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abstract

Mutations in the BRCA1 and BRCA2 genes confer very high risk of breast cancer (BC), but
only account for about 25% of the observed familial clustering of BC. Antoniou et al. (2002)
proposed a model which included the BRCA1 and BRCA2 genes, and a polygenic component
which acted multiplicatively on the rate of onset of BC. We use this model to find premium rates
for critical illness insurance: (a) given knowledge of an applicant’s polygenotype; and (b) given
knowledge of a family history of BC or ovarian cancer. We find that the polygenic component
causes large variation in premium rates even among non-mutation carriers, therefore affecting
the whole population. In some cases the polygenic contribution is protective enough to reduce or
remove the additional risk of a BRCA1/2 mutation, leading to cases where it will be
advantageous to disclose genetic test results which are adverse in absolute terms. Premiums
based on family history are lower than those found in an earlier study which attributed all
genetic BC risk to the BRCA1/2 genes.
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". Introduction

1.1 Breast Cancer, Ovarian Cancer and Insurance
Breast cancer (BC) is the most common cancer among women in the

United Kingdom; one in nine women develop BC in their lifetime. Ovarian
cancer (OC) is the fourth most common cancer among women, and the U.K.
has the highest incidence of OC in Europe (Cancer Research U.K.). Together
they account for a significant proportion of claims under critical illness (CI)
insurance policies. It is well known that mutations in either the BRCA1 or
BRCA2 genes can increase the risk of BC or OC at early ages very
substantially.

The genetic risk associated with family histories of BC or OC has
prompted more actuarial research than has any other genetic disorder. The
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work has built upon the genetic epidemiology of BC and OC, which is still
developing. Early epidemiological studies selected highly affected families;
these were the basis for actuarial studies by Subramanian et al. (1999),
Lemaire et al. (2000) and Macdonald et al. (2003a, 2003b). Recent advances
in the epidemiology include larger sample sizes and less biased selection of
subjects or families. A recent actuarial study allowing for these is Gui et al.
(2006). The aim of all these actuarial studies has been to model how life and
CI insurance pricing may be affected: (a) if the insurer knows of the genetic
risk; or (b) if the applicant for insurance knows of the genetic risk, but the
insurer does not.

In the U.K. the Genetics and Insurance Committee (GAIC) has the task
of assessing applications made by the insurance industry to be allowed to use
genetic test results in underwriting, provided: (a) the test results were known
because of past clinical history; and (b) the sum assured exceeds the limit set
in an agreed moratorium (currently »500,000 for life insurance and »300,000
for CI insurance). Because of their significance, tests for BRCA1/2 mutations
are very likely to be the subjects of applications to GAIC.

U.K. insurers are still allowed to use family history in underwriting
(unlike in some other countries, such as Sweden), so, in view of the high
limits set by the moratorium, the vast majority of applications involving a
family history of BC or OC will continue to be underwritten on that basis.
Although genetic test results have attracted much attention, the implications
of a family history are of more practical importance.

The main epidemiological quantity needed for actuarial modelling is the
rate of onset, here denoted mgðxÞ. This is the force of onset of the disease (or
hazard rate) at age x, for a person with genotype g. If estimates of mgðxÞ are
available, they can be incorporated in a multiple decrement model for CI
insurance almost trivially, or, more generally, given any payment function we
can compute its expected present value (EPV), denoted EPVðgÞ. However,
this assumes the genotype g to be known. If all that is known is the existence
of a family history when a woman aged x applied for insurance, the
corresponding EPV is:X

g

P½Genotype is g j Family history exists at age x�EPVðgÞ ð1Þ

where the sum is over all possible genotypes g. Thus, the genotype-specific
quantities are still needed, even if the focus is on family history. An
important point, which will drive our choice of methodology later, is that the
conditional genotype probabilities in equation (1) usually depend on the
transmission probabilities, namely the probabilities that a child of parents
whose genotypes are known will have any given genotype.
Another key feature of the earlier genetic epidemiology of BC and OC is

that it was based upon the inheritance of major genes, namely single genes in
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which mutations are alone sufficient to cause the disease. BRCA1 and
BRCA2 are the most important, but in the Appendix we list other genes
which have been associated with BC risk. Current and future epidemiology is
likely to change direction radically, and emphasise another class of genes,
called polygenes. Polygenic inheritance means that the genetic risk depends
on which variants of several different genes are inherited. In fact, diseases
associated with mutations in single genes are exceptional, the vast majority of
genetic risks in adult life are almost certainly polygenic, and may be
influenced by environment and lifestyle too (hence the name ‘multifactorial
disorder’ which is often used to describe them). Even when major genes may
cause a disease, it is possible that the majority of familial clustering of the
disease may be caused by polygenes. This is very likely to be the case with BC
(see Section 2.1). This epidemiological breakthrough will offer a completely
new perspective on the insurance issues raised by knowledge of an
individual’s genetic profile.

Recently Antoniou et al. (2002) examined a number of genetic models for
BC/OC risk, using data which included both high-risk families and families
not selected for known BC risk. The best-fitting model incorporated BRCA1,
BRCA2 and a polygene which modified the rates of onset of BC. Since their
paper, and other published sources, allow all the mgðxÞ to be found, it is
simple to build an actuarial model for CI insurance assuming genotypes to be
known, hence to answer the question: “What is the effect of pricing CI
insurance if the polygene is allowed for, as well as the major genes BRCA1
and BRCA2?’’ Put another way: “How reliable is a genetic test which shows
a BRCA1/2 mutation to be present, if the polygene is not taken into
account?’’ This bears directly on the criteria that GAIC has published for
assessing the use of genetic tests by insurers.

We then wish to study how the polygene affects CI insurance pricing if,
as usual, only the existence of a family history is known. Previous studies
have used equation (1) directly, because a small number of major genes
defines a small number of genotypes g. This is not the case with the
polygenic model, in particular the conditional genotype probabilities in
equation (1) are intractable. We therefore simulate a large number of
nuclear families, and assume that the children of these families make up the
pool of potential applicants for insurance. The empirical distribution of
genotypes in this simulated sample provides the probabilities in equation (1)
directly.

Æ. The Model of Antoniou et al. (ÆòòÆ)

2.1 Breast Cancer and Polygenes
The risks of BC and OC onset were linked to mutations in the BRCA1

and BRCA2 genes in the 1990s, triggering a search for other genes implicated
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in tumour formation. This search still goes on, because it is estimated that
BRCA1, BRCA2 and the other possible high-risk genes found to date (see
the Appendix), account for only about 25% of the observed familial
clustering (Struewing, 2004; Easton, 2005). Part of the problem is that
mutations in BRCA1/2 are quite rare, their frequencies being estimated to be
0.051% and 0.068% respectively (Antoniou et al., 2002).
It is widely believed that the remaining component arises from the

combined influence of common variations (alleles) in several genes which
each, individually, has only a small effect on the risk of BC. Such a
configuration is called ‘polygenic’, and the genes which contribute to it
may collectively be called a ‘polygene’. Although it is unlikely that a
polygene explains all of the remaining 75% of the familial variation (there
are other shared factors within families, such as diet and socio-economic
status), it may explain a larger proportion than do any of the major
genes.

2.2 The Hypergeometric Polygenic Model
The inheritance of major (single) genes, except those carried on the sex

chromosomes, is usually assumed to follow Mendel’s laws, summarised as
follows: everyone carries two copies of every gene and each of their children
inherits one of them, selected randomly and independently. Thus, the chance
that a child receives either copy carried by a given parent is 1=2. This is
quite tractable if we are interested in a small number of major genes, each
with a small number of alleles. For example, if we regard BRCA1 and
BRCA2 as each having two alleles (mutated and normal) there are only
3� 3 ¼ 9 possible genotypes, whose frequencies can be calculated exactly if
the allele frequencies are known.

However a polygenic model may involve a large number of genes, each
with several alleles. In principle Mendel’s laws may still be applied, but the
number of possible genotypes quickly becomes intractable in many practical
problems. For example, if six genes contribute to the polygene, and each has
two alleles, there are 36 ¼ 729 possible genotypes. It is impractical to specify
the effect of each of these genotypes on disease onset without some making
some simplifying assumptions ö in other words, a model.

Consequently, approximate models of the polygenic contribution to a
disease have been proposed. A widely used assumption is that the
polygenotype is represented by a numerical value on a continuous scale, and
the distribution of these values in the population is Normal. This can be
motivated by applying the Central Limit Theorem to a model in which total
disease risk is the sum of the disease risks associated with all the alleles
contributing to the polygenotype, with suitable independence assumptions.
The polygenic disease risk may then be a suitable function of the polygene’s
numerical value, or the disease may be assumed to occur if the polygene’s
value exceeds a threshold. While this gives a simple model of a polygene’s
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effect, it makes it difficult to model inheritance. The question to be
answered is: “What is the conditional probability that the child of parents
with known polygenotypes will have any given polygenotype?’’ Passage to
the continuous limit simplifies the problem of having many additive
contributions to the risk, but at the same time it turns the combinatorics of
inheritance from hard to impossible.

As a result, when the inheritance of a polygene must be modelled,
approximations may be made in the other direction, from continuous to
discrete. The numerical polygenotype is assumed to take values in a discrete
distribution with a suitable shape, for which there is a plausible model of
transmission from parents to children. (Note that this discretisation does not
mean a return to the Mendelian model; it is not now genes which are
transmitted from parents to children but just a numerical ‘value’ representing
the polygene.) Before giving an example, we fix terminology, by making the
following conventions:
(a) The word ‘polygene’ will mean the collection of genes which constitute

it ö actual physical segments of DNA.
(b) Variants of a gene which contributes to a polygene will be called

‘polygenic alleles’.
(c) The word ‘polygenotype’ means a numerical value representing the

polygene.

Our example is the hypergeometric model of Lange (1997), derived from
Cannings et al. (1978). It was used by Antoniou et al. (2002) to represent a
polygenic component of BC risk, and it will be central in this paper.

Suppose that n genes, inherited independently of each other, contribute
to the polygene, and that each has an ‘adverse’ allele and a ‘beneficial’
allele, which are equally common. An adverse allele contributes þ1=2 to
the numerical value of the polygenotype, and a beneficial allele ÿ1=2.
Since a person has two copies of each gene, the polygene is defined by the
total number of adverse alleles, the possibilities being 0; 1; . . . ; 2n. The
corresponding numerical values of the polygenotype are ÿn;ÿðnÿ 1Þ; . . . ;
ðnÿ 1Þ; n, meant to suggest that ‘negative’ polygenotypes present below
average risk, while ‘positive’ polygenotypes present above average risk. The
mother’s, father’s and child’s polygenotypes are random variables denoted
Pm;Pf and Pc respectively. Assuming the parents to be sampled randomly
from the population, their polygenotypes are independently binomially
distributed with parameter ð2n; 1=2Þ, for example:

P½Pm ¼ pm� ¼
2n

pm þ n

� �
1
2

� �2n ÿ
pm ¼ ÿn;ÿðnÿ 1Þ; . . . ; ðnÿ 1Þ; n

�
: ð2Þ

Thus the ‘extreme’ polygenotypes are uncommon, and the ‘central’
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polygenotypes much more common. By the assumed independence, the
parents’ joint polygenotype is:

P½Pm ¼ pm;Pf ¼ pf � ¼
2n

pm þ n

� �
2n

pf þ n

� �
1
2

� �4n

: ð3Þ

Polygenes are transmitted from parents to children by independently
sampling, without replacement, n polygenic alleles from the mother and n
from the father. Conditional probabilities for an offspring’s polygenotype are
then:

P½Pc ¼ pcjPm ¼ pm;Pf ¼ pf �

¼
Xmin½pmþn;pcþn�

r¼max½0;pcÿpf �

pm þ n

r

� � nÿ pm

nÿ r

� �
2n
n

� �
pf þ n

pc þ nÿ r

� �
nÿ pf

rÿ pc

� �
2n
n

� � : ð4Þ

This is the convolution of two independent hypergeometric distributions
representing the sum of the father’s and the mother’s contributions to their
child’s polygenotype. For further details see Lange (1997).

2.3 The Model of Antoniou et al. (2002)
Antoniou et al. (2002) fitted several alternative models to a set of high-

risk families (each with multiple cases of BC or OC) and a set of unselected
BC cases. The best-fitting model was a mixed major gene and polygenic
model, in which the major genes were BRCA1 and BRCA2. The site of a
mutation on BRCA1/2 was not considered; mutations were either present or
absent. Previous studies have shown different mutation sites on the BRCA
genes to display different risks of onset and aggressiveness after onset, but
this aspect of the epidemiology of BC/OC is not yet developed enough to be
taken into account.

For convenience, we use the term ‘BRCA0 genotype’ to indicate a person
who carries neither BRCA1 nor BRCA2 mutations, and let ‘BRCA1
genotype’ and ‘BRCA2 genotype’ refer to mutation carriers, although strictly
there is no such gene as BRCA0.

The authors used the national incidence rates for England and Wales in
1983 to 1987 as baselines, and estimated the relative risks of BC and OC in
respect of BRCA1 and BRCA2 mutation carriers, piecewise constant over
ten-year age groups between ages 30 and 69. These are shown in Table 1.
Since they did not publish the baseline rates, we calculated our own using
ONS statistics for England and Wales in 1983 to 1987 and cancer registrations
over the same period (ONS, 1999). These are shown in Figure 1, along with
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crude estimates of those used by Antoniou et al. (2002), obtained by
dividing absolute onset rates by the relative risks. Thus we have onset rates
mBC

BRCAiðxÞ and mOC
BRCAiðxÞ, for i ¼ 0; 1; 2.

Table 2 compares the BC incidence rates of BRCA1 and BRCA2
mutation carriers from this study with those of the earlier study by Ford et
al. (1998) (the basis of the actuarial model of Macdonald et al. (2003a)). The
trends with age are similar, but the rates from Antoniou et al. (2002) are
much lower, particularly for older BRCA2 mutation carriers. This is as
expected, because Ford et al. (1998) included only high-risk families (those
with at least four cases of BC), whereas Antoniou et al. (2002) included a
population-based cohort. Both studies focused on early onset of BC, with
relatively few cases of onset at ages over 50 to 55, possibly leading to
underestimated risk at higher ages.

The polygenotype is modelled as a Normal random variable R with mean
zero and variance (the fitted parameter) �2

R ¼ 1:291. It modifies the BC risk
regardless of BRCA genotype as follows:

mBC
BRCAiðx;RÞ ¼ mBC

BRCAiðxÞe
R: ð5Þ

Table 1. The relative risks for BC and OC BRCA1 or BRCA2 mutation
carriers estimated by Antoniou et al. (2002); the baselines are the onset

rates in England and Wales in 1983 to 1987

Breast cancer Ovarian cancer

Age BRCA1 BRCA2 BRCA1 BRCA2

30-39 23.88 17.52 3.43 3.67
40-49 12.40 10.80 53.32 2.00
50-59 4.91 12.11 20.86 11.85
60-69 2.31 12.53 19.51 8.32

Table 2. Comparison of the incidence rates for breast cancer estimated by
Antoniou et al. (2002) and Ford et al. (1998)

Antoniou et al. Ford et al.

Age BRCA1 BRCA2 BRCA1 BRCA2

30-39 0.011222 0.008236 0.01618 0.0118
40-49 0.016621 0.014471 0.04749 0.0210
50-59 0.008255 0.020352 0.03480 0.0318
60-69 0.004843 0.026326 0.02162 0.1180
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Figure 1. Baseline incidence rates for BC (top) and OC (bottom) from
ONS figures for England and Wales (1983 to 1987) and figures from

Antoniou et al. (2002)
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The Normal polygenic model was discretised to calculate likelihoods.
Antoniou et al. (2002) used the hypergeometric model (Section 2.2) with
n ¼ 3, thus seven polygenotypes P, with values ÿ3;ÿ2;ÿ1; 0; 1; 2; 3,
binomially distributed as in equation (2). Values of R were approximated in
terms of values of P (equating second moments) as follows:

R �
Pffiffiffiffiffiffiffiffi

n=2
p

�R

: ð6Þ

The polygenotype did not affect the incidence of OC, or of any other
disorder.

As we will need to model the transmission of polygenotypes from parents
to children, we will use the same model.

â. A Model for Critical Illness Insurance

3.1 The Model
Figure 2 shows a continuous-time Markov model of a CI insurance

contract. The transition intensities from ‘healthy’ to ‘other critical illness’
and ‘dead’ are taken from Guti�errez & Macdonald (2003).

Figure 2. A model of the life history of a critical illness insurance
policyholder, beginning in the healthy state; transition to a non-healthy

state d at age x is governed by an intensity md
ðxÞ depending on age x or, in

the case of BC and OC, md
gðxÞ depending on genotype g as well

and Ovarian Cancer to Critical Illness Insurance 327

https://doi.org/10.1017/S174849950000018X Published online by Cambridge University Press

https://doi.org/10.1017/S174849950000018X


3.2 Premiums Based on Known Genotypes
Table 3 shows the level net rates of premium, payable continuously, for

CI insurance cover at several entry ages and policy terms. The premium rates
are expressed as a percentage of those for a woman who carries no
BRCA1/2 mutation (genotype BRCA0) and who has the ‘neutral’
polygenotype P ¼ 0, which we take to be the ‘standard’ premium. The force
of interest is 0.05 per annum. Expected present values (EPVs) were found
numerically by solving Thiele’s equations (Hoem, 1988) using a Runge-Kutta
algorithm with step size 0.0005 years.
In CI insurance, premiums in excess of 300% to 350% of the standard

premium usually result in cover being declined. Many of the ratings for
known BRCA1 and BRCA2 mutation carriers are above this level. Previous
studies using quite recent epidemiology, but the major genes only, have
reported that both BRCA1 and BRCA2 mutation carriers are likely to be
declined for any combination of entry age and term (Gui et al., 2006). Our
results with the polygene P ¼ 0 mostly agree with this.

The variation by polygenotype is the most striking feature of these
results, and, since it affects the whole population, not just the carriers of rare
mutations, it presents for the first time a widespread major variation of a
genetic risk factor:
(a) The polygene alone (genotype BRCA0) leads to premiums for the

highest risk (P ¼ þ3) that are up to 3.4 times those for the lowest risk
(P ¼ ÿ3). Variation of this order caused by a major gene would probably
be worthy of an actuarial study in its own right.

(b) In some instances a BRCA1/2 mutation carrier with a protective
polygenotype may be eligible for a lower premium than non-mutation
carriers with a risky polygenotype.

(c) We see that BRCA1/2 mutation carriers can be offered CI insurance at
most entry ages and policy terms if they have a strongly protective
polygenotype. Thus, there is potential for genetic testing to make
insurance more accessible under a lenient moratorium (one in which
genetic test results may be disclosed if it is to the applicant’s
advantage).

On the other hand, premiums are even higher than previously reported
for women with a detrimental combination of genotypes. The premium rate
in the worst case (polygenotype þ3 and major genotype BRCA1) is up to 38
times the ‘standard’ rate and up to 26 times the premium rate for a BRCA1
mutation carrier with polygenotype ÿ3. For BRCA2 mutation carriers the
corresponding multiples are about 28 and 22 times.

3.3 A Comment on Genetic Tests for Polygenotypes
References to ‘known’ polygenotypes should not lead readers to suppose

they might soon be detected by DNA-based genetic tests. Our model of a
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polygenotype is a numerical value, whereas a real polygenotype is a
combination of (possibly very many) alleles. In order to test for a polygene
and relate the result to a risk estimate, all the complications that drive
geneticists to use the simplified model will have to be overcome. Moreover, it
seems unlikely that genetic risks will be capable of being understood in
isolation, but only in combination with other major risk factors.

ª. Modelling Family History in Insurance Underwriting

4.1 Modelling Family History
The problem is to find EPVs given a family history at age x, as in

equation (1). Assuming the genotype-specific onset rates to be known, this
reduces to estimating the conditional probabilities:

P½Genotype is g j Family history exists at age x�: ð7Þ

First, we must define what is meant by ‘family history’. That done, the
calculation must be anchored by the assumption that some ancestors of the
applicant have genotypes which are randomly and independently sampled
from the distribution of genotypes in the population. We will assume this to
be true of the applicant’s parents; thus their genotype probabilities are
known. Together with the transmission probabilities which govern the
inheritance of genes, this fixes the genotype probabilities of the applicant and
all her siblings. For every possible joint genotype of the entire family, we
know the probabilities of critical illnesses, including BC and OC, striking
before any given age, hence the probability of a family history arising. At this
point, the computation of the probability (7) has become, in principle, just
an application of Bayes’ Theorem. However, the summation is not over the
applicant’s possible genotypes as in equation (1), but over all possible joint
genotypes of the whole family.

The procedure outlined above was followed by Macdonald et al. (2003a)
for several definitions of family history. They also considered the more
realistic possibility that the insurer may not have any information about the
unaffected relatives of the applicant. Their approach could not be extended
to a model of the insurance market, necessary to study the potential costs of
adverse selection, because it did not model the development of a family
history over time as a factor which might influence the decision to buy
insurance or to take a genetic test. That step was taken by Gui et al. (2006),
who pointed out that, if the definition of ‘family history’ is such that at any
given time it is either certainly present or certainly absent, the time at which
it appears can be modelled as an event time in the usual framework of
survival models, and the procedure outlined above can be modified to give an
age-dependent ‘rate of onset’ of a family history. However, this approach
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still depended on applying Mendelian transmission probabilities to just two
major genes.

The polygenotype introduces a non-Mendelian model of transmission,
which is not a real problem, and greatly increases the number of genotypes,
which is. Thus, we have chosen to estimate the probabilities (7) by
simulation.

4.2 Definition of Family History
Our definition of a family history is based on a typical underwriting

threshold, namely two first-degree relatives (FDRs, meaning parents and
siblings) suffering onset of BC or OC before age 50. Under many underwriting
standards this condition would lead to an extra premium being charged
(Macdonald et al., 2003b). Note that this is quite different from clinical
practice, in which a family history may be defined by a much more complex
pedigree, including second-degree and other relatives. To a clinician, also, a
family history is defined by the circumstances of each patient. Thus we rely
on the much simpler notion used by insurers.

4.3 The Simulation Model
The approach is as follows:

(a) A family starts with two parents, whose major genotypes and
polygenotypes are independently sampled from their respective
distributions in the population, except that we disregard the probability
that either parent has more than one mutation. This is consistent with the
treatment of BRCA1 and BRCA2 in Antoniou et al. (2001). It is widely
assumed by epidemiologists that a foetus with two mutations of the same
BRCA gene will not be viable and will miscarry. We use the BRCA1
and BRCA2 mutation frequencies from the polygenic model in Antoniou
et al. (2002), 0.051% and 0.068% respectively.

(b) The number of daughters which the parents have is randomly sampled
from a suitable distribution. We use that of Macdonald et al. (2003a),
which is given in Table 4. Hence the family size may vary from three to
nine members, and the father is the only male. For simplicity, we assume
that the mother has her children when she is age 30 and that all
daughters are the same age.

Table 4. Distribution of the number of daughters born in a family

No. of daughters Probability No. of daughters Probability

1 0.54759802 5 0.00285702
2 0.33055298 6 0.00035658
3 0.09749316 7 0.00002634
4 0.02111590

Source: Macdonald et al. (2003a).
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(c) Each daughter, independently of the others, inherits the major genes at
random according to Mendel’s laws, and the polygenotype at random
according to equation (4). We discard any family in which a daughter
inherits any two major gene mutations, for the reasons given in (a).

(d) The life histories of the mother and daughters, in respect of the model
in Figure 2, are simulated using a competing risks approach. We ignore
male BC, and we assume that the mother is healthy at age 30.

After simulating a large number of such families, we can observe, at
every age x > 0, the distribution of the genotypes of daughters in families in
which a family history has appeared. We will describe this in Section 4.6.

4.4 Simulating Competing Risks
There are four decrements in the model in Figure 2. Define T id to be the

random time at which the ith person in the simulated sample suffers
decrement d, as if it acted alone. In the simulation, the ith person’s genotype
is known, say it is g. Then T id has distribution function, denoted Fd

gðtÞ,
given by:

Fd
gðtÞ ¼ 1ÿ exp ÿ

Z t

0
md

gðxþ sÞds

� �
for t <1, possibly with a probability mass at t ¼ 1. This, and its inverse,
can be computed and tabulated. The random variable Fd

gðT
id
Þ is uniformly

distributed on ½0; 1�, so we simulate a uniform ½0; 1� random variable,
denoted aid, and solve numerically the equation Fd

gðt
id
Þ ¼ aid to obtain our

simulated value tid. The ith person’s life history is then represented by the
pair ðti; di

Þ, where ti ¼ min½ti1; ti2; ti3; ti4
� and di is that decrement for which

tij ¼ ti.
Note that each decrement in the model censors the others, so it is not

possible for a woman who survives a heart attack (for example) to develop
BC/OC subsequently. The effect is minimal at those ages where onset would
contribute to a family history; by age 50 only about 6% of women have
developed one of the other CIs.

4.5 Sampling Insurance Applicants from Simulated Families
We simulated 10,000,000 families as described above, containing in total

16,022,024 daughters. At any age x, those daughters still healthy constitute
the pool of potential applicants for insurance. We assume that the insurer, in
effect, samples randomly from this pool, knowing only whether each
applicant has a family history or not. As well as using the maximum possible
amount of information in the simulated families, this sampling scheme
accounts correctly for the fact that there are more potential applicants than
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there are family histories; in larger families the appearance of a family
history will affect more than one healthy daughter.

4.6 Applicant’s Genotype Distribution
We can now estimate by direct enumeration the distribution of the

applicant’s genotype, conditional on the observed family history. All
applicants are healthy, but some have a family history and others do not.
This is all that the insurer knows. We, however, also know into which of the
following categories each applicant falls:
(a) applicant is in a BRCA0 family (no mutations) and has BRCA0 genotype;
(b) applicant is in a BRCA1 family and has BRCA0 genotype;
(c) applicant is in a BRCA1 family and has BRCA1 genotype;
(d) applicant is in a BRCA2 family and has BRCA0 genotype; or
(e) applicant is in a BRCA2 family and has BRCA2 genotype.

Table 5 shows the numbers of daughters who have no family history at
selected ages from zero to 60 years, grouped into the five categories above
and the state occupied in the CI model (Figure 2). Table 6 shows the
corresponding distribution of daughters who do have a family history. In
both tables the potential insurance applicants are those in the healthy state.

We further subdivide the numbers in Tables 5 and 6 by polygenotype.
The results are too extensive to tabulate, so, for illustration, Figures 3 and 4
show histograms of the polygenotype distribution among healthy daughters
with a family history, for the five major gene categories above, and ages 30
and 40 (Figure 3) and 50 and 60 (Figure 4). Note that no mutation carriers
have a family history at age 30. This is because mutation carriers are rare,
and before age 30 they share the population onset rates of BC and OC.

For brevity, we omit the polygenotype distributions of daughters with no
family history. They are slightly more inclined to less risky values, because
carriers of more dangerous polygenotypes are more likely to have FDRs with
risky polygenotypes, hence to have a higher risk of developing a family
history. This is most pronounced in BRCA2 mutation carriers, because the
deleterious effects of BRCA2 mutations are relatively late acting.

These empirical distributions (at all ages x, not just the selected ages
illustrated) provide the conditional probabilities which we need (equation (7))
to calculate premiums for a daughter with a family history.

4.7 Premiums for an Applicant with a Family History
Sample level premiums for a daughter with a family history, applying for

level CI insurance, are shown in the first two lines of Table 7. They are
expressed as percentages of the relevant premium for a woman with major
gene BRCA0 and polygenotype P ¼ 0.

Table 7 shows the effect of allowing for or ignoring the polygene. The full
model, labelled ‘PþMG’, uses both polygene and major gene probabilities in
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weighting EPVs. The major-gene-only model, labelled ‘MG’, uses only the
major gene probabilities, assuming that everyone has polygenotype P ¼ 0.
The latter are very much lower, but this has to be interpreted with care:
(a) The major-gene-only model is not comparable with previous actuarial

studies of CI insurance which were based on the major genes only. Here
it just isolates the contribution of the major genes to the familial risk, in
the full model. The earlier studies were based on genetic models in which
100% of the familial risk was attributed to the major genes.

(b) What these figures do show, in comparison with the earlier studies, is
that the larger proportion of the genetic risk of BC/OC lies with the
polygene, not with the major genes. This is a very significant conclusion,
because genetic testing for the major genotypes is common, but there is
no immediate prospect of defining and testing for polygenotype.

Under the major-gene-only model, policies taken out at age 20 have almost

Table 6. Numbers of daughters with a family history and given major
genotype, in each state in the CI model (see Figure 2), at selected ages

Genotype Daughters’ ages

Family Applicant State 0 10 20 30 40 50 60

BRCA0 BRCA0 Healthy 0 0 0 35 2,771 23,878 18,437
BRCA1 BRCA0 Healthy 0 0 0 0 137 656 551
BRCA1 BRCA1 Healthy 0 0 0 0 128 432 302
BRCA2 BRCA0 Healthy 0 0 0 0 119 570 481
BRCA2 BRCA2 Healthy 0 0 0 0 106 456 225

BRCA0 BRCA0 BC 0 0 0 25 2,801 29,734 32,886
BRCA1 BRCA0 BC 0 0 0 0 22 154 181
BRCA1 BRCA1 BC 0 0 0 0 410 1,585 1,654
BRCA2 BRCA0 BC 0 0 0 0 20 148 180
BRCA2 BRCA2 BC 0 0 0 0 313 1,549 1,730

BRCA0 BRCA0 OC 0 0 0 6 257 2,677 3,008
BRCA1 BRCA0 OC 0 0 0 0 3 20 24
BRCA1 BRCA1 OC 0 0 0 0 11 409 443
BRCA2 BRCA0 OC 0 0 0 0 4 9 10
BRCA2 BRCA2 OC 0 0 0 0 14 40 63

BRCA0 BRCA0 Other CI 0 0 0 0 68 1,406 3,054
BRCA1 BRCA0 Other CI 0 0 0 0 7 49 112
BRCA1 BRCA1 Other CI 0 0 0 0 3 36 59
BRCA2 BRCA0 Other CI 0 0 0 0 6 42 89
BRCA2 BRCA2 Other CI 0 0 0 0 1 31 54

BRCA0 BRCA0 Dead 0 0 0 0 30 448 758
BRCA1 BRCA0 Dead 0 0 0 0 2 16 27
BRCA1 BRCA1 Dead 0 0 0 0 2 8 12
BRCA2 BRCA0 Dead 0 0 0 0 4 11 20
BRCA2 BRCA2 Dead 0 0 0 0 1 10 14
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no additional risk because the probability of having developed a family
history by age 20 is almost zero (which is consistent with Figure 3).

The premium increases shown under the full polygenic model (PþMG)
range from 30% to 75%. The insurer probably would charge an extra premium
given these results, but they are quite modest. Clearly, this is a consequence
of the definition of family history. We would expect stricter definitions to
pinpoint the presence of major genes more accurately, though in a much
reduced number of families. Table 7 also shows the increased premiums if a
family history is defined as at least three or as at least four first-degree
relatives with BC or OC before age 50. As expected they are much higher, in
some cases approaching the limit of insurability. However, such family
histories are so rare before age 30, even among 10,000,000 simulated families,
that the additional premiums were zero for policies taken out at that age.

Macdonald et al. (2003b) and Gui et al. (2006) gave premium ratings for
CI insurance in the presence of a family history of BC or OC. Both used
major-gene-only models of BRCA1 and BRCA2, the former based on the
study of highly selected families by Ford et al. (1988), the latter on a more
recent study by Antoniou et al. (2003). Moreover, Gui et al. used the same
definition of family history as we have, namely two FDRs affected before age
50. Table 8 compares our premium rates with theirs, all as percentages of
the standard premium. Although Gui et al. (2006) was based on a relatively
unselected population, they assumed that the onset rates of BC and OC
among BRCA1/2 mutation carriers were either 100% or 50% of the rates
estimated, as a rough allowance for any remaining ascertainment bias; both
are shown in the table.

Our full model (PþMG) yields lower premiums, compared with Gui et
al. if onset rates were 100% of those estimated. This is as expected for the

Table 7. Level net premium for females with a family history of BC or
OC, as a percentage of the level net premium for a woman free of BRCA1/2

mutations and with polygenotype P ¼ 0; the PþMG model uses both
major gene and polygene probabilities in the weighted average EPVs, while

the MG model uses only the major gene probabilities

Definition
of family Genetic Age 30 Age 40 Age 50

history model 10 years 20 years 30 years 10 years 20 years 10 years
% % % % % %

2 affected FDRs PþMG 134 136 131 175 154 131
MG 100 100 100 122 115 105

3 affected FDRs PþMG 100 100 100 293 229 156
MG 100 100 100 181 157 119

4 affected FDRs PþMG 100 100 100 381 285 191
MG 100 100 100 210 174 134
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following reason. If we attribute all the inherited BC or OC cases to BRCA1/2
mutations, we will estimate a higher frequency of such mutations in the
population, and increase the probability of finding a mutation carrier in a
family with a history of BC or OC. Finding a single mutation carrier puts all
the individuals, except confirmed non-carriers, at high risk; hence premiums
based on a family history are high. By including the polygene we reduce the
estimated frequency of BRCA1/2 mutations. Moreover, although a family
history may indicate the presence of a dangerous polygene in a parent, their
children will inherit an equally dangerous polygene with quite small
probability. Polygenotypes, and the physical manifestations which they
cause, display classical regression to the mean; indeed, such patterns of
inheritance are the very origin of the statistical term ‘regression’.
However, it is interesting that our model sometimes yields higher

premiums than Gui et al. if their onset rates were only 50% of those
estimated. Since there is no objective measure of how much their onset rates
or ours may have been affected by ascertainment bias, we tentatively
conclude that our results show that polygenic inheritance dilutes the strong
signals which would be given by family histories if major genes only are
responsible.

ä. Conclusions

5.1 The Implications of Polygenes
This is the first actuarial study to incorporate a fitted model of a

polygenic disorder. The following conclusions might be relevant to GAIC
when reviewing applications to use genetic test results for BC, or other
polygenic diseases, in insurance underwriting.

Table 8. Level net premium for females with a family history of BC or
OC, as a percentage of the standard premium; the polygenic model is

compared with the major-gene-only model of Gui et al. (2006); the latter
assuming that onset rates of BC and OC among BRCA1/2 mutation

carriers were either 100% or 50% of those estimated, as a rough allowance
for ascertainment bias

Definition
of family Genetic Age 30 Age 40 Age 50

history model 10 years 20 years 30 years 10 years 20 years 10 years
% % % % % %

2 affected FDRs PþMG 134 136 131 175 154 131
MG 100 100 100 122 115 105

Gui et al. (2006) 100% 330 251 204 208 174 142
50% 217 179 156 154 139 120
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Very substantial variation in premiums is attributable to the polygenic
component of BC and OC risk, as opposed to the much-studied BRCA1 and
BRCA2 major genes. Most significantly, some BRCA1/2 mutation carriers
could be offered the standard premium rate after a genetic test which
accounts for polygenotype. In the context of a lenient moratorium such as
that in the U.K. (that is, a moratorium which allows insurers to use a genetic
test result if it is to the applicant’s advantage), this raises the possibility that
a counteracting polygene configuration could be used to void a known
BRCA1/2 mutation. At this stage, this is a brave extrapolation from a
theoretical polygenic model, but enough genetic variation is unaccounted for
by BRCA1 and BRCA2 to make such a conclusion plausible, if and when
polygenes become a therapeutic target for BC.

The polygenotype variation in the population (particularly, owing to its
size, the subpopulation carrying no BRCA1/2 mutation) could raise
questions which have so far largely been avoided because of the rarity of
single-gene late-onset disorders. There appears to be enough variation in the
risk attributed to the polygenotype that a test for an individual’s
polygenotype would raise new issues of adverse selection in the insurance
market. This will be the subject of future research.

However, our results are consistent with those of Macdonald et al.
(2003b) and Gui et al. (2006), in showing that knowing of a BRCA1/2
mutation only (averaging over polygenotypes) presents a risk high enough to
justify increased premiums, beyond the limits of any moratorium which may
be in force. Although more recent epidemiology of BRCA1 and BRCA2 have
suggested lower penetrance than originally estimated, the fact remains that
BRCA1/2 mutation carriers are exposed to a much higher risk of BC and
OC.

Because much of the genetic variation in BC can be explained by
polygenes which affect the entire population (rather than just mutation
carrier families), and the mode of transmission is not Mendelian, a woman
with a family history need not have a genotype close to that of her sister. For
example, parents with polygenotypes ðPm;Pf Þ ¼ ð0; 0Þ can produce a child
with polygenotype Pc ¼ þ3 with the same probability as they can produce a
child with polygenotype Pc ¼ ÿ3. One sister at high risk of BC does not
make it certain that any of her sisters will be also. Thus, when we use
different models of inherited BC risk we find different premium ratings for a
family history. We have also found a large difference in premium ratings if
the definition of family history is tightened. Possibly � 3 affected members
rather than � 2 affected members is the reasonable threshold of serious risk
beyond which insurance may not be attainable.

5.2 Polygenic Models in Other Diseases
The genetics and insurance debate has mainly focused, for good reasons,

on monogenic disorders, a prime example being Huntington’s disease. Now
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genetic technologies are advancing rapidly, and we must broaden the focus
to include polygenic disorders. This is a more significant undertaking than
might first be thought, since every conceivable disorder can be considered to
be, to some degree, polygenic. This includes the common disorders like
heart disease, cancers and autoimmune diseases. Many common diseases
show familial inheritance, but no single genes have been found to account
for this.

Interactions between genes and environmental factors make it difficult to
identify polymorphisms which influence common diseases. However, large-
scale studies, such as U.K. Biobank, are now setting out to map the links
between genes and environment. Medical benefits are not expected to appear
for at least ten years. When results do begin to come through, however, it is
likely that we will find common low-risk genes (polygenes) which are risk
factors for a variety of common disorders. It is a prudent pre-emptive step to
try to understand the effect which identified polygenes may have on
insurance markets. This paper has made some progress towards that.
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APPENDIX

GENES CONFERRING BC RISK

The genes listed alongside BRCA1 and BRCA2 in Table 9 are candidate
polygenes for BC susceptibility. A polymorphism is defined as an allele with
a population frequency of at least 1% (less common alleles are more
commonly referred to as ‘mutations’). Polymorphisms are extremely common
in the human genome (200,000-400,000; Easton, 1999) and therefore offer a
vast search region for cancer susceptibility polygenes. In 2005 to 2006 there
has been an explosion in published research related to polymorphisms
associated with BC (and OC). A quick search of a medical research database
(Entrez PubMed) reveals 58 papers published between 1 January 2006 and
11 May 2006.

Table 9. List of genes which may confer additional BC risk (Rebbeck,
1999; Easton, 1999); the allele frequencies are for possible risk-conferring
polymorphisms estimated from healthy Caucasian control populations and

the numbers of distinct mutations are taken from the Human Gene
Mutation Database

Gene Allele frequency No. of mutations BC risk

BRCA1 0.051% 741 High
BRCA2 0.068% 500 High
TP53 39% 139 High
PTEN <0.01% 170 High
MSH2 337 High
ATM 1% 421 Moderate
CYP1A1 3-11% 2 Moderate
CYP2D6 9% 30 Low
CYP2E1 7-9% 2 Low
CHEK2 1.1% 23 Low
GSTM1 38-62% 3 Low
HRAS1 6% 1 Low
NAT2 56-62% 9 Low
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