

In contrast, the MIR force, f (2)‖ , is not associated with the radial electric field; it can
transport the local momentum of fast ions even in the absence of mismatch of the regions
where damping and drive dominate.

Both fb and f‖ affect toroidal rotation. However, when k‖/k � 1 (typically, the case of
TAEs), f (1)‖ is small. For this reason, the force fϕ responsible for the toroidal rotation is
mainly determined by the toroidal component of the binormal force ( f b)ϕ and f (2)‖ . It is
shown that the binormal momentum is rapidly, on the time scale of approximately particle
transit time, redistributed between fast ions, thermal ions and electrons, so that all the
species are accelerated almost simultaneously. In contrast, the longitudinal momentum
exchange between species takes place on much longer time scales.

Because f (1)ϑ � f (1)ϕ , poloidal rotation dominates during the initial stage of instability
being determined by the E × B drift. However, because of braking mechanisms (such as
viscosity, magnetic ripple, collisions between passing and trapped ions), in the later stage
it can be suppressed; then the toroidal velocity exceeds the poloidal one, and its magnitude
well exceeds the E × B drift velocity.

Note that the mode amplitude is a free parameter in our theory. Due to this, our theory
is applicable to experiments with any mode amplitudes, regardless of the mechanism
which limits it. Various mechanisms are known that can determine mode amplitudes, see
e.g. review papers (Gorelenkov, Pinches & Toi 2014; Chen & Zonca 2016; Todo 2019).
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Our estimates for ITER where a global TAE with n = 20 and m = 20–30 is predicted
(Pinches et al. 2015) show that the mode-induced forces can be significant, being even
larger than the toroidal force caused by NBI. This result may produce an illusion that the
expected influence of the mode-induced forces on plasma rotation can be unrealistically
large, and a question then arises whether the obtained relations for these forces are
correct. In connection with this, we remind that the forces arising due to emission of the
momentum are evaluated in three independent ways: first, by using quantum mechanics
analogy; second, by quasilinear theory; and third, by Hamiltonian formalism. All these
three techniques lead to the same result: first, they give exactly the same relation for the
toroidal force; second the presence of m in the poloidal and other components of relation
(3.1) instead of ms = m ± 1 predicted by (3.24), (3.26), (3.32a,b) and (A5), (A6) is not
important for estimates because m � 1. The MIR force is found only in a quasilinear
theory, but it has a clear physical meaning and thus it should be correct, too. In spite of
large values of these forces, their overall effect can be moderate or even small. The matter
is that the forces vary radially and can have opposite directions in the layers located very
close to each other, in which case they tend to compensate each other because of viscosity.
In seems, this is the situation in ITER with the MIR force produced by a multicomponent
TAE. On the other hand, effects of the SC forces strongly depend on the radial location of
driving and damping regions, they are weak when these regions considerably overlap.
Therefore, although our estimates indicate strong forces produced by the destabilized
TAE mode in ITER, a detailed information on the mode features (driving and damping
mechanisms, the mode structure and amplitude, etc.) and plasma viscosity is required for
a reliable prediction of sheared rotation caused by of SC and MIR in particular scenarios
of ITER. This issue deserves further study.
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Appendix A. Momentum exchange of particles with an eigenmode: Hamiltonian
approach

The aim of this appendix is to demonstrate that the relationships between energy and
momentum transferred from a particle to a mode, which were obtained in § 3, can be
recovered from analysis of motion of separate particles.

We proceed from the particle Hamiltonian in action-angle coordinate system (Kaufman
1972),

H(Jξ , Jθ , Jφ, ξ, θ, φ, t) = H0(Jξ , Jθ , Jφ)+ H̃(Jξ , Jθ , Jφ, ξ, θ, φ, t), (A1)

where ξ , θ and φ are the canonical gyro-, poloidal and toroidal angles, Jθ and Jφ are the
respective actions, H0 = E and H̃ describe the motion in the absence of the wave and the
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wave effect, respectively. For passing particles, the canonical poloidal and toroidal angles
do not differ much from the magnetic angles (θ ≈ ϑ , φ ≈ ϕ); Jφ is exactly the canonical
angular momentum in the φ-direction, and Jθ is the canonical angular momentum up to
small corrections caused by toroidicity.

Expanding the wave contribution into a Fourier series, we write

H̃ =
∑

j

H̃j exp(−iωt + ijθ − inφ + ilξ), (A2)

where we have neglected the dependence of H̃j on action variables. The spectrum of
j-values for which the coefficients H̃j are significant depends on the mode and resonance
type; for example, the values j = m ± 1 are the largest for the mode with the poloidal
number m interacting with a particle via the sideband Cherenkov resonance. We will
consider the effect of a single resonance

ω = jωθ − nωφ + lωξ, (A3)

where ωθ and ωφ are the frequencies of the particle motion in the θ - and φ-directions,
respectively; ωξ is the bounce-averaged cyclotron frequency. Then we can disregard all
harmonics except one in (A2). One can see that

Ḣ0

ω
= J̇φ

−n
= J̇θ

j
= J̇ξ

l
= −iHj exp(−iωt + ijθ − inφ + ilξ). (A4)

Hence, the forces acting on the particle and the power transferred to the wave satisfy the
relationship

P̂α
−ω = f̂ϕ

kϕ
= f̂ϑ

kϑ,j
(A5)

where kϕ = −n/R, kϑ,j = j/r and the ‘hats’ indicate that the quantities are taken for a
single ion (rather than for the fluid, as in the main text of the paper). Now we can find f̂‖.
To main order in ε, (A5) yields

f̂‖=f̂ϕ + ε

q
f̂ϑ = −k‖,j

ω
P̂α (A6)

with k‖,j = (jι− n)/R. These relationships agree with (3.27), (3.32a,b) and (3.33a–c).
Thus, the proportionality between the forces acting on the fast ions from the wave
and the transferred energy, which was obtained above, first, from quantum-mechanics
considerations and, second, from quasilinear theory, follows also from equations of motion
of each single particle.

Now let us find ṙ and v̇‖. Using equations

Jφ = −e
c
ψp + Mv‖R, (A7)

Jθ ≈ e
c
ψt, (A8)
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where ψt = B0r2/2 and ψp = ψt/q (here we neglect the magnetic shear) are the poloidal
and toroidal magnetic fluxes, respectively, and (A4)–(A6), we obtain

ṙ = f̂ϑ
MωB

= Rkϑ,s
MωBω

P̂α, (A9)

v̇‖= 1
MR

(
J̇φ + 1

q
J̇θ

)
= f̂‖

M
= k‖,s

Mω
P̂α. (A10)

One can see that after summation over particles these equations recover the ratio of the
radial particle flux to the particle energy change, which follows from (3.22).

Appendix B. Derivation of equations for plasma rotation in the absence of collisions

In this appendix we derive equations describing the plasma reaction to external forces
on short time intervals (when collisional effects are negligible), which we use in § 4. The
derivation is based on the approach described in Hirshman (1978), Rosenbluth & Hinton
(1996) and Helander & Sigmar (2005).

We are interested in the processes with characteristic times much longer than the particle
transit time but much shorter than the collisional transport time. We therefore assume that
all plasma parameters except for the flow velocities and the electric field are constant in
time (∂/∂t = 0), the plasma flow of each plasma species σ is divergence-free,

∇ · (nσV σ ) = 0, (B1)

and the radial flow is negligible. Then the general form of the plasma flow of each species
is (Helander & Sigmar 2005)

V σ = ωσ (ψp)Reϕ + ζσ (ψp)B, (B2)

where

ωσ = −c
(
∂Φ

∂ψp
+ 1

eσnσ

∂pσ
∂ψp

)
, (B3)

ψp is the poloidal magnetic flux, and ζσ (ψp) is arbitrary. It follows from (B2) that the
poloidal rotation velocity is determined by ζσ ; the binormal rotation velocity, by ωσ ; the
toroidal one, by both. Differentiating (B3) with respect to time, we see that the binormal
acceleration is the same for all the species, being associated with a corresponding change
of the radial electric field:

∂ωσ

∂t
= −c

∂Φ ′

∂t
(B4)

with Φ ′ = ∂Φ/∂ψp.
Following Hirshman (1978), Rosenbluth & Hinton (1996) and Helander & Sigmar

(2005), we write

Mσnσ
∂

∂t

〈
BVσ‖

〉 = 〈
Bfσ‖

〉
, (B5)

Mσnσ
∂

∂t

〈
RVσϕ

〉 = 1
c

〈
jσ · ∇ψp

〉+ 〈
Rfσϕ

〉
, (B6)

where

〈(. . . )〉 =
∮

dϑ
B · ∇ϑ (. . . )

/∮
dϑ

B · ∇ϑ (B7)
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is flux-surface averaging. Our aim is to derive equations for the evolution of ωσ and ζσ in
terms of external forces applied to plasma species.

Averaging the longitudinal and toroidal projections of (B2) in an appropriate manner,
we express ωσ and ζσ in terms of quantities entering (B5) and (B6),

ζσ = 1〈
B2

p

〉
K

(〈
BVσ‖

〉− I2〈
R2
〉 〈RVσϕ

〉)
, (B8)

ωσ =
〈
B2
〉

〈
B2

p

〉
K
〈
R2
〉
(〈

RVσϕ
〉− I〈

B2
〉 〈BVσ‖

〉)
, (B9)

where I = I(ψp) = BϕR, K = 1 + 2q̂2,

q̂2 = I2

2
〈
B2

p

〉
〈

1
R2

− 1〈
R2
〉
〉
, (B10)

q̂2 ≈ q2 in a circular high-aspect-ratio tokamak.
From now on, we take f σ ≈ f w

σ , disregarding all collisional processes. Combining (B5)
and (B6) with (B8) and (B9), we obtain

Mσnσ
∂ωσ

∂t
=

〈
B2
〉

〈
B2

p

〉
K
〈
R2
〉 (1

c

〈
jσ · ∇ψp

〉+ 〈Rfσω〉
)
, (B11)

Mσnσ
∂ζσ

∂t
= 1〈

B2
p

〉
K

(
− I

c
〈
R2
〉 〈 jσ · ∇ψp

〉+ 〈Bfσu〉
)
, (B12)

where

fσω = fσϕ − I
R
〈
B2
〉Bfσ‖, (B13)

fσu = fσ‖ − I
B
〈
R2
〉Rfσϕ. (B14)

In a circular high-aspect-ratio tokamak

fσω ≈ −fσu ≈ −ε
q

fσb + 2ε cosϑ fσ‖. (B15)

Thus, approximately the same force projections determine the evolution of ωσ and ζσ . As
discussed in Helander & Sigmar (2005), the physical reason of the factor K appearing in
(B11) and (B12) is that according to (B2), it is impossible to rotate plasma in the poloidal
or binormal direction without involving toroidal rotation; the minimum possible energy of
the toroidal motion is 2q̂2 times larger than the energy of the poloidal motion.
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Next, we sum up (B11) for all species and use (B4) and

∂Φ ′

∂t
= 4π〈

B2
pR2
〉 ∑

σ

〈
jσ · ∇ψp

〉
. (B16)

We arrive at

Mini
∂ωi

∂t
=

〈
B2
〉

(1 + λ) 〈B2
p

〉
K
〈
R2
〉 ∑

σ

〈Rfσω〉 (B17)

where λ ≈ v2
A/(Kc2) � 1 results from the contribution of the net current, and we have

assumed that only the thermal ions contribute to the mass density.
Comparing (B11) and (B17), we find the radial currents,

1
c

〈
jσ · ∇ψp

〉 = − 〈Rfσω〉 + Mσnσ
(1 + λ)Mini

〈RfΣω〉 , (B18)

1
c

∑
σ

〈
jσ · ∇ψp

〉 = −λ 〈RfΣω〉 , (B19)

where f Σ = ∑
σ f σ . One can show that the radial currents of individual species almost

cancel (the net current is approximately λ times the characteristic current of a single
species). These currents redistribute the binormal force between species to provide their
simultaneous acceleration according to (B4). Using (B11)–(B14) and (B18), we find that
both toroidal and poloidal accelerations of all species are the same for all species when
the longitudinal forces are absent,

∂

∂t

〈
RVσϕ

〉 = I
Mσnσ

〈
B2
〉 〈Bfσ‖

〉+ 1
Mini

〈RfΣω〉 , (B20)

∂ζσ

∂t
= 1

Mσnσ
〈
B2
〉 〈Bfσ‖

〉− I
Mini

〈
B2

p

〉
K
〈
R2
〉 〈RfΣω〉 . (B21)

We conclude that the momentum provided by binormal and longitudinal forces are
redistributed between plasma species in different manner. The binormal momentum
is rapidly redistributed between the species by radial currents so that all species are
accelerated simultaneously. The characteristic time of this redistribution is approximately
the particle transit time (the time of relaxation of the velocity distribution to the form (B2)
Helander & Sigmar (2005)). In contrast to this, there is no equally fast mechanism for the
longitudinal momentum exchange between species. Therefore, this exchange takes place
on much longer time scales determined by collisional or anomalous processes (friction
between species, collisional stress, etc.).

Finally, averaging Vϑ for high-aspect-ratio tokamak with circular cross-section, using
(B2), (B13), (B4) and (B21) and keeping only leading-order terms, we obtain

∂uϑ
∂t

= c
〈B〉

∂Er

∂t
= fΣϑ

MiniK
. (B22)
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